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Abstract-This paper analyzes the influence of phase-locked loop 

(PLL) on the stability of LCL-type single-phase grid-connected 

asymmetrical cascaded H-bridge multilevel inverter (ACHMI) with 

synchronous reference frame proportional-integral (SRF-PI) grid 

current control under weak grid scenarios. The ACHMI system is 

composed of power stage circuit and control system, where the 

control system contains the dual-loop current control strategy 

established in the hybrid reference frame (HRF), the synchronous 

reference frame PLL (SRF-PLL) and the hybrid modulation 

method employed to synthesize the multilevel output voltage. The 

small-signal model of the whole ACHMI system is first established 

by using a simple step-by-step derivation method, and then, the 

small-signal analysis method is adopted to linearize the ACHMI, 

which is then utilized to derive the impedance model of the ACHMI 

system. Furthermore, an improved impedance stability criterion is 

derived, which is then employed to analyze the system stability. By 

using this criterion, the stability of the ACHMI can be evaluated 

with the variation of the bandwidth of PLL, the output power factor 

angle of the ACHMI and the amplitude of the grid current reference 

signal under weak grid conditions. In this paper, a systematic design 

procedure for the optimal selection of the proportional-integral (PI) 

controller of the PLL is presented, which guarantees the steady-state 

performance and dynamic response of the ACHMI system. With 

this design method, the dual-loop current control and PLL can be 

taken into account simultaneously when analyzing the stability 

margin of the ACHMI. Finally, the simulation and experimental 

results from a down-scaled grid-connected ACHMI prototype 

system are provided to confirm the validity of theoretical analysis. 

 

Index Terms—Phase-locked loop (PLL), asymmetrical cascaded 

H-bridge multilevel inverter (ACHMI), small-signal model, 

impedance stability criterion, weak grid   

 І. INTRODUCTION 

The single-phase grid-connected cascaded H-bridge multilevel 

inverters (CHMI) are increasingly employed in various industrial 

fields, and play a critical role in converting the power produced 

by distributed power generation systems (DPGS) into high 
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quality ac power and injecting into the grid reliably [1], [2], [3]-
[9]. Compared to the single-phase H-bridge inverters [10], diode-
clamped inverters [11] and capacitor-clamped inverters [12], the 
CHMIs have attracted more attention due to its advantages of 
easy modularization and flexible extension to higher voltage 
levels. In retrospect, CHMI contains the symmetrical topologies 
[4], [5] and asymmetrical topologies [6-9]. In general, each H-
bridge in symmetrical topology has same value of the input DC 
voltage. Whereas, each H-bridge in asymmetrical topology has 
different value of the input DC voltage, usually scaled in 
{1:2:4…}, {1:3:9…} or {1:2:6…}. Compared to the symmetrical 
topology, the asymmetrical topology has attracted more interest 
due to its advantage of the capability to maximize the numbers of 
output voltage levels. Currently, most of literatures focus on the 
modulation strategies and control methods of the asymmetrical 
cascaded H-bridge multilevel inverter (ACHMI) and little work 
has been done on the stability analysis based on the single-phase 
grid-connected ACHMI system [8], [9], [13-15]. 

Generally, current control and phase-locked loop (PLL) are 

essential for the grid-connected inverter system, and both of them 

have effects on the stability of the grid-connected inverter [16-

22]. The stability problems caused by current control have been 

widely discussed in recent literatures [16-20], [33], [34]. Besides, 

the impact of the PLL on the system stability can be introduced 

by the grid reference current, and its phase is derived from the 

detection of the voltage at the point of common coupling (PCC) 

by a PLL [21], [22]. Therefore, the effects of PLL on the stability 

of the grid-connected inverter cannot be neglected in stability 

analysis. However, most of the existing literature only consider 

the influence of the current control or the effect of PLL when 

analyzing the stability of the grid-connected inverters [16]-[26]. 

In [16]-[20], a variety of works have been done to enhance the 

stability and dynamic performance of the grid-connected 

inverters by improving the current control method and optimized 

design of the system parameters. For instance, a design 

recommendation of LCL-filter parameters and control gain based 

on the Jury stability criterion is given to increase the robustness 

of a grid-connected inverter with LCL-filter in [17]. In [18], a 

pseudo-derivative-feedback (PDF) control method based on the 

current feedback is suggested to enhance the dynamic response 

of the three-phase grid-connected inverter. To improve the 

system stability under grid voltage disturbance conditions, a 

direct grid current control method has been proposed and the 

proportional resonant (PR) plus harmonic compensator (PR+HC) 

structure is adopted [19]. In [20], a single-loop current control 

with a hybrid damper is proposed for grid-tied inverter based on 

the high-order power filter to overcome the impact of the 

background harmonic voltage and the wide variation of 

equivalent grid impedance. Although the system stability and 

dynamic performance can be improved by using the methods 

proposed in [16]-[20], the effects of PLL on the stability of the 

grid-connected inverter is neglected. 

Stability Analysis for the Grid-Connected Single-

Phase Asymmetrical Cascaded Multilevel 

Inverter with SRF-PI Current Control  

under Weak Grid Conditions 
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In [21]-[26], some works have been done on enhancing the 

stability and dynamic performance of the grid-connected inverter 

by improving the performance of PLL. In [23], a new control 

algorithm based on PLL is developed to improve the performance 

of PLL. As a consequence, the system stability can be improved 

under three-phase grid voltage harmonics and unbalance 

scenarios. Considering the effects of the phase offset error and 

double-frequency on system stability, the transfer delay-based 

PLL (TD-PLL) is modified as an adaptive transfer delay-based 

PLL [24]. In [25]-[26], it can be found that the selection of PLL 

bandwidth has remarkable impacts on the system stability for the 

grid-connected inverter under weak grid conditions. Clearly, the 

stability of the grid-connected inverter can be enhanced by 

improving the performance of PLL. Without doubt, only the 

influence of PLL is mentioned when analyzing the system 

stability in [21]-[26] and the impact of current control on the grid-

connected system stability is overlooked. Thus, it is necessary to 

consider current control and PLL simultaneously when analyzing 

the stability of the grid-connected inverter system.  

There are few papers simultaneously consider the effects of 

PLL and current control on system stability for the grid connected 

inverters [27-30]. In [27], the negative effect of PLL on current 

control under weak grid condition is investigated, and then, an 

improved design of current controller parameters and capacitor 

current feedback method is proposed. Although the ability of 

current control to reduce the negative influence of PLL is 

improved with the proposed method, it results in high complexity 

and is mainly designed for three-phase grid-connected inverters. 

In [28], an unified impedance model is proposed to analyze the 

dynamic response of the grid-connected inverter caused by the 

PLL and current control, and the generalized Nyquist stability 

criterion (GNSC) is used for the converter-grid interaction 

analysis. However, only the effect of the control bandwidth of the 

synchronous reference frame PLL (SRF-PLL) on the system 

stability is discussed, and the studied system was still a three-

phase system. The stability of the single-phase grid-connected 

inverter system is studied in [29], where the dynamic phasor 

approach is adopted to determine the 2-D source and load 

impedances, and the GNSC is employed to evaluate system 

stability. However, the influences of the parameters on system 

stability and the design of the PLL parameters have not been 

reported. In [30], the effect of current control and PLL are 

considered when analyzing the stability of the three-phase system, 

and the controller parameters of PLL is also discussed. However, 

the parameter design of PLL, the effects of the amplitude of 

reference current and power angle on system stability are not 

discussed.  

