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Abstract

In this paper, the problem of the stability analysis for neutral delay-di!erential systems is
investigated. Using Lyapunov method, we present new su$cient conditions for the stability of
the systems in terms of linear matrix inequality (LMI) which can be easily solved by various
convex optimization algorithms. Numerical examples are given to illustrate the application of
the proposed method. ( 2000 The Franklin Institute. Published by Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The stability analysis of neutral delay-di!erential systems has received considerable
attention over the decades [1}9]. In the literature [5}9] Lyapunov technique, charac-
teristic equation method, or state trajectory approach have been utilized to derive
su$cient conditions for asymptotic stability of the systems. However, most of the
criteria are expressed in terms of matrix norm or matrix measure of the system
matrices. Unfortunately, the matrix norm operations usually make the criteria more
conservative. Also the criteria in recent studies [8,9], require strong assumptions such
as the matrix measures of system matrices have to be negative. These assumptions
often make it di$cult to apply the criteria to various systems.
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In the paper, we present two new su$cient conditions for asymptotic stability of the
neutral delay-di!erential systems using Lyapunov's second method. One is a delay-
independent criterion which investigates the stability of the system without considera-
tion of the size of time-delay h, the other is a delay-dependent criterion which can give
the maximum allowable bound of h. The derived su$cient conditions are expressed in
terms of LMI to "nd the less conservative criteria, and can be applied under the more
relaxed assumptions. The solutions of the LMIs can be easily solved by various
e!ective optimization algorithms [10]. Three numerical examples are presented to
show the application of the proposed method.

Notation: Rn denotes n-dimensional Euclidean space,RnCm is the set of all n]m real
matrices, I denotes identity matrix of appropriate order, DD ) DD refers to either the
Euclidean vector norm or induced matrix 2-norm, and k( ) ) denotes matrix measure of
corresponding matrix. The notation X*>(respectively, X'>), where X and > are
matrices of same dimensions, means that the matrix X}> is positive semi-de"nite
(respectively, positive de"nite).

2. Main results

Consider a neutral delay-di!erential system of the form

x5 (t)"Ax(t)#Bx(t!h)#Cx5 (t!h) (1)

with the initial condition function

x(t
0
#h)"/(h), ∀h3[!h, 0] (2)

where x(t)3Rn is the state vector, A,B and C3RnCn are constant matrices,
h is a positive constant time-delay, /( ) ) is the given continuously di!erentiable
function on [!h, 0], and the system matrix A is assumed to be a Hurwitz matrix. The
system given in (1) often appears in the theory of automatic control or population
dynamics.

First, we establish a delay-independent criterion, for the asymptotic stability of the
neutral delay-di!erential system (1) using Lyapunov method in terms of LMI.

Theorem 1. System (1) is asymptotically stable for all h*0, if there exist positive dexnite
matrices P'0 and R'0 satisfying the following LMI:

C
ATP#PA#R#ATA PB#ATB PC#ATC

BTP#BTA BTB!R BTC

CTP#CTA CTB CTC!I D(0. (3)

Proof. Let the Lyapunov functional candidate be

<"xT(t)Px(t)#=
1
#=

2
(4)
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where

=
1
"P

0

~h

x5 T(t#s)x5 (t#s) ds, (5)

=
2
"P

0

~h

xT(t#s)Rx(t#s) ds. (6)

The time derivative of < along the solution of (1) is given by

<Q "xT(ATP#PA)x#2xTPBx
h
#2xTPCx5

h
#=Q

1
#=Q

2
, (7)

where x,x
h
and x5

h
denote x(t), x(t!h) and x5 (t!h), respectively. From (5) and (6), we

obtain

=Q
1
"x5 Tx5 !x5 T

h
x5
h

"xTATAx#xT
h
BTBx

h
#x5 T

h
CTCx5

h
!x5 T

h
x5
h

# 2xTATBx
h
#2xTATCx5

h
#2xT

h
BTCx5

h
, (8)

=Q
2
"xTRx!xT

h
Rx

h
. (9)

Substituting (8) and (9) into (7), we have

<Q "C
x(t)

x(t!h)

x5 (t!h)D
T

C
ATP#PA#R#ATA PB#ATB PC#ATC

BTP#BTA BTB!R BTC

CTP#CTA CTB CTC!I DC
x(t)

x(t!h)

x5 (t!h)D.
(10)

The <Q is negative if inequality (3) is satis"ed. This completes the proof.

