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We study the boundedness character and persistence, existence and uniqueness of positive equilibrium, local and global behavior,
and rate of convergence of positive solutions of the following system of exponential di�erence equations: ��+1 = (�1 + �1�−�� +�1�−��−1 )/(�1 + �1	� + 
1	�−1), 	�+1 = (�2 + �2�−�� + �2�−��−1 )/(�2 + �2�� + 
2��−1), where the parameters ��, ��, ��, ��, ��, and 
� for� ∈ {1, 2} and initial conditions �0, �−1, 	0, and	−1 are positive real numbers. Furthermore, by constructing a discrete Lyapunov
function, we obtain the global asymptotic stability of the positive equilibrium. Some numerical examples are given to verify our
theoretical results.

1. Introduction

Many population models are governed by exponential di�er-
ence equations. We refer to [1–6] and the references therein.
Systems of nonlinear di�erence equations of higher-order
are of paramount importance in applications. Such equations
also appear naturally as discrete analogues and as numerical
solutions of systems di�erential and delay di�erential equa-
tions which model diverse phenomena in biology, ecology,
physiology, physics, engineering, and economics. For appli-
cations and basic theory of rational di�erence equations we
refer to [7–9]. In [10–17] applications of di�erence equations
in mathematical biology are given. It is very interesting to
investigate the behavior of solutions of a system of nonlinear
di�erence equations and to discuss the local asymptotic
stability of their equilibrium points.

El-Metwally et al. [1] investigated boundedness charac-
ter, asymptotic behavior, periodicity nature of the positive
solutions, and stability of equilibrium point of the following
population model: ��+1 = � + ���−1�−�� . (1)

Papaschinopoulos et al. [2] studied the boundedness, the
persistence, and the asymptotic behavior of positive solutions

of the following two directional interactive and invasive
species models:��+1 = � + ���−1�−�� , 	�+1 = 
 + 	�−1�−�� . (2)

Papaschinopoulos et al. [3] investigated the asymptotic
behavior of the solutions of the following three systems of
di�erence equations of exponential form:

��+1 = � + ��−��� + 	�−1 , 	�+1 = � + ��−��� + ��−1 ,
��+1 = � + ��−��� + ��−1 , 	�+1 = � + ��−��� + 	�−1 ,
��+1 = � + ��−��� + 	�−1 , 	�+1 = � + ��−��� + ��−1 .

(3)

Recently, Papaschinopoulos and Schinas [4] studied the
asymptotic behavior of the positive solutions of the systems
of the two di�erence equations:��+1 = � + �	�−1�−�� , 	�+1 = 
 + ��−1�−�� ,��+1 = � + �	�−1�−�� , 	�+1 = 
 + ��−1�−�� . (4)
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Motivated by the above study, our aim in this paper is to
investigate the qualitative behavior of positive solutions of the
following system of exponential di�erence equations:

��+1 = �1 + �1�−�� + �1�−��−1�1 + �1	� + 
1	�−1 ,
	�+1 = �2 + �2�−�� + �2�−��−1�2 + �2�� + 
2��−1 ,

(5)

where the parameters ��, ��, ��, ��, ��, and 
� for � ∈ {1, 2}
and initial conditions �0, �−1, 	0, and 	−1 are positive real
numbers.

More precisely, we investigate the boundedness character
and persistence, existence and uniqueness of positive steady
state, local asymptotic stability and global behavior of unique
positive equilibrium point, and rate of convergence of pos-
itive solutions of system (5) which converge to its unique
positive equilibrium point. Some special cases of system (5)
can be treated as population models of two species [3].

2. Main Results

�e following theorem shows that every solution of (5) is
bounded and persists.

�eorem 1. Every positive solution {(��, 	�)} of system (5) is
bounded and persists.

Proof. For any positive solution {(��, 	�)} of system (5), one
has

��+1 ≤ �1 + �1 + �1�1 = �1,
	�+1 ≤ �2 + �2 + �2�2 = �2,

� = 0, 1, 2, . . . .
(6)

Furthermore, from systems (5) and (6) we obtain that

��+1 ≥ �1 + �1�−�1 + �1�−�1�1 + �1�2 + 
1�2 = �1,
	�+1 ≥ �2 + �2�−�2 + �2�−�2�2 + �2�1 + 
2�1 = �2,

� = 2, 3, . . . .
(7)

From (6) and (7), it follows that�1 ≤ �� ≤ �1, �2 ≤ 	� ≤ �2, � = 3, 4, . . . . (8)

Hence, the theorem is proved.

