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Abstract—This paper is concerned with the stability problem
of randomly switched systems. By using the probability analysis
method, the almost surely globally asymptotical stability and
almost surely exponential stability are investigated for switched
systems with semi-Markovian switching, Markovian switching
and renewal process switching signals, respectively. Two examples
are presented to demonstrate the effectiveness of the proposed
results, in which an example of consensus of multi-agent systems
with nonlinear dynamics is taken into account.

Index Terms—Switched systems, stability, semi-Markovian
switching, Markovian switching, renewal process.

I. INTRODUCTION

Randomly switched systems are considered to be a class of

switched systems, which consist of a family of distinct active

subsystems under operation governed by a stochastic process.

According to one randomly switching rule, a subsystem will

be activated along the system trajectory at certain instants. The

randomly switching usually arises when modeling dynamical

systems, which exhibit switching phenomena among several

subsystems due to jumping parameters or changing environ-

mental factors. In addition, the randomly switching system

can be used to model the system affected by random structural

changes. It is known that the randomly switched system serves

as a suitable modelling paradigm and has wide applications to

diverse areas such as economic systems, manufacturing sys-

tems, communication systems and biological systems affected

by random delays and component failures [1–5].

Stability analysis of randomly switched systems is a fun-

damental and challenging research issue. In [2], the multiple

Lyapunov-like function method was firstly introduced to inves-

tigate the globally asymptotically stability in almost sure sense
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(GAS a. s.) for randomly switched systems, and stability crite-

ria were also presented for switched systems with Markovian

switching. Subsequently, the multiple Lyapunov-like function

method has been widely applied to the study on the stability

of randomly switched systems [6–9]. A system with Marko-

vian switching is an important randomly switched system,

its active time for each subsystem satisfies the exponential

distribution, which has limited the applications of Markovian

switching. To overcome this restriction, the stability of the

system with semi-Markovian switching has been investigated

in [6, 9–14], where the semi-Markovian switching does not

necessarily satisfy memoryless property of Markov switching.

In [12], the stability and stabilization were considered for

switched systems with discrete-time semi-Markovian signals

by using the semi-Markovian kernel approach. The necessary

and sufficient conditions for mean square stability are derived

for switched systems with semi-Markovian switching signals

in [14]. The distribution of sojourn time can depend on both

current and next system mode in [12, 14].

Due to the failure of a component or abrupt disturbances,

a subsystem of a switched system might be unstable. Thus, it

is more practical and interesting to consider switched systems

with both stable and unstable subsystems [15–18], in which

the active time for stable subsystems should be ensured to

exceed a threshold such that unstable subsystems can be

compensated by stable subsystems. For randomly switched

systems with both stable and unstable subsystems, the GAS

a. s. was considered for randomly switched systems with

different switching signals in [6], where the sojourn time for

each subsystem is assumed to satisfy exponential and uniform

distributions, respectively. In addition, the GAS a. s. was also

examined in [6] for system with a special semi-Markovian

switching. It is well known that the stationary distribution

of Markovian chains is related to the active time for each

state of Markov chains, which thus can be used to restrict

the active time of stable and unstable subsystems for system

with Markovian switching. Recently, by using the comparison

theorem and the stationary distribution of Markov chains, the

moment stability was studied for the system with Markovian

switching in [8]. In [9], the comparison method introduced

in [8] was generalized to investigate the moment stability for

systems with semi-Markovian switching.

However, the moment stability presented in [8, 9] can

not imply the GAS a. s. and almost surely exponentially

stable (ES a. s.), which was also pointed out in [8], and the

method provided in [8, 9] cannot be directly applied to the

investigation on GAS a. s. and ES a. s. Thus, it is still open

to address the GAS a. s. and ES a. s. for the system with
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Markovian/semi-Markovian switching by using the stationary

distribution of Markov chains/embedded Markov chain. In

addition, the sojourn time for switching signals were assumed

to satisfy an exponential or a uniform distribution in [6], which

are the special cases of renewal process. Hence, the other

motivation of this paper is to consider the GAS a. s. and ES

a. s. for the system with renewal process switching signals.

Motivated by above discussions, in this paper, we aim to

investigate the GAS a. s. and ES a. s. for randomly switched

systems, where the switching signal is assumed to satisfy semi-

Markovian process, Markovian process and renewal process,

respectively. The contributions of this paper are summarized

as follows: 1) The GAS a. s. and ES a. s. are investigated

for system with Markovian and semi-Markovian switching by

using the stationary distribution of the Markov and embedded

Markov chain, respectively. In addition, GAS a. s. and ES a.

s. are also taken into account for system with renewal process

switching signals; 2) A new analysis technique is introduced

here to comprehensively consider the GAS a. s. and ES a. s.

of randomly switched systems by using the strong law of large

number.

