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For stochastic programs with recourse and with (several joint) probabilistic constraints, 
respectively, we derive quantitative continuity properties of the relevant expectation func- 
tionals and constraint set mappings. This leads to qualitative and quantitative stability results 
for optimal values and optimal solutions with respect to perturbations of the underlying 

�9 probability distributions. Earlier stability results for stochastic programs with recourse and 
for those with probabilistic constraints are refined and extended, respectively. Emphasis is 
placed on equipping sets of probability measures with metrics that one can handle in specific 
situations. To illustrate the general stability results we present possible consequences when 
estimating the original probability measure via empirical ones. 

Keywords: Stochastic programs with recourse, stochastic programs with probabilistic con- 
straints, distribution sensitivity, probability metrics. 

1. Introduction 

When formulating a stochastic programming model, one tacitly assumes the 

underlying probabil i ty distribution to be given. In practical situations, however, 

this is rarely the case; moreover, one often has to live with incomplete informa- 

tion and approximations.  Furthermore,  also under full informat ion about  the 

underlying distributions one is led to approximations,  since exact computat ion of 

expectations and probabilities typically arising in stochastic p rogramming is 

beyond the present numerical capabilities for a large class of distributions (e.g. 

multivariate continuous ones). These circumstances motivate a stability analysis 

for optimal values and optimal solutions to stochastic programs with respect to 

perturbations of the underlying probabil i ty distributions (cf. [10,17,31,33,43]). In 

the present paper,  we pursue this for two basic problem classes in stochastic 

programming - for stochastic programs with recourse and for stochastic pro- 

grams with probabilistic (or chance) constraints. We lay stress on structural 

properties of expectation functionals and of certain multifunctions defined by 

probabilities, on implications of these properties with respect to stability, on a 

proper selection of metrics in spaces of probabil i ty measures to guarantee the 

structural properties, on the one hand, and to be able to compute  (or to estimate) 

distances of probabil i ty measures in specific situations, on the other hand. 

�9 J.C. Baltzer A.G. Scientific Publishing Company 
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In section 2, we analyze stochastic programs with linear and quadratic re- 

course, respectively. We prove a general Lipschitz continuity result for a mapping 

which assigns to a probability measure a certain integral expression, where the 

metric on the space of probability measures is an Lp-Wasserstein metric [9,15,26]. 

This leads to (local) upper semicontinuity of optimal solutions and to (local) 

Lipschitz continuity of optimal values for the mentioned recourse problems. For 

stochastic programs with linear recourse and random right-hand sides we estab- 

lish (local) H61der continuity of the Hausdorff  distance of optimal solutions. 

Compared to [33,36] where a similar analysis was carried out with respect to the 

bounded Lipschitz metric (cf. [9,15] for details about the metric) the progress 

consists of less restrictive integrability conditions for the involved measures and 

of better possibilities to estimate distances between probability measures. The 

above mentioned H/51der continuity result for solution sets extends a result in [35] 

(theorem 4.4) to recourse problems with a convex quadratic portion in the 

objective. Among the consequences of our general stability results for specific 

situations we present an asymptotic convergence result for optimal solution sets 

when the true distribution is estimated by empirical ones. 

Section 3 is devoted to stochastic programs with several joint probabilistic 

constraints. Using discrepancies (cf. [12]), we identify a suitable metric to ensure 

a certain Lipschitz property for the mapping which assigns the probabilistic 

constraint set to a probability measure. As implications for stability we again 

obtain (local) upper semicontinuity of optimal solutions and (local) Lipschitz 

continuity of optimal values, thus extending results in [33,34,36] to problems with 

several probabilistic constraints. We apply the general result to a model where the 

measure has a certain convexity property and to a specific chance constrained 

program with random technology matrix. 

Let us add some further bibliographical comments: Approximation techniques 

for solving stochastic programs with complete information on the underlying 

measures are presented in [4,12,37,42]. When having only incomplete information 

about the measures it is possible to use parametric as well as non-parametric 

statistical estimators instead of the true distributions. For parametric estimators, 

the stability of the stochastic program with respect to changes of finite dimen- 

sional parameters is essential (cf. e.g. [10]). In connection with non-parametric 

statistical estimators there exist a number of contributions to stochastic program- 

ming [11,18,19,38,40]. The conclusions in the present paper with respect to 

asymptotic properties of statistical estimators fit into this line of research. 

2. Wasserstein metrics and stability of recourse problems 

Let (Z, p) be a separable metric space, denote by ~ ( Z )  the set of all Borel 

probability measures on Z and consider a mapping h:  Z ~  R which is 
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Lipschitzian on bounded sets, i.e. 

L, , (r)  := sup{ ,h(z)-h(~.),  } 
7 Z e )  �9 z , e ~ B ( O , , - ) , z , e  <o o  

for each r > 0 ,  where B(O, r):={z~Z: O(z,O)<~r} and O~Z is some dis- 

tinguished element. 

We begin by studying quantitative continuity of the mapping which assigns to 

~ ( Z )  the integral fzh(z)~t(dz). Subsequently, these results will serve to 

establish stability of stochastic programs with recourse. Studying quantitative 

continuity in the above setting requires a suitable metric on ~ ( Z ) .  In this 

respect we address Wasserstein metrics. 

The Lp-Wasserstein metric Wp (p  >/1) is defined as follows: 

z) ~(dz, de)" rl ~ D(Ix, v) wp(~,  ~):= inf p(z ,  - 
•  

for all 

p., v~ . .C~p(Z):={ ,~(z ) :  fzO(Z. O)Pta( d z ) < ~  }. 

where 

D(/x, v ) :=  { r / E ~ ( Z X Z ) "  ~ o T h - l = / a , - q o ~ r f ' = v }  

and %, % are the first and second projections, respectively. 

In [15] it is shown that (Mgp(Z), Wp) is a metric space. In [26], the following 

equivalence is established: 

Let /~ ~ p ( Z )  and t~ ~ :~(Z)  (n = 1, 2 . . . .  ); then Wp(t,,,, t*)~ 0 as n ~ oo 

iff the sequence {/~,, } converges weakly to/~ and 

fzp(Z, O)Pl.t,,(dz) = fzO(Z, O)P#(dz). 

A sequence {/,,,} is said to converge weakly to /~, if for any bounded 

continuous function g : Z ~ N we have 

fzg(z)tL,(dz ) + s as n-+ oo 

(cf. [31). 

Concerning the announced continuity we state 

PROPOSITION 2.1 

Let h:Z--, IR be Lipschitzian on bounded subsets of Z. Then, for all /*, 

v ~ J 4 p ( Z )  

I fzh(z)t.(dz)- s  < (M~(~,)+ M,(,)) �9 W.(#, ,), 



244 IV. Rgmisch, R. Schultz / Stabifty analysis 

where p > 1, p - z  + q-~ = 1 and 

oll , dzO 

Proof 
Let ~/~ D(/~, u); then it holds 

If h( z I.(dz I - f h(el~(de) l 

fzxzl  h(z) - h(e) I n(dz, de) 

fz• o( z, 0), p( e, 0))). p( z, e)r/(dz, de) 

~< (Szxz[ L..(m.{p(z.,). 0(e.O) ))] qTl(dz, de))l/q 

By 

Lh(max(p(z, O), p(~, 0)})~< Lh(p(z, 0))+ Lh(p(-Z , 0)) 

we can continue 

<~, [L,,(p(z,O))]t~(dz)) +(fz[L, ,(o(e,O))].(de))  ] 

Passing to the infimum with respect to ~ ~ D(~,  . )  yields the assertion. [] 

Remark 2.2. 
For globally Lipschitzian h, i.e. in c a s e  Lh(r  ) ~ L h = const, for all r > O, the 

above proof yields 

I fzh(z~,(dzl-  fzh(zl.(dzll  <.Lh. W~(., .) (~, ~ . ( Z ) ) ,  

and this remains valid even for p = 1. Note that, in this situation, the result may 

also be gained as a consequence of the Kantorovich-Rubins te in  theorem (e.g. 

