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Abstract

In this paper, we extend the SIR model with vaccination into a fractional-order model
by using a system of fractional ordinary differential equations in the sense of the
Caputo derivative of order α ∈ (0, 1]. By applying fractional calculus, we give a
detailed analysis of the equilibrium points of the model. In particular, we analytically
obtain a certain threshold value of the basic reproduction number R0 and describe
the existence conditions of multiple equilibrium points. Moreover, it is shown that the
stability region of the equilibrium points increases by choosing an appropriate value
of the fractional order α. Finally, the analytical results are confirmed by some
numerical simulations for real data related to pertussis disease.
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1 Introduction

The study of epidemiology has attracted much interest during the recent years. In this di-

rection, mathematical models have been developed to imply more realistic aspects of dis-

ease spreading [, ]. Most mathematical epidemic models descend from the classical SIR

model of Kermack and McKendrick established in  []. Recently, many researchers

have discussed the SIR model allowing vaccination [–]. Epidemiologically, vaccines are

extremely important and have been proved to be the most effective and cost-efficient

method of preventing infectious diseases such as measles, polio, diphtheria, tetanus, per-

tussis, tuberculosis, etc. [, ]. Mathematically, the epidemic models containing vaccina-

tion lead to multiple equilibrium points and show bifurcation phenomena. For example,

Kribs-Zaleta and Velasco-Hernández in [] constructed a SIS model with vaccination and

showed that it exhibits a backward bifurcation. Also, Allen et al. introduced a stochas-

tic SIR model with vaccination and showed that their model may have multiple endemic

equilibriums []. Most of the vaccination models have been established based on ordi-

nary differential equations (ODEs) [–].

Recently, fractional calculus has been extensively applied in many fields [–]. Many

mathematicians and applied researchers have tried to model real processes using the frac-

tional calculus [–]. The fractional modeling is an advantageous approach which has

been used to study the behavior of diseases because the fractional derivative is a general-

ization of the integer-order derivative. Also, the integer derivative is local in nature, while

the fractional derivative is global. This behavior is very useful to model epidemics prob-
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lems. In addition, the fractional derivative is used to increase the stability region of the

system. Fractional calculus has previously been applied in epidemiological studies [–

]. Previous works rarely discussed an epidemics model with vaccination strategies that

lead to multiple equilibrium points. In this work, we extend the SIR model with vaccina-

tion to a fractional-order model and give a detailed analysis of the equilibrium points of

the model by applying fractional calculus.

This paper is organized as follows. In the next section, we give the definition of the

Caputo derivative andpresent the fractional-order SIRmodelwith vaccination in the sense

of the Caputo derivative of order α ∈ (, ]. In Section , we analyze the existence and

stability of disease-free and endemic equilibrium points. To verify our results, we provide

some numerical simulations for real data related to pertussis disease in Section . Finally,

conclusions are given in Section .

2 Fractional-order model

In this section, we introduce the definition of fractional-order integration and deriva-

tive. There are different definitions of the fractional derivative. Among them, Riemann-

Liouville and Caputo’s fractional derivative have been used more than others []. Com-

paring these two fractional derivatives, one easily arrives at the fact that Caputo’s deriva-

tive of a constant is equal to zero, which is not the case for the Riemann-Liouville deriva-

tive. The main concern of the paper thus focuses on the Caputo derivative of order α > ,

which is rather applicable in real application.

Definition  The fractional integral of order α >  of a function g :R+ → R is defined by

Iαg(t) =


Ŵ(α)

∫ t



(t – x)α–g(x)dx, ()

where Ŵ(·) is a gamma function.

Definition  The Caputo fractional derivative of order α >  of a continuous function

g :R+ →R is defined by

Dαg(t) = In–αDng(t), ()

where n is an integer number satisfying α ∈ (n – ,n) and D = d
dt
.

In our study, we present the fractional-order SIR model with vaccination using the first-

order Caputo derivatives of order α ∈ (, ]. First, we introduce the classical SIR allowing

vaccination, which has been studied by many researchers [, , ]. In this model, the

population N(t) is divided into four subpopulations: the susceptible, S(t), infected, I(t),

recovered, R(t), and vaccinated,V (t), subpopulations. In addition, it is assumed that death

and birth occur with the same constant rate b > , i.e. the population size is constant.

