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Abstract Modified gravity theories have received increased
attention lately to understand the late time acceleration of
the universe. This viewpoint essentially modifies the geo-
metric components of the universe. Among numerous exten-
sion to Einstein’s theory of gravity, theories which include
higher order curvature invariant, and specifically the class
of f (R) theories, have received several acknowledgments.
In our current work we try to understand the late time
acceleration of the universe by modifying the geometry of
the space and using dynamical system analysis. The use
of this technique allows to understand the behavior of the
universe under several circumstances. Apart from that we
study the stability properties of the critical point and acceler-
ation phase of the universe which could then be analyzed
with observational data. We consider a particular model
f (R) = R − μRc(R/Rc)

p with 0 < p < 1, μ, Rc > 0
for the study. As a first case we consider the matter and radi-
ation component of the universe with an assumption of no
interaction between them. Later, as a second case we take
matter, radiation and dark energy (cosmological constant)
where study on effects of linear, non-linear and no interac-
tion between matter and dark energy is considered and results
have been discussed in detail.

1 Introduction

Late time acceleration predicted by observational data have
opened major challenge in the modern cosmology [1,2] This
causes challenges and questions about limitations of a very
successful theory of last century, the general theory of relativ-
ity (GR) very prominent. One of the most fruitful approaches
so far has been the extended theories of gravity, which have
become a standard model in the study of gravitational interac-
tion. These extensions are based on corrections in Einstein’s
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theory. These kind of alternative gravitational theories are an
attempt to construct a semi-classical scheme in which GR and
most of its successful features can be recovered. This exten-
sion essentially consists of adding higher order curvature
invariants by modifying the Einstein–Hilbert (EH) action.
In the beginning of 1960’s there were indications about the
merits of this extensions as GR is not renormalizable and thus
can not be quantized conventionally. Utiyama and De Witt
[3] showed that renormalization demands higher order cur-
vature invariants in EH action. These theories created interest
among scientific community in higher order theories of grav-
ity, i.e. modifications of EH action to include higher order
curvature invariants with respect to Ricci scalar. These cor-
rections to GR were initially considered to be important only
at scales close to the Planck scale which is in very early uni-
verse and near black hole singularity and indeed there were
relevant studies in this attempt like [4,5]. However it was not
expected that these corrections could give significant effect
at low energies i.e. at large scales in the late universe. Recent
evidence from observational physics and cosmology has rev-
eled quite different picture of the universe. The latest CMBR
data indicate 4%, 20 % and 76% proportion of ordinary bary-
onic matter, dark matter and dark energy respectively [6–9].
The term dark matter refers to an unknown form of matter,
which has the clustering properties as ordinary matter but
has not yet been discovered experimentally. The term dark
energy is an unknown form of energy which is not only dis-
covered experimentally but even does not cluster like ordi-
nary baryonic matter. One could only distinguish them from
energy conditions as dark matter satisfy strong energy condi-
tion but dark energy does not [10]. This issue comes with the
early time accelerated epoch predicted by inflation which is
needed to address the horizon, flatness and monopole prob-
lem [11–14] as well as to provide a mechanism that gener-
ates inhomogeneities which leads to formation of large scale
structure [15]. Apart from that between these two accelera-
tion epoch, there should be a period of decelerated expansion
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so that radiation and matter dominated eras could take place.
Indeed there are observational bounds which suggests that the
production of nuclei other that hydrogen takes place in radia-
tion dominated era while matter dominated era is required for
the structure formation of the universe [16,17]. These pro-
portions of matter/energy in the universe are surprising and
calls for an explanation. The simplest of them all is �CDM
supplemented by some scalar field which could lead to infla-
tionary epoch. Besides not explaining the origin of inflation
this model has issues like cosmological constant problem,
magnitude problem and coincidence problem [18,19]. These
problems make the �CDM model more of an empirical fit to
the data without any theoretical motivation. This lead to pro-
posal for other alternatives to dark energy like quintessence
[20–27] but they do not have strong theoretical motivation
behind them.
Another way of resolving these issues can be done by arguing
that gravity is by far the dominant interacting at cosmological
scales and hence, it is the force governing the evolution of the
universe. One could attempt to modify the theory of gravity
and hence resolve few of the issues of cosmology and astro-
physics. It is definitely a different and an acceptable way of
approaching for this problem. The precession of Mercury’s
orbit was attributed initially to some unobserved planet but
it took us to the passage from Newtonian gravity to GR and
the rest is history.