[15], p. 233). 
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COROLLARY 2.3 

Let ~t ~ J t ' 2 ( ~ ) .  If there exists L 0 > 0 such that Lh(r  ) ~< Lor for all r > 0, then 

there exist L > 0 and 3 > 0 such that 

I ~ h(z)l~(dz)- fwh(z)v(dz) l ~ LW2(lx, v), 

whenever v ~J/~2(Ns), W2(I~, v) < & 

Proof 
Specifying proposition 2.1 (p  = 2 and Z = N" with norm II" II), we obtain 

I ~ h(z)lx(dz)- ~ h(z)v(dz) l 

., \ , /2 2v(dz)  W2 (/s P), <~ Lo Hzll2bt(dz)) + s IIz, 

whenever/~, v e ~ ' 2 (R~) .  The characterization of convergence with respect to W 2 

now yields that there exist 3 > 0 and M > 0 such that 

fRI Izll2v( d z ) ~ M  whenever W2(~, v)<3. 

This completes the proof. [] 

The recourse problems, whose stability we are going to analyze, all fit into the 

following class of parametric programs: 

P(/z) m i n { F ( x ,  /~): x~C} ,  

where C _ R'" is nonempty, closed, convex and F: R "  • ~ ( R  s) ~ R is given by 

F(x, ix):= fo/(x, z ) g ( d z ) ,  

with some function f:  R "  • R s ~ R and some/z ~ ~ ( R ' ) .  

For the moment, let us assume all ingredients to be taken in such a way that 

the above integral exists. Precise assumptions will be given when considering the 

specified problems. The (global) optimal value of P(g)  and the set of (global) 

minimizers are denoted O(~t) and q,(g), respectively. 

THEOREM 2.4 

Fix /~ ~,//t'2(N s) and let 

(1) +(/1) be nonempty and bounded; 

(2) the function f ( . ,  z) be convex for each z ~ Rs; 

(3) there exists V c  N ' ,  open and bounded, and L 0 > 0 such that q,(/~) c 

[f(x, z ) - f ( x ,  ~)] <~L o max( l l z l l ,  I I ~ l [ ) . [ I z - f f [ ] ,  

whenever x ~ cl V and z, ~ e R'L 

V and 
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Then the multifunction q~ (-) (from (..r Wz) into N m) is upper  semicontinu- 

ous at/z,  and there exist constants L > 0 and 8 > 0 such that +(u)  4: O and 

1~(~) - ~ 0 ' ) 1  ~ L .  W2(~, u), 

whenever u ~..r W2( #, 1,) < 8. 

Proof 
We show that the assertion follows from lemma A.2 in the appendix. Assump- 

tion (a) in lemma A.2 is a consequence of (1), and (b), (c) hold since the 

constraint set C is closed and does not depend on the parameter. Hence it 

remains to verify (d). Indeed, for arbitrary x, Y ~ cl V and p ~..r ~) we have 

IF( x, It) - F(Y~, u) I <~ IF( x,/~) - F(:~, /z) I + IF(  y,  /~) - F ( 2 ,  u) 1. 

In view of (2), the function F is convex in x and thus Lipschitzian on bounded 

sets. Hence, the first term on the right is bounded above by/~, [I x -  ~ I1 with a 

suitable constant /~ > 0. To see that there exist constants L > 0, 6 > 0 such that 

the second term on the right is bounded above by L .  W2(/~ , u) whenever 

I, V2( #, u) < 6, we apply corollary 2.3 (for h(z) .'= f(Y, z)), whose assumptions are 

fulfilled in view of (3). [] 

Remark 2.5 
If f (x ,  �9 ) is globally Lipschitzian (uniformly with respect to x ~ cl V), then, 

by remark 2.2, the above remains valid for/~, ~ ~ J g l ( R  ~) with respect to W v 

Remark 2.6 
Using the same approach, it is possible to cover more general situations where 

the Lipschitz modulus of f (x ,  �9 ) grows faster than linearly. The crucial point is 

to "compensate" the growth of the Lipschitz modulus by more restrictive moment  

conditions on /~ and u. Of course, the stability results one then obtains are with 

respect to less convenient metrics (l, Vp with p > 2). 

Now, let us discuss instances of f (x ,  z) which lead to recourse models in 

stochastic programming. As a basic structure we always assume 

f ( x ,  z) = g(x)  + Q(x, z), 

with some convex function g: R " ---, R. 

In models with linear recourse we have 

Q_(x, z)=min{qVy:  W y = b - A x ,  y>~O}, (2.1) 

where q ~ R  s', W ~ L ( R  ~', gU 2) such that W ( R ~ ) = R  s~ (complete recourse), 

A ~ L(R m, R~2), b ~ R ~2. (Throughout, superscript T denotes transposition.) The 

vector z is formed by the components of q, A and b. We suppose the supports of 

the measure/z and all its perturbations ,, to be contained in the set 

~ = { z ~ R ~ : 3 u ~ g C ~ 2 ,  WVu<~q} ( s = s a + ( m + l ) s z ) .  
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Then we have Q(x, z ) ~  R whenever x ~ ~m, 2 ~,.~. Now, the only further 

assumptions one must impose to achieve the stability asserted in theorem 2.4 are 

that /* ~..r ~) and that q'(t*) is nonempty and bounded. Indeed, assumptions 

(2) and (3) in theorem 2.4 are both consequences of well-known facts in linear 

parametric programming (consult [16] for (2) and lemma 3.2 in [36] for (3)). 

Moreover, if q in (2.1) is non-random and { u ~ R ' 2 :  WTu~q):~  ~ ,  then, 

with z formed by the components of b and A, the function Q(x, �9 ) is globally 

Lipschitzian uniformly with respect to x varying in a compact set. Thus, remarks 

2.2 and 2.5 apply, and we can relax the assumption /* e. . l /2(R s) t o / ,  e . . l / l (R ' )  

(s := (m + 1)sz) which leads to stability for perturbations v ~111(N *) with re- 

spect to the metric I,V~. 

A specific instance of (2.1) to be dealt with subsequently in this paper is the 

linear recourse model with random right-hand side, which is given by 

Q.(x, z)=min{qVY: W y = z - A x ,  y>_-0}, (2.2) 

where A is non-random and ~ coincides with R * (s = Sz). Of course, also for this 

model the statements made in theorem 2.4 remain valid when considering 

(J t ' l (N') ,  W1) as parameter space. 

Models with quadratic recourse are given by 

Q.(x, z )=max{ -yTHy+ (b 

where H ~ L(•s', N "') symmetric, 

L(R*', R~2), d e R ~2. The vector 

the set ~ containing the supports 

L~= ( z ~ R ' : 3 y ~ R  ~', Dy <~ 

- A x ) t y :  �9 Dy<~d, y >_- 0}, (2.3) 

positive definite, b ~ g~s,, A ~ L(R m, R") ,  D 

z is formed by the components of b, A and d; 

of the measures /* and v is 

d, y>~0} ( s = ( m + l ) s , + s 2 ) .  