Newborns are vaccinated with the rate δ ∈ [, ] at birth. Parameter β is the transmission

rate between infected and susceptible individuals. Furthermore, the factor  – σ is the

effect of vaccine, which means that if σ = , the vaccine is complete and if  < σ < , the

vaccine is incomplete. Moreover, φ is the vaccination rate. The vaccine does not provide

lifelong protection and its protection is reduced with the rate θ . Infective individuals are
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Figure 1 Flow diagram of the classical SIR

mathematical model with vaccination.

recovered with the rate μ >  and have temporary immunity. Recovered individuals leave

this immunity with the rate ϑ . Using the model diagram depicted in Figure , the classical

SIR model with vaccination is given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

dS
dt

= ( – δ)bN – bS(t) – βI(t)S(t)
N

– φS(t) + θV (t) + ϑR(t),
dI
dt
= βI(t)S(t)

N
+ σ

βI(t)V (t)
N

– (b +μ)I(t),
dR
dt

= μI(t) – (ϑ + b)R(t),
dV
dt

= δbN + φS(t) – (b + θ )V (t) – σ
βI(t)V (t)

N
,

()

with the following non-negative initial conditions:

S() = S, I() = I, R() = R, V () = V. ()

Now, by replacing integer-order derivatives of the above system with fractional deriva-

tives of order α ∈ (, ] in the sense of Caputo, we consider the fractional-order SIRmodel

with vaccination as follows:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Dα
t S(t) = ( – δ)bN – bS(t) – βI(t)S(t)

N
– φS(t) + θV (t) + ϑR(t),

Dα
t I(t) =

βI(t)S(t)
N

+ σ
βI(t)V (t)

N
– (b +μ)I(t),

Dα
t R(t) = μI(t) – (ϑ + b)R(t),

Dα
t V (t) = δbN + φS(t) – (b + θ )V (t) – σ

βI(t)V (t)
N

.

()

Similar to [], it is easy to show that system () with non-negative initial conditions

() has a unique non-negative solution. As the population is constant, we have V (t) =

N – S(t) – I(t) – R(t) at any time t. Therefore, we write the following system instead of

system ():

⎧

⎪

⎨

⎪

⎩

Dα
t S(t) = ( – δ)bN – bS(t) – βI(t)S(t)

N
– φS(t) + θ (N – S(t) – I(t) – R(t)) + ϑR(t),

Dα
t I(t) =

βI(t)S(t)
N

+ σ
βI(t)
N

(N – S(t) – I(t) – R(t)) – (b +μ)I(t),

Dα
t R(t) = μI(t) – (ϑ + b)R(t).

()

In the next section, we investigate the existence and stability conditions of the equilibrium

points of system ().

3 Existence and stability of equilibrium points

According to the mentioned above, if E = (Se, Ie,Re) is an equilibrium point of system ()

then E = (Se, Ie,Re,Ve) is an equilibrium point of system () where Ve = – Se – Ie –Re. The
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equilibrium point of system () satisfies the following system:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Dα
t S(t) = ,

Dα
t I(t) = ,

Dα
t R(t) = .

()

To investigate the stability of the equilibrium points of system (), we use the following

theorem from [, ].

Theorem  Consider the following commensurate fractional-order system:

{

Dα
x(t) = f(t,x(t)),

x(t) = x,
()

where Dα is Caputo’s derivative of the order  < α ≤  and f(t,x(t)) : R+ × R
n → R

n is a

vector field. The equilibrium points of this system are locally asymptotically stable if all

eigenvalues λi of the Jacobian matrix ∂f(t,x)
∂x

evaluated at the equilibrium points satisfy the

following condition:

|argλi| > α
π


. ()

3.1 Existence and stability of disease-free equilibrium point

It is clear that system () always has the following unique disease-free equilibrium:

Ē = (S̄, , ) =

(

b + θ – δb

b + θ + φ
N , , 

)

.

The following theorem is established for the stability of the disease-free equilibrium Ē.

Theorem  If

R =
β

b +μ

(

b + θ + σφ – δb( – σ )

b + θ + φ

)

< , ()

then the disease-free equilibrium Ē of system () is locally asymptotically stable.