Notations: Let R = (−∞,+∞),R+ = [0,+∞), N
+ =

1, 2, · · · , N = 0 ∪N
+, and Γ = {1, 2, · · · , r}, where r > 0 is

a finite integer. Let (Ω,F , P ) be a complete probability space

with some filtration {Ft}t≥0 satisfying the usual conditions

(i.e., the filtration is increasing and right continuous while

Ft0 contains all P -null sets). Let C1 denote the family of all

nonnegative functions V (x, i) on R
d × Γ → R

+ and that are

once differentiable in x. For x ∈ R
d, |x| denotes the Euclidean

norm of x. Moreover, let K denote the class of continuous

strictly increasing function κ : R
+ → R

+ with κ(0) = 0,

and K∞ be the subset of K functions that are unbounded. E

denotes the expectation operator.

II. PRELIMINARIES

In this paper, we consider the following randomly switched

system:

ẋ(t) = fσ(t)(x(t)), t ≥ 0, (1)

where x(t) ∈ R
d; the randomly switching signal σ(t) ∈ Γ is

a piecewise constant function, which is continuous from the

right, specifying the index of the active subsystem, i. e., σ(t) =
in ∈ Γ for t ∈ [τn, τn+1), and τn is the nth switching time

instant, where n ∈ N and τ0 = 0; the functions fi : R
d → R

d

are locally Lipschitz and fi(0) = 0 for i ∈ Γ; the probability

space (Ω,F , P ) is generated by the càdlág random process

σ(t). In addition, it is assumed that there are no jumps in the

state x(t) at switching instants.

Let N(t) be the occurrence number for total switching over

the interval [0, t], Ni(t) be the occurrence number for the ith
subsystem over the interval [0, t] and Ti(t) be the total time

for the switched system active on the ith subsystem over the

interval [0, t]. Let s(n) = τn − τn−1 be the sojourn time of

a subsystem for the nth visiting of σ(t) and the si(n) be the

sojourn time of the state i for the nth visiting of σ(t), where

n ∈ N
+.

Before giving the main results, we firstly present the fol-

lowing definitions.

Definition 1: [19, 20] The switching signal σ(t) is said to

be

1) semi-Markovian switching, if let σn = σ(t) for τn ≤ t <
τn+1, n ∈ N be the embedded chain,

(i) the discrete-time process {σn, s(n)} is a Markovian renew-

al process and satisfies

P (σn = i, s(n) ≤ t|σn−1, s(n− 1), · · · , σ1, s(1))

=P (σn = i, s(n) ≤ t|σn−1), i ∈ Γ, t ≥ 0, (2)

(ii) the distribution function of sojourn time s(n) is defined

by

Fij(t) = P (s(n) ≤ t|σn = j, σn−1 = i), i, j ∈ Γ, t ≥ 0, (3)

which depends on σn and σn−1;

2) Markovian switching, if for ∀in ∈ Γ, n ∈ N,

P (σ(tn) = in|σ(tn−1) = in−1, · · · , σ(t1) = i1)

=P (σ(tn) = in|σ(tn−1) = in−1),

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn;

3) renewal process switching, if the occurrence N(t) of the

switched signal σ(t) satisfies a renewal process, that is, the

sojourn times {s(n), n ∈ N} are a sequence of nonnegative

independent random variables with a common distribution F .

Definition 2: [2, 21] The randomly switched system in (1)

is said to be

1) globally asymptotically stable almost surely (GAS a. s.), if

the following two properties hold simultaneously:

SP1) for any ε ∈ (0, 1), there is a δ = δ(ε) > 0 such that

such that when |x0| < δ,

P (sup
t≥0

|x(t)| < ε) > 1− ε,

SP2) for any h > 0 and ε′ > 0, there is a positive random

variable T (h, ε′) such that P (supt≥T (h,ε′) |x(t)| < ε′) = 1,
provided |x0| < h;

2) almost surely exponentially stable (ES a. s.), if

lim sup
t→∞

1

t
log |x(t;x0)| < 0, a. s.,

for all x0 ∈ R
d.

III. MAIN RESULTS

In this section, by using the probability analysis method and

the strong law of large number, GAS a. s. and ES a. s. will

be considered for system (1) with semi-Markovian switching,

Markovian switching and renewal process switching signals,

respectively.