Again, assumptions (2) and (3) are implications of known convexity results and of 

representations for infima of (now) quadratic programs which depend on parame- 

ters (consult [33], proof of proposition 3.2). To have the stability asserted in 

theorem 2.4 it suffices hence to claim /,~.//t'2(N s) and ~p(/,) nonempty and 

bounded. 
For stochastic programs with linear recourse and random fight-hand side we 

can quantify the upper semicontinuity of ~p(.) asserted in theorem 2.4. In its 

setting, the following theorem differs from theorem 4.4 in [35] merely by allowing 

g to be convex quadratic instead of linear. However, since the refinement of the 

corresponding proof needs some effort, and to make the argument more trans- 

parent to the reader we will present the complete proof, although it sometimes 

parallels that in [35]. Since there is no hope of obtaining the following result for 

general convex g and C (cf. remark 2.9 below), subclasses of convex problems 

where the result still holds are interesting. Our motivation to consider the 

extension to convex quadratic g stems from a recourse model in optimal power 

dispatch about which we will report in a subsequent paper. 
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Before stating the theorem let us recall that a function ~ : [ R s ~  [R is called 

strongly convex on a convex set V c  R',  if there exists x > 0 such that 

q)(Xx + (1 - X)2)  ~< ) tO(x)  + (1 - X) q>(2) - KX(1 - X) II x - .,z II 2 

whenever x, ff ~ V. Furthermore, let us introduce the notation 

h( v) = rrfin{ qS,: W y =  v, ),>_- 0}, 

with v ~ N" and q, W as in (2.2). 

THEOREM 2.7 

Adopt the general setting given above together with the specification (2.2). Let 

g be convex quadratic and C polyhedral. F ix / ,  ~./ / / l(Rs),  let q,(>) be nonempty, 

bounded and let the function Q / R "  ~ JR, given by 

Q~,(~') = f.,;, (z- ~')p.(dz), 

be strongly convex on a convex open set I "7 containing A(q,(/,)). Then there exist 

constants L* > 0 and 8" > 0 such that 

dH (1# (/.L), ~(V)) ~.~ g*"  WI(~L, l') 1/2, 

whenever v ~d/e'l(N~), Wl(l~, v) < 8". (d  H denotes the Hausdorff  distance.) 

Proof 
In a first step we are going to apply lemma A.3 in the appendix to the 

parametric program 

P(v)  m i n { F ( x ,  v): x ~ C ) ,  

with parameter space (T, d) = (./#'l([Rs), W1), t o = / ,  and objective function 

F ( x ,  u) = g ( x )  + Q,, (Ax) .  

By assumption, the function g admits a representation 

g(x)=xVHx +cTx, 

with H ~ L ( R  m, • " )  symmetric and positive semidefinite, and c ~ R ' " .  The 

assumptions on H imply that there exists H 1 / 2 ~  L(N'" ,  N'") symmetric and 

positive semidefinite, such that H ~/2 �9 H a/2 = H. 

Then, for arbitrary x, .~ ~ R" ,  ~ ~ R, 0 ~< X ~< 1, we have the identity 

(Xx + (1 - ~ ) y ) T H ( X x  + (1 -- X)Y) 

= X x r H x  + (1 - X)YVH2 - X(1 - X)II H' /2x  - H'/zY~ II 2 
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where [l" II, as in the remainder of the proof, denotes the Euclidean norm. Strong 

convexity of Q,(-)  together with the above identity yields 

F()tx  + (1 - X)ff, ~) 

<~ )~r(x,  t*) + (1 - h ) r ( Y ,  t*) - ~,(1 - X)[1H' /2x  - o l / 2 x  II 2 

- ~x(1 - x) II A x  - AX II 2, 

for all x, Y ~ R"' such that Ax,  A,~ ~ I7" and all X ~ [~, 0 ~< ~. ~< 1. 

Now, consider a bounded open set V containing 4,(t~) with the property that 

Ax ~ I7" for all x ~ V. With )t = 1 / 2  we obtain for arbitrary x ~ C r3 cl V and 

arbitrary x .  ~ q'(t~) 

X ( x . ,  , )  <~ F(�89 + x . ) ,  I*) 

<~ �89 ~) + �89 ~) - � 88  - H ~ : x . l l  = 

- �88 II A x  - d x .  II 2, 
whence 

F(x ,  It) >I F ( x . ,  ~) + 311H'/2x - H1/2x*ll 2 + �89 l[ Ax  - A x .  H z 

Thus, hypothesis (b) in lemma A.3 is fulfilled when setting x o := x .  for some 

x ,  e 4'(>) and a(~) := �89 I[ Hl/2~ I1 2 + �89 II A~ 112, ~ e R"  

To establish hypothesis (c) recall that, due to the general setting, F(- ,  u) is a 

convex function for all u e. . /{l(R"). Furthermore,  for each x r R "  and each 
v e.//gl(R s) 

IF(x ,  v) - F (x ,  /x)] = IQ,,( A x )  - Q,(  Ax )  ] 

= f . , a ( z - A x ) . ( d z ) -  fn ,a(z-Ax)~(dz) .  

From linear parametric programming it is known that h is a piecewise linear 

convex real-valued function on Rs; hence, /~ is globally Lipschitzian with some 

constant La > 0. By the Kantorovich-Rubinste in  theorem (e.g. [15], p. 233) we 

obtain for all x ~ [t~ m and all v ~ t ' ~ ( R s ) :  

IF(x ,  v) - F ( x ,  /*)1 

= Lr, f=cT ,  ~. a ( z  - A x ) ( ~  - ~ ) ( d z )  

~<L~, sup{ f=f(z)(~-u)(dz)  : #: u s a . ,  

f - is  Lipschitzian with modulus less than or equal to 1} 

<. Lr, W~(~, ~). 
This verifies hypothesis (c) in lemma A.3. 
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Since hypothesis (a) in lemma A.3 is also fulfilled, we obtain that there exist 

L > 0 and 8 > 0 such that 4,(v) 4= O and 

sup {[[H1/2x - H 1 / 2 x , [ [ 2 + [ [ A x  - AX,[[ 2} ~< L" WI(/x, v), (2.4) 

x~4,(v) 

whenever x .  ~ q,(~), v ~ ' I ( N ' ) ,  WI( F, v) < & 

In a second step let us consider the matrix , ~  L ( N " ,  N "'+~+~) given by 

~ r =  (AT, H 1 / 2 ,  c ) .  

Denote P the orthogonal projection from gR" onto ,s im X r, the image of A~r. 

Due to the choice of A we then obtain after some calculation that F(x, v)= 
F(Px, v) whenever x ~ N",  v ~.A'I(N') .  Furthermore,  for each v ~, /gl(N s) with 

~(v)  ~s 0 ,  we have the representation 

U 
yEP(~(v)) 

with ~ •  denoting the orthogonal complement of ~,o. To see this, let x ~ g,(v). 

Then there exists ~ ~&~ • such that x = Px + ~. Furthermore,  x ~ C, implying 

x~CnU.,.~e(+(,,)~{y+~,~'• Conversely, let x ~ C n U , , ~ p ( + ( , ~ ) ( y + ~ ~ 1 7 7  

Then x E C, and there exists y ~ P (+ (v ) )  such that x - y  ~s • Therefore, 

Ax=A-),, which yields F(x, v)= F(y, v). By y ~ P ( + ( v ) )  there exists p ~.qo• 

such that y +.i3 ~ g,(v). This implies q~(v) = F(y +~, v) = F(y, v). Thus, x ~ C 

and F(x, v ) =  ~(v),  which yields x c 4'(~') and verifies the asserted representa- 

tion of q~(v). 