Thus, this paper aims to analyze the influences of PLL, the 

amplitude of reference current and power factor angle on the 

LCL-type single-phase grid-connected ACHMI system and 

provide parameter design guideline for PLL under this scenario. 

In consideration of the integrity of the stability analysis in this 

work, the double-loop current control method built in hybrid 

reference frame and the hybrid modulation strategy are 

simultaneously considered. 

In view of the system modelling, it is well-known that the 

Linear Periodic (LTP) theory can be used for the single-phase 

system modelling. The LTP model can be obtained by using the 

harmonic linearization on the average model of the studied 

single-phase system [31]. And the application of the LTP theory 

is based on the linearization of the full-order differential equation 

model of the system. However, the single-phase asymmetric 

cascaded H-bridge inverter is more complex than the 

conventional single-phase H-bridge inverter. If the linearization 

for the full-order differential equation model of the studied 

system is established, the complexity of calculation and analysis 

would be significantly increased. Obviously, the technique that 

the linearization for the full-order differential equation model of 

the system is not suitable for the impedance analysis method, 

which is adopted for the stability analysis in this paper. 

Besides, a dual-loop current control strategy, composed by an 

inner current loop based on feeding back the LCL-filter capacitor 

current and an outer grid current loop, is presented in the studied 

system. Without doubt, the selection of the grid current controller 

is crucial for high quality current control of the grid-connected 

inverter [19]. It is well known that the proportional-resonant (PR) 

controller is a popular choice for the single-phase AC system due 

to the ability to eliminate the tracking error [32]. However, the 

PR controller exhibits a poor dynamic performance under input 

signal variation scenarios [33]. To overcome this drawback, the 

synchronous reference frame proportional-integral (SRF-PI) 

controller is adopted to control the grid current [34]-[35], which 

achieves the zero steady-state error, and guarantees a good 

dynamic performance.  

The SRF-PI control scheme is a well-developed technique in 

three-phase PWM converters, which contains two conventional 

PI controller with the identical parameters, can also be extended 

to single-phase systems [34]-[35]. In addition, the inner current 

loop is controlled by proportional controller in the stationary 

frame, which is the simplest way to regulate the current and 

enhance the dynamic performance of the system at the same time. 

In the proposed approach, the control of the inner current loop is 

realized in stationary frame and the control of the outer current 

loop is achieved in dq frame. Therefore, the dual-loop current 

control strategy is conducted in the hybrid reference frame in this 

paper. And then, the system model is also established in the 

hybrid reference frame, which is different from the modelling 

method in the dq frame. For the generality of the stability analysis, 

a conventional SRF-PLL is adopted for grid synchronization. 

Finally, the validity of the modelling method is verified by the 

theoretical analysis, the simulation and experimental results. The 

main contributions of this paper are summarized as follows: 

1) The double-loop current control method established in 

hybrid frame is proposed in this paper to control the LCL-type 

grid-connected single-phase ACHMI, where the control of the 

outer current loop is built in dq frame and inner control loop is 

realized in the stationary reference frame. The small-signal model 

of the single-phase ACHMI with this control strategy is 

developed based on a simple step-by-step calculation method. 

2) The hybrid modulation method is employed to modulate the 

single-phase ACHMI system. The detailed analysis of the hybrid 

modulation with small disturbance is presented. With this 

analysis, under the small disturbance condition, the small-signal 

model of the hybrid modulation process has been derived, and it 

is found that the hybrid modulation can be approximated to a 

proportional gain with a control delay. 

3) A systematic impedance model of the grid-connected 

ACHMI is established, which contains both dual-loop current 

control loop, hybrid modulation and PLL loop. With this model, 

the effect of PLL, grid current reference amplitude IAm and power 

factor angle φ on the system stability can be easily analyzed, and 

it is convenient to design controller parameters of PLL, which 

contributes to enhance the system stability and dynamic 

performance under weak grid conditions. Finally, the control 

method and the parameter design guidelines are substantially 

confirmed by the simulation and experimental results. 

This paper is organized as follows. In Section II, the system 

structure of the LCL-type grid-connected single-phase ACHMI 

is presented. The dual-loop current control strategy based on 

hybrid reference frame and the hybrid modulation method are 

also analyzed. In Section III, a systematic small-signal model of 

the single-phase ACHMI system with PLL is proposed. In 

Section IV, the stability of the grid-connected ACHMI is studied 

under weak grid conditions and a systematic controller parameter 



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2867610, IEEE

Transactions on Power Electronics

 3 

design method for the PLL is presented. Section V and Section 

VI presents simulation the results and experimental results, 

respectively. Finally, Section VII concludes this paper. 

II. LCL-TYPE GRID-CONNECTED ASYMMETRICAL CASCADED H-

BRIDGE MULTILEVEL INVERTER 

Fig. 1 illustrates the single-phase LCL interfaced grid-
connected ACHMI, which contains the power stage and control 
system. As shown in Fig. 1, the power stage of the ACHMI is 
composed of three standard H-bridge Cells denoted as Cell1 (low 
voltage Cell), Cell2 (medium voltage Cell), and Cell3 (high 
voltage Cell) respectively, and connected to the grid through LCL 
filter, which consists of the inverter-side inductance L1, filter 
capacitor C, and the grid-side inductance L2. Grid voltage and the 
equivalent grid impedance are represented by vg and Zg, 
respectively. 

In the power stage of the ACHMI, vi represents the output 
voltage of the ACHMI, i1 denotes the inverter-side current, vc 
denotes the capacitor voltage. The sampling switch of the 
capacitor current ic and grid current ig is represented by SW1 and 
SW2, respectively. The uPCC denotes the voltage at the point of 
common coupling (PCC), where uPCC is sampled for the phase-
locked-loop (PLL). Besides, each H-bridge Cell is provided with 
a constant and isolated DC source, where the ratio of DC voltage 
is 1:2:6 and the DC voltage of Cell1 is the lowest among the three 
Cells. By applying the hybrid modulation method into ACHMI, 
each H-bridge Cell can generate a three-level output voltage with 
different switching frequencies. 