One of the major problems in theories of gravity is the dif-
ficulty in finding out (analytic or numerical) solutions due to
highly nonlinear terms in the field equations and hence com-
parison with observations cannot be carried out easily. So, it
is important that other techniques are efficiently used to solve
such equations or, at least, to control the overall dynamical
behavior. One such method is the Dynamical System Analy-
sis. The approach of this method is to find the numerical solu-
tions and help in understanding the qualitative behavior of a
given physical system [28–36]. The most important concept
in dynamical system analysis is to find out critical points of a
set of first-order ordinary differential equations. The stability
conditions are obtained by calculating the Jacobian matrix at
critical points and finding their eigenvalues. This is the study
of stability properties near a particular critical point. Appli-
cation of dynamical systems analysis to cosmology has been
deeply discussed in these books [37,38].

In the present work we try to analyze the stability of
the universe which is assumed to have some modification
in its geometry part, in particular f (R) gravity. We begin
with the viability conditions for this model. This work is
overall divided into two major segments. First we consider
the mixture of matter and radiation which are assumed to
not interact with each other. Later we introduce the dark
energy (cosmological constant) along with matter and radi-
ation where the study on effects of linear, non-linear and
no interaction has been made. In both the segments, by

studying the behaviour, the existence of stability phase and
acceleration era has been done with proper calculations and
plotting. Section 2 is a brief review and introduction about
f (R) theory of gravity, Sect. 3 contains the stability analy-
sis and acceleration phase analysis of the model. Section 4
is about the conclusions and discusses few possible future
works.

2 A review on f (R) model

There are numerous ways to modify or deviate from general
theory of relativity. Some of the well known alternatives are
scalar tensor theory [39–42], Brans Dicke theory [43,44],
Gauss Bonnet theory [45], f (T ) gravity [46] f (R, T ) grav-
ity [47], Lovelock gravity [48,49] Here we study and give
a brief introduction on f (R) gravity which is in detail in
[50–55]. Furthermore, Motohashi et al. [56] studied a class
of viable cosmological models in f (R) gravity and obtained
analytic solution for density perturbation in hypergeometric
form. Motohashi et al. [57] investigated phantom boundary
crossing and growth index of fluctuations in viable f (R)

models, and, based on specific functional form, they calcu-
lated numerically the evolution of both homogeneous back-
ground and density fluctuations. Subsequently many authors
[58–65] studied cosmological models from various aspects in
modified gravity. This theory comes as a straightforward gen-
eralization of the Lagrangian in the Einstein–Hilbert action,

SEH = 1

2κ

∫
d4x

√−gR (1)

whereκ = 8πG, R is Ricci Scalar, g is determinant of metric,
gμν = diag(−1, a2(t), a2(t), a2(t)) and a(t) is scale factor
to become a general function of R, i.e.

S = 1

2κ

∫
d4x

√−g f (R) (2)

f (R) model gives sufficient generality to encapsulate some
of the basic characteristics of higher order gravity and yet
are rather simple to handle. It is an excellent candidate to be
referred as a toy theory i. e. it gives insight of gravity mod-
ifications. There are actually two variational principles that
can be applied to the action to derive the Einstein’s equa-
tions. First one being the standard metric variation and other
one Palatini variation. This work uses the standard metric
variation approach for all discussions.