Denoting C(y)-'= ( x  E C: Ax = Ay} we obtain 

U U C(y). (2.5) 
yE  P( ~( v )) y ~  P( ~( v )) 

In a third step, select 8 " >  0 with 6 " <  8 (cf. (2.4)) such that, for some 

L ,  > 0, [r - qS(/~) [ ~< L, Wl(tz, v) and ~b(v) c ~b(F ) + B,,, whenever v 

..~/'~(~'), W~(t x, v ) <  8" (cf. theorem 2.4 for the specification (2.2)). Let v ~  

..g~(N') such that W~( F, v) < 6 "  and x ~ ~b(~a), 2 ~ b ( v ) .  Then we have 

[cTx -- C~" I = [qS(F ) -- xTHx -- Qv( Ax ) - CO(v) + .eTn2 + Q,,( A.~) I 

~< I q~(F) - e O ( v ) l + l x T g x - - 2 T H 2 I + I Q , , ( A Y )  - Qu(AY) 

+ [Qu(AY) - Q,(Ax ) [  

+ I Q~,(A2) - Q~(Ax)[ 

(the second term in the above estimate is a consequence of the Kantorov ich-  

Rubinstein theorem) 

= + + I(l-Ia/ x + - I 

+ [Qv(AX) - Qu(Ax)1, 
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and hence 

Icrx-cW2l ~ LIWI(tx, v )+ L2(I[H1/2x-HI/297[I+IIAx-A9711 ), (2.6) 

with suitable constants L 1 > 0, L 2 > 0. 

For the last estimates we used that both x and 97 are contained in the compact 

set q,(/~)+ Bm and that Q, ( . ) ,  as a convex function, is Lipschitzian on the 

compact set A(q,( /x)+ Bin). Now w e a r e  able to perform the final step of the 

proof. 

Let v ~ / g l ( R s ) ,  W~(bt, v) < 8*. By (2.5) we have 

dH(~b(v), ~b(/x)) ~< sup dH(C(y) ,  C(.9)). 
)'EP(~(la)) 
f, EP(qJ(v)) 

By Hoffman's theorem (cf. [28], p. 760) there exists L > 0 such that we can 

continue the estimate as follows 

~< L .  sup I1Ay - )--y II 
yEP(,k(~))  
p~ P(t/,(v)) 

= L .  sup IIXx-5t-9711. 
xC4~(tt) 
2~4,(v) 

Using (2.6) and (2.4) we continue this estimate 

~< L" sup ( I crx - cr97 I + It H1/2x - H'/297 II + II Ax -/197 II) 

Y ~ ( v )  

<~ L.  L , .  W~(~, v) + L(L2 + I) sup ( [ IH ' /2x-  H~/29711+ I I A x -  A9711) 
x~k( ta )  
2~4,(v)  

<.< L.  L, . Wl(~, v) + L( L2 + 1 ) D / 2  v~ " W,(~, v) '/2 

<~ L* �9 Wl(Iz, v) '/2. [] 

Remark 2.8 
When relating theorem 2.7 to specific instances of (2.2) it is crucial to verify 

the strong convexity of the functional Q~,. For the case that Q,, is differentiable 

with locally Lipschitzian gradient, general sufficient conditions for strong convex- 

ity of Q, were derived in [35] (proposition 3.1, lemma 3.2). A sufficient condition 

for O~, to have locally Lipschitzian gradient is that for each non-singular transfor- 

mation B ~ L(R ' ,  R ~) the distribution function of # o B is locally Lipschitzian 

(cf. the analysis in [35]). In theorem 3.5 in [35] it is shown that Q~ is strongly 

convex on a convex compact set V c  IR", if, in addit ion,/* ~,/g~(R") has a density 

such that there exists r >  0 with O(t )  > r for all t from an open set U p  V and 

either W ~ L ( R  s+l,R'),  q ~ i m  W "r or W ~ L ( R  2",R'), W = ( I ,  - I ) ,  q++q- 

> 0 (componentwise). The case W =  (I ,  - I )  is referred to as simple recourse; 

here, I E L(IR *, R *) denotes the identity and q+, q ~ R" are the subvectors of q 

which correspond to the splitting of W into I and - I .  
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Remark 2.9 
Several examples show that the above result is the best possible in various 

respects. All the examples are based on the specification 

Q(x ,  z ) = m i n { y + + y - :  y + - y - = z - A x ,  y+>_.O, y->~0} 

and on the sequence /~,, E ~ ( R )  which converges in W 1 to /~0 ~ ( R )  - the 

uniform distribution on [ - 1 / 2 ,  1/2] - and which is given by 

t~,=c,,l~o,+e,3(_~.,)+e,,3~,+c,,fio,, (n > 4), 

where e , = n  -1/2, c ,= �89 ~o,, and rio,, are the uniform distributions on 

[ - 1 / 2 ,  -e , , ]  and [e,,, 1/2], respectively, 3(_,,,) and 3~., the measures with unit 

mass at -e, ,  and e,,, respectively. 

Using the formula for W~ in remark 2.11 below we obtain 

W l ( ~ . ~ 0 )  = n - 1  

Example 4.5 in [35] (where g -= 0, C = •, A = 1) shows that the exponent 1 / 2  

on the right-hand side of the estimate is optimal, namely we have in that case 

q~(~,,) = [ -n-1/2,  n-1/2], +(~0) = {0}. Thus dH(q~(/~,), +(/~o)) = n-1/2 

Example 4.6 in [35] (where g - O , C = { x ~ R 2 : - x l + ( x z ) 2 < ~ O } , A ~  

L(R 2, R~), A = (1, 0) shows that the result does not hold for a general convex set 

C. Here, we have +(~0) = (0}, and the points (n -1/2, n -1/4) belong to q~(/z,,). 

Thus dH(4,(/~,), 4'(/%)) >/n -1/4 

To see that the result is lost for a general convex function g, let g be a convex 

function which is zero on {x ~ R2: - x~ + (x2) 2 ~< 0} and greater than zero 

outside this set and put C =  R2, A E L(R 2, R1), A = (1, 0). Again +(/~o) = {0} 

and (n -1/2, n -1/4) ~ +(/%), yielding dH(+(/z,,), +(/z0)) >~ n -1/4. 

Remark 2.10 
In [33], the stability of recourse models was investigated with respect to the 

bounded Lipschitz metric/9 (cf. [9] for its definition). For  instance, theorem 3.3 in 

[33] is a quantitative continuity result for optimal values of stochastic programs 

with linear and quadratic recourse, respectively, stating that 

I , / , ( t t ) - , / , (p )  I ~< L . / 3 ( ~ ,  , ) ' - ' / P  

for some constant L > 0 and for all v close to/~. The main assumption in that 

result, however, is that the moments 

M2p(~' ) := frllzll2pu(dz) ( p >  1) 

are uniformly bounded. Hence, the moment  conditions in the present section are 

weaker and more natural, because they correspond to the assumptions on the 

existence of finite second moments in the underlying basic theory for recourse 

models (cf. e.g. [16]). We also refer to the relation between W 1 and /3 mentioned 

in remark 4.8 in [35]. 
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Remark 2.11 

Explicit formulae for Lp-Wasserstein metrics are known for probability mea- 

sures on R (i.e. for s = 1) and for multivariate probability distributions (s > 1) 

belonging to special classes (cf. [14,15]) in the case p = 2. It is known (e.g. [26]) 

that, for/~, v ~ t ' l ( N  ) (where R is equipped with the natural distance 1. - .  I), 

