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Abstract

There has been increasing interest in continuous-time macroeconomic models. This

research investigates bifurcation phenomena in a continuous-time model of the United

Kingdom. We choose a particularly well-regarded continuous-time macroeconometric

model to assure the empirical and potential policy relevance of our results. In partic-

ular, we use the Bergstrom, Nowman and Wymer continuous-time dynamic macroe-

conometric model of the UK economy. We �nd that bifurcations are important with

this model for understanding the dynamic properties of the system and for determin-

ing which parameters are the most important to those dynamic properties. We have

discovered that both saddle-node bifurcations and Hopf bifurcations indeed exist with

this model within the model's region of plausible parameter settings.

We �nd that the existence of Hopf bifurcations is particularly useful since those bi-

furcations may provide explanations for some cyclical phenomena in the macroeconomy.

We further design numerical algorithms to locate the bifurcation boundaries, which we

display in three dimensional color bifurcation diagrams. A notable and perhaps sur-

prising fact is that both types of bifurcations can coexist with this well-regarded UK

model | in the same neighborhood of the parameter space.

Submitted to SNDE
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1 Introduction

In recent years, there has been increasing interest in using continuous-time models to de-

scribe macroeconomic systems. Continuous-time econometrics has been very important for

dynamic disequilibrium modeling. The speci�cation of econometric models in continuous-

time rather than discrete-time has several advantages such as the characterization of the

interaction between the variables during the unit observation period, more accurate rep-

resentation of the partial adjustment processes in dynamic disequilibrium models, the in-

dependence of the unit of the observation period, and the capability of forecasting the

continuous-time path of the variables. An informative discussion of the advantages is pro-

vided by Bergstrom (1996). Since the development of the �rst continuous-time macroecono-

metric model by Bergstrom and Wymer (1976), there has been a signi�cant growth in the

use of continuous-time econometric methods in macroeconomic modeling. Economy-wide

continuous-time models have been developed for most of the leading industrial countries of

the world, see Bergstrom et al. (1992). The idea is to model a system by a set of di�erential

equations. An important feature of the continuous-time models is that the estimator uses

a discrete model that is satis�ed by the observations generated by the di�erential equation

system irrespective of the observation interval of the sample, so that the properties of the

parameters of the di�erential equation system can be derived from the sampling properties

of the discrete model. A recent survey was given by Bergstrom (1996).

Most research on the continuous-time models focuses on estimation and model building

for various economic systems. Continuous-time economic models have been built, for ex-

ample, for the United Kingdom in Bergstrom and Wymer (1976) and Knight and Wymer

(1978), for the United States in Donaghy (1993), for the Netherlands in Nieuwenhuis (1994),

and for Italy in Tullio (1972) and Gandolfo and Padoan (1990). A complete list is provided

in Bergstrom (1996). With these models available, the next stage of research is naturally per-

formance analysis. It is important to understand the structural properties of the continuous-

time economic models. There are several papers dealing with stability of continuous-time

models. Particularly, Bergstrom et al. (1992) and Donaghy (1993) respectively examine

the stability of the models for the United Kingdom and the United States economies. It

has been noticed that for the estimated parameter values these models are slightly unstable.

Bergstrom et al. (1994) analyzes the e�ect of monetary and �scal feedback controls on the

stability of the UK model and �nds that the controls cannot stabilize the system. They

further obtain a stabilizing controller, though the realizability of the controller is unclear,

based on linear quadratic control theory. Nieuwenhuis and Schoonbeek (1997) investigates

the relationship between the stability of the continuous-time models and the structure of the

matrices appearing in the models. Their results are obtained by analyzing the dominant-

diagonal structures of the matrices. Wymer (1996) suggests the study of singularities and

bifurcations of continuous-time models. Barnett et al. (1996) explores, among other results,

chaotic phenomena in economic systems. While these research activities represent a growing

interest in understanding the continuous-time models, a comprehensive understanding of the

bifurcations and the stability of continuous-time economic models are still unavailable.

This paper describes our recent e�ort in analyzing the continuous-time macroeconometric
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model of the United Kingdom as given in Bergstrom et al. (1992). It is discovered that both

saddle-node bifurcations and Hopf bifurcations indeed exist. Boundaries for saddle-node

bifurcations are obtained. For cases in which analytical formulas of bifurcation boundaries

are not available, a numerical algorithm is provided for �nding the bifurcation boundaries.

The rest of the paper is organized as follows. Section 2 introduces the continuous-time

macroeconometric model. Section 3 presents the linearized model and uses the gradient

method to �nd a set of parameter values under which the system is stable. Section 4 proposes

a numerical algorithm for �nding bifurcation boundaries. Section 5 implements the algorithm

for several special cases to locate explicit bifurcation boundaries. Finally, conclusion remarks

are given and further research directions are discussed in the last section.