The control system of the ACHMI contains the current control 
and hybrid modulation. The dual-loop current control method 
established in hybrid reference frame is shown in Fig. 1, where 
the SRF-PI controller established in dq reference frame is 
adopted in the outer grid current loop and the proportional 
controller K established in stationary reference frame is used in 
the inner current loop [34]-[35]. Specifically, to emulate a two-
phase systems, ig and grid reference current ig,ref are taken as the 
α-axis input iα and iα,ref for the Park’s transformation, respectively, 
and two fictitious electrical signals, generated by the time delay 
block, are used as the β-axis input iβ and iβ,ref [35]. In order to 
ensure a zero steady-state error, two identical conventional PI 
controllers in the SRF are employed to regulate the current 
signals in d-axis and q-axis. And then, the output of the PI 
controllers are transformed back to the stationary frame by using 
the inverse Park’s transformation, and the α-axis output current 
iC,α
*  is taken as the reference for ic. The inner current ic loop with 

a proportional controller K is mainly used to provide active 
damping and improve the system dynamic performances [35]. 
Subsequently, the signal Um obtained from the output of inner 
current loop is used as modulation signal for the modulation 
process. Due to the difference of the studied inverter topology 
and the common single-phase two-level grid-connected inverter 
topology, the hybrid modulation method is adopted. In order to 
systematically study the stability of the LCL-type single-phase 
grid-connected asymmetric cascaded H-bridge multilevel 
inverter, the hybrid modulation method is analyzed as follows. 

Fig. 2 illustrates the structure of the hybrid modulation strategy, 
which is specially designed for the ACHMI and contributes to  

 
Fig.1. Block diagram of the single-phase LCL interfaced grid-connected ACHMI system. 

 
Fig. 2. Block diagram of the hybrid modulation process of the grid-connected  

ACHMI system. 
 

achieving the maximized output voltage level of ACHMI [36], 
where the input DC voltage Vdc1, Vdc2 and Vdc3 of the ACHMI is 
set as Vdc, 2Vdc and 6Vdc, respectively. The detailed operation 
principle of hybrid modulation method is shown in Fig. 3. From 
Fig. 3, it can be observed that Cell3 commutates when Um reaches 
±h3 to generate a three-level voltage waveform. After 
determining the output voltage va3 of the Cell3, the reference 
signal vr2 of Cell2 can be obtained by subtracting the output 
voltage va3 of Cell3 from Um. And then, vr2 is compared to ±h2 to 
generate Cell2 waveform va2. Finally, the reference signal vr1 of 

Cell1 is compared with two high frequency triangular carriers, 
resulting in a high-frequency output voltage va1. The output signal 

 

Fig. 3. The generation of output voltage waveforms in ACHMI with DC voltage 
ratio of 1:2:6 [36]. 
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vi is synthesized by va1, va2 and va3, as shown in Fig. 3. It should 
be emphasized that the comparative level (h3, h2) has been 
selected in a way that the unmodulated part can be produced by 
Cell1 to avoid over-modulation. If we consider that the maximum 
amplitude that can be produced by the ACHMI is Vdc+2Vdc+6Vdc, 
the only way to avoid over-modulation is that the unmodulated 
part does not exceed the total voltage left for Cell1. Thus, 
h3=2Vdc+Vdc for Cell3 and h2=Vdc for Cell2. Finally, the last 
unmodulated part is generated by Cell1. 

According to Fig. 2, the Sine Pulse Width Modulation (SPWM) 
is adopted for the Cell1. By using the state averaging technique 
in one PWM cycle of the Cell1, the SPWM process can be 
approximated by a proportional control loop. And the 
proportional coefficient is the DC voltage Vdc of the Cell1. After 
analyzing the hybrid modulation, the whole output voltage of the 
hybrid modulation is UmVdc with different initial input of the 
modulation signal Um in one PWM cycle of the Cell1. Besides, 
the sampling period Ts is the same as the PWM cycle in the digital 
control of Cell1. The hybrid modulation is completed in one 
fundamental cycle. Considering the sampling and calculation 
delay of one PWM cycle, and the delay of zero-order holder 
(ZOH) of half a PWM cycle, the hybrid modulation has effect on 
stability of the system due to the delay.  

The diagram of the hybrid modulation with small disturbance 
is shown in Fig. 4, where Fig. 4(a), Fig. 4(b) and Fig. 4(c) denotes 
the modulation of Cell3, Cell2 and Cell1, respectively. In Fig. 

4(a), Um represents the steady-state modulation signal and the 
modulation signal with disturbance of Cell3 is denoted as um. The 
carrier signals represented by vc3 are constant DC signals. s3,1 and 
s3,2 characterize the output waveforms under disturbance 
condition, and the output waveforms under steady-state condition 
are represented by S3,1 and S3,2. It can be seen that Cell3 has two 
switching states, i.e., S3,1 (s3,1) and S3,2 (s3,2). The switching 
devices S31 and S33 are conducting under state S3,1 (s3,1), where a 
rectangular waveform with an amplitude of 6Vdc can be obtained. 
The switching devices S32 and S34 are conducting under state S3,2 
(s3,2), where a rectangular waveform with an amplitude of -6Vdc 
can be obtained.  

When there is some disturbance in the modulation signal, 
whose amplitude is much smaller than that of the steady-state 
modulation signal Um, the obtained rectangular waveform of va3 
would contain disturbance component, which can be represented 
by 𝑠̂3. Due to the small amplitude of the disturbance existed in 
the modulated signal and the adopted DC carrier signal, the 
disturbance 𝑠̂3  of the output voltage can be considered as 
voltage pulse with extremely narrow width. Besides, 𝑠̂3  only 
appears on the rising and falling edges of the rectangular 
waveform produced under the steady-state condition, and so there 
are four 𝑠̂3 in each fundamental period. However, the widths of 
these four voltage pulses are much smaller than the width of the 
rectangular waveforms produced under the steady-state condition 
in one fundamental period. 

 

Fig. 4 Diagram of the hybrid modulation with small disturbance: (a) the high voltage Cell (Cell3) (b) the medium voltage Cell (Cell2) (c) the low voltage Cell (Cell1) 

Hence, the influence caused by these four voltage pulses can 
be neglected. Namely, the effect came from the disturbance in the 
modulation signal on high voltage Cell can also be omitted. It can 
be seen that the carrier signals are also DC signals in medium 
voltage Cell shown in Fig. 4(b). Similarly, the same analysis 
method is employed to Cell2, and then, a conclusion can be 
obtained that the influence came from the disturbance in the 
modulation signal on Cell2 can also be ignored. Therefore, the 
effect of the disturbance in the modulation signal only appears on 
Cell1, where the SPWM method is adopted. 

As shown in Fig. 4(c), Uzr1 represents the steady-state 
modulation signal of the Cell1, and the modulation signal with 
disturbance of the Cell1 is represented by uzr1. The disturbance of 
the modulation signal is denoted as 𝑢̂𝑧𝑟1. s1,1 and s1,2 characterize 
the output waveforms under disturbance condition, and the 
steady-state output signals are represented by S1,1 and S1,2. The 
output voltage 𝑠̂1 , caused by 𝑢̂𝑧𝑟1 , can be obtained by 
subtracting the output voltage under disturbance condition from 

the output voltage under steady-state condition, where the signal 𝑠̂1 is also considered as impulse signal.  