Wp(/z, u ) =  ( f 0 a [ F f l ( t ) -  F , - l ( t ) l  p dr)  1/p (p  >i 1), 

WI(tz, ~) = f_  L F~( t ) - F . ( t ) l d t  , 
OG 

where F~ and F, are the distribution functions of/~ and u, respectively. This has 

an important consequence for recourse models having a separability structure 

(e.g. the above mentioned linear simple recourse case and the box-diagonal case 

for quadratic recourse, cf. e.g. proposition 4.7 in [33]). Since these models only 

depend on the one-dimensional marginal distributions of the involved measures, 

we may assume that /z and v are measures with independent one-dimensional 

marginal distributions. If we consider the norm 

1/p 

on N', then we obtain in that situation 

I / /] We( Y, ~,)= inf ,• Iz,-Ll%(dz, de)' ~ D ( ~ ,  ~) 
i =  

Now, let /x i, ~,i (i = 1 . . . . .  s) denote the marginal distributions of ~, ~, and let 

~ ~ D(/~, v~) be chosen such that 

W p ( l ~ i , " , ) =  • I z , -Z i l  r/,(dz,,d~.i)) . 

This is possible according to proposition 1 in [15]. Hence, 

( ( ,J0 , r t  = ~ Wp(]~i, pi) p = l l F ~ l ( t  ) - F~- ' ( t )  at  . 

, = 1  i =  

Hence, for recourse models with separability structure we arrive at stability 

results with respect to distances which are computable in practical situations. 

We end this section with an application to asymptotic properties of statistical 

estimators in stochastic programs. Let z 1, z z . . . .  be independent random varia- 
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bles (with values in R s) on some probability space (f2, .~r P) with identical 

distribution /, ~ 9~(Rs). We consider the empirical measures 

1 n 

~o(,~) ~= ~ E ~ , ( ~ ) ( , ~ ,  n ~ ) .  
i = l  

(8_. denotes the measure with unit mass at z ~ R~.) Then it is known that, if 

~ d g p ( R  ~) (p  >/1), 

Wp(#, /L,(w)) -+ 0 P-almost surely 

(cf. chapter 4.1 in [26]). Convergence rates for the mean of Wp(~, ~,,(.)) (n ~ I%1) 

can be derived from [8,26]. We show how to combine our stability results with 

speed-of-convergence properties for empirical measures to obtain asymptotic 

properties of statistical estimators in stochastic programs. 

C O R O L L A R Y  2.12 

Let the assumptions of theorem 2.7 be fulfilled and let /~ ~ ' ~ ( R  s) for each 

p >/1. Let C be bounded. Then E[dH(+(/*), ~b(/,,,(~)))] = O(n -1/2K) for each 

K >  max{2, s}. 

Proof 
Let a, ,(w):= dH(+(/*), +(/*,,(~))) and put 

e,,:=(~: w1(~,~.(~))<8"} ( . ~ ) ,  

where 8" and (later on) L* are chosen as in theorem 2.7. Then 

E[a.(~l] = f a~ f~ a,,(~Ie(d~) 
~n n 

~ c*. s[w,(...,,(~)) '~ ] 

+ diam C.P({r  W, (/,, /,,,(o~)) >~ 8" }) 

L*( E[WI(t~, ~t,,(~o))])l/2 + diam C. ~-~ E[WI(~t, /,,(~o))], 

where we used HSlder's and Chebyshev's inequalities, and diam C denotes the 

diameter of C. Hence we obtain 

E[a,,(~)] = O(( e [ w , ( . ,  . , ,(~))l)  'j2) 

and it remains to study the convergence rate of E[WI(I*, /*,(~))]. Theorem 6 in 

[26] reads in our specific situation (by putting there h -  1, a .'= 1, a .'= 0): If 

/, ~ r ( R  s) for some r > 1 and if there exist numbers k > 2 and Ka > 0 such that 

N(t*, e, gk/(k-2}) ~ K18-k for each e ~ (0, 1], then 

s [w, (~ ,  ~~ = o(.-('- ' /r~/k).  
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(Here N(/~, e, 8) is the minimal number of sets of diameter at most 2e which 

cover R s except for a set A with/~(A) .%< 8.) Since ~t ~..r ~) for each r > 1, the 

above hypothesis holds if k > max(2, s } (proposition 3.4 in [8]). Hence, we have 

E[W~(I.t, /~,(~0))] = O(n -~/K) if K >  max(2, s} and the proof is complete, n 

3. Stability of stochastic programs with probabilistic constraints 

The problem we shall consider in this section is 

P(tL) min{ f (x ) :x~C, l~(Hi (x ) )>~pj ,  j = l , . . . , d } ,  

where f is a mapping from R " into R, C is a nonempty closed subset of R " ,  Hj 

is a set-valued mapping from R " into R s having closed graph ( j  = 1 .... .  d), pj 
~(0 ,  1) ( j = l  . . . .  , d )  and /~ ~ ( R s ) .  

In the following, we make use of the notations p := (P l  . . . . .  pd )T~  R d and 

Cv(u):='(x~C: p(Hj(x))>~oj, j = l  . . . . .  d} for each v ~ N  d and u ~ ( R ' ) .  
Hence problem P(/~) becomes min( f ( x ) :  x ~ Cp(/z)}. 

Our approach to study stability of P(~)  is to identify a suitable topology 

(metric) on ~ ( Ns )  such that the mapping which assigns to each I, ~ ~ ( R ' )  the set 

Cp(r) enjoys certain continuity properties at the unperturbed measure /~. It is 

known (cf. the discussion in [17,33,34]) that continuity properties of that mapping 

(especially lower semicontinuity) with respect to the topology of weak conver- 

gence on ~ ( R  s) can be achieved only at measures /~ with certain smoothness 

properties. 

Extending the ideas of our earlier work (cf. [36,33,34]) we consider the 

following distance on ~ ( R ' ) :  

a( /~ ,~ , ) :=  max s u p ( l / ~ ( n ) - v ( n ) l :  B ~ j } ,  
j = l  . . . . .  d 

where each ~ j  is a class of Borel subsets of R s such that ( Hj (x ) :  x ~ R "  } c ~ j  

( j =  1 . . . . .  d)  and that a forms a metric. The latter holds if, for some j 

(1 . . . . .  d},  ~ j  is a determining class, i.e. it has the property that if any two 

measures agree on ~ j  then they must agree on the whole of ~ ( R s ) .  Following 

e.g. [13] we call this distance "discrepancy".  A first step in our stability analysis 

of P(/~) now is 

P R O P O S I T I O N  3.1 

The multifunction z, ~ Cp(~,) from (9~(R'),  a) into N "  has a closed graph. 

Proof 
Let G-'--((1,, x): ~ , ~ ( R ' ) ,  x~Cp(u)} and fix (u,.x) with 1,~9~(R') ,  x ~  

N"', (u,, x , )  ~ G (n ~ N) such that a(~,,, p) ~ 0 and x ,  --* x. We have to show 

that this implies x ~ Cp(u). 
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Since C is closed, we have x E C, and it remains to prove that v(Hj(x)) >_,&. 
Since the multifunctions //i  ( J =  1 . . . . .  d)  have closed graphs, there holds for 

each j = 1 . . . . .  d 

n, (x) - -  cl((z: z II. -y, 
6>0  

and. hence, 

v (H , (x ) )  = infv(cl{z" z~H, (y ) ,  ] [x-Y[I  ~<6}). 
" 8 > 0  

Let e > 0 be chosen arbitrarily. Then there exists 6 o > 0 such that for each 

j = 1 . . . . .  d we have 

v(/-/j (x)) >/ v(cl{ z: z~ / - / j  (),), [ [ x - y l l  ~ 6o } ) -  e/2.  

