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Stability Analysis of Continuous-Time Switched Systems

With a Random Switching Signal

Junlin Xiong, James Lam, Zhan Shu, and Xuerong Mao

Abstract—This technical note is concerned with the stability analysis of

continuous-time switched systems with a random switching signal. The

switching signal manifests its characteristics with that the dwell time in

each subsystem consists of a fixed part and a random part. The stochastic

stability of such switched systems is studied using a Lyapunov approach. A

necessary and sufficient condition is established in terms of linear matrix

inequalities. The effect of the random switching signal on system stability

is illustrated by a numerical example and the results coincide with our

intuition.

Index Terms—Dwell time, random switching, stochastic stability.

I. INTRODUCTION

Generally speaking, a switched system is a dynamical system that

consists of a finite number of subsystems and a switching signal. The
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subsystems are described by differential equations and are employed

to capture the dominant dynamics of the system in different operation

modes. The switching signal decides which subsystem is being acti-

vated (equivalently, which operation mode the system is working in) at

a particular time. The study on switched systems has attracted a lot of

research attention [1]–[4]. Switched systems have various applications

such as in communication networks [5], aerospace industry [6] and net-

worked control systems [7]–[9]. The readers are referred to [10], [11]

for a general introduction and [12] for a recent review.

A special class of switched systems with a random switching signal

is Markovian jump systems where the switching signal is modeled by

a Markov process [11]. The sliding mode control of Markovian jump

systems has been studied in [13]. The filtering problem has been in-

vestigated in [14]. Some results of Markovian jump systems with time

delays have been reported in [15]. When there are switching proba-

bility uncertainties, the stochastic stability problems have been studied

in [16]–[18] recently.

In this technical note, a new class of random switching signals

is proposed to activate the subsystems of switched systems, and a

necessary and sufficient condition is established for the stochastic

stability analysis. For switched systems with the switching signal

proposed in this technical note, the dwell time in each subsystem

consists of two parts: the fixed dwell time and the random dwell

time. The fixed dwell time plays a similar role as the “dwell time” in

deterministic switched systems [19]; the random dwell time is corre-

sponding to the exponentially distributed “sojourn time” in Markovian

jump systems [20]. With the proposed class of random switching

signals, the switched system can be transformed to a Markovian jump

system with state jumps at the switching time instants. The stochastic

stability problem is then studied using a Lyapunov approach; and a

necessary and sufficient condition is obtained. When the parameters

of the random switching signal are known, the system stability can

be checked by solving a set of coupled linear matrix inequalities.

A numerical example is used to illustrate the effect of the random

switching signals on system stability. The stability regions and insta-

bility regions are numerically determined for different values of the

fixed dwell time parameters. The numerical results demonstrate that:

1) when all the subsystems are stable, fast switching may destabilize

the system, and hence it should be avoided; 2) when both stable and

unstable subsystems are present, dwelling in the stable subsystems

longer can increase the degree of the stability, otherwise the system

will tend to become unstable; and 3) when all the subsystems are

unstable, both fast and slow switching can destabilize the system, the

system stability, however, may sometimes be achieved by choosing

the fixed dwell time parameters properly.

Compared to the previous work in [6], [11], [13]–[18], and [20], the

work in this technical note provides a new and more general view of

switching, and the corresponding stability results. The class of random

switching signals in this technical note allows that a fixed dwell time

can exist for each mode before a Markov switch occurs. Hence, the

systems in this technical note can possibly accommodate more realistic

situations; the results in this technical note should be applicable, in

principle, to all previous cases. Moreover, the results in this technical

note also lay a foundation for novel hybrid controller design, which is

illustrated by the numerical example in Section IV.

Notation: and are, respectively, the -dimensional Eu-

clidean space and the set of real symmetric positive definite

matrices. Notation , where and are real symmetric

matrices, means that the matrix is negative definite. The

superscript “ ” denotes the transpose for vectors or matrices.

0018-9286 © 2013 IEEE
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Fig. 1. Sample path of the random switching signal.

refers to the Euclidean norm for vectors. and are, respec-

tively, the maximum and the minimum singular values of square

matrices. Moreover, let be a complete probability space.

and stand for the expectation and the generated -algebra,

respectively.

II. PROBLEM FORMULATION

Consider a class of switched linear systems defined on a complete

probability space

(1)

where , , is the system state,

is the switching signal deciding the current system

operation mode. Suppose the system switches its operation mode to

at time , the characteristic of the switching signal can

be described as follows. For time , where , no

switching is allowed almost surely; that is

if

if
(2)

where is a small time increment satisfying

. The parameter plays the role of “dwell time” in deterministic

switched systems [19], and is called the fixed dwell time of the system

in (1). For , mode switching occurs according to the mode

transition probabilities given by

if

if
(3)

where if , and if . If the next

switching occurs at time , we can define ,

which is an exponential random variable with parameter

according to (3). To simplify the derivation of the main results, the

system (1) is assumed to have no absorbing mode; that is, for

all . The random variable plays the role of “sojourn time”

in Markovian jump systems [11], [20], and is called the random dwell

time of the system. The dwell time of system (1) in mode is defined

as , indicating the total time length of the

system (1) being in mode . As a result, the time interval can

be correspondingly divided into two parts:

. It can be seen from above that , and

.