If the initial time of the each switching period is considered as 
t=0, the expression of 𝑠̂1 in time domain can be written as (1) 
through equivalent calculation: 

      1 1 2

1ˆ
2

s s
s t T δ t T δ t T T              (1) 

where T1 and T2 are shown in Fig. 4(c). By applying the Laplace 
transform to both sides of (1), we get: 

    21

1̂
2

ss T TsTs
T

s s e e
               (2) 

According to digital control theory, there is a switching period 
between the sampling time and the updated time of duty cycle. 
Hence, Eq. (2) should be rewritten as (3), which is the transfer 
function of the hybrid modulation under disturbance. 
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  
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 
        (3) 

where D represents the duration of the state S1,1 or S1,2, and can 
be equivalent to the duty cycle. From Eq. (3), it can be seen that 
the hybrid modulation under small disturbance is approximated 
to a delay link, whereas the values of Eq. 3 have very little 
difference when D is changing within (0,1) [37].  

Moreover, it is assumed that ∆𝑒 = 𝑒−0.5𝐷𝑠𝑇𝑠 + 𝑒0.5𝐷𝑠𝑇𝑠  to 
simplify calculation, and Taylor series expansion method is 
adopted to simplify Δe. Since the value of Ts is extremely small, 
so the high order items of Ts can be ignored. As a result, Δe can 
be approximated to 2, and Eq. (3) is then simplified as: 

  1.5

1
ssT

d s
G s T e

                 (4) 

In discrete domain, the frequency responses of the two 
sampling switches of the grid current ig and capacitor current ic 
can be considered as 1/Ts, as discussed in [38]. Therefore, the 1/Ts 
is also considered in the whole modulation in continuous model. 
As a consequence, the modulation delay of the Cell1 can be 
written as: 

    1.5

1

1
ssT

hy d

s

G s G s e
T

              (5) 

Therefore, the hybrid modulation under small disturbance 
condition can be approximated as 𝑒−1.5𝑠𝑇𝑠  by combining the 
analysis about the modulation process based on the three 
individual Cells. 

III. SMALL-SIGNAL MODELING 

The impedance-based stability analysis is employed to 
investigate the impact of PLL on the LCL-type grid-connected 
ACHMI under weak grid condition. Hence, in order to obtain the 
impedance model of the whole system, the small-signal models 
of the ACHMI and PLL are derived in this section. 

A. Small-Signal Model of the ACHMI   

Referring to Fig. 1, the small-signal models of the ACHMI 
include two parts, i.e., the power stage and the control system, 
which are modeled simultaneously in the following parts by using 
a simple step-by-step model derivation approach. 

 
Fig. 5 The simplified power-stage circuit of the ACHMI. 
 

Step 1: Derive the small-signal model of the power stage circuit. 
According to Fig. 1, the simplified power stage circuit of the 
ACHMI can be depicted as shown in Fig. 5. 

1

1 1

2 2

1

1 1

1 1

1

i c

g

c PCC

c
c

c g

di
v v

dt L L

di
v u

dt L L
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i

dt C

i i i

  



 


 

  

            (6) 

By applying voltage and current Kichhoff′s Laws in the 
simplified circuit, the model of the power stage can be derived as 
(6). And then, by using the perturbation and linearization 

technique [39], the state variables ic, ig, vc, and the input signal 
uPCC can be replaced by a constant value with a small-signal 
variation component, as shown in (7).  

ˆ

ˆ

ˆ
ˆ

c c c

g g g

c c c

PCC PCC PCC

i I i

i I i

v V v

u U u

  

  


 
  

              (7) 

Substituting (7) into (6), the small-signal model of the ACHMI 
power-stage can be derived as: 

2 2

1 2

1 2 1 2

ˆ 1 1ˆ ˆ

ˆ 1 1ˆ ˆ ˆ

ˆ 1 ˆ

g

c PCC

c
i PCC c

c
c

di
v u

dt L L

di L L
v u v

dt L L L L

dv
i

dt C


 


    






        (8) 

Step 2: Calculate the differential equation of the grid current ig. 
As shown in Fig. 1, it can be clearly seen that ig is set as iα. And 
iβ can be obtained by applying a delay link e-τs to iα, where the 
delayed length of time τ is a quarter of grid period [35], that is 
0.005s. By using the first-order Pade approximation [40], e-τs can 
be changed as: 

 
 

2

2

β τs

α

i s τs
e

i s τs
 

 


               (9) 

According to (9), a differential equation, including iα and iβ, 
can be expressed as (10). And then, Eq. (11) can be obtained when 
it is assumed that x1=iα+iβ, where x1 is considered as a new state 
variable. 

 4 2
βα

α α β

didiτ i i i
dt dt

 
    

 
         (10) 

1
1

4 2
α

dx
i x

dt τ τ
                 (11) 

By applying the perturbation and linearization technique [39], 
the small-signal model of (11) can be written as: 

1
1

ˆ 4 2ˆ ˆ
g

dx
i x

dt τ τ
                 (12) 

The differential equation of the reference current ig,ref can also 
be calculated. From Fig. 1, it can be found that ig,ref has the same 
transformation process with ig. Therefore, it can be assumed that 
x2 is a state variable and x2=iα,ref+iβ,ref based on ig,ref (iα,ref). As a 
result, the perturbation equation related to ig,ref can be derived as: 

2
, 2

ˆ 4 2ˆ ˆα ref

dx
i x

dt τ τ
                (13) 

Step 3: Derive the reference signal 𝑖𝑐∗ of the capacitor current ic. 
As shown in Fig. 1, through the Park’s transformation for iα and 
iβ, the electrical signals ig,d and ig,q can be obtained. Identically, 
the electrical signals ig,refd and ig,refq can also be obtained after the 
Park’s transformation for iα,ref and iβ,ref. It is assumed that the error 
signal of the d-axis and q-axis is represented by ed and eq, 
respectively. Hence, ed is equal to ig,refd –ig,d and eq is equal to ig,refq 
– ig,q. Substituting (12) and (13) into ed and eq, the following 
equation can be derived: 

     
     

0 , 0 2 , 1

0 , 0 2 , 1

cos sin

sin cos

d α ref α α ref α

q α α ref α ref α

e ω t i i ω t x i x i

e ω t i i ω t x i x i

      


     
 (14) 
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It is well known that ed and eq are both 0 in the steady-state 
condition. And then, it can be assumed that dxd/dt=ed and dxq/dt 
=eq, where xd and xq are taken as two dummy state variables. Thus, 
the disturbance equations of ed and eq can be derived as (15) with 
the small disturbance: 

       

      

0 , 0 2 , 1

0 , 0 2 , 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆcos sin

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆsin cos

d
d α ref α α ref α

q

q α α ref α ref α

dx
e ω t i i ω t x i x i

dt

dx
e ω t i i ω t x i x i

dt

       

       


              

(15) 
In addition, as shown in Fig. 1, since the same PI control and 

inverse Park’s transformation are applied to ed and eq, where 
PI=kp+ki/s, the reference of ic can be expressed as: 

     , 0 0cos sin
c c α p d i d p q i q

i i ω t k e k x ω t k e k x
       (16) 

Simplifying (16), the small-signal model of (16) can be 
derived as: 

     , 0 0
ˆ ˆ ˆ ˆ ˆcos sin
c p α ref α i d i q

i k i i k ω t x k ω t x
        (17) 

where kp and ki represents the proportional and integral 
coefficient of the PI controller, respectively. 
Step 4: Calculate the real modulation signal um,d. According to 
Fig. 1, after the proportional controller K for the error signal of 
the inner current loop, Um can be derived as 

 m c c
U K i i

                 (18) 

By applying the perturbation and linearization technique [39], 
the perturbation equation of (18) can be written as 

 ˆ ˆˆ
m c c

u K i i
                  (19) 

Due to the hybrid modulation, the real modulation signal is um,d. 
According to the analysis given in Section II, the hybrid 
modulation can be approximated to 𝑒−1.5𝑠𝑇𝑠. Therefore, um,d can 
be obtained by applying 𝑒−1.5𝑠𝑇𝑠 for um, which is the input of 
hybrid modulation under small disturbance condition.  

