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Stability analysis of networked control systems with direct-feedthrough

terms: Part I - The nonlinear case

Navid Noroozi Romain Postoyan Dragan Nešić Stefan H. J. Heijmans W. P. Maurice H. Heemels

Abstract— This paper investigates the stability of nonlinear
networked control systems (NCSs) with dynamic controllers
that possess direct-feedthrough terms (i.e. that are of relative
degree zero). The presence of the direct-feedthrough terms
obstructs the application of existing stability results for NCSs.
Indeed, the uniform global exponential stability (UGES) of
an auxiliary system induced by the plant and the network
protocol needs to be verified. In prior work, this auxiliary
system depends solely on the protocol (and not on the plant
or on the controller) and, consequently, the analysis is simpler.
Checking UGES of this auxiliary system turns out to be non-
trivial when direct-feedthrough terms are present (even for
the simplest protocols). Still, we are able to show UGES of
the auxiliary system for Round-Robin (RR) and Try-Once-
Discard (TOD) network protocols, which, together with other
requirements on the maximum allowable transmission intervals
(MATIs), ensures the stability of the overall system. We also
show that the analysis and proofs can be greatly simplified in
cases when the control inputs are sent over one communication
channel and the plant outputs over a separate channel.

I. INTRODUCTION

Networked control systems (NCSs) are control systems in

which sensor data and control commands are being com-

municated over a wired or wireless communication network,

such as CAN, FlexRay and WirelessHart [1]-[5]. The recent

interest in NCSs is motivated by the many benefits they

offer, such as the ease of maintenance and installation,

configuration flexibility, reduced weight and volume and

lower cost. Moreover, NCSs are applied in a broad range

of systems, such as mobile sensor networks, remote surgery,

automated highway systems and unmanned aerial vehicles.

However, in order to utilise the full potential of this emerging

technology, we need novel design and analysis approaches

that are attuned to the issues arising in this context.
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A popular design approach for NCSs is via the so-called

emulation method, see [6]-[13]. The idea is to first ignore

communication constraints and design a continuous-time

controller for a continuous-time plant. Then, the controller is

implemented via the network and it is shown (under suitable

conditions) that the closed-loop system is stable when the

transmission frequency is sufficiently high, i.e. the maximum

allowable transmission interval (MATI) is sufficiently small.

This approach was shown to work well for a large class of

systems whose scheduling protocols are uniformly globally

exponentially stable (UGES) in an appropriate sense. The

emulation approach enjoys considerable advantages in terms

of its simplicity and applicability to a large class of nonlinear

NCSs. Indeed, any continuous-time design approach can be

used to obtain the controller.

Most existing emulation results on NCSs concentrate on

the stabilization using dynamic controllers without direct-

feedthrough terms, see [7], [8], [12] for example. How-

ever, direct-feedthrough terms are essential to model con-

trollers commonly used in the industry such as proportional-

integral(-derivative) regulators. Considering dynamic con-

trollers with direct-feedthrough terms in general complicates

the analysis as it will be shown in this paper. Some results

exist in the NCSs literature when the channel is only used

to ensure the communication between the sensors and the

controller, or between the controller and the actuators but

not both, see [11] for instance. The main purpose of the

present paper is to consider NCSs with dynamic controllers

that contain direct-feedthrough inputs and for which both

the sensor data and the control input are transmitted over a

network. In particular, we focus on the effect of scheduling

and sampling1. First, we extend the modelling framework

developed in [7]-[10] to cover NCSs with direct-feedthrough

terms. Then, we revisit the notion of uniformly globally

exponentially stable (UGES) scheduling protocols as given

in [7] in order to incorporate direct-feedthrough terms. In

particular, an auxiliary system induced by the plant and

the protocol turns out to be instrumental in the stability

analysis of NCSs designed via emulation; this auxiliary

system depends only on the protocol in the simpler case

of dynamic controllers without direct-feedthrough terms, as

was considered in [7], [8], [9], [12], but this is no longer

true in the NCS setup considered here.