2 The Model

We consider the Bergstrom, Nowman and Wymer (1992) continuous-time macroeconometric

model of the United Kingdom. To introduce the model, a set of variables are �rst de�ned.

Endogenous variables

C real private consumption

En real non-oil exports

F real current transfers abroad

I volume of imports

K amount of �xed capital

Ka cumulative net real investment abroad (excluding changes in o�cial reserve)

L employment

M money supply

P real pro�ts, interest and dividends from abroad

p price level

Q real net output

q exchange rate (price of sterling in foreign currency)

r interest rate

w wage rate

Exogenous variables
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dx dummy variable for exchange controls (dx = 1 for 1974-79,

dx = 0 for 1980 onwards)

Eo real oil exports

Gc real government consumption

pf price level in leading foreign industrial countries

pi price of imports (in foreign currency)

rf foreign interest rate

T1 total taxation policy variable ((Q+P )=T1 is real private disposable

income)

T2 indirect taxation policy variable (Q=T2 is real output at factor cost)

t time

Yf real income of leading foreign industrial countries

Then the dynamic behavior of the UK economy is described by the following 14 di�er-

ential equations.

Model

D2 logC = 1(�1 + �2 �D logC)

+2 log

"
�1e

�f�2(r�D log p)+�3D log pg(Q+ P )

T1C

#
(2.1)

D2 logL = 3(�2 �D logL) + 4 log

"
�4e

��1tfQ��6 � �5K
��6g�1=�6

L

#
(2.2)

D2 logK = 3(�1 + �2 �D logK) + 6 log

"
�5(Q=K)1+�6

r � �7D log p+ �8

#
(2.3)

D2 logQ = 7(�1 + �2 �D logQ)

+8 log

"f1� �9(qp=pi)
�10g(C +Gc +DK + En + Eo)

Q

#
(2.4)

D2 log p = 9(D log(w=p)� �1)

+10 log

"
�11�4T2we

��1tf1� �5(Q=K)�6g�(1+�6)=�6

p

#
(2.5)

D2 logw = 11(�1 �D log(w=p)) + 12D log(pi=qp)

+13 log

"
�4e

��1tfQ��6 � �5K
��6g�1=�6

�12e�2t

#
(2.6)
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D2r = �14Dr + 15

"
�13 + rf � �14D log q + �15

p(Q+ P )

M
� r

#
(2.7)

D2 log I = 16(�1 + �2 �D log(piI=qp))

+17 log

"
�9(qp=pi)

�10(C +Gc +DK + En + Eo)

(pi=qp)I

#
(2.8)

D2 logEn = 18(�1 + �2 �D logEn) + 19 log

2
4�16Y �17

f (pf=qp)
�18

En

3
5 (2.9)

D2F = �20DF + 21[�19(Q + P )� F ] (2.10)

D2P = �22DP + 23f[�20 + �21(rf �D log pf)]Ka � Pg (2.11)

D2Ka = �24DKa+25f[�22+�23(rf�r)��24D log q��25dx](Q+P )�Kag (2.12)

D2 logM = 26(�3 �D logM) + 27 log

"
�26e

�3t

M

#

+28D log

"
En+Eo+P�F

(pi=qp)I

#
+ 29 log

"
En+Eo+P�F�DKa

(pi=qp)I

#
(2.13)

D2 log q = 30D log(pf=qp) + 31 log

"
�27pf

qp

#
+ 32D log

"
En + Eo + P � F

(pi=qp)I

#

+33 log

"
En + Eo + P � F �DKa

(pi=qp)I

#
(2.14)

where D is the di�erential operator, Dx = dx=dt, D2x = d2x=dt2, �i; i = 1; 2; :::; 27, j; j =

1; 2; :::; 33, and �k; k = 1; 2; 3, are structural parameters that can be estimated from historical

data. A set of their estimates using quarterly data from 1974 to 1984 are given in Table 2

of Bergstrom et al. (1992). These equations are formulated based on economic theory. The

exact interpretations of these 14 equations are omitted here because they are not needed in

this paper and can be found in Bergstrom et al. (1992).

Equations (2.1)-(2.14) are nonlinear. To study the steady-state behavior, it was assumed

in Bergstrom et al. (1992) that the exogenous variables satisfy the following conditions.

dx = 0

Eo = 0

Gc = g�(Q + P )
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pf = p�fe
�4t

pi = p�i e
�4t

rf = r�f

T1 = T �
1

T2 = T �
2

Yf = Y �
f e

((�1+�2)=�17)t

where g�, p�f , p
�
i , r

�
f , T

�
1
, T �

2
, Y �

f and �4 are constants.