By using the first-order Pade approximation [40], 𝑒−1.5𝑠𝑇𝑠 
can be denoted as: 

1.5 2 1.5

2 1.5
ssT s

s

sT
e

sT

 



               (20) 

And then, a differential equation, including um and um,d, can be 
derived as: 

 ,

,1.5 1.5 4 2
m dm

s s m m m d

dudu
T T u u u

dt dt
        (21) 

It is assumed that x3 is a new state variable and equal to um+um,d. 
And then, substituting x3 into (21), and applying the perturbation 
and linearization technique [39], and the disturbed separation, we 
get: 

3
3

ˆ 4 2ˆ ˆ
1.5 1.5

m

s s

dx
u x

dt T T
              (22) 

Step 5: Derive the small-signal expression of the output signal vi. 
According to the small-signal analysis of the hybrid modulation, 
there is a proportional loop in hybrid modulation vi=Vdcum,d. 
Therefore, substituting (12), (13), (15), (17) and (19) into the (22), 
the perturbation equation of vi is written as 

 
   

3

3 , 0 0

ˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆcos sin

i dc m dc

p α ref p g i d i q c

v V x u V

x Kk i Kk i Kk ω t x Kk ω t x Ki

   

      
 

                                               (23) 

Step 6: Calculate the small-signal model of the ACHMI. 
According to (8), (12), (13), (15), (17), (19), (22) and (23), a 
differential equation based on the state variables with disturbance 
can be derived as 

ˆ ˆ ˆd

dt
 

Χ
AΧ Bu                 (24) 

where, 
1 2 3

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , , , , , ,
T

g c c d q
i v i x x x x x     , 

,
ˆˆ ˆ,

T

g ref PCC
i u   u  , and 

the expressions of A and B are listed in appendix A. 
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
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ˆ
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                                               (25) 

Clearly, the ACHMI contains two input signals ig,ref and uPCC, 
where 𝑖𝑔̂,𝑟𝑒𝑓 and 𝑢̂𝑃𝐶𝐶 are the small-signal component of ig,ref 
and uPCC, respectively. The transfer function of each state variable 
and input signals with disturbance can be derived based on (24) 
by formula transformation and simplification. Thus, the small-
signal model of the ACHMI can be derived as (25), where the 
coefficients m0~m5, d0~d8, n0~n7 are defined in appendix B. 
Gc_ig(s) represents the closed-loop transfer function of grid 
current, and Ga_PLL(s) denotes the output admittance of the 
ACHMI without PLL. 

B. Small-Signal Model of PLL   

 
Fig. 6 Block diagram of the PLL [28-29], [36], [38]. 

 

For analyzing the effect of PLL on the grid-connected inverter, 
its mathematical model is required. Fig. 6 illustrates the block 
diagram of the SRF-PLL, where 𝑢𝑃𝐶𝐶  is taken as 𝑢𝛼, the Park’s 
transformation is applied to the phase detection and uq is 
controlled by PI controller for the phase tracking [41], [42]. By 
applying the perturbation and linearization technique [39], the 
linear model of the SRF-PLL can be expressed as: 

 
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ˆ ˆ
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

 


  




      (26) 

where Um,d represents the peak PCC voltage, IAm denotes the peak 
value of current reference and φ represents power angle. 

By applying the Laplace transform to both sides of (26), 
considering 𝑢̂𝛼  is leading 𝑢̂𝛽  by 90°, the transfer function of 
PLL can be written as (27), and the transfer function from the 
reference current ig,ref to uPCC can be expressed as (28).  
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Furthermore, the small-signal model of PLL and the closed-
loop transfer function of PLL can be derived as (29) and (30) 
respectively [41], [42]. 

   0= j

PLL PLL
T s G s j e

             (29) 

 c PLL v Am PLL
G H I T s               (30) 

Finally, according to Fig. 1, Eq. (25) and Eq. (28), the complete 
small-signal model of the ACHMI with PLL can be derived as 
(31), which can be employed to derive the system impedance 
model. 

         _ _
ˆ ˆ ˆ
g c ig Am v PLL PCC a PLL PCC

i s G s I H T u s G s u s   (31) 

IV. THE STABILITY ANALYSIS OF THE ACHMI             

UNDER WEAK GRID CONDITION 

This section elaborates the stability analysis of the grid-
connected ACHMI system under weak grid condition, where the 
grid impedance Zg cannot be neglected. With this condition, the 
grid-connected ACHMI and Zg can be regarded as a cascaded 
system for stability analysis, and then, the impedance-based 
stability criterion can be used for the stability analysis of the 
cascaded system [43]. However, with the classic stability 
criterion proposed in [43], the effect of PLL on the system 
stability is ignored. Hence, an improved impedance-based 
stability criterion with the PLL model is derived in this paper. 
With this criterion, the impact of the amplitude of the grid current 
(IAm), the power factor angle (φ) and the bandwidth of PLL (fBW) 
on the stability of the LCL-type single-phase grid-connected 
ACHMI can be analyzed.  

A. The Derivation of the Stability Criteria  

Simplifying (31), the following expression can be obtained 
[42]: 

PCC PCC
g

PLL i

u u
i

Z Z
                 (32) 

where the impedance of the PLL is represented by ZPLL, which is 
written as (33).  

 1

1
  

PLL

Am v PLL

Z
G s I H T

            (33) 

The output impedance Zi of the ACHMI without PLL 
introduced by the current loop can be expressed as: 

 2

1
i

Z
G s

                  (34) 

 
Fig. 7. Equivalent circuit of the grid-connected ACHMI with PLL. 
 

According to Eq. (32) and voltage/current Kichhoff ’s Laws, 
the equivalent circuit of the grid-connected ACHMI with PLL 
can be depicted in Fig. 7. It can be observed from Fig. 7 that the 
output impedance Zo of the ACHMI with PLL is equivalent to Zi 
in parallel with the negative impedance ZPLL [42], which can be 
written as  

i PLL
o

i PLL

Z Z
Z

Z Z





                (35) 

According to the equivalent circuit, as shown in Fig. 7, the grid 
current ig can be expressed as 

1

1 /

g

g

o g o

v
i

Z Z Z
  


              (36) 

For a stable grid-connected ACHMI system, the following two 
conditions can be formulated based on the Eq.(36). 