Lemma 2. Let {(��, 	�)} be a positive solution of system (5).
�en, [�1, �1] × [�2, �2] is invariant set for system (5).

Proof. �e proof follows by induction.

2.1. Stability Analysis. Let us consider four-dimensional dis-
crete dynamical system of the form:��+1 = � (��, ��−1, 	�, 	�−1)	�+1 = � (��, ��−1, 	�, 	�−1) , � = 0, 1, . . . , (9)

where � : �2 × �2 → � and � : �2 × �2 → � are continuously
di�erentiable functions and �, � are some intervals of real
numbers. Furthermore, a solution {(��, 	�)}∞�=−1 of system
(9) is uniquely determined by initial conditions (��, 	�) ∈� × � for � ∈ {−1, 0}. Along with system (9) we consider the
corresponding vector map � = (�, ��, �, 	�). An equilibrium
point of (9) is a point (�, 	) that satis�es� = � (�, �, 	, 	) ,	 = � (�, �, 	, 	) . (10)

�e point (�, 	) is also called a �xed point of the vector map�.
De	nition 3. Let (�, 	) be an equilibrium point of the system
(9).

(i) An equilibrium point (�, 	) is said to be stable if for
every � > 0 there exists � > 0 such that for every

initial condition (��, 	�), � ∈ {−1, 0}, if ‖∑0�=−1(��, 	�) −(�, 	)‖ < � implies ‖(��, 	�)− (�, 	)‖ < � for all � > 0,
where ‖ ⋅ ‖ is usual Euclidian norm in R

2.

(ii) An equilibrium point (�, 	) is said to be unstable if it
is not stable.

(iii) An equilibrium point (�, 	) is said to be asymp-
totically stable if there exists " > 0 such that‖∑0�=−1(��, 	�) − (�, 	)‖ < " and (��, 	�) → (�, 	)
as � → ∞.

(iv) An equilibrium point (�, 	) is called global attractor
if (��, 	�) → (�, 	) as � → ∞.

(v) An equilibrium point (�, 	) is called asymptotic
global attractor if it is a global attractor and stable.

De	nition 4. Let (�, 	) be an equilibrium point of a map � =(�, ��, �, 	�), where � and � are continuously di�erentiable
functions at (�, 	). �e linearized system of (9) about the
equilibrium point (�, 	) is$�+1 = � ($�) = ��$�, (11)

where $� = ( ������−1��−1 ) and �� is Jacobian matrix of system (9)

about the equilibrium point (�, 	).
To construct corresponding linearized form of system (5)

we consider the following transformation:(��, 	�, ��−1, 	�−1) '*→ (�, �, �1, �1) , (12)

where � = ��+1, � = 	�+1, �1 = ��, and �1 = 	�. �e
linearized system of (5) about (�, 	) is given by-�+1 = �� (�, 	)-�, (13)
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where -� = ( ������−1��−1 ) and the Jacobian matrix about the �xed

point (�, 	) under transformation (12) is given by

�� (�, 	) = (61 62 63 6471 72 73 741 0 0 00 1 0 0 ) , (14)

where

61 = − �1�−��1 + (�1 + 
1) 	 ,
62 = − �1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	)2 ,
63 = − �1�−��1 + (�1 + 
1) 	 ,
64 = − 
1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	)2 ,
71 = − �2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2) �)2 ,
72 = − �2�−��2 + (�2 + 
2) � ,
73 = − 
2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2) �)2 ,
74 = − �2�−��2 + (�2 + 
2) � .

(15)

Lemma 5 (see [9]). Assume that $�+1 = �($�), � = 0, 1, . . .,
is a system of di
erence equations such that$ is a 	xed point of�. If all eigenvalues of the Jacobian matrix �	 about$ lie inside

the open unit disk |?| < 1, then $ is locally asymptotically

stable. If one of them has a modulus greater than one, then $
is unstable.