Under the assumption of the exogenous variables, it can be shown that C(t), ..., q(t) in

(2.1)-(2.14) change at constant rates in equilibrium. In what follows, we study the behavior

of the system of di�erential equations (2.1)-(2.14) near equilibria. For this purpose, let the

variables y1(t), y2(t), ..., y14(t) be de�ned as follows:

y1(t) = logfC(t)=C�e(�1+�2)tg

y2(t) = logfL(t)=L�e�2tg

y3(t) = logfK(t)=K�e(�1+�2)tg

y4(t) = logfQ(t)=Q�e(�1+�2)tg

y5(t) = logfp(t)=p�e(�3��1��2)tg

y6(t) = logfw(t)=w�e(�3��2)tg

y7(t) = r(t)� r�

y8(t) = logfI(t)=I�e(�1+�2)tg

y9(t) = logfEn(t)=E
�
ne

(�1+�2)tg

y10(t) = logfF (t)=F �e(�1+�2)tg

y11(t) = logfP (t)=P �e(�1+�2)tg

y12(t) = logfKa(t)=K
�
ae

(�1+�2)tg

y13(t) = logfM(t)=M�e�3tg

y14(t) = logfq(t)=q�e(�1+�2+�4��3)tg
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where C�; L�; K�; Q�; p�; w�; r�; I�; E�
n; F

�; P �; K�
a ;M

�; q� are functions of the vector (�; ; �)

of 63 parameters in equations (2.1)-(2.14) and the additional parameters g�, p�f , p
�
i , r

�
f , T

�
1
,

T �
2
, Y �

f , �4. Then the equilibrium of the system (2.1)-(2.14) corresponds to zero values

of yi(t) = 0; i = 1; 2; :::; 14. The set of equations satis�ed by yi(t); i = 1; 2; :::; 14, can be

obtained from (2.1)-(2.14).

D2y1 = �1Dy1 + 2flog(Q�ey4 + P �ey11)

� log(Q� + P �)� �2y7 + (�2 � �3)Dy5 � y1g (2.15)

D2y2 = �3Dy2 + 4

�
1

�6
log

"
(Q�)��6 � �5(K

�)��6

(Q�)��6e��6y4 � �5(K�)��6e��6y3

#
� y2

�
(2.16)

D2y3 = �5Dy3 + 6

�
(1 + �6)(y4 � y3) + log[r� � �7(�3 � �1 � �2) + �8]

� log[y7 + r� � �7(Dy5 + �3 � �1 � �2) + �8]

�
(2.17)

D2y4 = �7Dy4 + 8

�
log

"
1� �9(q

�p�=p�i )
�10e�10(y5+y14)

1� �9(q�p�=p
�
i )

�10

#

+ log (C�ey1 + g�(Q�ey4 + P �ey11) +K�ey3(Dy3 + �1 + �2) + E�
ne

y9)

� log (C� + g�(Q� + P �) +K�(�1 + �2) + E�
n)� y4

�
(2.18)

D2y5 = 9(Dy6 �Dy5) + 10

�
y6 � y5 �

1 + �6

�6
log

"
1� �5

�
Q�

K�

��6

e�6(y4�y3)
#

+
1 + �6

�6
log

"
1� �5

�
Q�

K�

��6
# �

(2.19)

D2y6 = 11(Dy5 �Dy6)� 12(Dy5 +Dy14) + 13

�
1

�6
log[(Q�)��6 � �5(K

�)��6]

� 1

�6
log[(Q�)��6e��6y4 � �5(K

�)��6e��6y3]

�
(2.20)

D2y7 = �14Dy7+15[[�15
p�ey5(Q�ey4 + P �ey11)

M�ey13
��15

p�(Q� + P �)

M�
��14Dy14�y7](2.21)

D2y8 = 16(Dy5 +Dy14 �Dy8) + 17

�
(1 + �10)(y5 + y14)� y8

+ log[C�ey1 + g�(Q�ey4 + P �ey11) +K�ey3(Dy3 + �1 + �2) + E�
ne

y9 ]
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� log[C� + g�(Q� + P �) +K�(�1 + �2) + E�
n]

�
(2.22)

D2y9 = �18Dy9 � 19f�18(y5 + y14) + y9g (2.23)

D2y10 = �f20+2(�1+�2)gDy10�(Dy10)
2+21�19

�
Q�ey4+P �ey11

F �ey10
� Q�+P �

F �

�
(2.24)