A. Stability of system with semi-Markovian switching

In the subsection, the switching signal σ(t) is assumed

to be governed by a semi-Markovian chain. It can be got

from (2) that the embedded chain {σn, n ∈ N} is a Markov

chain. Let the embedded chain have a transition probability

matrix P = [pij ]r×r, where pii = 0 for i ∈ r, and

assume that it is irreducible and has a stationary distribution

π̄ = {π̄1, π̄2, · · · , π̄r}.
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Firstly, a lemma is provided to connect the active time

on each subsystem and the stationary distribution of the

embedded Markov chain, which is crucial to examine the

stability of system (1) with semi-Markovian switching.

Lemma 1: Let σ(t) be a semi-Markovian process with state

sojourn time sequence s(n), n ∈ N, and π̄ be the stationary

distribution of the embedded Markov chain σn, n ∈ N. Then

for ∀i ∈ Γ

lim
t→∞

Ti(t)

t
= πi, a. s.,

where

πi =
π̄imi

∑

j∈Γ π̄jmj

,

and Esi(1) = mi.

Proof: A brief proof has been provided in Appendix. ✷

In the following, the GAS a. s. will be presented for system

(1) with semi-Markovian switching.

Theorem 1: Assume that there exist functions κ1, κ2 ∈
K∞, constants µi > 1 and λi ∈ R, i ∈ Γ such that

(H1) κ1(|x|) ≤ V (x, i) ≤ κ2(|x|),
(H2) for V ∈ C1 and σ(t) = i, i ∈ Γ,

∂V (x, i)

∂x
fi(x) ≤ λiV (x, i), (4)

(H3) V (x, i) ≤ µiV (x, j), ∀i, j ∈ Γ,

(H4)
∑

i∈Γ πi(λi +
lnµi

mi
) < 0.

Then system (1) with semi-Markovian switching is GAS a. s.

Proof: It can be derived from (H2) and (H3) that for ∀t ∈
[τn+1, τn+2) and σ(t) = in+1, n ∈ N,

V (x(t), in+1)e
−λin+1

(t−τn+1)

=V (x(τn+1), in+1) +

∫ t

τn+1

d
(

V (x(s), in+1)e
−λin+1

(s−τn+1)
)

≤V (x(τn+1), in+1)

≤µin+1V (x(τn+1), in),

which yields that for ∀t ≥ 0

V (x(t), σ(t)) ≤V (x0, i0)

N(t)
∏

k=1

µike
∫

t

0
λσ(s)ds

=V (x0, i0)
r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds, (5)

where x0 is the initial value of system (1). Combing this with

(H1) implies that

κ1(|x(t)|) ≤ κ2(|x0|)
r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds.

It follows that

|x(t)| ≤ κ−1
1

(

κ2(|x0|)
r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds

)

. (6)

By (H4), we can select a positive constant ε1 such that
∑

i∈Γ

πiλi +
∑

i∈Γ

(
πi

mi

+ ε1) lnµi < 0. (7)

It can be got from Lemma 1 that for ∀i ∈ Γ

lim
t→∞

Ti(t)

t
= πi, a. s. (8)

On the other hand, it can be checked by using (29) that for

∀i ∈ Γ,

lim
t→∞

Ti(t)

Ni(t)
= lim

t→∞

∑Ni(t)
k=1 si(k)

Ni(t)
= mi, a. s. (9)

Combing (8) with (9) yields that

lim
t→∞

Ni(t)

t
=

πi

mi

, a. s.

Thus, for ∀i ∈ Γ and the ε1 defined in (7), there exists a

positive constant T (ε1) such that if t ≥ T (ε1)
1, then,

Ni(t) ≤ (
πi

mi

+ ε1)t, a. s. (10)

It follows that for t ≥ T (ε1),

r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds

=e
∑

i∈Γ Ni(t) lnµie
∫

t

0
λσ(s)ds

≤e
(
∑

i∈Γ(
πi
mi

+ε1) lnµi)te
∫

t

0
λσ(s)ds

=e
∫

t

0

(

λσ(s)+
∑

i∈Γ(
πi
mi

+ε1) lnµi

)

ds
, a. s. (11)

It can be obtained from Lemma 1 that

lim
t→∞

1

t

∫ t

0

λσ(s)ds

= lim
t→∞

1

t

∑

i∈Γ

∫ t

0

λiI(σ(s)=i)ds

=
∑

i∈Γ

λi lim
t→∞

Ti(t)

t
=

∑

i∈Γ

λiπi, a. s. (12)

Combing this with (7) follows that

lim
t→∞

1

t

∫ t

0

(

λσ(s) +
∑

i∈Γ

(
πi

mi

+ ε1) lnµi

)

ds

=
∑

i∈Γ

λiπi +
∑

i∈Γ

(
πi

mi

+ ε1) lnµi < 0, a. s.,

which implies that

lim
t→∞

∫ t

0

(

λσ(s) +
∑

i∈Γ

(
πi

mi

+ ε1) lnµi

)

ds = −∞, a. s.