�eorem6. System (5) has a unique positive equilibriumpoint(�, 	) ∈ [�1, �1] × [�2, �2], if the following condition is
satis	ed:

�2 + �1 (�2 + 
2) < �2 + (�2 + �2) �−
@ , (16)

where

@ = �1 + �−�1 (�1 + �1) − �1�1�1 (�1 + 
1) . (17)

Proof. Consider the following system of equations:

� = �1 + (�1 + �1) �−��1 + (�1 + 
1) 	 , 	 = �2 + (�2 + �2) �−��2 + (�2 + 
2) � . (18)

From (18), it follows that

	 = �1 + (�1 + �1) �−� − �1�(�1 + 
1) � ,
� = �2 + (�2 + �2) �−� − �2	(�2 + 
2) 	 . (19)

Set

� (�) = �2 + (�2 + �2) �−�(�) − �2� (�)(�2 + 
2) � (�) − �, (20)

where �(�) = (�1 + (�1 + �1)�−� − �1�)/((�1 + 
1)�) and � ∈[�1, �1]. �en, it follows that� (�1) = �1 (�1 + 
1)
× (�2 + (�2 + �2) �−(1+�−�1 (�1+�1)−�1�1)/�1(�1+�1)

−�2 (�1 + �−�1 (�1 + �1) − �1�1)�1 (�1 + 
1) )
× ((�2 + 
2) (�1 + �−�1 (�1 + �1) − �1�1))−1 − �1.

(21)

Furthermore, it is easy to see that(�1 + (�1 + 
1) �2) (�1 + �−�1 (�1 + �1))> �1 (�1 + (�1 + �1) �−�1) . (22)

From (22) it follows that�1 + �−�1 (�1 + �1) − �1�1 > 0. (23)

Let @ = (�1 + �−�1(�1 + �1) − �1�1)/(�1(�1 + 
1)) > 0. �en�(�1) can be expressed as

� (�1) = �2 + (�2 + �2) �−
 − �2@(�2 + 
2)@ − �1. (24)

Suppose that �2 + �1(�2 + 
2) < (�2 + (�2 + �2)�−
)/@; then,
it follows that �(�1) > 0. Furthermore, we have

� (�1) = �1 (�1 + 
1)( (�2 + �2) �(�1+�1)(1−�−�1 )/�1(�1+�1)
+�2 + �2 (�1 + �1) (1 − �−�1)�1 (�1 + 
1) )

× ((�2 + 
2) (�1 + �−�1 (�1 + �1) − �1�1))−1 − �1.
(25)

�en it is easy to see that�1 + �−�1 (�1 + �1) − �1�1 = (�1 + �1) (�−�1 − 1) < 0, (26)
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which gives that �(�1) < 0. Hence, �(�) = 0 has at least one
positive solution in [�1, �1]. Moreover, we obtain that

�� (�) = − 1 − �� (�)(�2 + 
2) � (�)× [�2 + (�2 + 
2) � + (�2 + �2) �−�(�)] , (27)

where

�� (�) = −�1 + (�1 + �1) (1 + �) �−�(�1 + 
1) �2 . (28)

�en, from (28) it follows that �(�1) < �(�) < �(�1) and
using (26) we obtain

�� (�) = − 1 + �1 + (�1 + �1) (1 + �) �−�(�1 + 
1) (�2 + 
2) �2� (�)× [�2 + (�2 + 
2) � + (�2 + �2) �−�(�)]
≤ − 1 + �1 + (�1 + �1) (1 + �) �−�(�1 + 
1) (�2 + 
2) �2� (�1)× [�2 + (�2 + 
2) � + (�2 + �2) �−�(�)] < 0.

(29)

Hence, �(�) = 0 has a unique positive solution in [�1, �1].
�e proof is therefore completed.

�eorem 7. �e unique positive equilibrium point of system
(5) is locally asymptotically stable under the following condi-
tion:

�1�−�1�1 + (�1 + 
1) �2 + (1 + �1�−�1�1 + (�1 + 
1) �2)
× (
2 (�2 + (�2 + �2) �−�2)(�2 + (�2 + 
2) �1)2 + (�2 + �2) �−�2�2 + (�2 + 
2) �1)
+ �2 (�2 + (�2 + �2) �−�2)(�2 + (�2 + 
2) �1)2
× ((�1 + 
1) (�1 + (�1 + �1) �−�1)(�1 + (�1 + 
1) �2)2

+ �1�−�1�1 + (�1 + 
1) �2) < 1.

