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Stability analysis of a discrete-time system with a variable-,
fractional-order controller

P. OSTALCZYK*
Institute of Automatics, LodZ University of Technology, 18/22 Stefanowskiego St., 90-924 1L.6dzZ, Poland

Abstract. Variable, fractional-order backward difference is a generalisation of commonly known difference or sum. Equations with these
differences can be used to describe a variable-, fractional order digital control strategies. One should mention, that classical tools such as
a state-space description and discrete transfer function cannot be used in the analysis and synthesis of such a type of systems. Equations
describing a closed-loop system are proposed. They contain square matrices imitating the action of matrices in the system polynomial matrix
description. This paper focuses on the stability analysis of a closed-loop SISO linear system with a controller described by the equations
mentioned. A stability condition based on a transient denominator matrix condition number is proposed. Investigations are supported by two
numerical examples.
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a classical backward difference of order n. And for n = 1
one gets OA,(CV’“)fk = Afy = fx — fr_1. VFOBD may also
be expressed in the form

1. Introduction

The fractional calculus and fractional differential equations
[1-4], as a very potential mathematical tool in different ar-
eas of engineering and science are applied to create more k
adequate models of real dynamical systems. In automatics it 0 Al(c"k) fru = Z al(-”k) foe1 =
may be used to create more sophisticated control strategies. i—0

A paper is organised as follows. In Sec. 2 a definition of i
a variable-, fractional-order backward difference (VFOBD) is

given [5-7]. With the application of the VFOBD yet some e )
description difficulties are related. A system described by the = [a) o) A o) :
VFOBD equation cannot be described using the state-space [
equations. Also the Laplace and Z transform cannot be ap- !
plied. Hence a new description is proposed. Section 3 presents fo

the main result of the paper — stability conditions of the sys-

tem described by the VFOBD equation. Next a description
of a closed-loop system is discussed. The investigations are
explained by two numerical examples.

2. Mathematical preliminaries

2.1. Variable-, fractional-order backward difference of f.
One defines a VFOBD of a discrete function fj as a discrete
convolution of a function f

oA f = al™ x f (1)
with a discrete function
i) 1 for k=0
%= { (—1)k ekt ) for p=1,2,3,...
2

where the term v, means the value of a (bounded) order func-
tion. One should realise that for a constant order function (i.e.
v = v = const) one obtains in general fractional-order back-
ward difference, and for v, = n € Z formula (1) defines

*e-mail: postalcz@o.lodz.pl

2.2. Variable-, fractional-order linear time-invariant dif-
ference equation. Combining VFOBDs with constant coeffi-
cients one builds a linear, variable-, fractional-order difference
equation

P q
ZAi oAy, = Z B; o APy, “)
i=0 j=0
where
Vig1k > Vig >0fori=1,...,p—1land k € Z,
Wit1,k >y >0forj=1,...,g—1and k € Z

Ap =1,
u — the bounded discrete-time function,
Y—1, Y—2, ... the initial conditions.

Such an equation may describe a wide range of dynamical
processes or systems. Only casual systems will be considered.
This implies the condition

)

Upk = g,k
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and one can state that the difference equation (4) is of  where
a variable-, fractional-order v, ;. It can be equivalently ex-
pressed in the form apk Q1 Ah—1 k gk
0 aor—1 Ak—2,k—1 Ok—1k—1
Yk
D, = :
Yk—1 k ’
(k0 Ak - - Gl k—1 Ok k) : = 0 0 o1 ai,1
0 . 0 a0,0
Y1 (12)
Yo ©) where a; 0 =1 fori=0,1,...,k,
Uk
Up—1 [ bok  bik br—1.k ber ]
= [bk10 ka . bkﬁkfl bk,k] N 0 bO,k*l bk72,k71 bkfl,kfl
o N = S ()
Uo 0 v b071 b171
L O 0 ... 0 boo
where
[a;“o Ak, - Ak, k—1 ak,k] = [AQ A1 .. .Ap_l Ap]><
(vo,k) (vo,x) (vo,x) (vo,x) Ak+1,k Q42 kk Ak+3,k Ak+4.k
a? ) a% ) 0L'<H ) a? ) a a a a
vk V1K vk V1k k,k—1 k+1,k—1 k+2,k—1 k+3,k—1
Qg ay A1 ay
. 7 My oo=— ,
X . . . . ?
_ _ _ _ az,1 a3 1 Q4.1 as,1
a((Jl’p 1,k) ag”p 1,k) al(cyfl 1,k) al(cl’p 1,k)
(Vp.1) (Vo) (Vp.1) (Vp.1) L @10 42,0 a3,0 a4,0 o
ag ay ag 3 ay, i (14)
are transient- denominator, nominator and initial conditions
[bk,0 br,1 - - brk—1 bik] = [Bo Bi ... Bg—1 Bg]x matrices, respectively. Moreover,
(Ho,x) (ko,k) (ko,k) (1o,%)
Qg a; A1 ay
a(()m,k) agﬂ'l,k) al(cujik) al(cﬂl,k) Yk Uk Y_1
~ ®) Yk—1 Uk—1 Y-
. . . . )
(Bg—1,k) (Bq—1,k) (Bg—1,K) (Bg—1,k) Y= : , W= : , Yo=| Y-3 (15)
Qg ay ] a Yos
a(()#q,k) ag#q,k) agfik) all(cﬂq,k) | Y1 (51 N
Yo Uo
From (5) it follows that
are output, input and initial condition vectors, respectively.
aro #£0 for keZ,. ) put, 1P p Y