Furthermore, there exists n 0 ~ ~ such that a(v, I,,,) ~ e /2  and ]1 x - x,, [I ~ 8o for 

all n >/no. Then we obtain for each j = 1 . . . . .  d and n >_- no 

> / v ( H / ( x ) ) -  v( Hj ( x . ) ) -  Iv(//,. ( x , , ) ) -  v,,(H,(x,,)) I + u , , (Hi(x. )  ) 

>/ - e / 2  - a ( v ,  ' 5 , ) + p j > ~ p j - e .  

Since e > 0 was arbitrary, this yields the assertion. [] 

Now we state the central stability result of this section. 

T H E O R E M  3.2 

Let f be Lipschitz continuous on bounded subsets of R'" and assume that M 

is a CLM set for P(B) with respect to Q, where Q c R "  is bounded (i.e. 

M = +Q(tt)). Assume that, for each x0 ~ ~o(~),  the function 

(x, v ) ~ i n f (  I [x -Yl ] :  y ~  C,,(/~)} 

is Lipschitz continuous on some neighbourhood of (Xo, p). Then the multifunc- 

tion +Q (from (~(Rs) ,  a) into R'") is upper semicontinuous at ~, and there exist 

constants L > O, 8 > 0 such that 

0 4=~o(v)ca 

and 

Jq'o(#) - %(") [  

whenever a(#,  v) < 8. 

Proof 
Again we show that the assertion follows from lemma A.2 in the appendix. In 

view of the assumptions and of proposition 3.1 it remains to verify condition (c) 
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of lemma A.2. In our terminology condition (c) reads as follows: For each 

xo ~ q'o(ff) there exist a neighbourhood U = U(xo), positive reals 80 and X such 

that the following holds for all v ~ ( R  ~) with a(ff, v) < 8o; 

x ~ Cp(~) C3 U implies d(x ,  Cp(v)) ~ X. a(Ix, v) 

and 

x ~ Cp(v) n U implies d(x ,  Cp(~)) <~ X. a(p,, v). 

(Here d(x, A ) : = i n f { [ I x - y ] [ :  y ~ A }  for each subset A of R".)  So let x 0 ~  

+Q(iZ) be fixed. 

Our last assumption (in theorem 3.2) is equivalent to the existence of 

neighbourhoods U of x o, V of p and of a constant )t > 0 such that d(x, Co(tz)) is 

finite and 

d(:,. <.,(~,))~d(x, co:(~))+ x H o , -  o~11oo. 

for all x e U and all v, v 1, v 2 ~ V. Here, II" II ~ denotes the max-norm on R d. 

This holds, since d(-,  C,,(~)) is Lipschitzian with modulus 1 for each v ~ If. 

Let 8 o > 0  such that {v: ]] v - p  }l --< 80} c V, and let v ~ ( R  "~) such that 

a(ff, v)~< 80. Now, observe that by definition of the distance a the following 

inclusions hold 

c~+o,,.~,(,,) c c,,(,,) c c,,_,,,,.~,(~). 

Let x ~  U, set v l : = p +  

tively. Then we obtain 

d(x ,  C p ( p ) ) ~ d ( x ,  

and 

d(:,-, c,,(~)) .< d(x, 

For x ~ Cp(ff) A U and 

the desired implications. 

a(~t, v), v2:= p and vl :=p,  v 2 : = p - a ( f f ,  v), respec- 

c,+o,,,.,,,(~)) ~d(x. c~(~))+ x-,~(~. ,,1 

%~ + x. ~(~. ,,). 

x ~ Cp(v) r3 U, respectively, these estimates now yield 
[] 

Remark 3.3 

Recall that a class N' of Borel subsets of R" is a /z-uniformity class if 

sup{ [ if(B) - / ~ , ( B )  ]: B ~ ~ } ~ 0 holds for every sequence {/1, } converging 

weakly to/~ [2]. Necessary and sufficient conditions for ~ to be a /*-uniformity 

class may be found in [2] and in the recent paper [211. Especially, we mention 

Range Rao's result (theorem 2.11 in [2]) that the class Nc := { B c R':  B convex 

and Borel} is a if-uniformity class iff /~(0B)= 0, 0B denoting the topological 

boundary of B, for all B ~ ~c .  If each class .~j ( j  = 1 . . . . .  d)  is a /*-uniformity 

class, weak convergence of {/%, } to/~ implies a(/L,, ~) ---' 0. In this case, theorem 

3.2 represents a stability result for P(t~) with respect to the topology of weak 

convergence. 
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Remark 3.4 
The last (and most essential) assumption in theorem 3.2 reads in the terminol- 

ogy of [32]: Assume that the nmltifunction v ~ C,(/z) is pseudo-Lipschitzian at 

each (x0, p) ~ ~pO(/Z) • { p} (see theorem 2.3 in [32]). Rockafellar's paper con- 

tains a detailed study of pseudo-Lipschitzian multifunctions including a variety of 

sufficient conditions for a multifunction to have this property. It is well-known 

that constraint qualifications of mathematical programming play an important  

role in this context. 

We shall make use of the following two results which give sufficient conditions 

for a multifunction to be pseudo-Lipschitzian. 

LEMMA 3.5 

Let F be a multifunction from R a into II~" having closed convex graph. Then 

F is pseudo-Lipschitzian at each pair (x 0, v0) ~ F(vo) • Nd with v0 ~ int(dom F) 

where dom P := { v ~ I~d: F( v) 4~ ~ }. 

In the literature, this result is known as the Robinson-Ursescu  theorem (cf. 

e.g. [29]). 

The next result is a particular case of theorem 3.2 in [32]. 

LEMMA 3.6 

Let F ( v ) : = I x ~ C : G ( v , x ) ~ O  ) ( v ~ R a ) ,  where C c R " '  is closed and 

G: • a •  R "  -+ R/ is locally Lipschitzian. Let Vo ~ R a, x0 ~ F(v0) and assume 

that the only y ~ R  / such that y>lO, y~Gi(v o, Xo)=O, i = l  . . . . .  l, and 

{--ATy: A ~ r  2 3G(v o, x0) ) ~Nc(xo)  4: ~ ,  is y = 0 .  Then F is pseudo- 

Lipschitzian at (x  0, v0). 

(Here, aG(vo, Xo) denotes the Clarke generalized Jacobian, cf. [6], containing 

l • ( d +  m) matrices, and ~r 2 OG(v 0, Xo) denotes the set of all l • m matrices A 

such that there exists an l •  matrix A-wi th  (A', A ) ~ 3 G ( v  o, Xo). Nc(xo) 
denotes the Clarke normal cone to C at x0.) 

Next, we study stability of specific probabilistic constrained programs by 

revealing conditions on the measure/z and on the multifunctions Hj ( j  = 1 . . . . .  d)  

to have the mapping v ~ Cv(/z) pseudo-Lipschitzian at some pair (x  0, p).  

First, we consider a situation where f ,  C, Hj ( j  = 1 . . . . .  d)  and ~ have certain 

convexity properties. Following [7] we introduce the notation MrX(a, b), for all 

r ~ R \ { 0 } ,  ?~ ~[0 ,  1], a, b>~0, defined by 

MrX( a' b ) := { ( ~ar + ( 1 -  x ifab>0,ifab=0. 
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This definition can be extended for r = 0, r = - oo in the following natural way 

MoX(a, b ) : =  l i m M ) ( a ,  b ) = a X b  a-x i f a b > 0 ,  
r ~ 0  

MX__~(a, b) ' .= lim M)(a ,  b ) = m i n ( a ,  b}. 