(30)

Proof. �e characteristic polynomial of Jacobian matrix��(�, 	) about (�, 	) is given by

G (?) = ?4 − (61 + 72) ?3 − (6271 − 6172 + 73 + 74) ?2− ((63 + 64) 71 − (73 + 74) 61) ?.
(31)

Clearly, one root of G(?) is 0. To check the behavior of the

other three roots of G(?), we letΦ(?) = ?3 andΨ(?) = (61 +72)?2+(6271−6172+73+74)?+(63+64)71−(73+74)61.
Assume that (30) holds and |?| = 1; then, one has|Ψ (?)| < JJJJ61 + 72JJJJ + JJJJ6271 − 6172 + 73 + 74JJJJ+ JJJJ(63 + 64) 71 − (73 + 74) 61JJJJ

< �1�−��1 + (�1 + 
1) 	 + (1 + �1�−��1 + (�1 + 
1) 	)
× (
2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2)�)2 + (�2 + �2) �−��2 + (�2 + 
2) �)
+ �2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2) �)2
× ((�1 + 
1) (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	)2

+ �1�−��1 + (�1 + 
1) 	)
< �1�−�1�1 + (�1 + 
1) �2 + (1 + �1�−�1�1 + (�1 + 
1) �2)
× (
2 (�2 + (�2 + �2) �−�2)(�2 + (�2 + 
2)�1)2 + (�2 + �2) �−�2�2 + (�2 + 
2) �1)
+ �2 (�2 + (�2 + �2) �−�2)(�2 + (�2 + 
2) �1)2
× ((�1 + 
1) (�1 + (�1 + �1) �−�1)(�1 + (�1 + 
1) �2)2

+ �1�−�1�1 + (�1 + 
1) �2)< 1.
(32)

�en, by Rouche’s �eorem, Φ(?) and Φ(?) − Ψ(?) have the
same number of zeroes in an open unit disk |?| < 1. Hence, all
the roots of (31) satisfy |?| < 1, and it follows from Lemma 5
that the unique positive equilibriumpoint (�, 	) of the system
(5) is locally asymptotically stable.

�eorem 8. �e unique positive equilibrium point (�, 	) of
system (5) is globally asymptotically stable, if the following
condition is satis	ed:

�1 + (�1 + �1) �−�1 < � (�1 + (�1 + 
1) �2) ,�2 + (�2 + �2) �−�2 < 	 (�2 + (�2 + 
2) �1) . (33)



Discrete Dynamics in Nature and Society 5

Proof. Arguing as in [18], we consider the following discrete
time analogue of Lyapunov function:

K� = �(��� − 1 − ln ��� ) + 	(	�	 − 1 − ln 	�	 ) . (34)

�en nonnegativity ofK� follows from the following inequal-
ity: � − 1 − ln� ≥ 0 ∀� > 0. (35)

Furthermore, we have− ln(��+1�� ) = ln(1 − (1 − ����+1)) ≤ −��+1 − ����+1 ,
− ln(	�+1	� ) = ln(1 − (1 − 	�	�+1)) ≤ −	�+1 − 	�	�+1 . (36)

Assume that (33) holds true; then, it follows thatK�+1 − K� = �(��+1� − 1 − ln ��+1� )
+ 	(	�+1	 − 1 − ln 	�+1	 )
− �(��� − 1 − ln ��� ) − 	(	�	 − 1 − ln 	�	 )≤ (��+1 − ��) + (	�+1 − 	�)
− ���+1 (��+1 − ��) − 		�+1 (	�+1 − 	�)

= (��+1 − ��) (1 − ���+1)
+ (	�+1 − 	�) (1 − 		�+1)≤ (�1 − �1)
× (�1 + (�1 + �1) �−�1 − � (�1 + (�1 + 
1) �2)�1 + (�1 + �1) �−�1 )
+ (�2 − �2)
× (�2 + (�2 + �2) �−�2 − 	 (�2 + (�2 + 
2) �1)�2 + (�2 + �2) �−�2 )

≤ 0
(37)

for all � ≥ 0 so that K� ≥ 0 is monotonically decreasing
sequence. It follows that lim�→∞K� ≥ 0. Hence, we obtain
that

lim�→∞ (K�+1 − K�) = 0. (38)

�en it follows that lim�→∞��+1 = � and lim�→∞	�+1 = 	.
Furthermore, K� ≤ K0 for all � ≥ 0, which gives that (�, 	) ∈[�1, �1]×[�2, �2] is uniformly stable. Hence, unique positive
equilibrium point (�, 	) ∈ [�1, �1] × [�2, �2] of system (5) is
globally asymptotically stable.