(i) The 1/Zo is stable when supplied by an ideal grid voltage. 
(ii) The ratio of the impedance Zg to the impedance Zo satisfies 

the Nyquist criterion [43]. 
In view of (i), when 1/Zo is stable, the system is stable under 

ideal grid voltage condition. According to Fig. 7, Zo is obtained 
by ZPLL in parallel with Zi, which is written as (35). Clearly, the 
poles of 1/Zo are the same as the poles of 1/ZPLL plus the poles of 
1/Zi. Therefore, when both 1/ZPLL and 1/Zi are stable, the stability 
of 1/Zo can be guaranteed. 

Comparing (25) and (34), it can be seen that 1/Zi has the same 
poles with the closed-loop transfer function Gc_ig(s) of the grid 
current. Namely, 1/Zi and Gc_ig(s) have the same stability 
characteristics based on the Root Locus based stability evaluation 
scheme. Hence, the stability of 1/Zi can be guaranteed when the 
grid current closed-loop is stable. Besides, by comparing (33) and 
(30), it can be observed that the poles of 1/ZPLL are the poles of 
Gc_g(s) plus the poles of closed-loop transfer function Gc-PLL(s) of 
PLL. Therefore, when the stability of both the current loop and 
the closed-loop of PLL can be guaranteed, 1/ZPLL is stable.  

As a result, 1/Zo would be stable when the stability of the 
current loop and the closed-loop of PLL can be guaranteed 
simultaneously. Since the scenario (i) is equivalent to the strong 
grid condition, the grid impedance can be approximated to zero. 
And then, uPCC is equal to vg and Eq. (36) can be rewritten as ig 
=-vg/Zo. With this scenario, the condition (ii) can be ignored and 
the stability requirement of the grid-connected ACHMI is to 
make sure that the closed-loop grid current control and PLL are 
both stable. 

In view of (ii), the grid impedance Zg is considered and the 
ACHMI system operates under a weak grid condition. With this 
condition, in order to achieve a good robustness and dynamic 
response, the phase margin (PM) of Zg/Zo should be in the range 
of [30°, 60°] at their crossover frequency fcg_o, where PM can be 
expressed as: 

    
_2PM 180

cg oo g s j πfZ s Z s


        (37) 

In most of the industrial applications, the line impedance and 
grid impedance Zg are highly inductive. In that case, the phase of 
Zg is almost 90°, and then, Eq. (37) can be rewritten as: 

 
_2PM 90

cg oo s j πfZ s


            (38) 

According to (38), in order to guarantee the condition 
30°≤PM≤60°, the phase of Zo should be in the range of [-60°, -
30°]. However, the negative factor provided by ZPLL is introduced 
into Zo, which has negative influence on the stability of ACHMI. 
Hence, it is necessary to analyze the effects of PLL on Zo. 

B. The Effect of PLL on Zo  

According to (34) and (35), the bode diagrams of Zi, Zo and 
different Zg can be depicted, as shown in Fig. 8. Zo is obtained by 
Zi in parallel with ZPLL, where ZPLL is the negative impedance as 
analyzed earlier. Thus, the phase of Zo is diminished at the 
crossover frequency fcg_o of Zg and Zo due to the effect of ZPLL, as 
shown in Fig. 8, which results in the decrease of PM. In addition, 
the value of PM is different with different Zg, and PM gradually 
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increases with the decrease of Zg. Thus, it can be found that the 
grid impedance has influences on the stability of the ACHMI 
system. Obviously, with the same Zg, the phase at the crossover 
frequency fcg_on (n=1, 2, 3) of Zo and Zg is smaller than the phase at 
the crossover frequency fcg_in (n=1, 2, 3) of Zi and Zg, and the phase  

margin and system stability at fcg_on (n=1, 2, 3) is worse than the phase 
margin and system stability at fcg_in (n=1, 2, 3), which reveals that the 
PLL has effects on the system stability. Hence, it is necessary to 
perform a thorough analysis about the effects of PLL on Zo. From 
(33), only IAm, 1/GPLL and power factor angle φ have impact on 
the performance of ZPLL and other variables are determined by 
current loop. Thus, the analysis about the effects of PLL on Zo is 
equivalent to the analysis on the influences of IAm, 1/GPLL and φ 
on Zo. 

 
Fig. 8. Bode diagrams of Zi, Zo and different Zg. 
 

B.1. Power Factor Angle φ 

Fig. 9 illustrates the bode diagrams of Zo with different φ. Zo is 
obtained by Zi in parallel with ZPLL, thus, the different φ has 
impact on Zo as shown in the aforementioned analysis. In Fig. 9, 
it can be seen that the different phase of Zo is caused by different 

values of φ. Moreover, when φ is within [-90°, 90°], the changing 
of the phase of Zo is not monotonous with the changing of φ. Thus, 
φ should be considered when analyzing the effects of PLL on Zo. 
It is well known that the grid-connected inverter often works on 
three typical operating conditions, namely, φ=0°, φ=90° and φ=-
90°. From Fig. 9, it can be observed that the PM is lowest when 
φ=-90°. Therefore, the subsequent parameter design procedure is 
presented based on the condition φ=-90°, which is validated by 
the extensive simulation and experimental results under the three 
conditions.  

 

Fig. 9 Bode diagrams of impedance Zo with different power factor angle φ. 
 

B.2. Reference Current Amplitude IAm 

Fig. 10 illustrates the bode diagrams of Zo with different 
reference current amplitude IAm. Zo is obtained by Zi in parallel 
with ZPLL, thus, the different IAm has impact on Zo as the 
aforementioned analysis. In Fig. 10, it can be observed that the 
larger IAm leads to a smaller PM of Zg/Zo at the crossover 
frequency fcg_o, and the stability margin of ACHMI is reduced 
with a larger IAm. Moreover, PM is sensitive to IAm since a small 
change of IAm results in a large variation of PLL. 

 
Fig. 10 Bode diagrams of impedance Zo with different reference current amplitude IAm.  

 

B.3. Bandwidth of PLL fBW  

 
Fig. 11 Bode diagrams of 1/GPLL with different bandwidth fBW. 

 

The characteristics of GPLL can be obtained according to Eq. 
(27), which shows the same characteristics with the low pass 
filter above the fundamental frequency f0. The bode diagrams of 

1/GPLL with different fBW are depicted in Fig. 11. From Fig. 11, it 
can be observed that the phase frequency curve of 1/GPLL has a 
0°~90° phase shift when f>fo, and the magnitude increases with 
the increase of frequency when f>fBW. In the high frequency range, 
the amplitude and phase angle of 1/GPLL would decreases with an 
increase of fBW, thus, the amplitude and phase angle of Zo also 
decreases, which leads to a lower phase margin (PM) of ACHMI. 