A Borel probability measure ~t on R s is called r-convex, r ~ [ - o o ,  + oo) (cf. 

[5,7,25]), if for each ~ ~ [0, 1] 

tL(XB, + (1 - X ) B 2 )  >/M?(tL(B1) , ~(B2) ) 

holds for all Borel subsets B a, B z of R ~ such that ;kB 1 + (1 - h )B  2 is Borel. For 

r =  0 and r = -  oo, tL is also called logarithmic concave and quasi-concave, 

respectively [24]. Since M~(a, b) is increasing in r, when all other variables are 

fixed, the sets of all r-convex measures are decreasing if r is increasing. It is 

known (cf. [5,7,27]) that / ~ e ~ ( R  ~) is r-convex ( r e [ - c c ,  l / s ] )  iff tL has a 

density O, such that 

~9,(Xx + (1 - X))7) >/MS, x_,~)(lg~(x), (9,(~7)) 

for all X ~ [0, 1], x, 2 ~ ~ .  We note that a number of multivariate distributions 

are r-convex for some r ~ - c~, 0], e.g. the (non-degenerate) multivariate normal 

distribution (cf. [5,24]). 

COROLLARY 3.7 

Assume that in P(/ ,)  f xs convex, C is convex, Hi ( j  = 1 , . . . ,  d)  have convex 

graphs and that /, is r-convex with r ~ ( -  oo, 0]. Suppose there exists .~ ~ C such 

that It(Hi(Y))>pj, j =  1 . . . . .  d (Slater condition). Let +(~)  be nonempty and 

Q c R "  be open, bounded such that ~p(/l) c Q. 

Then q)Q is upper semicontinuous at ~t. Furthermore,  there exist constants 

L > 0, 8 > 0 such that +o(V) is a nonempty set of local minimizers of P(u) and 

L qS(~t) - qSQ(V) [ ~< La(~,  v) whenever a(/z,  u) < ~. 

(Here, the classes ~ j  ( j =  1 . . . . .  d)  in the definition of a may be chosen such 

that ~ j  c_ ~c . )  

Proof 
We apply theorem 3.2 noting that q '(I*)= q~Q(/*). It remains to show that the 

mapping v ~ C,(~) is pseudo-Lipschitzian at each pair (x0, p ) ~  + ( t * ) x  ( p ) .  

We even show that this is true for each (x0, p)  with x 0 ~ Cp(/*). 

To this end, we consider the multifunction 

where we assume without loss of generality that r < O. We consider the 

extended-real-valued function gj defined on R "  such that 

g j ( x )  := [ , ( - j e x ) ) ]  r 
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Applying the fact that Hj has convex graph and p. is r-convex, we obtain for all 

xl, x2 ~ R m and XE[O, 1] 

gj(Xx,  + ( 1 -  ?t)x2)~< [l~(~tHj(x1) + ( 1 -  X)Hj(x2))] r 

< x g j ( x , )  + (1 - x ) g j ( x 2 ) .  

Hence, each gj ( j  = 1 , . . . ,  d)  is convex, and the multifunction F from Rd into 

R '~ has closed convex graph. We note that Co(/~) = F(vr),  where v r := (v~ . . . . .  v~) T, 

v j~(0 ,  1), j =  1 . . . . .  d. Moreover, since gj(Y) < p f  for each j =  1 . . . . .  d, the 

point (p~ . . . . .  p,~)r belongs to the interior of dom F. Now, lemma 3.5 applies, 

and we conclude that F is pseudo-Lipschitzian at (x  0, pr) where x 0 ~ F ( p ~ ) =  

Cp(~). This means that, for each x o ~ Cp(~), the mapping (x, v) ~ d(x,  F(v)) is 

Lipschitz continuous on some neigJabourhood of (x  0, v0) where v o := pL Since the 

mapping (x, v ) ~  (x, v ~) is Lipschitz continuous on some neighbourhood of 

(xo,p), the same holds true for the composition of both mappings. Hence, 

(X, V )~  d(x, I~( vr))= d(x, Cv(l~)) is Lipschitz continuous on some neighbour- 

hood of (x 0, p). The assertion now follows from theorem 3.2. [] 

Remark 3.8 
If the set C describing the deterministic constraints of P(p.) is even compact,  Q 

may be chosen such that C c Q and corollary 3.7 then yields upper semicontinu- 

ity of ~ and (local) Lipschitz continuity of q5 at ~. Corollary 3.7 extends corollary 

2.1 of [34] and theorem 6 of [41]. It applies to a number of practical models which 

are known from the literature (see chapter 3 of [34]). 

Secondly, we consider a particular stochastic program given by 

P(~u) m i n { f ( x ) :  x ~ C ,  t z (n (x ) )>~p} ,  

where f and C are convex, p ~ (0, 1), s := m + 1, 

( " / H(x) :=  z ~ l ~  re+l" ~ zix i>~z.,+l , 
i=1 

and /.t ~ ( R  ' '+1) is the multivariate normal distribution with mean a ~ R r~+l 

and covariance matrix S ~ L(R "+1, Rm+l). 

The following result is welt-known [23] (see also [42]). 

PROPOSITION 3.9 
If p ~ [1/2, 1), the constraint set Cp(/Z) = {x ~ C: ~(H(x))  >lp} is convex 

and can be expressed as 

Cp(~) = {x ~- C: ~2)-l(p)o(x) - l ( x )  ~ 0}, 

where �9 is the standard normal distribution function, o2(x) is a positive 

semidefinite quadratic form and l(x) is affine linear in x. 
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C O R O L L A R Y  3.10 

Consider P(/~) under the above assumptions. Let p ~ (1/2 ,  1) and assume that 

the optimal set qJ(/~) of P(/~) is nonempty and bounded (let Q c R "  be open, 

bounded such that +(/~) c Q). Assume that there exists ~ ~ C such that t~(H(2)) 

~ (p ,  l). 

Then q~o is upper semicontinuous at /~ and there exist constants L > O, 6 > 0 

such that 4,Q(~) is a nonempty set of local minimizers of P(v)  and 

I,I,(~)--4?Q(U) I <~LaH(t~, 1,) whenever aH(/~, 1,) < 8 .  

(Here, an(  ~, 1,):= sup{ I/s(B) - 1,(B)I: B is a half-space in N"+I} . )  

PFoof 
We again apply theorem 3.2 by using lemma 3.6 to show that the mapping 

v ~ C,,(I~) is pseudo-Lipschitzian at each (x 0, p) where x o ~ Cp(~t). 

Let g: R ---, R be a locally Lipschitzian function such that g(v) >1 0 for all 

v ~ R and g(v) = q)- l (v)  for all v in some neighbourhood U of p. We consider 

C(v ,  x ) : =  g ( v ) ~ ( x ) - Z ( : , ) ,  

with o and l as in proposition 3.9, and the multifunction 

r ( v )  := (x  ~ C: G ( v , x ) ~ 0 }  ( v ~ R ) .  

Note that, according to our construction, F(v)  coincides with C,,(/.t) for v ~ U. 

Since G is locally Lipschitzian, we may apply lemma 3.6. Since g is continu- 

ously differentiable at p and G(v, �9 ) is convex for each v ~ R, we obtain 

3G(p ,  Xo) = ( g ' ( p ) o ( X o ) ,  g ( p )  3 o ( x 0 ) -  ~ l ( x o )  ), 

where 3o(x0) is the subgradient of the convex function a at x 0 and xT, l (x  o) is 

the gradient of l at x 0. 