On the contrary, the difference equation (4) would be of
order v,_1; < Vp . One divides both sides of equation (6)
by ay,. In causal systems

bk70,bk71,...,bk7[=0 for k€Z+, ZEZ_;,_. (10)

2.3. Discrete-time system description. One considers a lin-
ear discrete-time dynamical system described by equation (6)
and now one takes into account the initial conditions
Y—1, Y—2,.... It should be emphasised that in the case of
a variable-, fractional-order discrete-time system (VFODS)
one should regard an infinite number of initial conditions.
Collecting all such equations evaluated for consecutive time
instants k, k — 1, kK — 2,...1,0 in a vector matrix form one
obtains

D1y, = Neug + My oo¥o, (11)
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From equality (11) with assumption (9) one obtains
¥y, = Dy 'Nyu + Dy "My oo (16)

Assuming zero initial conditionsm, equation (16) simplifies
to

Y, = Pruy, am
where (k + 1) x (k + 1) matrix Py,

P, =D, 'N, (18)
is defined as a transient transfer matrix. For v, = v; =

const € Ry\Zy, i =1,...,p the transient denominator ma-
trix and its inverse are upper triangular k-band (i.e. having k
diagonals containing the same elements) matrices

Bull. Pol. Ac.: Tech. 58(4) 2010
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ap am ag—1 ag
0 ag ap—2 Qp_1
D, = : )
0 ao ai
0 O 0 ag
o : (19)
aop ai ag—1 ag
0 @ Up—2 Qg1
D, = z
0 O ao a,
o o0 ... 0 ao
For v; 3, = n; = const € Zy, ¢ = 1,...,p the transient

denominator matrix is an upper triangular [-band matrix but
its inverse is still an upper triangular k-band matrix

(@ ... a ... 0 0 0 ]
0 a ... ... 0 0 0
0 0 a ... 0 0 O
D= | i A
0 0 0 a o
0 0 0 ... 0 0 a|
ap  ay ap—1 Gk
0 ap ap—2 Qg1
D' = :
0 0 aop ai
0 O 0 Qo

3. Stability analysis of the VFODS

In this Section the VFODS response is analysed. Equality (16)
shows that the system response is made up of two terms

Ye =Yk T ¥Yu i (21)
The first term o
Yrg = D, "Niu, 22)
denotes a forced system response while the second one
Yk = Dy Moo (23)

is a homogenous system response. Now VFODS (16) stability
conditions will be established.

Lemma 1. For £k — oo elements ay, , of transient denomina-
tor and numerator matrices (12) and (13) tend to zero.

Proof. It is proved [8] that for v > 0, a,(:) — 0 when £ — oo.

Elements a; ; of transient denominator matrix (12) are by for-
(

mula (7) linear combinations of aiy). This implies ag,; — 0
for k — oo.
Theorem 1. A SISO system described by transient transfer

matrix P = D,;lNk is BIBO stable if and only if

. L Ek(Dk)
Jim exDu) = i 225 0,

(24)
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where o, (Dy) and 7% (Dy) denote the smallest and largest
singular value of a matrix Dy, [9], [10] respectively.