(13)

Thus, it can be checked by (11) and (13) that

lim
t→∞

r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds = 0, a. s. (14)

To show that system (1) with the semi-Markovian switching

is GAS a.s., we first let h and ε′ be two arbitrary positive

1For almost all ω ∈ Ω, there exists a corresponding positive constant
T (ε1, ω) (relying on the ω and ε1) such that if t ≥ T (ε1, ω), inequality
(10) holds. For the convenience, ω is always omitted in the following.
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numbers. It follows from (14) that there is a positive random

variable T (h, ε′) such that

P
(

sup
t≥T (h,ε′)

(

r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds

)

<
κ1(ε

′)

κ2(h)

)

= 1.

This, together with (6), implies

P
(

sup
t≥T (h,ε′)

|x(t)| < ε′
)

= 1, ∀|x0| < h.

In other words, SP2) in Definition 2 is fulfilled. Let us now

fix any ε ∈ (0, 1). It follows from (14) that

sup
t≥0

(

r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds

)

< ∞, a. s.

Hence, there is a positive number ρ such that

P
(

sup
t≥0

(

r
∏

i=1

µ
Ni(t)
i e

∫
t

0
λσ(s)ds

)

< ρ
)

> 1− ε.

Let δ = δ(ε) be so small that κ2(δ) < κ1(ε)/ρ. Using (6), we

therefore see that

P (sup
t≥0

|x(t)| < ε) > 1− ε, ∀|x0| < δ.

That is, SP1) in Definition 2 is satisfied too. The proof is

therefore complete. ✷

Remark 1: From the definition of semi-Markovian switch-

ing, the distribution Fij(t) should depend on i and j. Un-

der this assumption, the stability and stabilization problems

were investigated in [12, 14] for systems with discrete-time

semi-Markovian switching by using the semi-Markovian ker-

nel approach. However, for continuous-time semi-Markovian

switching, some special assumptions should be given for semi-

Markovian process in [6, 9–11]. For example, the distribution

Fij(t) only depends on i in [6, 9–11], and satisfies the Phase-

type distribution in [10, 11]. These restrictive assumptions are

removed from this paper. Thus, the semi-Markovian signal

considered in this paper is more general than in [6, 9–11].

As a corollary, the ES a. s. will be given for system (1) with

semi-Markovian switching.

Corollary 1: Assume that there exist positive constants

µi > 1, c and λi ∈ R, i ∈ Γ such that

(H1) V (x, i) ≥ c|x|p,

(H2) for V ∈ C1 and σ(t) = i, i ∈ Γ,

∂V (x, i)

∂x
fi(x) ≤ λiV (x, i),

(H3) V (x, i) ≤ µiV (x, j), ∀i, j ∈ Γ.

Then,

lim sup
t→∞

1

t
log(|x(t;x0)|) ≤

∑

i∈Γ

πi(λi +
lnµi

mi

), a. s. (15)

In particular, if (H4) in Theorem 1 holds, then system (1) with

semi-Markovian switching is ES a. s.

Proof: Combining (5) with (11) yields that, for ∀i ∈ Γ and

ε1 defined in (7), there exists a corresponding constant T (ε1)

such that for t ≥ T (ε1),

log
(

V (x(t), σ(t))
)

≤ log(V (x0, i0)) +
∑

i∈Γ

Ni(t) lnµi +

∫ t

0

λσ(s)ds

≤ log(V (x0, i0)) + (
∑

i∈Γ

(
πi

mi

+ ε1) lnµi)t+

∫ t

0

λσ(s)ds, a. s.

It can be checked by using (H1) and (12) that

lim sup
t→∞

1

t
log(|x(t;x0)|)

≤ lim sup
t→∞

1

t
log

(

V (x(t), σ(t))
)

≤
∑

i∈Γ

(
πi

mi

+ ε1) lnµi + lim sup
t→∞

1

t

∫ t

0

λσ(s)ds

=
∑

i∈Γ

λiπi +
∑

i∈Γ

(
πi

mi

+ ε1) lnµi, a. s. (16)

Then, (15) follows by letting ε1 → 0 in (16). This completes

the proof. ✷

B. Stability of system with Markovian switching

Here, the switching signal σ(t) is assumed to be a Markov

chain, the GAS a. s. and ES a. s. will be obtained for system

(1) with Markovian switching.