We investigate two cases. In the first case, we assume that

all inputs and outputs are sent over one serial communication

1We foresee that our results can be extended under minor changes to the
case where the transmission delays are not negligible as well as in presence
of quantization errors, in view of [10], [12].



channel and that some nodes may contain both inputs and

outputs. Using a Lyapunov based approach, we show that

the auxiliary system induced by the plant and the protocol is

UGES for Round-Robin (RR) and Try-Once-Discard (TOD)

protocols. In the second case, we assume that there are

two dedicated channels that are respectively used to send

the outputs and the inputs over the network. In this case,

the analysis is greatly simplified since the auxiliary system

induced by the plant and the protocol is a cascaded system.

Once UGES of the auxiliary system induced by the plant

and the protocol is established, we can use stability results

of [7]-[10] to conclude stability of NCSs.

In the companion paper [14], we address the scenario

where the plant and the controller dynamics are linear and

both contain direct-feedthrough terms, which is a source of

additional difficulties, while here we investigate nonlinear

systems but only the controller (or the plant) has direct-

feedthrough terms.

The remainder of this paper is organized as follows.

Section II provides the used notation. The problem is stated

and the model formulation is developed in Section III. The

main results are given in Sections IV-V. Section VI provides

the concluding remarks. All the proofs of our results are

omitted due to space constraints.

II. NOTATION

Let R := (−∞,+∞), R≥0 := [0,+∞), R>0 :=
(0,+∞), Z≥0 := {0, 1, 2, . . .}, Z≤0 := {. . . − 2,−1, 0}
and Z>0 := {1, 2, . . .}. The Euclidean norm of a vector

x ∈ R
n and its 1-norm are respectively denoted |x| and

|x|1. We denote the identity matrix of dimension n ∈
Z>0 by In. A function f : Z≥0 → R

n belongs to ℓ∞ if

sup{|f(i)| : i ∈ Z≥0} is bounded. By convention, for any

m ∈ Z≤0,
∑m

i=1 w(i) = 0 where w : Z>0 → R. The function

θ : Z → {0, 1} is defined by θ(m) := 1 when m ∈ Z>0 and

θ(m) := 0 when m ∈ Z≤0. We write (x, y) to represent

[xT, yT]T for any (x, y) ∈ R
n × R

m.

III. PROBLEM STATEMENT

Consider the nonlinear plant model

ẋp = fp(xp, u)
y = gp(xp),

(1)

where xp ∈ R
np is the plant state, u ∈ R

nu is the

control input and y ∈ R
ny is the plant output. We follow

the emulation approach to design the controller. Hence, we

assume that we know a continuous-time controller, which

stabilizes the origin of system (1) in the absence of network.

We focus on dynamic controllers of the form

ẋc = fc(xc, y)
u = gc(xc, y),

(2)

where xc ∈ R
nc is the controller state. In contrast with e.g.

[7]-[13], the controller output map gc depends on the plant

output y. This direct-feedthrough term appears for standard

dynamic controllers such as the popular linear proportional-

integral(-derivative) controllers. This term prevents the ap-

plication of the results in [7]-[13] because it changes the

protocol equation as we will see later.

Remark 1: The forthcoming results apply mutatis mutan-

dis to the case where the plant (1) has direct-feedthrough

terms but not the controller (2). The presence of direct-

feedthrough terms in both (1) and (2) lead to an algebraic

constraint, which requires particular care as shown in [14]

where linear NCSs are studied. �

Remark 2: Existing results as in [7]-[13] allow for the

controller output map gc to depend on y when the controller

is directly connected to the plant, see Section IX in [7].

When this is not the case, substantial differences arise, which

prevent to apply the results of [7]-[13]. �

We consider the scenario where the plant and the controller

are connected via a digital network that is composed of ℓ ∈
Z>0 nodes. A node corresponds to a collection of sensors

and/or actuators. Let ℓy ∈ Z≥0 denote the number of nodes

which are not associated to any actuators. Similarly, let ℓu ∈
Z≥0 denote the number of nodes which are not associated

to any sensors. Hence ℓu + ℓy ≤ ℓ (there is no equality as a

node may be associated to both sensors and actuators).