Proof. Sufficiency. A necessary and sufficient condition for
a linear discrete-, time-invariant system to be BIBO stable
is [11], [12]

k
Jim. ; lyi| < oo (25)
Sum (25) can be expressed as a 1-norm
k
klggoglyﬁ = Jim_[|y,[}1. (26)
There exists U > 0, such that
klim yxll < klim Ullygll2 =
= U lim [[D;"Nywgll2 < U lim 3D o] Ny 2
The induced 2-norm of a matrix Dy [10] equals to
1
D 'l =5x(D;!) = . 28
|| k ”2 Uk( k ) gk(Dk) ( )
Substituting expression (28) into (27) one gets
. 1 e [INgugll2
U lim [[D;[2[|Nyuy |2 = U lim 0. (Dp) (29)
One can always chose uy, such that
(D
INpug 2 = %’“) < o (30)
and
k Ok (Dk)
. < 1 _ '
Jm, 2wl < Jim 2 ) P GD
For
k
(32)

Jim 3l < Jim (D) < o0

the system is stable.
Necessity. From (11) with y, = 0. There exists U > 0,
such that

lim [[Ngugl[2 = lim [Dgy,llz < lim [|Dg[[2[[y,[l2 <
k—o0 k—o0 k—o0

(33)
< lim [[Dgl2flyylls = lim [[Dy[2 lim [y [
Further transformations yield
. Jim [[Ngugf[z - Tim [[Njug
A [yl > Tin [, = 5D 34
One can always chose uy such that
[Nkugl2 = g, (Di) < o0. (35)
Then
Jim [y, > ;:Egg =T Clk(Dk) (36)
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from (37) it follows

Matrix q(singular values vs. k Matrix EL singular values vs. k

Matrix q( singular values vs. k
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The condition number of a matrix relates the linear algebraic
equation (11) solution sensitivity to errors in the data.

(40)

(41)

lim ¢ (Dg) lim ||y,ll1 = 1. 37
k—o0 k—oo
3.1. Numerical example. One should check the stability con-
k dition of a first-order difference equation.
0< klim E ly;| < oo (38) W
— 00
i=0 0, yr + Aoyr = Boug—_1.
Equation (40) can be transformed to the form
0 < lim ci(Dg) < oco. 39)
k— o0 (D) Yk + aoyk—1 = bouk—1,
25 T T T T T : 5 3 T
3r cessvscesesssecectssessessesseosee
. . ~ 7 o ”
2r . . » 25F .'.
. . >
. ® [ !
. pm}
15 . e et e, T o2
* e, ...' oo c
St 5
2 .4
1re . " ° g
. M o
. . : ac e
. X
0.5 v =
. HHH ©
oee H 0.5
I:nuIlilhili“i"“i"“"ni" =
% 5 10 15 20 25 30 8 40 45 &0 % 5 10 15 20 25 30 35 40 45 50
k k
ay, = 0.5 (Stable system)
4. .
. ¢ Lot 70~
35 e G, .
. .. .* ¥ 60 - -
25| . © o~
. > Jiad
5. Cee ..... .. é 405 ‘,,,-'.
L .g ...'
T R S 30~ =
L '. o~ o
e o o o x 20-
0.5/- . e, = 10- .
'. '-'..' -"-'
(SNAL TYPPPISSS i 06 T S S
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
k k
ay, = 1 (System on a stability limit)
7 - - . . . . x 10°
2¢- T T T 3 T T 3
1.8 |
~ {
2 16|
(0]
S 14k i
© .
2 12 -
S
5 ‘
S i
8 o8- -
a* 0.6|-
x ’
® 04 .
E .
0.2 y,
. 0 é 1’0 1-5 2r0 2r5 3b 3‘5 4r0 4’5 50 0O g 1‘0 1‘5 2‘0 2‘5 36 3‘5. - .4.0 45 50
k k

ao = £1.5 (Unstable system)

Fig. 1. Singular values and the condition matrix Dy (34) vs. k for different values

of ao
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1
where ag = by = m. In this example matrix (12) has
the form
[1 —ap 0 0 0 ]
0 1 —ag 0
0 O 1 ... 0 0
D=1 . . ) . ;o (42)
0 O 0 —ag
L0 0 0 0 1 |
for k€0,1,....