Let σ(t) ∈ Γ, t ≥ 0 be a right-continuous Markov chain

with generator Q = [qij ]r×r, i, j ∈ Γ given by

P{σ(t+∆) = j|σ(t) = i} =

{

qij∆+ o(∆), i ̸= j,
1 + qij∆+ o(∆), i = j,

where ∆ > 0, lim∆→0
o(∆)
∆ = 0 and if i ̸= j, qij ≥ 0

is the transition rate from i to j, while qii = −
∑

j ̸=i qij .

Assume that the considered Markov chain is irreducible,

then the Markov chain has a unique stationary distribution

π = (π1, π2, · · · , πr). Set qi = |qii|, i ∈ Γ.

Lemma 2: [22] The sojourn times si(1), si(2), · · · are

independent exponential random variables with parameter

qi, i ∈ Γ.

In the following, the GAS a. s. is studied for system (1)

with Markovian switching.

Theorem 2: Assume that (H1)-(H3) in Theorem 1 hold, and

(H4)
∑

i∈Γ πi(λi + qi lnµi) < 0, a. s.

Then system (1) with Markovian switching is GAS a. s.

Proof: It can be got from Ergodic theorem [22] (Theorem

3.81) that for ∀i ∈ Γ,

lim
t→∞

Ti(t)

t
= πi, a. s. (17)

where πi is the stationary distribution of the Markov chain

{σ(t), t ≥ 0}. By the strong law of large number and Lemma

2, we have for ∀i ∈ Γ,

lim
t→∞

Ti(t)

Ni(t)
= lim

t→∞

∑Ni(t)
k=1 si(k)

Ni(t)
= Esi(1) =

1

qi
, a. s. (18)

Combining (17) with (18) yields that

lim
t→∞

Ni(t)

t
= πiqi, a. s.
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Then, this theorem can be proved similarly as the proof given

in Theorem 1, here we omit it. ✷

The ES a. s. will be studied for system (1) with Markovian

switching in the following corollary.

Corollary 2: Assume that (H1)-(H3) in Corollary 1 hold.

Then,

lim sup
t→∞

1

t
log(|x(t;x0)|) ≤

∑

i∈Γ

πi(λi + qi lnµi), a. s.

In particular, if (H4) in Theorem 2 holds, then system (1) with

Markovian switching is ES a. s.

Proof: The proof is similarly to the proof presented in

Corollary 1. Here we omit it. ✷

C. Stability of system with renewal process switching signals

In this subsection, the switching signal σ(t) is assumed to

be governed by a renewal process. Let the state sojourn time

sequences s(n), n ∈ N and σ(τn), n ∈ N be mutually indepen-

dent, and F (0) = P (s(n) = 0) < 1 for avoiding trivialities. In

addition, we assume that there exists a probability distribution

pi ∈ (0, 1), i ∈ Γ, such that for ∀n ∈ N,

P
(

σ(τn+1) = i|σ(τn), · · · , σ(τ0)
)

= pi.

The GAS a. s. and ES a. s. will be investigated for system

(1) with this renewal process switching signals. Firstly, a

lemma is presented for getting the main result.

Lemma 3: [19] Let N(t) be a renewal process, then

lim
t→∞

N(t)

t
=

1

θ
, a. s.,

where Es(n) = θ, n ∈ N and θ is a positive constant.

In the following, the GAS a. s. will be considered for system

(1) with renewal process switching signals.

Theorem 3: Assume that there exist functions κ1, κ2 ∈
K∞, constants µ > 1 and λi ∈ R, i ∈ Γ such that

(H1) κ1(|x|) ≤ V (x, i) ≤ κ2(|x|),
(H2) for V ∈ C1 and σ(t) = i, i ∈ Γ,

∂V (x, i)

∂x
fi(x) ≤ λiV (x, i), (19)

(H3) V (x, i) ≤ µV (x, j), ∀i, j ∈ Γ,

(H4)
∑

i∈Γ λipi +
lnµ
θ

< 0.

Then system (1) with renewal process switching signals is

GAS a. s.

Proof: By using (H4), there exists a positive constant ε1
such that

∑

i∈Γ

λipi + (
1

θ
+ ε1) lnµ < 0. (20)

By using (H2), (H3) and (5), we can get that for ∀t ≥ 0,

V (x(t), σ(t)) ≤ V (x0, i0)µ
N(t)e

∫
t

0
λσ(s)ds. (21)

Then, for ∀i ∈ Γ and ε1 defined in (20), it can be got from

Lemma 3 that there exists a positive constant T (ε1) such that

if t ≥ T (ε1),

N(t) ≤ (
1

θ
+ ε1)t, a. s.