The network generates various constraints on the com-

munication of both u and y. In this paper, we concentrate

on the effect due to sampling and scheduling. Transmissions

occur only at some given time instants tj , j ∈ Z≥0, such that

υ ≤ tj+1 − tj ≤ τMATI, where υ ∈ (0, τMATI] and τMATI

respectively represent the minimum time and the maximum

time between any two transmission instants and υ can be

arbitrarily small. Furthermore, at each transmission instant, a

single node is granted access to the network. This selection

is done by the scheduling protocol. As in [7], the overall

system can be modelled by the following impulsive system

ẋp = fp(xp, û) t ∈ [tj , tj+1]
y = gp(xp)
ẋc = fc(xc, ŷ) t ∈ [tj , tj+1]
u = gc(xc, ŷ)
˙̂y = f̂p(xp, xc, ŷ, û) t ∈ [tj , tj+1]
˙̂u = f̂c(xp, xc, ŷ, û) t ∈ [tj , tj+1]

ŷ(t+j ) = y(tj) + hy(j, e(tj))

û(t+j ) = u(tj) + hu(j, e(tj))

(3)

where x := (xp, xc) ∈ R
nx , and û ∈ R

nu and ŷ ∈ R
ny

are, respectively, the vector of the most recently transmitted

controller output value and the vector of the most recently

transmitted plant output value. These two variables are

generated by the holding function f̂p and f̂c between two

successive transmission instants. The use of zero-order-hold

devices leads to f̂p = 0 and f̂c = 0 for instance. The

functions hy and hu model the network protocol that can,

for instance, be RR, TOD, or any other protocol discussed

in [7] and [8]. In addition, e := (ey, eu) ∈ R
ne denotes

the network-induced errors where ey := ŷ − y ∈ R
ny and



eu := û− u ∈ R
nu . It is more convenient to rewrite (3) as

ẋ = f(x, e) (4a)

ė = g(x, e) (4b)

e(t+j ) = h(j, e(tj), x(tj)) (4c)

where f and g are assumed to be continuously differentiable

and are obtained by direct calculations from (3) (cf. [7] for

more details).

Contrary to (14) in [7], the function h not only depends

on (j, e) but also on x in (4c). As seen below, this extension

comes from the fact that gc in (3) depends on ŷ. Let us illus-

trate this point through the RR protocol, which periodically

grants access to each node. Let tj , j ∈ Z≥0, according to

(3),

ey(t
+
j ) = ŷ(t+j )− y(t+j )

= y(tj) + hy(j, e(tj))− y(tj)
= hy(j, e(tj))

eu(t
+
j ) = û(t+j )− u(t+j )

= u(tj) + hu(j, e(tj))− u(t+j )

= hu(j, e(tj)) + gc(xc(tj), ŷ(tj))
−gc(xc(t+j ), ŷ(t+j ))

= hu(j, e(tj)) + gc(xc(tj), y(tj) + ey(tj))
−gc(xc(tj), y(tj) + hy(j, e(tj)))

(5)

where hy(j, e) = (Iny
− ∆y(j))ey and hu(j, e) = (Inu

−
∆u(j))eu with

∆y(j) := diag(δy1
(j)Iny1

, . . . , δyℓ′y
(j)Iny

ℓ′y

) (6)

∆u(j) := diag(δu1
(j)Inu1

, . . . , δuℓ′u
(j)Inu

ℓ′u

). (7)