Proof According to Theorem , to prove the stability of Ē, it is enough to show that all

eigenvalues of Jacobian matrix of system () at Ē have negative real parts. This Jacobian

matrix is

⎡

⎢

⎣

–b – φ – θ
–β(–δ)b–βθ

b+φ+θ
– θ –θ + ϑ

 β( – σ ) b(–δ)+θ

b+φ+θ
+ σβ – b –μ 

 μ –b – ϑ

⎤

⎥

⎦
.

The eigenvalues of this matrix are as follows:

–(b + ϑ), –(b + θ + φ),
β(b + θ + σφ + δbσ – δb) – (b +μ)(b + θ + φ)

b + θ + φ
.
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Therefore, we see that if R < , then

β(b + θ + σφ + δbσ – δb) – (b +μ)(b + θ + φ)

b + θ + φ
< . �

3.2 Existence conditions of endemic equilibrium points

According to system (), the endemic equilibrium points are obtained by solving the

quadratic equation P(I) = AI + BI +C = , where

A = –
σβ(b + ϑ +μ)

N(b + ϑ)
,

B = σβ – σβb – σβφ – σβμ – βb – βθ –
βμ

b + ϑ
(b + θ + σφ),

C =Nβ(b + σφ + θ + σδb – δb) –N(b +μ)(b + φ + θ ).

It can be shown that if I∗ be a positive real root of the above quadratic equation, then

E∗ = (S∗, I∗,R∗) is the endemic equilibrium point of system () where

S∗ =
N(b + ϑ)(b +μ – σβ) + σβI∗(b + ϑ +μ)

(b + ϑ)β( – σ )
,

R∗ =
μI∗

b + ϑ
.

()

Theorem  If β ≤ b +μ, then system () has no endemic equilibrium point.

Proof According to system (), if E∗ = (S∗, I∗,R∗) is an endemic equilibrium point then

β

N
I∗S∗ +

σβ

N
I∗V ∗ – (b +μ)I∗ = ,

therefore, we have

β

(

S∗ + σV ∗

N

)

= b +μ.

Since the population size is constant, we have S∗+σV∗

N
< . Then we obtain β > b +μ. Thus

if β ≤ b +μ, then system () has no endemic equilibrium point. �

It is easy to show that C =N(b +μ)(b + θ + φ)(R – ). Therefore, the following equation

can be considered instead of the equation P(I) = :

Q(I) :=
–AI

N(b +μ)(b + θ + φ)
+

–BI

N(b +μ)(b + θ + φ)
+  = R.

Thus, the existence of endemic equilibrium points of system () is dependent on the ex-

istence of positive real roots of quadratic equation Q(I) = R. In the following, we obtain

a certain threshold value of R and summarize the existence conditions of the endemic

equilibrium points of system ().
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Lemma  The curve Q(I) has the minimum point (Imin,Rmin) where

Imin =
–N



(b + ϑ)(–σβ + b + θ + σ (b + φ +μ)) +μ(b + θ + σφ)

σβ(b + ϑ +μ)
,

Rmin =  –
((b + ϑ)(σ (b + φ +μ) – σβ + b + θ ) +μ(b + θ + σφ))

σ (b + ϑ)(b +μ)(b + ϑ +μ)(b + θ + φ)
.

Proof Since A < , the curve Q(I) has a minimum value. By direct calculation, we see that

this minimum value occurs at the point (Imin,Rmin). �

Theorem  If β > b +μ, then:

(i) If R >  or R = , B >  then system () has the unique endemic equilibrium

point E∗
u.

(ii) If Rmin = R <  and B >  then system () has the unique endemic equilibrium

point E∗
c .

(iii) If Rmin < R <  and B >  then system () has two endemic equilibrium points E∗
 , E

∗
 .

(iv) If R < Rmin there is no endemic equilibrium point.

Proof As mentioned above, the y-intercept of the curve y = Q(I) is . Therefore, we have

the following cases:

(i) If R > , the quadratic equation Q(I) = R has two real roots and one of them is

non-negative and greater than Imin. If R = , the quadratic equation Q(I) = R has a

non-zero real root such that it is non-negative and greater than Imin when B > . So,

system () has the unique endemic equilibrium point E∗
u such that I∗u > Imin.

