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Stability analysis of a discrete-time system with a variable-,

fractional-order controller
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Institute of Automatics, Łodź University of Technology, 18/22 Stefanowskiego St., 90-924 Łódź, Poland

Abstract. Variable, fractional-order backward difference is a generalisation of commonly known difference or sum. Equations with these

differences can be used to describe a variable-, fractional order digital control strategies. One should mention, that classical tools such as

a state-space description and discrete transfer function cannot be used in the analysis and synthesis of such a type of systems. Equations

describing a closed-loop system are proposed. They contain square matrices imitating the action of matrices in the system polynomial matrix

description. This paper focuses on the stability analysis of a closed-loop SISO linear system with a controller described by the equations

mentioned. A stability condition based on a transient denominator matrix condition number is proposed. Investigations are supported by two

numerical examples.
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1. Introduction

The fractional calculus and fractional differential equations

[1–4], as a very potential mathematical tool in different ar-

eas of engineering and science are applied to create more

adequate models of real dynamical systems. In automatics it

may be used to create more sophisticated control strategies.

A paper is organised as follows. In Sec. 2 a definition of

a variable-, fractional-order backward difference (VFOBD) is

given [5–7]. With the application of the VFOBD yet some

description difficulties are related. A system described by the

VFOBD equation cannot be described using the state-space

equations. Also the Laplace and Z transform cannot be ap-

plied. Hence a new description is proposed. Section 3 presents

the main result of the paper – stability conditions of the sys-

tem described by the VFOBD equation. Next a description

of a closed-loop system is discussed. The investigations are

explained by two numerical examples.

2. Mathematical preliminaries

2.1. Variable-, fractional-order backward difference of fk.

One defines a VFOBD of a discrete function fk as a discrete

convolution of a function fk

0∆
(νk)
k fk = a

(νk)
k ∗ fk (1)

with a discrete function

a
(νk)
k =

{
1 for k = 0

(−1)k νk(νk−1)...(νk−k+1)
k! for k = 1, 2, 3, . . .

(2)

where the term νk means the value of a (bounded) order func-

tion. One should realise that for a constant order function (i.e.

νk = v = const) one obtains in general fractional-order back-

ward difference, and for νk = n ∈ Z+ formula (1) defines

a classical backward difference of order n. And for n = 1
one gets 0∆

(νk)
k fk = ∆fk = fk − fk−1. VFOBD may also

be expressed in the form

0∆
(νk)
k fk =

k∑

i=0

a
(νk)
i fk−1 =

= [a
(νk)
0 a

(νk)
1 . . . a

(νk)
k−1 a

(νk)
k ]





fk

fk−1

...

f1

f0




.

(3)

2.2. Variable-, fractional-order linear time-invariant dif-

ference equation. Combining VFOBDs with constant coeffi-

cients one builds a linear, variable-, fractional-order difference

equation

p∑

i=0

Ai 0∆
(νi,k)
k yk =

q∑

j=0

Bi 0∆
(µj,k)
k uk, (4)

where

νi+1,k > νi,k > 0 for i = 1, . . . , p − 1 and k ∈ Z+,

µj+1,k > µj,k > 0 for j = 1, . . . , q − 1 and k ∈ Z+

Ap = 1,

uk – the bounded discrete-time function,

y−1, y−2, . . . the initial conditions.

Such an equation may describe a wide range of dynamical

processes or systems. Only casual systems will be considered.

This implies the condition

νp,k ≥ µq,k (5)
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and one can state that the difference equation (4) is of

a variable-, fractional-order νp,k. It can be equivalently ex-

pressed in the form

[ak,0 ak,1 . . . ak,k−1 ak,k]





yk

yk−1

...

y1

y0




=

= [bk,0 bk,1 . . . bk,k−1 bk,k]





uk

uk−1

...

u1

u0




,

(6)

where

[ak,0 ak,1 . . . ak,k−1 ak,k] = [A0 A1 . . . Ap−1 Ap]×

×





a
(ν0,k)
0 a

(ν0,k)
1 . . . a

(ν0,k)
k−1 a

(ν0,k)
k

a
(ν1,k)
0 a

(ν1,k)
1 . . . a

(ν1,k)
k−1 a

(ν1,k)
k

...
...

...
...

a
(νp−1,k)
0 a

(νp−1,k)
1 . . . a

(νp−1,k)
k−1 a

(νp−1,k)
k

a
(νp,k)
0 a

(νp,k)
1 . . . a

(νp,k)
k−1 a

(νp,k)
k





,
(7)

[bk,0 bk,1 . . . bk,k−1 bk,k] = [B0 B1 . . . Bq−1 Bq]×

×





a
(µ0,k)
0 a

(µ0,k)
1 . . . a

(µ0,k)
k−1 a

(µ0,k)
k

a
(µ1,k)
0 a

(µ1,k)
1 . . . a

(µ1,k)
k−1 a

(µ1,k)
k

...
...