In (6)-(7), ℓ′y ∈ Z≥0 and ℓ′u ∈ Z≥0 are respectively the

number of nodes associated at least to one sensor and to at

least one actuator (hence ℓ′y ≥ ℓy , ℓ′u ≥ ℓu and ℓ′y + ℓ′u ≥
ℓ), ey = (ey1

, . . . , eyℓ′y
) and eu = (eu1

, . . . , euℓ′u
) (after

reordering, if needed), eyi
∈ R

nyi for i ∈ {1, . . . , ℓ′y},

and eui
∈ R

nui for i ∈ {1, . . . , ℓ′u}, so that ne =
∑

i∈{1,...,ℓ′y} nyi
+

∑

i∈{1,...,ℓ′u} nui
. To define the δ terms

in (6)-(7), we need to number the nodes. We use for that

purpose the mapping π such that π(yi) is the number of the

node associated to yi, for i ∈ {1, . . . , ℓ′y}, and π(ui) is the

number of the node associated to ui, for i ∈ {1, . . . , ℓ′u}. We

consider, for i ∈ {1, . . . , ℓ′y},

δyi
(j) :=

{
1 when j = π(yi)− 1 + ℓk, k ∈ Z≥0

0 otherwise,
(8)

and we similarly define δui
for i ∈ {1, . . . , ℓ′u}.

The dynamics of eu at each transmission involve y and

thus x because of the term gc(xc, y+ey)−gc(xc, y+hy(j, e))
in (5). This is due to the direct-feedthrough term in (2), which

implies that u(t+j ) 6= u(tj) in general2. On the other hand,

the dynamics of ey at each transmission is the same as in

2When the controller is such that u = gc(xc) (as in [7]), u(t+
j
) = u(tj)

and we recover the protocol equation studied in [7].

[7] due to the absence of direct-feedthrough terms in (1). To

be more precise, for the RR protocol,

ey(t
+
j ) =(Iny

−∆y(j))ey(tj) (9a)

eu(t
+
j ) =(Inu

−∆u(j))eu(tj)

+
(

Inu
−∆u(j)

)(

gc(xc(tj), y(tj) + ey(tj))

− gc(xc(tj), y(tj) + (Iny
−∆y(j))ey(tj))

)

(9b)

where the product
(
Inu

−∆u

)
, which multiples gc(xc, y +

ey)− gc(xc, y+(Iny
−∆y)ey), is required to accommodate

transmissions in which a node corresponding to a collection

of both sensors and actuators grants access to the network.

As a result, it is not clear that the stability properties proved

for the RR protocol in [7] are preserved in this case. Going

back to the general case, the fact that h depends on both the

network protocol model, as well as the plant model is in stark

contrast with [7], [8], and introduces significant technical

difficulties in the analysis and is the topic of this paper.

We will consider in this context commonly used protocols,

such as RR, TOD3 protocols and we will also present results

for any other protocols discussed in [7], [8], [10] in the

two channel case. In particular, we focus on the following

stability definition for system (4c) which extends Definition

7 in [7].

Definition 1: The discrete-time system e(j + 1) =
h(j, e(j), x(j)) is UGES with a Lyapunov functional

W : Z≥0 × R
ne × ℓ∞ → R≥0 if there exist a1, a2 ∈ R>0

and ρ ∈ [0, 1) such that for all j ∈ Z≥0, e ∈ R
ne , x ∈ ℓ∞

the following holds

a1 |e| ≤ W (j, e, x) ≤ a2 |e| (10)

W (j + 1, h(j, e, x), x) ≤ ρW (j, e, x). (11)

�

The UGES property is required to combine our results with

those developed in [7]-[13] to guarantee that (4) is uniformly

globally asymptotically stable (UGAS). Particularly, in [7]-

[13], conditions on (4) are provided to ensure asymptotic

properties of the origin when the mapping h only depends on

j and e. The general idea is to assume that (i) the controller

(2) is such that the system ẋ = f(x, e) satisfies a robust

asymptotic stability property with respect to e, (ii) the system

ė = g(x, e) satisfies an exponential growth condition, (iii) the

origin of the system e+ = h(j, e) is UGES or UGAS with

a Lyapunov function(al) W , which is locally Lipschitz in e.