D2y11 = �f22 + 2(�1 + �2)gDy11 � (Dy11)
2

+23f�20 + �21(r
�
f � �4)g

�
K�

ae
y12

P �ey11
� K�

a

P �

�
(2.25)

D2y12 = �f24 + 2(�1 + �2)gDy12 � (Dy12)
2 + 25

�
[�22 + �23(r

�
f � r� � y7)

��24(Dy14 + �1 + �2 + �4 � �3)]
Q�ey4 + P �ey11

K�
ae

y12
� [�22 + �23(r

�
f � r�)

��24(�1 + �2 + �4 � �3)]
Q� + P �

K�
a

�
(2.26)

D2y13 = �26Dy13 � 27y13 + 28

�
E�

ne
y9Dy9 + P �ey11Dy11 � F �ey10Dy10

E�
ne

y9 + P �ey11 � F �ey10

+Dy5 +Dy14 �Dy8

�
+ 29

�
log[E�

ne
y9 + P �ey11 � F �ey10

�K�
ae

y12(Dy12 + �1 + �2)]� log[E�
n + P � � F � �K�

a(�1 + �2)]

+y5 + y14 � y8

�
(2.27)

D2y14 = �30(Dy5 +Dy14)� 31(y5 + y14)

+32

�
E�

ne
y9Dy9 + P �ey11Dy11 � F �ey10Dy10

E�
ne

y9 + P �ey11 � F �ey10
+Dy5 +Dy14 �Dy8

�

+33

�
log[E�

ne
y9 + P �ey11 � F �ey10 �K�

ae
y12(Dy12 + �1 + �2)]

� log[E�
n + P � � F � �K�

a(�1 + �2)] + y5 + y14 � y8

�
(2.28)

Equations (2.15)-(2.28) form an autonomous system with equilibrium 0 for any parameter

values of f�i; j; �kg. System (2.15)-(2.28) might have other equilibria. However, as a �rst

step, we are now focusing on the properties of the trajectories of the system (2.15)-(2.28)

near the equilibrium 0.

8



3 Linearization of Macroeconometric Equations

Consider an ordinary di�erential equation

Dx(t) = f(x(t)) (3.1)

where x 2 Rn is the state vector and the mapping f(:) : Rn ! Rn is continuously dif-

ferentiable (with respect to each argument). Suppose that x� 2 Rn is a constant vector

satisfying

f(x�) = 0:

Then x� is an equilibrium of the system. Let �A be the Jacobian matrix of f(x) evaluated at

x�

�A =
@f(x)

@x
jx=x�:

Then the following linear system

Dy = �Ay (3.2)

is called the linearized system of (3.1) around the equilibrium x�. The advantage of lin-

earization is that the (stability) behavior of trajectories of the nonlinear system (3.1) in a

close neighborhood of the equilibrium x� can be studied through that of its linearization

(3.2). Briey, if all eigenvalues of �A have negative real parts, then (3.1) is stable in the

neighborhood of x�, meaning that all trajectories approach x� as t ! 1 when the initial

state x(0) is su�ciently close to x�. If at least one of the eigenvalues of �A has positive real

part, then (3.1) is unstable in the neighborhood of x�. In this case, there exists an initial

state x(0) (arbitrarily close to x�) for which x(t) does not approach x� as t ! 1. If all

eigenvalues of �A have nonpositive real parts and at least one has zero real part, the stability

of (3.1) usually cannot be determined from the matrix �A. One needs to analyze higher order

terms in order to determine the stability of the system. In most cases, one needs to examine

the system behavior along certain manifold to determine the stability, see Khalil (1992).

Since the concept of stability adopted here is concerned with a close neighborhood of

an equilibrium only, it is referred to local stability. In this paper, we only consider local

stability, particularly the local stability around the equilibrium x� = 0.

In many problems such as the continuous-time macroeconomic system (2.15)-(2.28), the

function f(x), and consequently the coe�cient matrix �A of the corresponding linearized

system (3.2), depend on some parameters. In this case, write (3.2) in the following form

Dy = �A(�)y; (3.3)

where � 2 � is the vector of parameters taking values in the parameter space �. Since �

may change eigenvalues of �A(�), the stability of (3.2) might depend on �.

In systems theory, a bifurcation is said to occur if a system exhibits di�erent structural

properties such as stability when some parameter values are crossed. Bifurcation phenomena
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have been a subject of intensive research in many disciplines, see Guckenheimer and Holmes

(1983). To study possible bifurcation phenomena in the continuous-time macroeconomic

system (2.15)-(2.28), we consider its linearization. The parameter � is chosen to be those

that were estimated from real data:

� = [�1; :::; �27; 1; :::; 33; �1; �2; �3]
0:

So � 2 R63 is a 63-dimensional column vector. The feasible region � is speci�ed by the

bounds of the parameters (see, Table 2 of Bergstrom et al. (1992). It is a bounded region.