...
...

a
(µq−1,k)
0 a

(µq−1,k)
1 . . . a

(µq−1,k)
k−1 a

(µq−1,k)
k

a
(µq,k)
0 a

(µq,k)
1 . . . a

(µq,k)
k−1 a

(µq,k)
k





,
(8)

From (5) it follows that

ak,0 6= 0 for k ∈ Z+. (9)

On the contrary, the difference equation (4) would be of

order νp−1,k < νp,k. One divides both sides of equation (6)

by ak,0. In causal systems

bk,0, bk,1, . . . , bk,l = 0 for k ∈ Z+, l ∈ Z+. (10)

2.3. Discrete-time system description. One considers a lin-

ear discrete-time dynamical system described by equation (6)

and now one takes into account the initial conditions

y−1, y−2, . . .. It should be emphasised that in the case of

a variable-, fractional-order discrete-time system (VFODS)

one should regard an infinite number of initial conditions.

Collecting all such equations evaluated for consecutive time

instants k, k − 1, k − 2, . . . 1, 0 in a vector matrix form one

obtains

Dkyk = Nkuk + Mk,∞y0, (11)

where

Dk =





a0,k a1,k . . . ak−1,k ak,k

0 a0,k−1 . . . ak−2,k−1 ak−1,k−1

...
...

...
...

0 0 . . . a0,1 a1,1

0 0 . . . 0 a0,0




,

(12)

where ai,0 = 1 for i = 0, 1, . . . , k,

Nk =





b0,k b1,k . . . bk−1,k bk,k

0 b0,k−1 . . . bk−2,k−1 bk−1,k−1

...
...

...
...

0 0 . . . b0,1 b1,1

0 0 . . . 0 b0,0




, (13)

Mk,∞=−





ak+1,k a+2,kk ak+3,k ak+4,k . . .

ak,k−1 ak+1,k−1 ak+2,k−1 ak+3,k−1 . . .
...

...
...

...

a2,1 a3,1 a4,1 a5,1 . . .

a1,0 a2,0 a3,0 a4,0 . . .




,

(14)

are transient- denominator, nominator and initial conditions

matrices, respectively. Moreover,

yk =





yk

yk−1

...

y1

y0




, uk =





uk

uk−1

...

u1

u0




, y0 =





y−1

y−2

y−3

y−4

...




(15)

are output, input and initial condition vectors, respectively.

From equality (11) with assumption (9) one obtains

yk = D−1
k Nkuk + D−1

k Mk,∞y0. (16)

Assuming zero initial conditionsm, equation (16) simplifies

to

yk = Pkuk, (17)

where (k + 1) × (k + 1) matrix Pk

Pk = D−1
k Nk (18)

is defined as a transient transfer matrix. For νi,k = νi =
const ∈ R+\Z+, i = 1, . . . , p the transient denominator ma-

trix and its inverse are upper triangular k-band (i.e. having k

diagonals containing the same elements) matrices
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Dk =





a0 a1 . . . ak−1 ak

0 a0 . . . ak−2 ak−1

...
...

...
...

0 0 . . . a0 a1

0 0 . . . 0 a0




,

D−1
k =





a0 a1 . . . ak−1 ak

0 a0 . . . ak−2 ak−1

...
...

...
...

0 0 . . . a0 a1

0 0 . . . 0 a0




.

(19)

For νi,k = ni = const ∈ Z+, i = 1, . . . , p the transient

denominator matrix is an upper triangular l-band matrix but

its inverse is still an upper triangular k-band matrix

Dk =





a0 . . . al . . . 0 0 0

0 a0 . . . . . . 0 0 0

0 0 a0 . . . 0 0 0
...

...
...

...
...

...

0 0 0 . . . a0

... al

0 0 0 . . . 0 a0

...

0 0 0 . . . 0 0 a0





,

D−1
k =





a0 a1 . . . ak−1 ak

0 a0 . . . ak−2 ak−1

...
...

...
...

0 0 . . . a0 a1

0 0 . . . 0 a0




.

(20)

3. Stability analysis of the VFODS

In this Section the VFODS response is analysed. Equality (16)

shows that the system response is made up of two terms

yk = yF,k + yH,k. (21)

The first term
yF,k = D−1

k Nkuu (22)

denotes a forced system response while the second one

yH,k = D−1
k Mk,∞y0 (23)

is a homogenous system response. Now VFODS (16) stability

conditions will be established.