Beginning with the action in (2), by adding the matter term
SM , the total action for f (R) takes the form,

S = 1

2κ

∫
d4x

√−g f (R) + Sm(gμν, ψ) (3)
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where ψ denotes the collective matter field. Variation of this
action in standard metric formalism with respect to the metric
gives

F(R)Rμν − 1

2
f (R)gμν + [�gμν − ∇μ∇ν]F(R) = κTμν

(4)

where, F(R) (also denoted f,R) is ∂ f
∂R and as usual,

Tμν = −2√−g

δSm
δgμν

(5)

The trace of Eq. (4) is given by

3�F(R) + F(R)R − 2 f (R) = κ2T (6)

Since 1980s, it was known that the model f (R) = R +
αR2 was responsible for inflation in early universe. Inflation
ends when quadratic term R2 becomes smaller than linear
term R. Although this model is not suitable for late time cos-
mic acceleration. Similarly models like f (R) = R− α

Rn does
not satisfy local gravity constrains due to instability. So this
makes it very essential to form set of conditions which are
viable for f (R) models in metric formalism. These condi-
tions as stated in [66] are:

• f,R > 0 for R ≥ R0 (where R0 is the Ricci scalar at
present epoch and is positive). This condition is required
to avoid anti-gravity.

• f,RR > 0 for R ≥ R0. This is required for local gravity
tests [67–70] for existence of matter domination era [50,
71] and for stability of cosmological perturbation [72–
75].

• f (R) → R − 2� for R � R0. This is required for con-
sistency with local gravity tests [76–80] and for presence
of matter dominated era [50].

• 0 <
R f,RR
f,R

< 1 at − R fR
f = −2. This is required for the

stability of the late-time de Sitter point [50,81,82].

3 Stability analysis

In our current work, we do the analysis by considering the
model f (R) = R − μRc(R/Rc)

p with 0 < p < 1, μ, Rc >

0 [66]. This model satisfies all the local gravity conditions
mentioned above and is considered to be a viable model to
study the stability analysis of the universe. It is noted here
that it satisfies third condition only when value of p is close
to 0. For the flat FLRW space-time the Ricci scalar is given
by:

R = 6(2H2 + Ḣ) (7)

where H is the Hubble parameter. We now construct a model
of the universe filled with only matter and radiation and we
assume no interaction between them i.e. the usual conserva-
tion equations ρ̇m + 3Hρm = 0 and ρ̇r + 4Hρr = 0. For
this, the explicit form of field equations from Eq. (4) are

3FH2 = κ2(ρm + ρr ) + FR − f

2
− 3H Ḟ

− 2F Ḣ = κ2
(

ρm + 4

3
ρr

)
+ F̈ − H Ḟ (8)

Now introducing dimensionless variables,

x = − Ḟ

H F
, y = − f

6FH2 , z = R

6H2 , w = κ2ρr

3FH2

(9)

Without loss of generality, let κ2 = 8πG
c4 = 1.

Then various density parameters would be,

�r = ρr

3FH2 = w, �m = ρm

3FH2 =1 − x − y − z − w,

�GC = x + y + z (10)

where, �GC represents density parameter due to geomet-
ric curvature. From Eq. (8), it is straightforward to derive
following set of autonomous differential equations

x ′ = −1 − z − 3y + x2 − xz + w (11)

y′ = xz

m
− y(2z − 4 − x) (12)

z′ = − xz

m
− 2z(z − 2) (13)

w′ = −2zw + xw (14)

where, prime denotes derivative with respect to η = lna
and

m ≡ dlnF

dlnR
= R f,RR

f,R

r ≡ − dln f

dlnR
= − R f,R

f
= z

y
(15)

From this, R could be written as a function of z
y . We here note

that m is a function of R, so it follows that m is a function
of r, i.e. m = m(r). From the calculations for the model,
f (R) = R − μRc(R/Rc)

p we deduce

m = p

(
r + 1

r

)
= p

(
y + z

z

)
(16)

By substituting (16) in autonomous differential equations,
we get

x ′ = − 1 − z − 3y + x2 − xz + w (17)

y′ = xz2

p(y + z)
− y(2z − 4 − x) (18)
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z′ = − xz2

p(y + z)
− 2z(z − 2) (19)

w′ = − 2zw + xw (20)

also,

ωe f f = − 1 − 2Ḣ

3H2 = −1

3
(2z − 1) (21)

There are 5 real critical points of this system. We will now
do the detailed stability and acceleration analysis for all the
points.