The linearized system of (2.15)-(2.28) is

D2y1 = �1Dy1 + 2

�
Q�y4 + P �y11

Q� + P �
� �2y7 + (�2 � �3)Dy5 � y1

�
(3.4)

D2y2 = �3Dy2 + 4

�
(Q�)��6y4 � �5(K

�)��6y3

(Q�)��6 � �5(K�)��6
� y2

�
(3.5)

D2y3 = �5Dy3 + 6

�
(1 + �6)(y4 � y3)�

y7 � �7Dy5

r���7(�3��1��2)+�8

�
(3.6)

D2y4 = ��7Dy4 + 8

�
� y4 �

�9(q
�p�=p�i )

�10

1� �9(q�p�=p
�
i )

�10
�10(y5 + y14)

+
C�y1 + g�(Q�y4 + P �y11) +K�Dy3 +K�(�1 + �2)y3 + E�

ny9

C� + g�(Q� + P �) +K�(�1 + �2) + E�
n

�
(3.7)

D2y5 = 9(Dy6 �Dy5) + 10

�
(1+�6)

�5(Q
�=K�)�6

1��5(Q�=K�)�6
(y4 � y3) + y6 � y5

�
(3.8)

D2y6 = 11(Dy5�Dy6)� 12(Dy5+Dy14) + 13
(Q�)��6y4��5(K�)��6y3

(Q�)��6��5(K�)��6
(3.9)

D2y7 = �14Dy7 + 15

�
� �14Dy14 � y7

+
�15

M�
[(Q� + P �)p�(y5 � y13) + p�(Q�y4 + P �y11)]

�
(3.10)

D2y8 = 16(Dy5 +Dy14 �Dy8) + 17

�
(1 + �10)(y5 + y14)� y8

+
C�y1 + g�(Q�y4 + P �y11) +K�(�1 + �2)y3 +K�Dy3 + E�

ny9

C� + g�(Q� + P �) +K�(�1 + �2) + E�
n

�
(3.11)

D2y9 = �18Dy9 � 19f�18(y5 + y14) + y9g (3.12)
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D2y10 = �[20 + 2(�1 + �2)]Dy10 +
21�19

F �
[Q�(y4 � y10) + P �(y11 � y10)] (3.13)

D2y11 = �[22 + 2(�1 + �2)]Dy11 + 23[�20 + �21(r
�
f � �4)]

K�
a

P �
(y12 � y11) (3.14)

D2y12 = �[24 + 2(�1 + �2)]Dy12 + 25

�
��24

Q�+P �

K�
a

Dy14��23
Q�+P �

K�
a

y7

+[�22+�23(r
�
f�r�)��24(�1+�2+�4��3)]

Q�(y4�y12)+P �(y11�y12)
K�

a

�
(3.15)

D2y13 = �26Dy13 � 27y13

+28

�
E�

nDy9 + P �Dy11 � F �Dy10

E�
n + P � � F �

+Dy5 +Dy14 �Dy8

�

+29

�
E�

ny9+P
�y11�F �y10�K�

a(�1+�2)y12�K�
aDy12

E�
n + P � � F � �K�

a(�1 + �2)
+y5+y14�y8

�
(3.16)

D2y14 = �30(Dy5 +Dy14)� 31(y5 + y14)

+32

�
E�

nDy9 + P �Dy11 � F �Dy10

E�
n + P � � F �

+Dy5 +Dy14 �Dy8

�

+33

�
E�

ny9 + P �y11 � F �y10 �K�
a(�1 + �2)y12 �K�

aDy12

E�
n + P � � F � �K�

a(�1 + �2)
+ y5 + y14 � y8

�
(3.17)

or in matrix form

_x = A(�)x (3.18)

where

x = [y1 Dy1 y2 Dy2 ::: y14 Dy14]
0 2 R28

and A(�) 2 R28�28 is the coe�cient matrix. For the set of estimated values of f�ig, fjg,
and f�kg given in Table 2 of Bergstrom et al. (1992), all the eigenvalues of A(�) are stable

(having negative real parts) except three

s1 = 0:0033; s2 = 0:0090 + 0:0453i; s3 = 0:0090� 0:0453i;

where i =
p�1 is the imaginary unit. However, the real parts of the unstable eigenvalues

are so small that it is unclear whether they are caused by errors in estimation or by the

structural properties of the system itself.

Note that the system (2.15)-(2.28), or the linearized system (3.4)-(3.17), operates in

locally unstable region. We are interested in locating the stable region and the boundary.