Item (iii) is shown to be verified by RR and TOD protocols

in [7], and other examples are provided in [8], [10], [13].

Then, by selecting τMATI sufficiently small, the stability of

the overall system can be guaranteed. We can apply the same

approach to analyse the stability of system (4). However, it

is no longer clear that the e-system at jumps is still UGES

(or UGAS) when the mapping h depends on x for standard

protocols such as RR and TOD. More generally, if the system

3TOD consists in granting access to the node, which has the largest local
network-induced error; a mathematical definition is given in Section IV-C.



e+ = h(j, e, 0) is UGES (or UGAS), it may be the case that

this property is lost when x 6= 0, which arises when the

controller (or the plant) has direct-feedthrough terms.

The objective of this paper is to provide conditions under

which, if the origin of system e+ = h(j, e, 0) is UGES (or

UGAS), this property is preserved when x 6= 0.

IV. ONE CHANNEL CASE

In this section, we consider the case of networks in which

all nodes are transmitted over one channel and any given

node may contain both inputs and outputs. In particular, we

provide conditions for system (4c) to be UGES. While results

of this paper are applicable to a large class of protocols, for

illustration purposes we will concentrate on a special form of

protocols including two particular examples that have been

studied in [7].

A. UGES of system (4c)

Consider the case where system (4c) can be written as

ey(t
+
j ) =(Iny

−Ψy(e(tj), j))ey(tj) (12a)

eu(t
+
j ) =(Inu

−Ψu(e(tj), j))eu(tj)

+
(

Inu
−Ψu(e(tj), j)

)(

gc(xc(tj), y(tj) + ey(tj))

− gc(xc(tj), y(tj) + (Iny
−Ψy(e(tj), j))ey(tj))

)

,

(12b)

where the protocol is fully defined by the functions

Ψy(e, j) := diag
(

ψy1
(e, j)Iny1

, . . . , ψyℓ′y
(e, j)Iny

ℓ′y

)

(13)

Ψu(e, j) := diag
(

ψu1
(e, j)Inu1

, . . . , ψuℓ′u
(e, j)Inu

ℓ′u

)

(14)

with ψyi
and ψui

are mappings from R
ne × Z≥0 to {0, 1}.

Equations (12a)-(12b) respectively describe the update of ey
and eu at each transmission. Model (12) encompasses RR

and TOD protocol as special cases.

Consider the following auxiliary discrete-time system in-

duced by the plant and the protocol, for j ∈ Z≥0,

ey(j + 1) =
(

Iny
−Ψy(e, j)

)

ey(j) (15a)

eu(j + 1) =
(

Inu
−Ψu(e, j)

)

eu(j)

+
(

Inu
−Ψu(e, j)

)(

gc(xc(j), y(j) + ey(j))

− gc(xc(j), y(j) + (Iny
−Ψy(e, j))ey(j))

)

.

(15b)

We refer to system (15) as the auxiliary discrete-time system

induced by the plant and the protocol (12). For any initial

time j0 ∈ Z≥0, any initial condition e0 ∈ R
n and any input

x ∈ ℓ∞, φ(·, j0, e0, x) denotes the corresponding solution to

(15). As e = (ey, eu), we partition the solution φ into φ :=
(φy, φu), whenever it is convenient. We use the following

assumption.

Assumption 1: There exists Lg > 0 such that

|gc(xc, y1)− gc(xc, y2)|1 ≤ Lg |y1 − y2|1 for all xc ∈ R
nc

and all y1, y2 ∈ R
ny . �

Assumption 1 means that gc is globally Lipschitz in its

second argument uniformly in x. This condition is always

verified by linear systems for instance. The next assump-

tion is that the solutions to (15) converge in (a uniform)

finite-time to the origin. Examples of protocols that satisfy

Assumption 2 are the RR protocol and the TOD protocol,

which is the purpose of Sections IV-B and IV-C.