P1 : (−4, 5, 0, 0). �m = 0,�r = 0, ωe f f = 1
3 . Eigenvalues

of this critical point are: -5, -4, 4 and -3. Since one of the
eigenvalue is positive, this point can not be stable. Since the
value of ωe f f is positive, acceleration for this model is not
possible.

P2 : (0,−1, 2, 0). �m = 0,�r = 0, ωe f f = −1. Eigenval-

ues of this critical point are: −4,−3,
−3p−√

p
√−32+25p
2p and

−3p+√
p
√−32+25p
2p . We here observe that real part of all the

eigenvalues are negative. Hence this point is spiral stable.
Apart from that ωe f f is negative, hence this point gives accel-
eration. This point is completely dominated by geometric
curvature as �GC = 1. It point can be considered to be reg-
ulating the late time expansion of the universe due to finite
negative value of ωe f f .

P3 :
(

4(p−1)
p ),− 2(p−1)

p2 ,
2(p−1)

p ,
−2+8p−5p2

p2

)
. �m =0,�r =

−2+8p−5p2

p2 , ωe f f = − 1
3

(
3p−4

p

)
. Eigenvalues of this

critical point are: 1,
4
(
p3−2p2+p

)
(p−1)p2 ,

2p+p3−3p2−√
3
√

27p6−98p5+127p4−68p3+12p2

2(p−1)p2 ,

2p+p3−3p2+√
3
√

27p6−98p5+127p4−68p3+12p2

2(p−1)p2 . Since one of
the eigenvalues is 1, stability will not exist. Also for this
model to have acceleration i.e. ω < − 1

3 , p should be less
than 0 or greater than 2 which is not possible.

P4 :
(

3(p−1)
p ,

3−4p
2p2 ,

−3+4p
2p , 0

)
. �m = 3−13p−8p2

2p2 ,�r =
0, ωe f f = 1−p

p . Eigenvalues of this critical point are:
3(p−2p2+p3

(p−1)p2 ,−1,− 3
4p − p

√
Y ,− 3

4p + p
√
Y , where Y =

81 − 498p+ 1025p2 − 864p3 + 256p4. When plotted these
eigenvalues considering only the real part of third and fourth
eigenvalues we note that, this point is spiral stable for the
range (0.33,0.71) of p. For this model to have acceleration,
p should be less than 0 or greater than 3

2 which is not possible.

P5 :
(
− 2(p−2)

2p−1 ,
5−4p

1−3p+2p2 ,
p(4p−5)

1−3p+2p2 , 0
)

. �m = 0,�r =
0, ωe f f = − 1

3

[
6p2−7p−1
2p2−3p+1

]
. Eigenvalues of this critical point

are: − 2(p−2)
2p−1 ,

−8p2+13p−3
2p2−3p+1

,
−4p+5
p−1 ,− 2(5p2−8p+2)

2p2−3p+1
. When

these eigenvalues are plotted, we note that for 0 < p <
13−√

73
16 this point is stable. Although, for point to have accel-

eration, we require 1
2 < p < 1. So this point have stability

as well as acceleration but as the range of p is different we
conclude from this point that it represents different eras of the
universe. Value of p close to zero where is no acceleration but
there is stability could be considered as matter formation as
stated in the review. Whereas, value of p close to 1 could be
considered as inflation era as ωe f f tends to −∞ and universe
is not stable.

Now, we include the cosmological constant as a dark
energy component in this system. It is further assumed that
there is no interaction between any fluid components. Then
the field equations then would be:

3Fh2 = κ2(ρm + ρr + ρ�) + FR − f

2
− 3H Ḟ

− 2F Ḣ = κ2
(

ρm + 4

3
ρr

)
+ F̈ − H Ḟ (22)

This needs an introduction one extra dimensionless vari-
able, which then gives,

x = − Ḣ

H F
, y = − f

6FH2 , z = R

6H2 ,

w = ρr

3FH2 , s = ρm

3FH2 (23)
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Then density parameter for matter and cosmological con-
stant would be,

�m = ρm

3FH2 = s, �� = 1 − (x + y + z + w + s)

(24)

From Eq. (22), it is straightforward to derive following
set of autonomous differential equations and substituting m
from (16)

x ′ = − 4 + 5x + 2z + 4w + 3s − xz + x2 (25)

y′ = xz2

p(y + z)
− y(2z − 4 − x) (26)

z′ = − xz2

p(y + z)
− 2z(z − 2) (27)

w′ = − 2zw + xw (28)

s′ = − 2zs + sx + s (29)

There are 3 real critical points of this system. Their
detailed stability and acceleration analysis would be done.
The eigenvalues of each of these points are of very high order
and analysis is shown by plots.