Our approach is to �rst �nd a stable sub-region of � and then expand the sub-region to
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�nd its boundary. Such boundary is the bifurcation boundary. To this end, we next �nd

a parameter vector �� 2 � such that (3.18) is stable. From this �� we will �nd the stable

region of � and the boundary of bifurcations. We use the gradient method to �nd a �� such

that all eigenvalues of A(��) have strictly negative real parts.

To �nd such a ��, we consider the following problem of minimizing the maximum real

parts of matrix A(�):

min
�2�

Rmax(A(�)) (3.19)

where

Rmax(A(�)) = max
i
freal(�i) : �1; �2; :::; �28 are eigenvalues of A(�)g:

Since the dimension of A is 28 which is relatively high, it is infeasible to have a closed-form

expression for Rmax(A(�)). We use the gradient method to solve the minimization problem

(3.19).

Consider the following recursive algorithm. Let �0 be the estimated set of parameter

values given in Table 2 of Bergstrom et al. (1992). At step n, n � 0, with �n, let

�n+1 = �n � an
@Rmax(A(�))

@�
j�=�n

where fan; n = 0; 1; 2; :::g is the sequence of (positive) step sizes. After several iterations (20

iterations in this case), the algorithm arrived at the following ��:

�� = [0:9400; 0:2256; 2:3894; 0:2030; 0:2603; 0:1936; 0:1829; 0:0183; 0:2470;

�0:2997; 1:0000; 23:5000;�0:0100; 0:1260; 0:0082; 13:5460; 0:4562;

1:0002; 0:0097; 0:0049; 0:2812;�0:1000; 44:9030; 0:1431; 0:0004;

71:4241; 0:8213; 3:9998; 0:8973; 0:6698; 0:0697; 0:1064; 0:0010;

3:9901; 0:3652; 1:0818; 0:0081; 3:5988; 0:6626; 0:1172; 0:8452;

0:0421; 1:4280; 0:3001; 3:9969; 3:6512; 3:9995; 4:0000; 3:9995;

3:9410; 0:5861; 0:0040; 0:7684; 0:0427; 0:1183; 0:0708; 2:3187;

0:1659; 0:0017; 0:000; 0:0100; 0:0100; 0:0067]:

The corresponding Rmax(A(�
�)) = �0:0039. Therefore, all eigenvalues of A(��) have strictly

negative real parts and the system (3.18) is stable at ��. Starting from this stable point, in

the next section we will �nd the stable region of the parameter space and the bifurcation

boundaries.
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4 Determination of Bifurcation Boundaries

The goal of this section is to �nd bifurcation boundaries. Since the linearized system (3.18)

only determines the local stability of (2.15)-(2.28), we are dealing with local bifurcations, as

opposed to global bifurcations.

The system (2.15)-(2.28) can be written as

Dx = A(�)x + F (x; �) (4.1)

where F (x; �) = O(x2) includes terms of higher orders.

On one hand, we have seen in the previous section that A(�) has three eigenvalues with

strictly positive real parts for the set of parameter values given in Table 2 of Bergstrom et

al. (1992). On the other hand, all eigenvalues of (3.18) have strictly negative real parts for

� = ��. Since eigenvalues are continuous functions of entries of A(�), there must exist at

least one eigenvalue of A(�) with zero real part on the bifurcation boundary. Di�erent types

of bifurcations may occur according to the way unstable eigenvalues are created. Two main

types of bifurcations are considered in this paper: the saddle-node bifurcations and Hopf

bifurcations.

Saddle-node bifurcations

A saddle-node bifurcation occurs when a system has a nonhyperbolic equilibrium with

a geometrically simple zero eigenvalue at the bifurcation point and additional transversality

conditions are satis�ed (given by the Sotomayor's Theorem, see Sotomayor (1973)).

When det(A(�)) = 0, A(�) has at least one zero eigenvalue. If A(�) has exactly one simple

zero eigenvalue (with multiplicity one), under additional technical transversality conditions,

this point corresponds to a saddle-node bifurcation. So the �rst condition we are going to

use to �nd the bifurcation boundary is

det(A(�)) = 0: (4.2)

Note that A(�) is a sparse matrix. Analytical forms of bifurcation boundaries can be

obtained for most parameters. To demonstrate the feasibility of this approach, we consider

�nding the bifurcation boundaries for �2 and �5.

Theorem 1. The bifurcation boundary for �2 and �5 is determined by

1:36�2�5 + 21:78�5 � 2:05�2 � 10:05 = 0: (4.3)

Proof. Denote

A(�) = [ai;j]:

We know from (3.4)-(3.17) that only the following entries of A(�) are functions of �2 and �5.