Lemma 1. For k → ∞ elements ak,k of transient denomina-

tor and numerator matrices (12) and (13) tend to zero.

Proof. It is proved [8] that for ν > 0, a
(ν)
k → 0 when k → ∞.

Elements ai,j of transient denominator matrix (12) are by for-

mula (7) linear combinations of a
(ν)
i . This implies ak,k → 0

for k → ∞.

Theorem 1. A SISO system described by transient transfer

matrix Pk = D−1
k Nk is BIBO stable if and only if

lim
k→∞

ck(Dk) = lim
k→∞

σk(Dk)

σk(Dk)
6= 0, (24)

where σk(Dk) and σk(Dk) denote the smallest and largest

singular value of a matrix Dk, [9], [10] respectively.

Proof. Sufficiency. A necessary and sufficient condition for

a linear discrete-, time-invariant system to be BIBO stable

is [11], [12]

lim
k→∞

k∑

i=0

|yi| < ∞. (25)

Sum (25) can be expressed as a 1-norm

lim
k→∞

k∑

i=0

|yi| = lim
k→∞

‖yk‖1. (26)

There exists U > 0, such that

lim
k→∞

‖yk‖1 ≤ lim
k→∞

U‖yk‖2 =

= U lim
k→∞

‖D−1
k Nkuk‖2 ≤ U lim

k→∞

}D−1
k ‖2‖Nkuk‖2.

(27)

The induced 2-norm of a matrix Dk [10] equals to

‖D−1
k ‖2 = σk(D−1

k ) =
1

σk(Dk)
. (28)

Substituting expression (28) into (27) one gets

U lim
k→∞

‖D−1
k ‖2‖Nkuk‖2 = U lim

k→∞

‖Nkuk‖2

σk(Dk)
. (29)

One can always chose uk such that

‖Nkuk‖2 =
σk(Dk)

U
< ∞ (30)

and

lim
k→∞

k∑

i=0

|yi| ≤ lim
k→∞

σk(Dk)

σk(Dk)
= lim

k→∞

ck(Dk). (31)

For

lim
k→∞

k∑

i=0

|yi| ≤ lim
k→∞

ck(Dk) < ∞ (32)

the system is stable.

Necessity. From (11) with y0 = 0k. There exists U > 0,

such that

lim
k→∞

‖Nkuk‖2 = lim
k→∞

‖Dkyk‖2 ≤ lim
k→∞

‖Dk‖2‖yk‖2 ≤

≤ lim
k→∞

‖Dk‖2‖yk‖1 = lim
k→∞

‖Dk‖2 lim
k→∞

‖yk‖1.
(33)

Further transformations yield

lim
k→∞

‖yk‖1 ≥
lim

k→∞

‖Nkuk‖2

lim
k→∞

‖Dk‖2
=

lim
k→∞

‖Nkuk‖2

σk(D)
. (34)

One can always chose uk such that

‖Nkuk‖2 = σk(Dk) < ∞. (35)

Then

lim
k→∞

‖yk‖1 ≥
σk(Dk)

σk(Dk)
=

1

lim
k→∞

ck(Dk)
(36)
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or equivalently

lim
k→∞

ck(Dk) lim
k→∞

‖yk‖1 = 1. (37)

If

0 < lim
k→∞

k∑

i=0

|yi| < ∞ (38)

from (37) it follows

0 < lim
k→∞

ck(Dk) < ∞. (39)

The condition number of a matrix relates the linear algebraic

equation (11) solution sensitivity to errors in the data.

3.1. Numerical example. One should check the stability con-

dition of a first-order difference equation.

0∆
(1)
k yk + A0yk = B0uk−1. (40)

Equation (40) can be transformed to the form

yk + a0yk−1 = b0uk−1, (41)

Fig. 1. Singular values and the condition matrix Dk (34) vs. k for different values of a0

616 Bull. Pol. Ac.: Tech. 58(4) 2010
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where a0 = b0 =
1

A0 + 1
. In this example matrix (12) has

the form

Dk =





1 −a0 0 . . . 0 0

0 1 −a0 . . . 0 0

0 0 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 −a0

0 0 0 . . . 0 1





, (42)

for k ∈ 0, 1, . . ..

In Fig. 1, plots of numerically evaluated singular values

and related condition numbers of matrix (42) vs. k are pre-

sented for six different values of a0 = b0 = ±0.5,±1.0,±1.5.