Example 1: Let us illustrate the property of the switching signal

with an example. Suppose . A sample path of is

illustrated in Fig. 1. Here, the system changes its mode at time from

Mode 1 to Mode 3. In view of (2), there will be no switching almost

Fig. 2. State trajectory of the switched systems.

Fig. 3. State trajectory of the switched systems with state jumps.

surely during the interval ; the system is allowed to switch

modes after the time and obeys the switching rule in (3).

Definition 1: Let be the state trajectory of system (1). Then

system (1) is said to be stochastically stable if

(4)

for any initial system state and any initial operation mode

.

Remark 1: The above stochastic stability definition is analogous to

that of Markovian jump systems [20]. It is also a uniform stability in the

sense that the inequality (4) is required to be true over all the switching

signals defined by (2)–(3).

III. STABILITY ANALYSIS

The stability property of the system in (1) is studied via two steps.

In Step 1, the stochastic stability of the system in (1) is shown to be

equivalent to the stochastic stability of an auxiliary system. In Step 2,

the stability of the auxiliary system is studied by a Lyapunov approach,

and a necessary and sufficient condition is established.

A. Switched Systems With State Jumps

A switched system with state jumps is the auxiliary system to be

constructed in this section. The stability of the constructed auxiliary

system is shown to be equivalent to that of the system in (1).

Let us first study the state trajectory of system (1) to motivate the

construction of the auxiliary system. A sample path of the state trajec-

tory of system (1) is illustrated in Fig. 2. Suppose the system switches

to mode at time . Then the system state will evolve

from at time to at time

almost surely. The idea here is to squeeze the interval to

a point and make the system in (1) having a state jump from

to at time , as illustrated in Fig. 3, where
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. As a result, the system in (1) can be transformed to a

randomly switched system with state jumps

(5)

where is the system state, , , are the time instants

when the system switches its operation modes.

is the system state just before switches. is a Markovian process

taking values in and equipped with the transition probabilities

if

if
(6)

where are the same as those in (3). The mode transition rate matrix

is denoted by . Suppose that the system (5) jumps

to mode at time , the dwell time of system (5) in mode

is defined as . It follows from (6) that is

an exponentially distributed random variable with parameter . In

other words, has the same distribution as the corresponding random

dwell time in (3). Also, we have that , ,

and .

For the systems in (1) and (5), we define the filtrations

and

for , respectively. Now we are ready to establish the equivalence

of the stability properties between system (1) and system (5).

Lemma 1: The stochastic stability of the system in (1) is equivalent

to the stochastic stability of the system in (5).

Proof: The equivalence is proved based on the following obser-

vation: Given any sample path of the system in (5), there is

a corresponding sample path of the system in (1); and vice

versa. Furthermore, the two sample paths satisfy the following proper-

ties: For :

1) , and .

2) .

3) .

4) for .

The fourth property is a direct result of the first three proper-

ties; that is,

.

Suppose that the system in (1) is stochastically stable, the sta-

bility of the system in (5) follows from:

The second “ ” holds because of the fourth property of the two sample

paths.

Suppose that the system in (5) is stochastically stable. Note that

is an exponential random variable with parameter . In view of

Lemma 2 and Lemma 3 (see Appendix), there exists a real number

such that

(7)

for any and any , where

. The first “ ” holds due to the

property of the process , the first “ ” holds because of

Lemma 2, and the last “ ” holds because of Lemma 3. Now, we have

(8)
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where and

. The last “ ” holds because of (7). Therefore

(9)

Here, the “ ” holds because of (8), and the last “ ” holds because of

the four properties stated in the beginning of the proof.

But, by the property of the conditional expectation, we have

and

Taking the conditional expectation on both sides of (9), we have

Finally, the stability of the system in (5) implies that

Therefore, the system in (1) is stochastically stable.

Remark 2: Lemma 1 still holds if the assumption of no absorbing

mode existing in the system is removed. In this case, the proof is still

valid before the systems enter a absorbing mode. Once the systems

enter a absorbing mode, the subsystem corresponding to the absorbing

mode must be a stable subsystem.

In view of Lemma 1, the study of stability of the system in (1) is

transferred to the stability study of system (5). Since the switching

signal of system (5) is a Markov process, the stability analysis becomes

solvable.

B. Stability Result

In this section, a necessary and sufficient condition is derived for the

stochastic stability analysis of system (1) based upon Lemma 1.

Theorem 1: System (1) is stochastically stable if and only if there

exist matrices , , such that

(10)

for all .

Proof: Suppose that there exist matrices such that

(10) holds for all , we shall show that the system in (5) is stochas-

tically stable. Consider the Lyapunov function

where . It follows from (5) and (6) that

(11)

(12)

(13)

(14)

In (11), is considered as the system state just before the mode

switches. At the switching time, the system state jumps from to

. After the switching, the system state change is given by

.
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Let .