Now, let x o ~ Cp(tZ) = F(p) .  Then the constraint qualification in lemma 3.6 is 

satisfied if, in case G( p, x 0) = 0, there holds 

- ( g (  p) 3O(Xo) - V,./(x0) ) N Nc(xo)  = ~ .  

Assume G(p,  x 0) -- 0 and let x ~ 3o(x0). We have to show that 

-(g( p)x- V.,./(x0) ) ~ Uc(xo).  

By assumption there exists ,-7c~ C such that a( H( Y)) ~ ( p, 1). This implies 

G( p, 2) < 0, and for the directional derivative 

lim l ( G ( p ,  X o + t ( Y , - X o ) ) - G (  p, Xo))<O. 
t ~  + 0  

Finally, 

( - ( g ( p ) x -  ~,- l /x0)) ,  ~ -  Xo) < 0, 

and the proof is complete. [] 
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Remark 3.11 
In corollaries 3.7 and 3.10 we obtain stability with respect to a discrepancy 

a(/*, v; .~ ) :=  sup{ I / * (B) -  u(B) I: B ~ ~'} where 5~ is a subset of •c- Hence, 

remark 3.3 applies and both results assert stability with respect to the topology of 

weak convergence if ~'c is a/*-uniformity class. The latter property is fulfilled in 

case of corollary 3.7, since a measure/ ,  which is r-convex for some r ~ ( -  ~ ,  0] 

also has a density. The same is true in case of corollary 3.10 if the covariance 

matrix S in P(/*) is non-singular. 

We also note that under certain assumptions on/* there exist estimates for the 

discrepancy a(/*, u; ~ c )  (cf. [22]). 

Remark 3.12 
Let/* ~ ~a(Rs) and/*,,(w) be the empirical measure based upon n independent 

RS-valued random variables (on some probability space (/2, sg, P)) with com- 

mon distribution /*. From corollaries 3.7 and 3.10 we then obtain for each e > 0 

.< e((to: e((to: e.< 

2V({to: a(/*, /*,(to); ~)  >-- min( 3, e /L } } ). 

Estimates for P((to: a(/*, /,,(to): ~ )  >/X}) (h > 0) are known if ~' is a so-called 

Vapnik-Chervonenkis (VC) class of subsets of R s. If ~ is a VC class, then for all 

2, > 0 and n >/2 there exists K(>,) > 0 such that 

P({to: a(/*, /*,(to); . @ ) > ~ h } ) < ~ K ( h ) p ( n )  exp(-2X2n) ,  

where the function p grows at most polynomially in n. For this inequality, 

further details on VC classes and about empirical measures on general sample 

spaces we refer to chapter 26 in [39], where it is also stated that the set of all 

half-spaces of a Euclidean space is a VC class. Hence, the above remarks apply to 

the situation in corollary 3.10 and lead to convergence rates for optimal values 

when the original measure/* is estimated by empirical ones. 

Remark 3.13 
In [34], the counterpart of theorem 3,2 for the case d =  1 was applied to 

nonconvex problems where 

H ( x ) : = ( z ~ a ~ :  Ax>_-z}, A ~ L ( R " , R s ) .  

We mention that using the methodology of the present section it is possible to 

extend these results to the case of several probabilistic constraints. 

Appendix 

We collect relevant prerequisites about the stability of abstract parametric 

programs 

e(t) min(a(x, t): 
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Here, (T, d) is a metric space, G a real-valued function on ~ m x  T and C a 

multifunction from T into R" .  Given Q c R " we set for t e T 

CQ(t) = C(t)  A cl Q, 

q ,Q( t )=in f {G(x ,  / ) :  x e  CQ(t)}, 

qvQ(t) = { x ~  CQ(t): G(x ,  t) = qsQ(t)}. 

DEFINITION A.1 [30,20] 

Given P( t  o) for fixed t = t o we call a nonempty subset M of R "  a complete 

local minimizing set (CLM set) for P( t  o) with respect to Q, if Q is an open subset 

of R '~ such that M c Q and M = q,e(to). 

Examples of CLM sets are the set of global minimizers and strict local 

minimizers. 

The following quantitative stability results for the abstract problem P( t )  go 

back to results for the standard non-linear programming problem with differen- 

tiable data and (in-)equality constraints obtained by Alt [1]. In the above setting, 

the stability analysis is presented in Klatte [20]. A proof of lemma A.3 can also be 

found in [35]. 

LEMMA A.2 

Consider the parametric program P(t) ,  fix some t o ~ T. 

(a) Assume that M is a CLM set for P( t  o) with respect to Q, where Q c R "  is 

bounded (i.e. M = q~Q(t0) ). 

(b) Let the multifunction C be closed-valued and closed at t 0. 

(c) Suppose that for each pair (x0, t o ) ~  q~o(to)• { to} there exist a neighbour- 

hood U =  U(x0), positive reals 80 and X such that 

C ( t )  n U c  C(to) + X. d( t ,  to)" B,, 

and 

C( to )N  U c  C( t )  + A . d ( t ,  t0 ) 'Bm,  

for all t ~ T such that d(t,  to) < 8 o. (Bm denotes the closed unit ball in R".)  

(d) Suppose there are real numbers L c > 0, 8 c > 0 such that G( . ,  t) is continu- 

ous at clQ and 

lG(x ,  t o ) - a ( Y c ,  t ) l ~ < t G ( l l x - ~ l l + d ( t ,  to)), 

for all x, Y ~ cl Q and each t ~ T with d(t, to) < 86 . 
Then we have 

(i) The multifunction ~kQ is upper semicontinuous at t 0, i.e. for each e > 0 there 

exists 8'  > 0 such that qJ(t) c ~b(to) + e. B,, whenever t ~ T, d(t, to) < 8'. 

(ii) There exist constants L > 0 and 8 > 0 such that O 4= q,Q(t) c Q and I q)e(t) 

- ePQ(to) I <~ L .  d(t, to) whenever t ~ T, d(t, to) < 8. 
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If  we specify P ( t )  to the s i tua t ion  where  C(t)  = C for all t ~ T, with some 

nonempty ,  closed,  convex set C c R'"; and  if we deno te  by  ,# and  4' the g lobal  

op t ima l  value and  the set of  g lobal  minimizers ,  respect ively ,  then the fo l lowing 

holds .  

LEMMA A.3 

Let  t o ~ T be fixed and suppose :  

(a) There  exists a b o u n d e d  open  set Q c R "  such that  + ( t0 )  c Q. 

(b) There  exist x 0 ~ P ( t 0 )  and  a:  I~'" ~ R +  such that  c~(0)= 0 and  G(x,  to)>1 

G(x  o, to) + a ( x -  Xo) for all x ~ Cr cl Q. 

(c) There  exist a n e i g h b o u r h o o d  U =  U(to) and  a cons t an t  L >  0 such that  

G ( . ,  t) i s a c o n v e x  func t ion  for each t ~ U a n d  I G ( x ,  t ) - G ( x ,  t0)] ~<L.  

d(t,  to) for all x ~ cl V and  all t ~ U. 

Then  there exists a cons tan t  8 > 0 such that  for  all t ~ T with  d(t ,  to) < 6 we 

have 

and  

+ ( t ) .  o 

sup a ( x -  Xo) <~ 2 L .  d ( t ,  to). 
xE~p(t) 
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