4. Stability conditions of a closed-loop system

A feedback system with the block diagram presented in Fig. 2

is considered [10]

Fig. 2. Block diagram of a closed-loop system

where

Pk = D−1
k NP,k, for k ∈ 0, 1, . . . (43)

are a plant and

Rk = D−1
R,kNR,k, for k ∈ 0, 1, . . .

R̂k = −Rk

(44)

a controller transient transfer matrices, respectively. A block

diagram presented in Fig. 2 can be rearranged into an equiv-

alent form shown in Fig. 3. Additional equations describe

a closed-loop system.

e1,k = w1,k + R̂ke2,k

e2,k = w2,k + Pke1,k

(45)

Fig. 3. Transformed block diagram of a closed-loop system

Equations (46) can be represented in a block-matrix form
[

Ik −R̂k

−Pk Ik

] [
e1,k

e2,k

]
=

[
w1,k

w2,k

]
. (46)

Substitution of (35) and (36) into (38) yields

[
Ik −D−1

R,kNR,k

−D−1
P,kNP,k Ik

] [
e1,k

e2,k

]
=

=

[
D−1

R,kDR,k D−1
R,kNR,k

−D−1
P,kNP,k D−1

P,kDP,k

][
e1,k

e2,k

]
=

=

[
D−1

R,k 0k

0k D−1
P,k

] [
DR,k −NR,k

−NP,k DP,k

][
e1,k

e2,k

]
=

=

[
w1,k

w2,k

]

(47)

and further
[

e1,k

e2,k

]
=

=

([
D−1

R,k 0k

0k D−1
P,k

][
DR,k −NR,k

−NP,k DP,k

] [
e1,k

e2,k

])
−1

×

×

[
w1,k

w2,k

]
=

=

[
DR,k −NR,k

−NP,k DP,k

]
−1 [

DR,k 0k

0k DP,k

][
w1,k

w2,k

]
.

Hence one obtains a description of the closed-loop system

[
e1,k

e2,k

]
=

[
Ik −R̂k

−Pk Ik

]
−1 [

w1,k

w2,k

]
=

=

[
(Ik − R̂kPk)−1 R̂k(Ik − PkR̂k)−1

Pk(Ik − R̂kPk)−1 (Ik − R̂kPk)−1

][
w1,k

w2,k

]
.

(48)

The closed-loop system is stable if and only if

lim
k→∞

ck

([
DR,k −NR,k

−NP,k DP,k

])
< ∞. (49)

4.1. Numerical example. One considers a linear discrete-

time plant described by a discrete transfer function

P (z) =
40

(z − 0.528)(z − 0.952)
(50)

or by an equivalent description (35) with

DP,k =





1 −1.48 0.502 0 . . . 0 0 0

0 1 −1.48 0.502 . . . 0 0 0

0 0 1 −1.48 . . . 0 0 0

0 0 0 1 . . . 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 0 . . . 1 −1.48 0.502

0 0 0 0 . . . 0 1 −1.48

0 0 0 0 . . . 0 0 1





,

(51)

Bull. Pol. Ac.: Tech. 58(4) 2010 617



P. Ostalczyk

NP,k =





0 0 40 0 . . . 0 0 0

0 0 0 40 . . . 0 0 0

0 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 0 40

0 0 0 0 . . . 0 0 0

0 0 0 0 . . . 0 0 0





. (52)

A variable-, fractional-order controller is described by the

VFODE

ν1,k =
1

TI
0∆

(νk,1)
k e2,k + kpe2,k, (53)

where the order function means [13–16]

νk,1 =






> 0 PD control strategy

= 0 P control strategy

< 0 PI control strategy

. (54)

The following controller parameters kp = 7.5, TI = 1.25 with

the VFO

νk,1 = 0.6e
−

k
TI − 1 (55)

preserve the closed-loop system stability and transient error

ek,1 presented in Fig. 4.

Fig. 4. Plot of the closed-loop system transient error ek,1

Below in Fig. 5 the shape of the order function is shown.

One can realise that the controller has only an integrating part.

The order of integration tends to 1 (to a classical integration).

This preserves a zero steady-state error. In Fig. 6 the matrix

(41) condition number vs. k is presented.

Fig. 5. The controller order function νk,1

Fig. 6. The closed-loop system matrix (41) condition number vs. k

5. Conclusions

In the considered closed-loop system with the VFO controller

there is a wide range of different order functions of the con-

troller. The appropriate choice of the function νk,1 along

with an optimal controller parameters setting gives satisfac-

tory closed-loop transient responses. The choice of an order

function is still an open problem. An order function νk,1(e2,k)
depending on an error function seems to be a promising so-

lution.
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