2.2. Rate of Convergence. In this sectionwewill determine the
rate of convergence of a solution that converges to the unique
positive equilibrium point of the system (5).

�e following result gives the rate of convergence of
solutions of a system of di�erence equations:$�+1 = (6 + 7 (�))$�, (39)

where$� is anO-dimensional vector,6 ∈ P�×� is a constant
matrix, and 7 : Z+ → P�×� is a matrix function satisfying‖7 (�)‖ *→ 0 (40)

as � → ∞, where ‖ ⋅ ‖ denotes any matrix norm which is
associated with the vector normQQQQ(�, 	)QQQQ = √�2 + 	2. (41)

Proposition 9 ((Perron’s�eorem) [19]). Suppose that condi-
tion (40) holds. If $� is a solution of (39), then either $� = 0
for all large � or

S = lim�→∞(QQQQ$�QQQQ)1/� (42)

exists and is equal to the modulus of one of the eigenvalues of
matrix 6.
Proposition 10 (see [19]). Suppose that condition (40) holds.
If$� is a solution of (39), then either$� = 0 for all large � or

S = lim�→∞

QQQQ$�+1QQQQQQQQ$�QQQQ (43)

exists and is equal to the modulus of one of the eigenvalues of
matrix 6.

Let {(��, 	�)} be any solution of the system (5) such that
lim�→∞�� = � and lim�→∞	� = 	, where � ∈ [�1, �1] and	 ∈ [�2, �2]. To �nd the error terms, one has from the system
(5)��+1 − �

= �1 + �1�−�� + �1�−��−1�1 + �1	� + 
1	�−1 − �1 + (�1 + �1) �−��1 + (�1 + 
1) 	
= �1 (�−�� − �−�)(�1 + �1	� + 
1	�−1) (�� − �) (�� − �)
− �1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	) (�1 + �1	� + 
1	�−1) (	� − 	)
+ �1 (�−��−1 − �−�)(�1 + �1	� + 
1	�−1) (��−1 − �) (��−1 − �)
− 
1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	) (�1 + �1	� + 
1	�−1) (	�−1 − 	) ,
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Figure 1: Plots for the system (50).

	�+1 − 	
= �2 + �2�−�� + �2�−��−1�2 + �2�� + 
2��−1 − �2 + (�2 + �2) �−��2 + (�2 + 
2) �
= �2 (�−�� − �−�)(�2 + �2�� + 
2��−1) (	� − �) (	� − 	)
− �2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2) �) (�2 + �2�� + 
2��−1) (�� − �)
+ �2 (�−��−1 − �−�)(�2 + �2�� + 
2��−1) (	�−1 − 	) (	�−1 − 	)
− 
2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2) �) (�2 + �2�� + 
2��−1) (��−1 − �) .

(44)

Let �1� = �� − � and �2� = 	� − 	; then, one has
�1�+1 = ���1� + ���2� + 
��1�−1 + ��2�−1,�2�+1 = ���1� + ���2� + ℎ��1�−1 + U��2�−1, (45)

where

�� = �1 (�−�� − �−�)(�1 + �1	� + 
1	�−1) (�� − �) ,
�� = − �1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	) (�1 + �1	� + 
1	�−1) ,

� = �1 (�−��−1 − �−�)(�1 + �1	� + 
1	�−1) (��−1 − �) ,
� = − 
1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	) (�1 + �1	� + 
1	�−1) ,
�� = − �2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2) �) (�2 + �2�� + 
2��−1) ,
�� = �2 (�−�� − �−�)(�2 + �2�� + 
2��−1) (	� − �) ,
ℎ� = − 
2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2) �) (�2 + �2�� + 
2��−1) ,
U� = �2 (�−��−1 − �−�)(�2 + �2�� + 
2��−1) (	�−1 − 	) .