In conclusion, power factor angle φ, reference current 
amplitude IAm and bandwidth fBW of the GPLL may cause negative 
influence on Zo through ZPLL, which result in the decrease of the 
stability margin for the grid-connected ACHMI. Therefore, the 
design of fBW is crucial for the performance of the grid-connected 
ACHMI system. Since the different control parameters of PLL 
has different fBW, the control parameter design can be simplified 
as the selection of fBW.  

C. Parameter Design   
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This section focuses on the parameter design of PLL and how 
to select reference current amplitude IAm. In view of the Eq. (27), 
it is assumed that 2ζ𝜔𝑛 = 𝑈𝑚𝑘𝑝,𝑝𝑙𝑙   and 𝜔𝑛2 = 𝑈𝑚𝑘𝑖,𝑝𝑙𝑙 . 
Referring to [44], the PLL can maintain a good stability and 
dynamic response when ζ=0.707. According to the definition of 
fBW, the following expression can be derived as (39), presented at 
the bottom of the page. 

Based on (39), the control parameters kp,pll and ki,pll of PLL can 
be written as 

 
 

0
,

2 4 2

2

0

,
2 4 2

4 2

2 4 4 1 2

2

2 4 4 1 2

BW
p pll

m

BW

i pll

m

ξπf ξω
k

U ξ ξ ξ

πf ω
k

U ξ ξ ξ

 
   

      

       (40) 

According to (40), the graph of kp,pll and ki,pll with the variation 
of fBW can be depicted, as shown in Fig. 12. In Fig. 12, it can be 
seen that different kp,pll and ki,pll can be obtained with different fBW. 
Moreover, fBW has a monotonous variation with kp,pll and ki,pll, 
respectively. Hence, it can be found that fBW has significant 
impact on the stability and dynamic performance of PLL through 
the control parameters kp,pll and ki,pll of PLL. 

 
Fig. 12 The values of kp,pll and ki,pll with different fBW. 
 

Substituting (35) and (40) into (38), the expression of PM can 
be rewritten as (41), presented at the bottom of the page, where 
the parameter GPM1 and GPM2 is denotes as 2Ga_PLL(s)Um,d(s-jω0) 
and Gc_ig(s)IAmHv(s-jω0)e-jφ, respectively. 

According to (41) and the parameters listed in TABLE I, the 
PM, fBW and IAm can be represented in 3-D plots shown in Fig. 13, 
where the parameters kp, ki and K of current controller are 
determined experimentally. Therefore, the PM can satisfy the 
range [30°, 60°] as long as fBW and IAm are properly selected. In 
Fig. 13, it can be observed that the excessive increase of fBW may 
lead to a negative PM and the system tends to be unstable. And, 
the PM would also be decreased with an increase of IAm under a 
fixed fBW. From Fig. 13, the grid-connected ACHMI system is in 
a critical state in the case of fBW=143Hz and IAm=0.5A, where the 
phase margin (PM) is 30°, and the decrease of fBW will result in a 
positive PM in this case, which would improve the stability of 

ACHMI system. In addition, the studied ACHMI system tends to 
be unstable in the case of fBW=143Hz and IAm=2.3A, where the 
phase margin PM is 19°. And, the PM can be increased with a 
decrease of fBW under this parameter condition, which would 
improves the stability of ACHMI system. Form Fig. 13, when fBW 
is equal to126Hz, it can be observed that the value of PM in case 
of IAm=2.3A and IAm=0.5A is 32.6° and 53.8°, respectively. 
Therefore, the maximum value of fBW is 126Hz when the 
reference IAm is in the range of [0.3A, 2.3A]. Notably, the value 
of fBW can be changed with different range of IAm, the parameter 
design method presented in this section can also be adopted to 
select fBW. Finally, the corresponding simulation and 
experimental results are provided in Section V and VI, 
respectively. 
 

TABLE I. PARAMETERS OF ASYMMETRICAL CASCADED H-BRIDGE 

MULTILEVEL INVERTER SYSTEM 

Parameters Symbol Values 

DC Voltage Vdc1, Vdc2, Vdc3 3V, 6V, 18V 

Peak Grid Voltage Um,d 23V 

Fundamental frequency f0 50Hz 

LCL Filter 

L1 1.8mH 

C 2.2μF 

L2 1.2mH 

Sampling Period Ts 0.1ms 

Current Controller 

K 0.8 

kp 0.03 

ki 20 

PLL-bandwidth fBW (100~400)Hz 

Peak value of reference IAm (0.3~3.7)A 

 

 

Fig. 13 The PM, IAm and fBW of ACHMI with the effect of PLL. 
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V. SIMULATION RESULTS 

To evaluate the effectiveness of the dual-loop current control 
strategy built in the hybrid reference frame, hybrid modulation 
method, and the stability analysis, the time-domain simulations 
using the MATLAB/Simulink are carried out. The main circuit 
and current controller parameters are given in Table I. 

Fig. 14 shows the steady-state waveforms of the single-phase 
ACHMI under strong grid condition, where grid impedance is 

approximately 0.6mH and IAm=0.5A. The simulation waveforms 
tested with fBW=126Hz and fBW=600Hz are shown in Fig. 14(a) 
and Fig. 14(b), respectively. It can be observed that the ig depicted 
in Fig. 14(a) and Fig. 14(b) is periodic and almost sinusoidal 
without any distortion, and Fig. 14(b) is almost the same as the 
case in Fig. 14(a), which indicates the grid-connected ACHMI 
system is stable and the system can also be stable with different 
values of fBW.  

Fig. 15 illustrates the steady-state waveforms of the ACHMI 
system under weak grid condition, where grid impedance is

         

(a)  fBW=126Hz                                                    (b)  fBW=600Hz 

Fig. 14 Simulation results of the grid-connected single-phase ACHMI under strong grid condition. 

        
(a) φ=0°                                                          (b) φ=-90° 

 

(c) φ=90° 

Fig. 15 Simulation results of the grid-connected single-phase ACHMI in case of weak grid condition under different φ. 
 

approximately 2.4mH, IAm=0.5A and fBW is 126Hz. According to 
(40), the value of kp,pll and ki,pll can be obtained, which is 13.12 
and 2153.5, respectively. The simulation waveforms tested with 
φ=0°, φ=-90° and 90°are shown in Fig. 15(a), Fig. 15(b) and Fig. 
15(c), respectively. It can be seen that the ig is periodic and 
sinusoidal without any distortion, which indicates the grid-
connected ACHMI system is stable under three different φ and  

each PM of the three conditions both satisfies the range of [30°, 
60°] based on the designed parameters.  

Fig. 16 illustrates the transient waveforms of the ACHMI 
system under weak grid condition, where grid impedance is 
approximately 2.4mH and fBW is 126Hz. And according to (40), 

 

the value of kp,pll and ki,pll can be obtained, which is 13.12 and 
2153.5, respectively. The transient simulation waveforms tested 
with φ=-90° and 90°are shown in Fig. 16(a) and Fig. 16(b) 
respectively, where the dynamic response of the grid-connected 
ACHMI system in case of φ=-90° and φ=90° are both tested when 
IAm jumps from 0.5A to 1A at the step point. Clearly, ig remains 
periodic and sinusoidal without any distortion when the step 
increase of IAm is applied. Moreover, the response time is 0.24ms 
when φ=-90° and the response time is 0.20ms when φ=90°, which 
shows a fast dynamic response with adopted dual-loop current 
control method. 