All other entries do not depend on �2 and �5.

a2;10 = 2(�2 � �3); a2;13 = �2�2;
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a4;5 = �4
(K�)��6�5

(Q�)��6 � (K�)��6�5
; a4;7 = 4

(Q�)��6

(Q�)��6 � (K�)��6�5
;

a10;5 = �10(1 + �6)
�5(Q

�=K�)�6

1� �5(Q�=K�)�6
; a10;7 = 10(1 + �6)

�5(Q
�=K�)�6

1� �5(Q�=K�)�6
;

a12;5 = �13
(K�)��6�5

(Q�)��6 � (K�)��6�5
; a12;7 = 13

(Q�)��6

(Q�)��6 � (K�)��6�5
:

Setting parameter values at �� except for �2 and �5, we obtain from direct calculation that

det(A) = �4:63�1:005�10�15 � 2:05�10�16�2 + 2:178�10�15�5 + 1:36�10�16�2�5

0:48� 0:32�5
:

Hence, (4.3) immediately follows from setting det(A(�)) = 0. 2

The boundary (4.3) is illustrated as the dashed line in Figure 1.

Hopf bifurcations

A Hopf bifurcation occurs at points where the system has a nonhyperbolic equilibrium

connected with a pair of purely imaginary eigenvalues, but non-zero eigenvalues, and addi-

tional transversality conditions are satis�ed, according to the Hopf Theorem, see Gucken-

heimer and Holmes (1983).

Consider the case of det(A(�)) 6= 0 but A(�) has at least one pair of pure imaginary

eigenvalues (with zero real parts and non-zero imaginary parts.) If A(�) has exactly one

such pair, and under some additional transversality conditions, this point corresponds to the

Hopf bifurcation.

To �nd Hopf bifurcation points, let p(s) = det(sI�A(�)) be the characteristic polynomial

of A(�) and express it as

p(s) = c0 + c1s+ c2s
2 + c3s

3 + :::+ cn�1s
n�1 + sn

where n = 28 for the system (3.18). Construct the following (n� 1) by (n� 1) matrix

S =

2
66666666666664

c0 c2 ::: cn�2 1 0 0 ::: 0

0 c0 c2 ::: cn�2 1 0 ::: 0

::: :::

0 0 ::: 0 c0 c2 c4 ::: 1

c1 c3 ::: cn�1 0 0 ::: 0

0 c1 c3 ::: cn�1 0 0 ::: 0

::: :::

0 0 ::: 0 c1 c3 ::: cn�1

3
77777777777775

9>>>>=
>>>>;

n�2

2
rows

9>>>>=
>>>>;

n
2

rows

Let S0 be obtained by deleting rows 1 and n/2 and columns 1 and 2, and let S1 be obtained by

deleting rows 1 and n/2 and columns 1 and 3. Then the following theorem of Guckenheimer
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et al. (1997) gives a condition for A(�) to have exactly one pair of pure imaginary eigenvalues.

Theorem 2. The matrix A(�) has exact one pair of pure imaginary eigenvalues if

det(S) = 0; det(S0) � det(S1) > 0:

If det(S) 6= 0 or if det(S0) � det(S1) < 0, A(�) has no pure imaginary eigenvalues. 2

Therefore, the second condition of bifurcation boundary is

det(S) = 0; det(S0) � det(S1) > 0: (4.4)

We will use (4.4) to �nd candidates of bifurcation boundaries and then check which

segments are the true boundaries.

In principle, the approach outlined in the proof of Theorem 1 can also be applied to

�nd boundaries for Hopf bifurcations. However, in most cases, direct calculation of det(S)

is prohibitive. The following numerical procedure could be used to �nd the bifurcation

boundaries. For the sake of simplicity, we only consider two parameters here, say �1 and �2.

Procedure (P1)

(1) For any �xed �1, we treat �2 as a function of �1 and �nd the �2 satisfying the condition

(4.2), i.e., h(�2) = det(A(�)) = 0. First �nd the number of zeros of h(�2). Starting

with approximations of zeros, use the following gradient algorithm to �nd all zeros of

h(�2).

�2(n+ 1) = �2(n)� anh(�2)j�2=�2(n) (4.5)

where fan; n = 0; 1; 2; :::g is a sequence of positive step sizes.

(2) Repeat the same procedure to �nd all �2 satisfying (4.4).

(3) Plot all the pairs of (�1; �2).

(4) Check all parts of the plot to �nd the segments representing the bifurcation boundaries.

Then, parts of the curves found in (1) are boundaries of saddle-node bifurcations while

parts of the curves found in (2) are boundaries of Hopf bifurcations (if the required

transversality conditions are satis�ed.)