Combining this with (21) follows that for t ≥ T (ε1),

V (x(t), σ(t)) ≤ κ2(|x0|)e
∫

t

0

(

λσ(s)+( 1
θ
+ε1) lnµ

)

ds, a. s. (22)

By using the strong law of large number, we have for l = 0, 1,

Il =: lim
t→∞

1

t

∫ τN(t)+l

τ0

λσ(s)ds

= lim
t→∞

N(t) + l

t

1

N(t) + l

N(t)+l
∑

k=1

∫ τk

τk−1

λσ(s)ds

= lim
t→∞

N(t) + l

t

1

N(t) + l

N(t)+l
∑

k=1

λσ(τk−1)s(k − 1)

=
1

θ
E
(

λσ(τ1)s(1)
)

=
1

θ
Eλσ(τ1)Es(1) = Eλσ(τ1), a. s.,

which yields that

lim
t→∞

1

t

∫ t

0

λσ(s)ds = Eλσ(τ1) =
∑

i∈Γ

λipi, a. s. (23)

Consequently,

lim
t→∞

1

t

∫ t

0

(

λσ(s) + (
1

θ
+ ε1) lnµ

)

ds

=
∑

i∈Γ

λipi + (
1

θ
+ ε1) lnµ < 0, a. s.

It follows that

lim
t→∞

∫ t

0

(

λσ(s) + (
1

θ
+ ε1) lnµ

)

ds = −∞, a. s.

Combing this with (22) implies that

lim
t→∞

V (x(t), σ(t)) = 0, a. s.

Then, by utilizing the proof of Theorem 1, we can similarly

derive that system (1) with renewal process switching signals

is GAS a. s. This completes the proof. ✷

By the proof of Theorem 3, the ES a. s. can be obtained as

a corollary.

Corollary 3: Assume that there exist positive constants µ >
1, c and λi ∈ R, i ∈ Γ such that

(H1) V (x, i) ≥ c|x|p,

(H2) for V ∈ C1 and σ(t) = i, i ∈ Γ,

∂V (x, i)

∂x
fi(x) ≤ λiV (x, i),

(H3) V (x, i) ≤ µV (x, j), ∀i, j ∈ Γ.

Then,

lim sup
t→∞

1

t
log(|x(t;x0)|) ≤

∑

i∈Γ

λipi +
lnµ

θ
, a. s.

In particular, if (H4) in Theorem 3 holds, then system (1) with

renewal process switching signals is ES a. s.

Proof: The proof is similarly to the proof presented in

Corollary 1. Here we omit it. ✷

Remark 2: It is worth pointing out that condition (H4)

in Theorem 3 implies that when
∑

i∈Γ λipi < 0, we need

θ > − lnµ∑
i∈Γ λipi

to get the GAS a. s. and ES a. s., that is, if



0018-9286 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2017.2779882, IEEE

Transactions on Automatic Control

6

the expectation of sojourn time θ is larger than − lnµ∑
i∈Γ λipi

, the

stability can be guaranteed.

Remark 3: Though the GAS a. s. was also considered in

[2, 6], it is worth pointing out that the system model considered

in this paper is more general. In [2], the GAS a. s. was

investigated for randomly switched systems with all stable

subsystems. In [6], the GAS a. s. was considered for randomly

switched systems, where the sojourn time of switched signals

satisfies an exponential distribution in Theorem 3.2 and a uni-

form distribution in Theorem 3.4, respectively. It is well known

that the sojourn times {s(n), n ∈ N} of renewal process are a

sequence of nonnegative independent random variables with a

common distribution F , where the distribution F may satisfy

an exponential distribution or a uniform distribution. Thus,

the renewal process switching signals considered in Theorem

3 contain switching signals considered in Theorems 3.2 and

3.4 of [6] as a special case.

Remark 4: By using the comparison principle, the moment

stability was investigated for the system with Markovian

switching in [8] and with semi-Markovian switching in [9],

respectively. Unfortunately, the moment stability cannot yield

GAS a. s. [23]. In addition, the methods used in [8, 9]

cannot be directly applied to investigating the GAS a. s.

Thus, a new analysis technique is introduced in this paper

to consider the GAS a. s. and ES a. s., which has provided

a uniform method to investigate the stability for systems with

semi-Markovian switching, Markovian switching and renewal

process switching signals, respectively.

IV. EXAMPLES

In this section, two examples are given to show the effec-

tiveness of the main results. The first example is a switched

system with both stable and unstable subsystems, and some

comparisons will be given between this paper and some well-

studied existing works. In the second example, it is shown that

the results in this paper can be used to consider the consensus

of multi-agent systems with semi-Markovian switching and

nonlinear dynamics.