(46)
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Figure 2: Plots for the system (51).

Moreover,

lim�→∞�� = − �1�−��1 + (�1 + 
1) 	 = 61,
lim�→∞�� = − �1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1) 	)2 = 62,
lim�→∞
� = − �1�−��1 + (�1 + 
1) 	 = 63,
lim�→∞� = − 
1 (�1 + (�1 + �1) �−�)(�1 + (�1 + 
1)	)2 = 64,
lim�→∞�� = − �2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2)�)2 = 71,
lim�→∞�� = − �2�−��2 + (�2 + 
2) � = 72,
lim�→∞ℎ� = − 
2 (�2 + (�2 + �2) �−�)(�2 + (�2 + 
2)�)2 = 73,
lim�→∞U� = − �2�−��2 + (�2 + 
2) � = 74.

(47)

Now the limiting system of error terms can be written as

[[[[[[[[[

�1�+1�2�+1�1��2�

]]]]]]]]]
= [[[[

61 62 63 6471 72 73 741 0 0 00 1 0 0
]]]]
[[[[[[[[[

�1��2��1�−1�2�−1

]]]]]]]]]
, (48)

which is similar to linearized system of (5) about the
equilibrium point (�, 	).

Using Proposition 9, one has the following result.

�eorem 11. Assume that {(��, 	�)} is a positive solution of the
system (5) such that lim�→∞�� = �, and lim�→∞	� = 	,
where � ∈ [�1, �1] and 	 ∈ [�2, �2]. �en, the error vector

�� = ( �1��2��1�−1
�2�−1

) of every solution of (5) satis	es both of the

following asymptotic relations:

lim�→∞(QQQQ��QQQQ)1/� = JJJJ?1,2,3,4�� (�, 	)JJJJ ,
lim�→∞

QQQQ��+1QQQQQQQQ��QQQQ = JJJJ?1,2,3,4�� (�, 	)JJJJ , (49)

where ?1,2,3,4��(�, 	) are the characteristic roots of Jacobian
matrix ��(�, 	).
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Figure 3: Plots for the system (52).

2.3. Examples. In order to verify our theoretical results and to
support our theoretical discussions, we consider several inter-
esting numerical examples in this section. �ese examples
represent di�erent types of qualitative behavior of solutions
to the system of nonlinear di�erence equations (5). �e �rst
and last examples show that positive equilibrium of system
(5) is unstable with suitable parametric choices. Moreover,
from the remaining examples it is clear that unique positive
equilibrium point of system (5) is globally asymptotically
stable with di�erent parametric values.

Example 1. Let �1 = 6.5, �1 = 8.5, �1 = 12.3, �1 = 1.6, �1 =5.02, 
1 = 1.2, �2 = 3.5, �2 = 5.5, �2 = 1.3, �2 = 0.1, �2 =0.003, and 
2 = 2.2. �en, system (5) can be written as

��+1 = 6.5 + 12.3�−�� + 8.5�−��−11.6 + 1.2	� + 5.02	�−1 ,
	�+1 = 3.5 + 1.3�−�� + 5.5�−��−10.1 + 2.2�� + 0.003��−1 ,

(50)

with initial conditions �−1 = 1.2, �0 = 1.1, 	−1 = 2.1, and	0 = 2.2.
In this case the positive equilibrium point of the system

(50) is unstable. Moreover, in Figure 1 the plot of �� is shown
in Figure 1(a), the plot of 	� is shown in Figure 1(b), and a
phase portrait of the system (50) is shown in Figure 1(c).

Example 2. Let �1 = 1.5, �1 = 7.5, �1 = 13.5, �1 = 2.1, �1 =7.92, 
1 = 0.95, �2 = 4.1, �2 = 7.2, �2 = 16.7, �2 = 0.01,�2 = 0.2, and 
2 = 2.3. �en, system (5) can be written as

��+1 = 1.5 + 7.5�−�� + 13.5�−��−12.1 + 7.92	� + 0.95	�−1 ,
	�+1 = 4.1 + 7.2�−�� + 16.7�−��−10.01 + 0.2�� + 2.3��−1 ,

(51)

with initial conditions �−1 = 0.37, �0 = 0.36, 	−1 = 4.5, and	0 = 4.6.
In this case the unique positive equilibrium point of

the system (51) is given by (�, 	) = (0.370864, 4.62495).
Moreover, in Figure 2 the plot of �� is shown in Figure 2(a),
the plot of 	� is shown in Figure 2(b), and an attractor of the
system (51) is shown in Figure 2(c).