It follows from (11)–(14) that

Therefore, the infinitesimal generator of is given by

(15)

for any , where .

From (15), we obtain

and

for any and any . By Dynkin’s formula [21], we

have

for any and . Therefore, the system in (5) is stochasti-

cally stable, and so is the system in (1) in view of Lemma 1.

According to Lemma 1, the stochastic stability of the system in

(1) implies the stochastic stability of the system in (5). We will show

that there exist matrices such that (10) holds for all .

Let be the state trajectory of the system in (5). Given any ,

and , , define a matrix-valued function

of and such that

(16)

where . The quadratic form on the left side of

(16) is non-decreasing as increases since . It is also bounded

from above as since the system in (5) is stochastically stable.

Thus exists. We can define a new

matrix-valued function of such that

for any and . Therefore, we have

(17)

We have constructed a set of matrices for all

. In the following, we show that are solutions to (10).

It follows from (16) that

(18)

The second “ ” holds because is a Markov process; the

last “ ” follows from the direct calculation of
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TABLE I

SYSTEM DATA OF THREE SWITCHED SYSTEMS

Fig. 4. Case 1: stability region of a switched system composed of two stable

subsystems. The shaded area is the stability region. It shows that slow switching

is recommended in this case.

It follows from (17) that and

. Taking limit on the right

side of (18) as , we have

(19)

Dividing both sides of (19) by and taking limit as , we

have

(20)

Because (20) holds for any and , we have

. This completes the whole proof.

Remark 3: When the fixed dwell time for all ,

Theorem 1 reduces to the well-known stochastic stability result for

Markovian jump linear systems [20]. This is expected as the system

in (5) will reduce to a Markovian jump linear systems if for all

. Actually, the proof of Theorem 1 is inspired by the proof of the

Fig. 5. Case 2: stability region of a switched system composed of a stable sub-

system and an unstable subsystem. The shaded area is the stability region. It

shows that increasing the dwell time in the stable subsystem will stabilize the

system.

Fig. 6. Case 3: stability region of a switched system composed of two unstable

systems. The shaded area is the stability region. It shows that either slow or fast

switching can destabilize the system and that a careful chosen dwell times can

stabilize the system.

stability result for Markovian jump systems. Also, the computational

complexity of Theorem 1 is the same as the stochastic stability result

for Markovian jump linear systems.

IV. ILLUSTRATIVE EXAMPLE

In this section,anumericalexample isused to illustrate theeffectof the

random switching signal on system stability. Some intuitions on system

stability are confirmed by numerical tests. The system data are given in

Table I. In Table I, was chosen deliberately so that we

can focus on the fixed dwell time part. The stability of these systems

was tested for different fixed dwell time values based on Theorem 1.

The stability results are depicted in Fig. 4, Fig. 5 and Fig. 6, respec-

tively, where the shaded areas are the stability regions. In Case 1, the

subsystems are chosen to be stable, the stability test result in Fig. 4

shows that the stability region is a non-convex set and that increasing

the fixed dwell time (either or or both) will stabilize the system.

This result suggests that slow switching is recommended when all the
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subsystems are stable. Case 2 corresponds to the situation where one

subsystem is stable and the other is unstable; here is stable and

unstable; the stability test result in Fig. 5 shows that the stable and

unstable regions divide the first orthant into two semi-infinite parts,

and the boundary between the two regions looks like a straight line.

The result also confirms our expectation: increasing the dwell time in

the stable subsystem will stabilize the system and increasing the dwell

time in the unstable subsystem will destabilize it. In Case 3, the two

subsystems are unstable. The test result in Fig. 6 shows that the sta-

bility region looks like a closed convex set and that both slow and fast

switching will destabilize the system. Therefore, the dwell time needs

to be chosen carefully to make the system stable in this case.

Finally, there are totally six variables in the computations of this

example. The computational complexity is the same as the stability test

for Markovian jump linear systems.

V. CONCLUSIONS

This technical note studied the stability property of randomly

switched systems where the dwell time in each subsystem consists of

a fixed part and a random part. We first showed the stochastic stability

of such systems is equivalent to the stochastic stability of a class

of Markovian jump systems with state jumps at the mode switching

times. Then a necessary and sufficient condition for the system sta-

bility was derived using a stochastic Lyapunov approach. Finally, a

numerical example was used to illustrate the application of the theory,

and the results are consistent with our intuitions. Future research could

be directed to the development of numerical algorithms to find the

stabilizing switching parameters for the switched systems, and to the

stability analysis of randomly switched singular systems, randomly

switched 2D systems, randomly switched time-delay systems.

APPENDIX

We provide two lemmas that are used in the proof of Lemma 1.

Lemma 2: Given a matrix , any vector . Then

there exists a constant , which is independent of , such that

for any . Moreover, given any

, for .

Proof: Let . Then .

Consider the function , we have

Hence for ; that is, .

Therefore,

for any and any .

Lemma 3: Given an exponentially distributed random variable

with parameter , and two real numbers and . Then

.

Proof: The result follows from direct computation. That is
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