Next, we develop a delay-dependent stability criterion for the neutral delay-
di!erential systems. The following lemma, assumption and de"nition are necessary to
derive the criterion.

Lemma 1 (Khargonekar [11]). Let D and E be real matrices of appropriate dimensions.
Then, for any scalar e'0,

DE#ETDT)eDDT#e~1ETE.

Assumption. In connection with system (1), the matrix A#B has all its eigenvalues in
the open left-half plane.

De5nition. The matrix functions S
1

and S
2

are de"ned as

S
1
(P, e

1
, e

2
, e

3
, h)"AT

0
P#PA

0
#hPBBTP#e

2
PP#2e

3
PBBTP

# (2#e~1
1

)ATA#3BTB#2e~1
3

CTC#h;T;, (11)

S
2
(e
1
, e

2
)"(2#e

1
#e~1

2
)CTC!I, (12)
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where P is a symmetric positive de"nite matrix, e
1
, e

2
, and e

3
are positive scalars,

A
0
"A#B, and ;"[2(ATA#BTB)]1@2.
Note that S

1
(P, e

1
, e

2
, e

3
, h) is monotonic non-decreasing with respect to h (in the

sense of positive semi-de"niteness).
Then the following theorem gives a delay-dependent su$cient condition for the

stability of system (1).

Theorem 2. For a given scalar h
.!9

, the system is asymptotically stable for any constant
time-delay 0(h)h

.!9
, if there exist a symmetric positive dexnite matrix X, positive

scalars e
1
, e

2
, and e

3
, satisfying the following LMIs:

Q(X)#e
2
I#2e

3
BBT XAT XAT XBT XCT X;T BT

AX !1
2
I 0 0 0 0 0

AX 0 !e
1
I 0 0 0 0

BX 0 0 !1
3
I 0 0 0

CX 0 0 0 !1
2
e
3
I 0 0

;X 0 0 0 0 !pI 0

B 0 0 0 0 0 !pI

(0

(13)

and

C
(2#e

1
)CTC!I CT

C !e
2
ID(0 (14)

where Q(X)"XAT
0
#A

0
X and p"1/h

.!9
.

Proof. Without loss of generality, it is assumed that x(t) is continuously di!erentiable
in the interval [!2h,!h].

Rewrite system (1) as

x5 (t)"(A#B)x(t)!BP
t

t~h

x5 (s) ds#Cx5 (t!h)

"A
0
x(t)!BP

t

t~h

MAx(s)#Bx(s!h)#Cx5 (s!h)N ds#Cx5 (t!h)

"A
0
x(t)!Bg!BCP

t

t~h

x5 (s!h) ds#Cx5 (t!h)

"A
0
x(t)!Bg!BCx(t!h)#BCx(t!2h)#Cx5 (t!h), (15)
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where

g"P
t

t~h

MAx(s)#Bx(s!h)N ds. (16)

Now, consider the Lyapunov functional for system (15) as

<"xT(t)Px(t)#Z
1
#Z

2
#Z

3
#Z

4
(17)

where

Z
1
"P

0

~h

x5 T(t#s)x5 (t#s) ds, (18)

Z
2
"P

0

~h

xT(t#s)R
1
x(t#s) ds, (19)

Z
3
"P

0

~2h

xT(t#s)R
2
x(t#s) ds, (20)

Z
4
"2P

0

~h
GP

t

t`h
DDAx(s)DD2 ds#P

t

t`h
DDBx(s!h)DD2 dsH dh (21)

and P is the matrix given in (11), and R
1

and R
2

are the positive semi-de"nite matrices
to be found.