Example 1: In this example, the switched systems contains

both stable and unstable subsystems. Consider the following

dynamic system:

ẋ(t) = fσ(t)(x(t)), (24)

where

f1(x) =

[

−3x1 + x2

(x1 + x2) sinx1 − 3x2

]

,

f2(x) =

[

−1.5x1 − x3
1

x1 − 0.75x2

]

, f3(x) =

[

x1

x2

]

.

In the following, it will be assumed that the switching signal

σ(t) satisfies Markovian process, a renewal process and a

semi-Markovian process, respectively, and shown that system

(24) with the assumed switching signal is GAS a. s. and ES a.

s. Consider the following three candidate Lyapunov functions

V1(x) = x2
1 + x2

2, V2(x) =
1

2
(x2

1 + x2
2), V3(x) =

1

2
x2
1 + x2

2,

which yields that λ1 = −3, λ2 = −1 and λ3 = 2. We can

select µ1 = 2, µ2 = 1.01 and µ3 = 2.

Let the switching signal σ(t) be a Markov chain, and the

generator of the Markov chain be

Q =





−2 1 1
4 −4 0
2 1 −3



 .

Then, we have the invariant distribution π = (0.6, 0.2, 0.2). It

can be checked that
∑

i∈Γ πi(λi + qi lnµi) = −0.483 < 0.

Fig. 1 (a) presents the state trajectories for system (24) with

Markovian switching.
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Fig. 1. (a) State trajectories of x(t) for system (24) with Markovian signals.
(b) State trajectories of x(t) for system (24) with renewal process signals. (c)
State trajectories of x(t) for system (24) with semi-Markovian signals.

If the switching signal σ(t) is a renewal process, and p1 =
0.6, p2 = 0.2, p3 = 0.2, then we have

∑

i∈Γ λipi +
lnµ
θ

< 0,

when θ > 0.432. Fig. 1 (b) shows that when θ = 1, system

(24) with renew process switching signals is stable.

If the switching signal σ(t) is a semi-Markovian process,

and the transition probability matrix for the embodied chain

is

P =





0 0.25 0.75
0.42 0 0.58
0.36 0.64 0
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and has a unique stationary distribution

π̄ = [0.3986, 0.3409, 0.2605].

In addition, let the expectations of sojourn time for states 1, 2
and 3 be m1 = 2,m2 = 2 and m3 = 3, respectively. Thus, we

get π = [0.3527, 0.3016, 0.3457] by using Lemma 1. Then,
∑

i∈Γ πi(λi +
lnµi

mi
) = −0.4647 < 0. Fig. 1 (c) presents

the state trajectories for system (24) with semi-Markovian

switching.

In this example, the subsystems of switched systems can

be stable and unstable. Ref. [2] cannot be applied to switched

systems with unstable subsystems. For renewal process, we

give an easy-to-check criterion, where the distribution of

sojourn time contains the uniform distribution and exponential

distribution in [6] as a special case. In addition, for switched

systems with continuous-time semi-Markovian signals, the

distribution Fij in this example depends on i and j. Thus,

Refs. [9–11] have assumed the distribution Fij only depends

on i, which cannot be used in this example.

Example 2: In the following, A coupled dynamic system

was considered in [24, 25]

dxi(t)

dt
= f(xi(t), t) +

m
∑

j=1

akijx
j(t), t ∈ [τk−1, τk), (25)

where i = 1, · · · , 5, Ak = [akij ] ∈ SG, k ∈ N
+, SG =

{Gl|Gl = [glij ]
n
i,j=1 ∈ Rn×n, l = 1, 2, 3}. In addition, we

assume that each Gl is a matrix with zero row sum and

nonnegative off diagonal entries. For any A, define RV (A) =
mini,j{aij + aji+

∑

k ̸=i,j min{aik, ajk}}. Then, RV (G) de-

fined by RV (Gl) = mini,j{g
l
ij+glji+

∑

k ̸=i,j min{glik, g
l
jk}}

is a random variable on SG. In [24], the consensus was consid-

ered for system (25) with independent identically distributed

(i. i. d.) and Markov chains switching signals, respectively.

In the following, it will be shown that system (25) achieves

almost sure consensus with semi-Markovian switching signals

under our results.