As shown in Fig. 17, the dynamic response of the ACHMI
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(a) φ=-90°                                                        (b) φ=90° 

Fig. 16 The transient simulation waveforms of the grid-connected single-phase ACHMI under different φ.  

 

system under weak grid condition from φ=-90° to φ=90° has been 
simulated, where grid impedance is approximately 2.4mH and 
fBW is 126Hz. In this case, the reference current ig,ref  changes 
from IAmsin(θ0-90°) to IAmsin(θ0+90°) at the step point and 
IAm=0.5A. Besides, the control parameters are consistent with the 
initial settings. It can be seen that the ig depicted in Fig. 17 can 
also maintain periodic and sinusoidal without any distortion after 
the step point, and the response time is 0.4ms. Therefore, the 
waveforms depicted in Fig. 17 further show a fast dynamic 
response for the the studied system with adopted dual-loop 
current control method. 

 
Fig. 17 The simulation waveforms of the grid-connected single-phase ACHMI 
under the transition from φ=-90° to φ=90°. 
 

Fig. 18 illustrates the simulation waveforms of the grid-
connected ACHMI under weak grid condition, where the grid 
impedance is also set as 1.8mH and fBW is set as 200Hz. 
According to (40), the value of kp,pll and ki,pll can be obtained, 
which is 25.90 and 8388.8, respectively. As shown in Fig. 18, the  

waveforms of uPCC, vi and ig show a slight oscillation with the 
selected fBW. Compared to Fig. 15(a), it is obvious that the 
oscillation of the simulation waveforms is caused by the increase  

of fBW under weak grid condition. Moreover, if fBW continue to be  

 

enlarged, the oscillation can be aggravated, which may lead to 
instability of the grid-connected ACHMI system. 

 
Fig. 18 The simulation waveforms of the grid-connected single-phase ACHMI 
under weak grid condition with fBW=200Hz. 

VI. EXPERIMENTAL RESULTS 

A downscaled LCL-type single-phase grid-connected ACHMI 
is set up, where the hardware system consists of three full-bridge 
power modules, an LCL filter, voltage sensor HPT205A and 
current sensor ACS712ELCTR-05B-T. The control algorithm is 
implemented in TMS320F28335 DSP, and the DC-link voltage 
of the ACHMI is provided by three programmable DC power 
supplies. In addition, the grid impedance is emulated by 
connecting a stepdown transformer with an additional 1.8mH 
inductance between the strong grid and ACHMI, where the 
leakage inductance of the transformer is approximately 0.6mH. 
In order to provide effective comparison, all the control 
parameters are consistent with simulation. 

To verify the simulation case studies, Fig. 19 shows the 
measured steady-state waveforms of the ACHMI under strong 
grid condition, where the grid impedance is approximately 
0.6mH and IAm=0.5A. The experimental waveforms tested with 

          

(a)  fBW=126Hz                                                    (b)  fBW=600Hz 

Fig. 19 The experimental results of the grid-connected single-phase ACHMI under strong grid condition. 
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(a) φ=0°                                                          (b) φ=-90° 

 

(c) φ=90° 

Fig. 20 The experimental results of the grid-connected single-phase ACHMI under different φ. 

            

(a) φ=-90°                                                      (b) φ=90° 

Fig. 21 The transient experimental waveforms of the grid-connected single-phase ACHMI under different φ. 
    
fBW=126Hz and fBW=600Hz are shown in Fig. 19(a) and Fig. 19(b), 
respectively. It can be seen that the experimental waveforms 
match with the simulation results in Fig. 14. Thus, the conclusion 
mentioned in Section IV, that the ACHMI is stable as long as the 
stability of grid current and PLL closed-loop can be guaranteed 
respectively under strong grid condition, has been verified by the 
simulation and experimental results. 

Fig. 20 shows the measured steady-state waveforms for the 
ACHMI system under weak grid condition. The experimental 
waveforms tested with φ=0°, φ=-90° and 90°are shown in Fig. 
20(a), Fig. 20(b) and Fig. 20(c), respectively. It agrees with the 
simulation results in Fig. 15. Therefore, the condition (ii) 
mentioned in Section IV(A) and the parameter design explained 
in Section IV(C) are validated by the simulation and experimental 
results. 

Fig. 21 provides the dynamic waveforms for ACHMI system 
with φ=-90° and 90°, where a fast dynamic response is observed. 
The tested results under the same variation of φ as the simulation 
study is given in Fig. 22. A close related to the simulation results 
shown in Fig. 16 and Fig. 17 can be observed in both cases. As a 
result, the effectiveness of the parameter design and selection 
method mentioned in Section IV(C) is verified by the dynamic 
simulation and experimental results. 

 
Fig. 22 The experimental waveforms of the grid-connected single-phase ACHMI 
under the transition from φ=-90° to φ=90°. 
 

Fig. 23 shows the measured waveforms for the proposed 
parameters design scheme with the studied fBW. Similar to the 
simulation results shown in Fig. 18, there is slight oscillation on 
the tested waveforms with the selected fBW. Compared to Fig. 
20(a), it also can been seen that the oscillation of the experimental 
waveforms is caused by the increase of fBW under weak grid 
scenarios. Therefore, the simulation and experimental results 
show a good consistency with the parameter design approach 
mentioned in Section IV(C).                                                    
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Fig. 23 The experimental waveforms of the grid-connected single-phase ACHMI 
under weak grid condition with fBW=200Hz. 

VII. CONCLUSION 

This paper discussed the effect of PLL on the stability of the 
LCL-type single-phase grid-connected ACHMI under weak grid 
scenarios, where the adopted dual-loop current control scheme 

established in hybrid reference frame, and the hybrid modulation 
method are considered simultaneously. For the integrity of the 
stability analysis, the complete small-signal model of the ACHMI, 
including the power-stage and control system, is established by a 
simple step-by-step derivation method. And then, a system 
impedance model is built based on the derived small-signal 
model of ACHMI, and an improved impedance stability criterion 
is adopted to determine the system stability. With this criterion, it 
can be obtained that the ACHMI is stable when both the grid 
current loop and PLL loop are stable under the strong grid 
condition, and a larger value of the bandwidth fBW of the PLL 
reduces the stability margin of the ACHMI under weak grid 
scenarios. Moreover, reference current IAm also has an impact on 
the stability of ACHMI under weak grid scenario. In addition, a 
simplified design method for controller parameters of PLL is 
proposed to improve the performance of the steady-state and 
dynamic response by using theoretical analysis. Finally, a 
reduced-size laboratory prototype LCL-type single-phase grid-
connected ACHMI is built to confirm the validity and 
effectiveness of the theoretical analysis. 

APPENDIX A 

Expression of A and B in Equation (24): 
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APPENDIX B 

Definitions of Coefficients in Equation (25): 
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