Then, the time derivative of < is

<Q "xT(AT
0
P#PA

0
)x!2xTPBg!2xTPBCx

h
#2xTPBCx

2h

# 2xTPCx5
h
#ZQ

1
#ZQ

2
#ZQ

3
#ZQ

4
, (22)

where x
2h
"x(t!2h).

From (18) to (21),

ZQ
1
"x5 Tx5 !x5 T

h
x5
h

"(xTAT#xT
h
BT#x5 T

h
CT) (Ax#Bx

h
#Cx5

h
)!x5 T

h
x5
h

"xTATAx#xT
h
BTBx

h
#x5 T

h
CTCx5

h
!x5 T

h
x5
h

# 2xTATBx
h
#2xTATCx5

h
#2xT

h
BTCx5

h
, (23)

ZQ
2
"xTR

1
x!xT

h
R

1
x
h
, (24)

ZQ
3
"xTR

2
x!xT

2h
R

2
x
2h

, (25)

ZQ
4
"2hDDAx(t)DD2#2hDDBx(t!h)DD2!2P

t

t~h

DDAx(s)DD2 ds!2P
t

t~h

DDBx(s!h)DD2 ds.

(26)
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By Lemma 1, the terms on the right-hand side of (22)}(26) are satis"ed by the
following inequalities:

!2xTPBg)hxTPBBTPx#h~1gTg,

2xTATCx5
h
)e~1

1
xTATAx#e

1
x5 T
h
CTCx5

h
,

2xTPCx5
h
)e

2
xTPPx#e~1

2
x5 T
h
CTCx5

h
,

2xTPBCx
2h
)e

3
xTPBBTPx#e~1

3
xT
2h

CTCx
2h

,

!2xTPBCx
h
)e

3
xTPBBTPx#e~1

3
xT
h
CTCx

h
,

2xTATBx
h
)xTATAx#xT

h
BTBx

h
,

2xT
h
BTCx5

h
)xT

h
BTBx

h
#x5 T

h
CTCx5

h
. (27)

Here, g is de"ned in (16). Using the well-known inequality DDu#vDD2)
(1#1/a) DDuDD2#(1#a) DDvDD2 for any scalar a'0, gTg in (27) is satis"ed:

gTg)2 KKP
t

t~h

Ax(s) dsKK
2
#2 KKP

t

t~h

Bx(s!h) dsKK
2

)2hP
t

t~h

DDAx(s)DD2 ds#2hP
t

t~h

DDBx(s!h)DD2 ds (28)

where the second inequality is obtained using Schwartz inequality. Using (23)}(28), we
have

<Q )xT[AT
0
P#PA

0
#R

1
#R

2
#2hATA#hPBBTP#e

2
PP#2e

3
PBBTP

# (2#e~1
1

)ATA]x#xT
h
[(3#2h)BTB#e~1

3
CTC!R

1
]x

h

#xT
2h

[e~1
3

CTC!R
2
]x

2h
#x5 T

h
[(2#e

1
#e~1

2
)CTC!I]x5

h
. (29)

Here, choosing the matrices R
1

and R
2

as R
1
"(3#2h)BTB#e~1

3
CTC and R

2
"

e~1
3

CTC, respectively, (29) is simpli"ed as

<Q )xT[AT
0
P#PA

0
#hPBBTP#e

2
PP#2e

3
PBBTP#(2#e~1

1
)ATA

# 3BTB#2e~1
3

CTC#h(2ATA#2BTB)]x#x5 T
h
[(2#e

1
#e~1

2
)CTC!I]x5

"xTS
1
(P, e

1
, e

2
, e

3
, h)x#x5 T

h
S
2
(e
1
, e

2
)x5

h

)xTS
1
(P, e

1
, e

2
, e

3
, h

.!9
)x#x5 T

h
S
2
(e
1
, e

2
)x5

h
, (30)

where S
1
( ) ) and S

2
( ) ) are de"ned in (11) and (12).