P6 :
(

4(p−1)
p ,− 2(p−1)

p2 ,
2(p−1)

p ,
−2+10p−7p2

p2 , 0
)

. �m =
0,�r = −2+10p−7p2

p2 ,�� = 2 − 2
p , ωe f f = − 1

3

(
3p−4

p

)
.

The acceleration for this model happens only when p < 0 or
p > 2, which is not possible as per our definition. Also value
of one of the eigenvalues is 1 and this point is not stable. The
plot for real part of the eigenvalues looks like

P7 :
(

2(p−1)
p ,− 3−4p

2p2 ,
−3+4p

2p , 0,
−3+17p−12p2

2p2

)
. �m =

−3+17p−12p2

2p2 ,�r = 0,�� = 2 − 2
p , ωe f f = − 1

3

(
3p−4

p

)
.

The acceleration for this model happens only when p < 0
or p > 3

2 , which is not possible as per our definition. Plot of
the eigenvalues makes it trivial that stability is not possible
in this case.

P8 :
(−2(3p−4)

2p−1 ,
2+3p−4p2

p(1−3p+2p2)
,

−2−3p+4p2

1−3p+2p2 , 0, 0
)

. �m =
0,�r = 0,�� = 2 − 2

p , ωe f f = − 1
3

(
6p2−3p−5
2p2−3p+1

)
. The

acceleration for this model happens only when 1
2 < p < 1.

Plot of the eigenvalues makes it trivial that stability is not
possible in this case. So here acceleration is possible but it is
not stable.

Now, we investigate the impacts of interaction between
matter and dark energy. In current work, both linear as well as
non-linear interactions have been considered. For interaction,
the dimensionless variables have not been tickled. Taking
interaction Q between matter and dark energy, the continuity
equations read,

ρ̇r + 4Hρr = 0, ρ̇m + 3Hρm = Q and ρ̇� = −Q

(30)

Case I: Linear interaction (Q = Hρtot ) [83]. The set of
autonomous differential equation in the case of linear inter-
action stated above would be:

x ′ = − 4 + 5x + 2z + 4w + 3s − xz + x2 (31)

y′ = xz2

p(y + z)
− y(2z − 4 − x) (32)

z′ = − xz2

p(y + z)
− 2z(z − 2) (33)

w′ = − 2zw + xw (34)

s′ = 1 − x − y − z + s − 2zs + sx (35)
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There are 3 real critical points of this system. The detailed
stability and acceleration analysis would be done. The eigen-
values of each of these points are of very high order and
analysis is shown by plots.

P9 : (−4,−3, 0, 0, 8
3

)
.�m = 8

3 ,�r = 0,�� = 16
3 , ωe f f =

1
3 . The acceleration for this point is not possible. The

Eigenvalues of this point are

⎛
⎝−2 −

(
1−i

√
3
)

3
√

1
2

(
9+i

√
6063

)

2 32/3

− 4
(

1+i
√

3
)

3
√

3
2

(
9+i

√
6063

)

⎞
⎠ ,−4, 4,

⎛
⎝−2 −

(
1+i

√
3
)

3
√

1
2

(
9+i

√
6063

)

2 32/3 −

4
(

1−i
√

3
)

3
√

3
2

(
9+i

√
6063

)

⎞
⎠ ,

⎛
⎝−2+

3
√

1
2

(
9+i

√
6063

)

32/3 + 8

3
√

3
2

(
9+i

√
6063

)

⎞
⎠.

Clearly this point is not stable as one eigenvalue is 4.