(ii) If Rmin = R < , the equation Q(I) = R has a repeated real root which is

non-negative when B > . Thus, system () has the unique endemic equilibrium

point E∗
c such that I∗c = Imin.

(iii) If Rmin < R < , the equation Q(I) = R has two real roots I∗ and I∗ . If B > , these

roots are non-negative. Therefore, system () has two endemic equilibrium points

E∗
 and E∗

 such that I∗ < Imin < I∗ .
�

3.3 Stability and α-stability of endemic equilibrium points

The following theorem shows that the stability region of endemic equilibrium points of

system () can be increased by choosing an appropriate value of fractional order α.

Theorem  Suppose E∗
u, E

∗
c , E

∗
 , and E∗

 are endemic equilibrium points as introduced in

Theorem , then:

(i) The endemic equilibrium points E∗
c and E∗

 are unstable.

(ii) If α ≤ 

, the endemic equilibrium points E∗

u and E∗
 are locally asymptotically

α-stable.

(iii) If α > 

and ϑ ≥ θ , E∗

u and E∗
 are locally asymptotically stable.

Proof According to Theorem , to prove the stability of the endemic equilibrium point E∗,

it is enough to show that all eigenvalues of the following Jacobian matrix satisfy the con-
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dition ():

⎡

⎢

⎣

–b – φ – θ – βI∗

N
–βS∗

N
– θ –θ + ϑ

βI∗

N
( – σ ) –σβI∗

N
–σβI∗

N

 μ –b – ϑ

⎤

⎥

⎦
.

The characteristic equation of this matrix is P(λ) = λ + aλ
 + aλ + a =  where

a = b + ϑ + θ + φ +
βI∗

N
( + σ ),

a = (b + ϑ)(b + φ + θ ) +
βI∗

N
(bσ + σμ + σφ + σϑ + b + ϑ + θ )

+
βI∗

N

(

σ I∗ + ( – σ )S∗
)

,

a =
βI∗

N

[

Nμ(θ – ϑ) + σNμ(b + ϑ + φ) +N(b + ϑ)(θ + σb + σφ)
]

+
βI∗

N

[

( – σ )(b + ϑ)S∗ + σ I∗(μ + b + ϑ)
]

=
σβ(b + ϑ +μ)I∗

N

(

I∗ – Imin

)

.

For every endemic equilibrium point E∗, it is obvious that a,a > . According to the

proof of Theorem , for the endemic equilibrium point E∗
c , we have I

∗
c = Imin and a = .

So, the equation P(λ) =  has a zero root and the endemic equilibrium point E∗
c is unsta-

ble. Similarly, for the endemic equilibrium point E∗
 , we have I

∗
 < Imin, then a < . From

Descartes’ rule of signs, it is clear that the equation P(λ) =  has at least one positive real

root. Therefore, the endemic equilibrium point E∗
 is unstable. For the endemic equilib-

rium points E∗
u and E∗

 , we have I∗u > Imin and I∗ > Imin, respectively. So we obtain a > .

From Descartes’ rule of signs, the equation P(λ) =  has three negative real roots or one

negative real root and two complex roots. If the equation P(λ) =  has three negative real

roots, then E∗
u and E∗

 are stable. We now assume the equation P(λ) =  has one negative

real root λ = –z and two complex roots λ, = x± iy, then

P(λ) = λ + λ(–x + z) + λ
(

x + y – xz
)

+ z
(

x + y
)

.

Therefore, we have

a = –x + z, a = x + y – xz, a = z
(

x + y
)

.

We know a,a ≥ , so x + y ≥ xz and z ≥ x. Thus we obtain

x
(

 +
x

y

)

≥ xz ≥ x.

The above equation show that sec(Argλ,) ≥  and π


≤ Arg(λ,) ≤
π

. So, if α ≤ 


, then

|Argλ,| > α π

and E∗

u, E
∗
 are stable. Furthermore, if aa–a > , then –x[(x – z) + y] >

. So, if aa – a > , then λ and λ must have negative real parts. It can be shown that if

ϑ ≥ θ , then aa – a >  and the roots of the equation P(λ) =  have negative real parts.