In Fig. 1, plots of numerically evaluated singular values
and related condition numbers of matrix (42) vs. k are pre-
sented for six different values of ag = by = +0.5, +1.0, +1.5.

4. Stability conditions of a closed-loop system

A feedback system with the block diagram presented in Fig. 2
is considered [10]

:

Fig. 2. Block diagram of a closed-loop system

where
P, =D, 'Npy, for k€0,1,... (43)
are a plant and
R, =D ' Ngy, for ke0,1,...
’ (44)

R, = R,

a controller transient transfer matrices, respectively. A block
diagram presented in Fig. 2 can be rearranged into an equiv-
alent form shown in Fig. 3. Additional equations describe
a closed-loop system.

e =W+ Rpeyp
(45)
e = Wa +Prey

Fig. 3. Transformed block diagram of a closed-loop system

Equations (46) can be represented in a block-matrix form
I, -Ry ek | _ | Wik
—P;, 1 €2 k W2 k

Bull. Pol. Ac.: Tech. 58(4) 2010

(46)

Substitution of (35) and (36) into (38) yields

I _Dg}kNR,k €1k _
—DE};CNP,I@ I (SN2
_ D;%,lkDR,k DE}kNR.,k €1,k _
_Dlg,lkNP,k D;}kDP,k €2k
47)
_ | Pay Ok Drr  —Nrpi ek | _
Ok Dlg,lk _NP,k DP,k €2
_ Wik
W2 k
and further
€1,k _
€2
-1 —1
_ Dpyw Ok Drr —Nrg el
= ; 71 X
O DP,k —Npr  Dpyi €2 k
Wik _
W2 k
_1 -
Drr —Ngryi Dri Ok Wik
—Npir  Dpp Or  Dpr | | War

Hence one obtains a description of the closed-loop system

a1 -
ek | _ I. —Rg Wik | _
e2,k/\ —PkA I ) Wok | 48)
_ (I — RkPr)™ 1 Ryp(Ip — PRy) ™! Wik
Pp(I — RyPr) ™t (Iy — RyPy) ! W2 i
The closed-loop system is stable if and only if
D -N
lim ¢ fr.k k) < e (49)
k—oo0 —Npir  Dpp

4.1. Numerical example. One considers a linear discrete-
time plant described by a discrete transfer function

40

P(z) = 50
()= 0528 —0.952) 0)
or by an equivalent description (35) with
[1 —1.48 0502 0 0 0 0 ]
0 1 —1.48 0.502 0 0 0
0 0 1 —1.48 0 0 0
0 0 0 1 ... 0 0 0
Dpp=1. . : : S : ’
0 0 0 0 ... 1 —1.48 0.502
0 0 0 0 ... 0 1 —1.48
L0 0 0 0 ... 0 0 1
(51)
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[0 0 40 0 00 0]
00 0 40 00 0
00 0 0 00 0
00 0 0 00 0
Npy = : (52)
00 0 0 0 0 40
00 0 0 00 0
(00 0 0 00 0 |

A variable-, fractional-order controller is described by the
VFODE

1

Vi = Toﬁl(cuk’l)ez,k + kpea k, (53)
I
where the order function means [13-16]
>0 PD control strategy
Vg1 = =0 P control strategy 54

< 0 PI control strategy

The following controller parameters k, = 7.5, Tt = 1.25 with
the VFO

Vea = 0.6e” 77 — 1 (55)

preserve the closed-loop system stability and transient error
er,1 presented in Fig. 4.

o
=)

06

0.4

Closed-loop system error e

0 20 40 60 80 100 120 140
k

Fig. 4. Plot of the closed-loop system transient error ey, 1

Below in Fig. 5 the shape of the order function is shown.
One can realise that the controller has only an integrating part.
The order of integration tends to 1 (to a classical integration).
This preserves a zero steady-state error. In Fig. 6 the matrix
(41) condition number vs. k is presented.
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The controller order function Vi
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Fig. 6. The closed-loop system matrix (41) condition number vs. k

5. Conclusions

In the considered closed-loop system with the VFO controller
there is a wide range of different order functions of the con-
troller. The appropriate choice of the function 1 along
with an optimal controller parameters setting gives satisfac-
tory closed-loop transient responses. The choice of an order
function is still an open problem. An order function vy, 1 (e2 %)
depending on an error function seems to be a promising so-
lution.
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