The dynamics of each node is assumed to be a Chua’s circuit

f(x, t) =







p[−x1 + x2 + g(x1)],
x1 − x2 + x3,
−qx2,

(26)

where g(x1) = m0x1 + 1
2 (m1 − m0)(|x1 + 1| − |x1 − 1|),

m0 = −0.68,m1 = −1.27, p = 9, q = 12.87.
Let SG = {G1, G2, G3}, where the randomly three coupling

matrices are defined as in [24],

G1 =











−2.2889 0.8464 0.9573 0.2553 0.2299
0.6423 −2.6972 0.6203 0.8586 0.5761
0.2213 0.2789 −2.2218 0.9111 0.8106
0.8371 0.7466 0.1726 −2.1601 0.4038
0.9711 0.2369 0.0903 0.7252 −2.0235











,

G2 =











−1.4357 0.5566 0.3178 0.2699 0.2915
0.3209 −2.1481 0.4522 0.5246 0.8504
0.5114 0.8300 −3.2257 0.9727 0.9116
0.0606 0.8588 0.1099 −1.6685 0.6393
0.7257 0.7890 0.1097 0.3119 −1.9363











,

G3 =











−1.5879 0.5846 0.3934 0.1338 0.4761
0.8383 −3.2444 0.8266 0.6715 0.9081
0.5847 0.8277 −2.5356 0.5710 0.5522
0.9481 0.1910 0.2076 −1.3796 0.0329
0.0610 0.4425 0.3181 0.1477 −0.9693











.

It has been checked in [24] that RV (G1) =
1.7835, RV (G2) = 1.2884, RV (G3) = 0.6402. Assume

the transition probability matrix for the embedded chain is

P =





0 0.8 0.2
0.7 0 0.3
0.6 0.4 0





and has a unique stationary distribution

π̄ = [0.4, 0.4, 0.2].

In addition, let expectations of sojourn time for states 1, 2 and

3 be m1 = 1,m2 = 3 and m3 = 2, respectively. Thus, we get

π = [0.2, 0.6, 0.2].
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Fig. 2. State trajectories of xi

1
(t), xi

2
(t) and xi

3
(t) for system (25) with

semi-Markovian switching.

By utilizing Theorem 1 in [24] and the definition of RV (G),
we can get from Theorem 1 in this paper that if

∑

i∈Γ πi

(

L−

εRV (Gi) +
lnµi

mi

)

< 0, where L = 12.87 and ε = 10.5
are defined as in [24], then system (25) with semi-Markovian

switching is almost sure synchronous. Here, we let µi = 1.01,

and get
∑

i∈Γ πi(L − εRV (Gi) +
lnµi

mi
) = −0.3317 < 0,

which implies that system (25) with semi-Markovian switching

achieves almost sure consensus. Fig. 2 is the simulation result

of xi(t), where the sojourn time sequence si(n), n ∈ N
+ is

an i. i. d. sequence and satisfies a uniform distribution on the
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interval [0, 2l] for l = 1, 2, 3. It can be seen from Fig. 2 that the

system (25) with semi-Markovian switching achieves almost

sure consensus.

V. CONCLUSIONS

In this paper, the GAS a. s. and ES a. s. have been

considered for the randomly switched systems by using the

probability analysis method. Three kinds of switching sig-

nals are investigated in this paper including semi-Markovian

switching, Markovian switching and renewal process switch-

ing signals. Two examples have been presented to illustrate

the effectiveness of the proposed results. The sojourn time

sequence and embodied chain have assumed to be mutually

independent for renewal process, which limits the application

of the results. Our future research topic will try to generalize

this assumption.
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APPENDIX

Proof of Lemma 1: It can be checked that

Ti(t)

t
=

∑Ni(t)
k=1 si(k)

∑

j∈Γ

∑Nj(t)
k=1 sj(k)

=

Ni(t)
N(t)

1
Ni(t)

∑Ni(t)
k=1 si(k)

∑

j∈Γ
Nj(t)
N(t)

1
Nj(t)

∑Nj(t)
k=1 sj(k)

. (27)

As the embedded Markov chain {σn, n ∈ N} is an irreducible

Markov chain, by using Ergodic theorem (Theorem 1.10.2 in

[22]), we have

lim
t→∞

Ni(t)

N(t)
= π̄i, a. s. (28)

On the other hand, it can be derived from (3) that for n ∈ N,

P (si(n) ≤ t) =P (τn ≤ t|σn−1 = i)

=
∑

j∈Γ

P (τn ≤ t, σn = j|σn−1 = i)

=
∑

j∈Γ

Fij(t)pij ,

which implies that si(n) are i. i. d. random variables with

Esi(n) = mi, n ∈ N. Then, it can be checked by the strong

law of large numbers that for ∀i ∈ Γ,

lim
t→∞

1

Ni(t)

Ni(t)
∑

n=1

si(n) = mi, a. s. (29)

Substituting (29) and (28) into (27) yields that

lim
t→∞

Ti(t)

t
=

π̄imi
∑

j∈Γ π̄jmj

, a. s.

This completes the proof. ✷
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