P10 : (0,−1, 2, 0, 0). �m = 0,�r = 0,�� = 0, ωe f f =
−1. This point does provide acceleration phase. In the plot,
real part of eigenvalues till p = 10 is shown due to overlap
in the earlier value. It is evident that this point is spiral stable
as all eigenvalues have negative real part in the region 0 <

p < 1.

P11 :
(

4(p−1)
p ,− 2(p−1)

p2 ,
2(p−1)

p ,
−14+64p−43p2

4p2 ,
2−8p+5p2

p2

)
.

�m = 2−8p+5p2

p2 ,�r = −14+64p−43p2

4p2 ,�� = 7
2p2 − 4

p +
3
4 , ωe f f = − 1

3

(
3p−2

p

)
. This point provide acceleration for

p < 0 or p > 1, which is not possible as per the defini-
tion. This point is also unstable from the plot of real part of
eigenvalues.

Case II: Non-linear interaction (Q = H ρ�ρm
ρtot

) [83]. The
set of autonomous differential equations for the non-linear
interaction would be:

x ′ = −4+5x+2z+4w+3s−xz+x2 (36)

y′ = xz2

p(y+z)
−y(2z−4 − x) (37)

z′ = − xz2

p(y+z)
− 2z(z − 2) (38)

w′ = − 2zw + xw (39)

s′ = s(1 − y − 3z − w − x2 + 2z2 + xz + 2yz − xy − sx − sy − sz)

1 − x − y − z
(40)

There are 4 real critical points of this system. The detailed
stability and acceleration analysis would be done. Again like
the previous case, the eigenvalues of each of these points are
of very high order and analysis is shown by plots.

P12 : (−4, 13, 0, 0, 8
3 ). �m = 8

3 ,�r = 0,�� = − 32
3 ,

ωe f f = 1
3 . The acceleration for this point is not possible.

The Eigenvalues of this point are

⎛
⎝− 25

(
1+i

√
3
)

3 3
√

1
2

(
−117+i

√
486311

)

− 1
6

(
1 ± i

√
3
)

3

√
1
2

(
−117 + i

√
486311

))
, −4, 4,⎛

⎝ 1
3

⎛
⎝ 50

3
√

1
2

(
−117+i

√
486311

) + 3

√
1
2

(
−117 + i

√
486311

)⎞
⎠

⎞
⎠.

Since one eigenvalue is positive, stability is not possible.

P13 :
(

4(p−1)
p ,− 2(p−1)

p2 ,
2(p−1)

p ,
−2+10p−7p2

p2 , 0
)

. �m =
0,�r = −2+10p−7p2

p2 ,�� = 2 − 2
p , ωe f f = − 1

3

(
3p−4

p

)
.

The acceleration for this model happens only when p < 0 or
p > 2, which is not possible as per our definition. Also value
of one of the eigenvalues is 1 and this point is not stable. The
plot for real part of the eigenvalues looks like

P14 :
(

4(p−1)
p ,

2(p−1)

p2 ,
2(p−1)

p ,
−153p4+440p3−418p2+144p−16

p2(21p2−32p+8)
,

8
(
p2−p

)
21p2−32p+8

)
. �m = 8

(
p2−p

)
21p2−32p+8

,�r =
−153p4+440p3−418p2+144p−16

p2(21p2−32p+8)
,��= 4

(
10p4−47p3+73p2−44p+8

)
p2(21p2−32p+8)

,

ωe f f = − 1
3

(
3p−4

p

)
. So acceleration occurs only when
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p < 0 or p > 2, which is not possible. Plot of eigenval-
ues indicate that atleast one eigenvalue is negative for all
values in the region 0 < p < 1. So stability is not possible.

P15 :
(−2(3p−4)

2p−1 ,
2+3p−4p2

p(1−3p+2p2)
,

−2−3p+4p2

1−3p+2p2 , 0, 0
)

. �m =
0,�r = 0,�� = 2 − 2

p , ωe f f = − 1
3

(
6p2−3p−5
2p2−3p+1

)
. The

acceleration for this model happens only when 1
2 < p < 1.

Plot of the eigenvalues makes it trivial that stability is not
possible in this case. So here acceleration is possible but it is
not stable.