Let X"P~1. Then (30) is

<Q )xTPXS
1
(P, e

1
, e

2
, e

3
, h

.!9
)XPx#x5 T

h
S
2
(e
1
, e

2
)x5

h
. (31)
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Therefore, <Q is negative if the following two inequalities are satis"ed:

XS
1
(P, e

1
, e

2
, e

3
, h

.!9
)X(0, (32)

S
2
(e
1
, e

2
)(0. (33)

(32) and (33) become

XAT
0
#A

0
X#h

.!9
BBT#e

2
I#2e

3
BBT#(2#e~1

1
)XATAX#3XBTBX

#2e~1
3

XCTCX#h
.!9

X;T;X(0, (34)

(2#e
1
#e~1

2
)CTC!I(0. (35)

Then, by Schur complement [12], inequalities (34) and (35) are equivalent to (13) and
(14), respectively. This completes the proof.

Remark 1. The LMIs given in Theorems 1 and 2 can be solved e$ciently using
interior point algorithm [10]. In addition, since h

.!9
"1/p, the maximum allowable

bound of delay, h
.!9

, can be easily found by minimizing p subjected to
X'0, e

1
'0, e

2
'0, e

3
'0, p'0, and (13), (14). Note that this optimization prob-

lem has the form of an eigenvalue problem. For details, see [10].

3. Numerical examples

To illustrate the usefulness of the proposed method, we present the following three
examples. Examples 1 and 2 show the application of the delay-independent criterion,
and Example 3 is for the delay-dependent one.

Example 1. Consider the following system:

x5 (t)"Ax(t)#Bx(t!h)#Cx5 (t!h),

where

A"C
!3 !2

1 0 D, B"aC
0 1

1 0D, C"C
0.1 0

0 0.1D
and a is a nonzero constant.

We now determine the stability bound in terms of a. Since k(A)"0.0811'0, the
criteria of Li [8] and Hu [9] are not applicable. However, the system matrix A is
Hurwitz, so that Theorem 1 can be applied.

Solving the LMI given in (3), we obtain the bound of a for asymptotic stability as

DaD)0.989.

and the solutions of the LMI as

P"C
73.2481 72.7010

72.7010 74.2916D, R"C
72.3496 69.7074

69.7074 69.2165D.

J.H. Park, S. Won / Journal of the Franklin Institute 337 (2000) 1}9 7



Example 2. Consider the following system:

x5 (t)"C
!1 0

0 !1Dx(t)#aC
0 1

1 0Dx(t!h)#C
0 0.4

0.4 0 D x5 (t!h),

where a is a nonzero constant.
Since the system matrix A is Hurwitz and also k(A) is negative, so that all the

criteria of Li [8], Hu [9], and Theorem 1 can be applied.
By simple calculation, we obtain the bound of a for stability as

Li [8]: DaD)0.2,

Hu [9]: DaD)0.2,

Theorem 1: DaD)0.9165.

For a"0.9165, the solutions of the linear matrix inequality (3) of Theorem 1 are

P"C
1.0001 0

0 1.0001D, R"C
1 0

0 1D.
In the example, we can see that Theorem 1 gives less conservative bound of a.

Example 3. Consider the following neutral delay-di!erential system:

x5 (t)"C
!2 0

0 !1Dx(t)#C
0 0.5

0.5 0 Dx(t!h)#C
0.2 0

0 0.2Dx5 (t!h).

Now, in the light of Remark 1, we can compute the maximum allowable bound
h
.!9

for asymptotic stability of the system by solving the LMIs (13) and (14) of
Theorem 2 such that p is minimized. Then, we have

e
1
"2.0872, e

2
"0.0478, e

3
"0.0315, p"1.3304,

X"C
0.1358 !0.0485

!0.0485 0.1174 D.
So, our maximum allowable bound is

h
.!9

"0.7516.

But, Khusainov and Yun'kova's bound given in [6] found as

Khusainov and Yun'kova: h
.!9

"0.1352.

We can see that Theorem 2 also gives less conservative bound, h
.!9

.
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4. Conclusions

In this paper, we have derived new su$cient conditions for the stability of the
neutral delay-di!erential systems. The derived su$cient conditions are expressed in
terms of LMI to "nd the less conservative criteria, and can be applied under the more
relaxed assumptions.
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