�
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Figure 2 Plot diagrams R0 = Rmin , R0 = 1, and B

= 0 for different values of σ and φ. The regions of
R0EEP , R

1
EEP and R2EEP illustrate the regions that system

(6) has zero, one, and two endemic equilibrium
point, respectively.

4 Numerical results

To illustrate the results of Theorem , we consider R, Rmin, and B as functions of σ and φ;

meanwhile the other parameters are fixed and given by

δ = ., μ =



, b =



× 
, β = ., θ =



× 
, ϑ =




,

where these values are related to pertussis disease []. In Figure , the diagram with R =

Rmin, R = , and B =  is plotted. In this figure, we have the following sets:

R
EEP =

{

(φ,σ )|R > 
}

,

R
EEP =

{

(φ,σ )|Rmin < R < ,B > 
}

,

R
EEP =

{

(φ,σ )|R < Rmin < 
}

.

According to Theorem , system () has two endemic equilibrium points in the region

R
EEP and has a unique endemic equilibrium point in the region R

EEP . Moreover, it has a

disease-free equilibrium point in the region R
EEP . Hence, pertussis disease can be con-

tained by choosing appropriate values for σ and φ.

Now, we consider σ = ., φ = ., and N = ,; these values of σ and φ belong to

the set R
EEP in Figure . By directly calculating, it can be shown that the fractional-order

model () have the following endemic equilibrium points:

E∗
 = (., ., .),

E∗
 = (., ., .),

which obtained results are compatible with Theorem  and Figure .

In order to observe the effects that the parameter α has on the dynamics of the

fractional-order model , we include several numerical simulations varying the value of

the parameter. To simulate the fractional-order model (), we apply an Adams-type pre-

dictor corrector method [, ]. This method is well known for numerical solutions of

first-order problems [, ]. For the above parameter values and the following initial val-

ues:

S() = , I() = , R() = , ()
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Figure 3 Size of the susceptible class over time.

The approximate solutions S(t) of system (6) with
initial values (12) for α = 0.65, α = 0.85, α = 0.95,
and α = 1.

Figure 4 Size of the infected class over time. The
approximate solutions I(t) of system (6) with initial
values (12) for α = 0.65, α = 0.85, α = 0.95, and
α = 1.

Figure 5 Size of the recovered class over time.

The approximate solutions R(t) of system (6) with
initial values (12) for α = 0.65, α = 0.85, α = 0.95,
and α = 1.

the numerical simulations S(t), I(t), and R(t) are shown in Figures - for α = ., α =

., α = ., and α = . These figures reveal that a change of the value α affects the

dynamics of epidemic. For example, Figure  shows that for lower values of α, the epidemic

peak is wider and lower. This feature is important from an epidemiological point of view

since its interpretation shows a longer period in which infected individuals can affect the

health system.

According to Theorem , we expect the equilibrium point E∗
 to be unstable for different

values of α. Since ϑ ≥ θ , we envisage that the equilibrium point E∗
 is asymptotically stable

for α > / and α-stable for α ≤ /. Figures - show that themodel presented here grad-

ually approaches the steady state for different values of α but the dynamics of the model

is governed by the distinct paths.
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5 Conclusion

In this paper, we extended the classical SIRmodelwith vaccination to a systemof fractional

ordinary differential equations (FODEs). For our fractional-order model, we determined

the basic reproduction R and proved that if R < , the disease-free equilibrium is lo-

cally asymptotically stable. In the classical SIR model with vaccination, it is shown that R

must be further reduced to less than a threshold value in order to ensure that the disease

exterminates, but this value has not been obtained exactly []. In this work, we analyti-

cally obtained the threshold value of R, denoted by Rmin. Using the values of R and Rmin,

we established the existence conditions of endemic equilibrium points in Theorem . We

proved Theorem  about the stability and α-stability of the endemic equilibrium points

which are introduced in Theorem . Theorem  shows that the stability of endemic equi-

librium points can be controlled by modifying the value of α. In fact, the fractional-order

model can be achieved in the steady state by controlling the parameters which affect the

value of α. Finally, the analytical results are confirmed by some numerical simulations for

real data related to pertussis disease. In Figure , it is shown that pertussis disease can be

contained by choosing appropriate values for σ and φ. The numerical simulations pre-

sented in Figures - are compatible by Theorems  and .
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