Example 3. Let �1 = 8.98, �1 = 75, �1 = 135, �1 = 21, �1 = 79,
1 = 5, �2 = 41, �2 = 71.9, �2 = 16, �2 = 6, �2 = 2, and
2 = 30.
�en, system (5) can be written as

��+1 = 8.98 + 75�−�� + 135�−��−121 + 79	� + 5	�−1 ,
	�+1 = 41 + 71.9�−�� + 16�−��−16 + 2�� + 30��−1 , (52)
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Figure 4: Plots for the system (53).

with initial conditions �−1 = 0.634, �0 = 0.63, 	−1 = 1.99,
and 	0 = 2.

In this case the unique positive equilibrium point of
the system (52) is given by (�, 	) = (0.634497, 2.00755).
Moreover, in Figure 3 the plot of �� is shown in Figure 3(a),
the plot of 	� is shown in Figure 3(b), and an attractor of the
system (52) is shown in Figure 3(c).

Example 4. Let �1 = 23.8, �1 = 350, �1 = 66, �1 = 55, �1 = 14,
1 = 111, �2 = 66, �2 = 35, �2 = 87, �2 = 1.7, �2 = 80, and
2 = 1.4. �en, system (5) can be written as

��+1 = 23.8 + 350�−�� + 66�−��−155 + 14	� + 111	�−1 ,
	�+1 = 66 + 35�−�� + 87�−��−11.7 + 80�� + 1.4��−1 ,

(53)

with initial conditions �−1 = 0.82, �0 = 0.81, 	−1 = 1.2, and	0 = 1.3.
In this case the unique positive equilibrium point of

the system (53) is given by (�, 	) = (0.883148, 1.33372).
Moreover, in Figure 4 the plot of �� is shown in Figure 4(a),
the plot of 	� is shown in Figure 4(b), and an attractor of
system (53) is shown in Figure 4(c).

Example 5. Let �1 = 8, �1 = 3, �1 = 6, �1 = 0.05, �1 = 4,
1 = 16, �2 = 9, �2 = 17, �2 = 7, �2 = 0.07, �2 = 22, and
2 = 0.2. �en, system (5) can be written as

��+1 = 8 + 3�−�� + 6�−��−10.05 + 4	� + 16	�−1 ,
	�+1 = 9 + 17�−�� + 7�−��−10.07 + 22�� + 0.2��−1 ,

(54)

with initial conditions �−1 = 0.5, �0 = 0.4, 	−1 = 1.2, and	0 = 1.3.
In this case the positive equilibrium point of the system

(54) is unstable. Moreover, in Figure 5 the plot of �� is shown
in Figure 5(a), the plot of 	� is shown in Figure 5(b), and a
phase portrait of system (54) is shown in Figure 5(c).

3. Concluding Remarks

In literature several articles are related to qualitative behavior
of exponential systems of rational di�erence equations. It
is a very interesting mathematical problem to study the
dynamics of such systems because these are closely related to
models in population dynamics and biological sciences. �is
work is related to qualitative behavior of an exponential sys-
tem of second-order rational di�erence equations. We have
investigated the existence and uniqueness of positive steady
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Figure 5: Plots for the system (54).

state of system (5). Under certain parametric conditions the
boundedness and persistence of positive solutions are proved.
Moreover, we have shown that unique positive equilibrium
point of system (5) is locally as well as globally asymptotically
stable. �e main objective of dynamical systems theory is
to predict the global behavior of a system based on the
knowledge of its present state. An approach to this problem
consists of determining the possible global behaviors of the
system and determining which parametric conditions lead
to these long-term behaviors. By constructing a discrete
Lyapunov function, we have obtained the global asymptotic
stability of the positive equilibrium of (5). Furthermore, rate
of convergence of positive solutions of (5) which converge
to its unique positive equilibrium point is demonstrated.
Finally, some illustrative examples are provided to support
our theoretical discussion.
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