4 Conclusion and further work

In this work, an extensive literature survey on modified the-
ories of gravity has been studied. The issues about Einstein’s
general theory of relativity have been looked and discussed
briefly. This leads into consideration of modified theory of
gravity and this work extensively uses f (R) model, which is
essentially the modification of the geometry part of the uni-
verse. An overall discussion about the f (R) gravity in metric
is beginning from its action principle to field equations in
standard metric formalism. After that a brief discussion on
certain viability conditions regarding the type of model to be
chosen is done. This specific choice of function f (R) lead to
fully realistic model which could be compared in detail with
cosmological observations.
The analysis part of this work is fully devoted to one of
the particular function f (R) = R − μRc(R/Rc)

p with
0 < p < 1, μ, Rc > 0. The method of dynamical sys-
tem analysis is being used as we introduce dimensionless
variables from the corresponding field equations. This lead
to formation of system of autonomous differential equations

corresponding to the function f (R). We begin with the uni-
verse filled only with matter and radiation which do not inter-
act with each other. All of the real critical points of the sys-
tem are evaluated. Moreover calculation of ωe f f which gives
the acceleration phase and signature of the eigenvalues of
the Jacobian matrix of the corresponding eigenvalues which
gives the stability analysis are also done. This entire problem
is in 4 dimension. The brief analysis of the result is as follows:

Point Stability Acceleration

P1 Not stable Never
P2 Spiral stable Always
P3 Not stable Never
P4 Spiral stable for p ∈ (0.33, 0.71) Never

P5 Stable of 0 < p < 13−√
73

16
1
2 < p < 1

We further take this problem to fifth dimension by intro-
ducing dark energy (cosmological constant) along with mat-
ter and radiation. Similar calculation about evaluating accel-
eration phase with the help of ωe f f and stability analysis
with the help of signature of eigenvalues of Jacobian matrix
of corresponding eigenvalues is done. We assume that there
is no interaction between these cosmological fluids. Brief
summary of result is as follows.

Point Stability Acceleration

P6 Not stable Never
P7 Not stable Never
P8 Not stable 0 < p < 1

2

Now, we take two subcases in the mixture of matter, radi-
ation and dark energy (cosmological constant). One is with
the linear interaction (Q = Hρtot ) and other is the non-linear
(Q = H ρ�ρm

ρtot
) interaction between matter and dark energy.

Similar analysis for both the kinds of interaction have been
done and summary of results is as follows:

For linear interaction:

Point Stability Acceleration

P9 Not stable Never
P10 Stable spiral Always
P11 Not stable Never

For non-linear interaction:

Point Stability Acceleration

P12 Not stable Never
P13 Not stable Never
P14 Not stable Never
P15 Not stable 0 < p < 1

2
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Here all the, P1, P2, etc are the points as stated in the
calculation part. As eigenvalues in most of cases are com-
plicated, plots of behaviour of eigenvalue against p in the
range 0 < p < 1 is made. This gives the clear idea of the
stability analysis. From all the above calculations and dis-
cussions, we could conclude that in the case of modified
gravity (here f (R)) there is no effect of the use of cosmo-
logical constant component. Stability and acceleration phase
are achieved without adding this ‘unobserved’ quantity. Point
P10 which is under linear interaction is stable spiral and also
shows acceleration, but if we observe it closely the value of
�� of that point is 0. This show that it does not contain any
dark energy component (cosmological constant). This work
is motivated to theoretically prove accelerated expansion of
the universe along with stability, matter formation era and
acceleration phase. Point P5 shows the deceleration phase
for small values of p, which as mentioned in the literature is
essential of presence of matter formation epoch. It signifies
the beginning of that era. This same point gives the infla-
tionary acceleration at values of p close to 1 as it gives a
very large negative value of ωe f f . Point P2 gives us the late
time acceleration as it has stability and ωe f f is negative and
finite. Similarly point P4 signifies the beginning of radiation
domination epoch.
This work could be extended by considering different f (R)

model which satisfies all the viability conditions. Apart from
this some different category of modification like f (R, T )

or Gauss Bonnet theory could be considered and the use
of dynamical system analysis could be applied further and
stability analysis for such cases could be carried out.
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