5 Case Studies

In this section, the numericalProcedure (P1) is used to �nd explicit bifurcation boundaries

for several sets of parameters. In order to be able to view the boundaries, we only consider

two or three parameters. The procedure is applicable to any number of parameters.
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Case I: �2 and �5

We �rst �nd the bifurcation boundaries for �2 and �5 for the system (3.18). Assume that

other parameters operate at ��. The result is illustrated in Figure 1 in which the dashed line

is given by det(A(�)) = 0, the solid line is the set of parameter pairs satisfying (4.4). The

shaded area shows the stable region. All other regions give unstable system (3.18). It can

also be seen from Figure 1 that the segment of the dashed line de�ning the stable region is

the boundary of saddle-node bifurcations while the other segment of the same line is not a

bifurcation boundary at all. Similarly, the segment of the solid line de�ning the stable region

is the boundary of Hopf bifurcations, that is, Hopf bifurcations occur when parameter values

cross this line. The other part of the solid line is not a bifurcation boundary. The stability

behavior of (3.18) along the bifurcation boundaries is unclear and is a subject of ongoing

research.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β
2

β 5

Figure 1. Bifurcation boundaries for �2 and �5.

Of particular interest is the cross point of the two bifurcation boundaries which is approx-

imately (�2; �5) = (1:785; 0:566). At this point the coe�cient matrix has three eigenvalues

with zero real parts: s1 = 0:0000; s2 = �0:0000 + 0:0336i; s3 = �0:0000� 0:0336i.

Figures 2-5 illustrate the trajectories of x and phase portraits of (x1; x10; x27) when the

parameters cross the two boundaries.
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(b) (�2; �5) on the saddle-node bifurcation boundary
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(c) (�2; �5) in unstable region after crossing the saddle-node bifurcation boundary

Figure 2. Trajectories when (�2, �5) crossing the saddle-node bifurcation boundary
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(a) (�2; �5) in stable region
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(b) (�2; �5) on the saddle-node bifurcation boundary
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(c) (�2; �5) in unstable region after crossing the saddle-node bifurcation boundary

Figure 3. Phase portrait of (x1; x10; x27) when (�2, �5) crossing the saddle-node bifurcation boundary
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(a) (�2; �5) in stable region

0 100 200 300 400 500 600 700 800
−150

−100

−50

0

50

100

150

t

x

(b) (�2; �5) on the Hopf bifurcation boundary
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(c) (�2; �5) in unstable region after crossing the Hopf bifurcation boundary

Figure 4. Trajectories when (�2, �5) crossing the Hopf bifurcation boundary
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(b) (�2; �5) on the Hopf bifurcation boundary
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(c) (�2; �5) in unstable region after crossing the Hopf bifurcation boundary

Figure 5. Phase portrait of (x1; x10; x27) when (�2, �5) crossing the Hopf bifurcation boundary
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Case II: �2, �5, and �15
We now add the parameter �15 into Case I. Use again Procedure (P1), we �nd the

surface of the bifurcation boundary for �2, �5, and �15 as shown in Figure 6.
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Figure 6. Bifurcation boundary for �2, �5 and �15.

Case III: 8 and �15
In this case, we �nd bifurcation boundaries for parameters 8 and �15. Assume that

other parameters operate at ��. The result is illustrated in Figure 7 in which only Hopf

bifurcations occur. The shaded area shows the stable region.
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Figure 7. Bifurcation boundary for 8 and �15.

Case IV: 8, �15, and �2
In this case, we consider the three dimensional bifurcation boundary for 8, �15, and �2.

Similar to Case III, only Hopf bifurcation occurs for the three parameters. The following

�gure illustrates the boundary viewed from two di�erent directions.
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Figure 8. Bifurcation boundary for 8, �15 and �2.

6 Conclusion

We have found that bifurcations exist within the plausible range of parameter values for the

Bergstrom, Nowman and Wymer continuous-time macroeconometric model, and we have

successfully located and drawn the bifurcation boundaries. A trajectory simulation of the

linearized model for di�erent settings of the parameter values shows that the behavior of

the system is consistent with the prediction of bifurcation theory. We con�rm this �nding

at parameter settings within the stable region, the unstable region, and on the bifurcation

boundary.

This paper reports on the �rst results from an ongoing research project. Based upon our

current results, we now plan to explore further cases of system behavior when the parameters

are set exactly on the bifurcation boundaries. We also plan to investigate whether any of

the parameter settings within the unstable region can support chaos. In short, the current

results are only a �rst step, but are critical as motivation for the future research we now

contemplate.
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