Assumption 2: There exists j ∈ Z≥0 such that for any

e ∈ R
ne , any x ∈ ℓ∞ and j0 ∈ Z≥0 φ(j, j0, e0, x) = 0 for

all j − j0 ≥ j. �

When Assumptions 1-2 hold, we can construct a Lyapunov

function to prove that system (15) is UGES, using a similar

construction as in the proof of Theorem 1 in [15].

Lemma 1: Let Assumptions 1 and 2 hold. Also, let the

functional W : Z≥0 × R
ne × ℓ∞ → R≥0 be given by

W (j, e, x) =

√
√
√
√

+∞∑

k=j

|φ(k, j, e, x)|2 (16)

for any j ∈ Z≥0, e ∈ R
ne and x ∈ ℓ∞. Then the auxiliary

discrete-time system induced by the protocol (12) is UGES.

In particular, W satisfies Definition 1 with a1 = 1, a2 =√
M and ρ =

√
M−1
M

with M :=
(1+Lg)

j+1√ne
j+1−1

(1+Lg)
√
ne−1 and j

coming from Assumption 2. �

It follows from Lemma 1 that protocol (15) is dead-beat

stable, which is a stronger property than UGES. However,

the UGES property is sufficient for our purposes.

Remark 3: Given the system

ey(j + 1) =
(

Iny
−Ψy(e, j)

)

ey(j) (17a)

eu(j + 1) =
(

Inu
−Ψu(e, j)

)

eu(j) (17b)

is UGES, without consideration of Assumption 2, one can

easily show that there exists sufficiently small Lg > 0 such

that system (15) is UGES, as well. However, such a condition

is not needed for RR and TOD protocols as we show in the

remaining part of this section. �

B. Round-Robin Protocol

For the ease of reference, we rewrite the RR protocol

model (9)

ey(j + 1) =(Iny
−∆y(j))ey(j) (18a)

eu(j + 1) =(Inu
−∆u(j))eu(j)

+
(

Inu
−∆u(j)

)(

gc(xc(j), y(j) + ey(j))

− gc(xc(j), y(j) + (Iny
−∆y(j))ey(j))

)

(18b)

where ∆y(j) := diag(δy1
(j)Iny1

, . . . , δyℓ′y
(j)Iny

ℓ′y

),

∆u(j) := diag(δu1
(j)Inu1

, . . . , δuℓ′u
(j)Inu

ℓ′u

) and the

functions δui
and δyi

are defined in (8). It should be

pointed out that, here, we replace the notation Ψi’s (and



ψi, respectively) with ∆i’s (and δi, respectively) to be as

consistent as possible with the NCSs context.

To establish UGES for system (18), we only need to show

that system (18) satisfies Assumption 2 in view of Lemma

1.

Proposition 1: Under Assumption 1, system (18) verifies

Assumption 2 with j = 2ℓ, where ℓ is the number of nodes.

�

In [7], where no direct-feedthrough term is considered,

the RR protocol is dead-beat stable in ℓ-steps. Here, the

maximal number of steps to reach 0 has doubled, which

will lead to a smaller MATI bound in view of [7], [9]. A

similar observation applies in Section IV-C. The following

lemma concludes this subsection and is a direct consequence

of Proposition 1 and Lemma 1.

Lemma 2: Under Assumption 1, system (18)

is UGES with the Lyapunov functional (16) and

M =
(1+Lg)

2ℓ+1√ne
2ℓ+1−1

(1+Lg)
√
ne−1 . Moreover, the Lyapunov

functional (16) is locally Lipschitz in e uniformly in j and

x. �

C. Try-Once-Discard Protocol

The TOD protocol grants the node whose network-induced

error is the largest access to the network. This gives

ey(j + 1) =
(

Iny
−Ψy(e(j))

)

ey(j) (19a)

eu(j + 1) =
(

Inu
−Ψu(e(j))

)

eu(j)

+
(

Inu
−Ψu(e(j))

)(

gc(xc(j), y(j) + ey(j))

− gc(xc(j), y(j) + (Iny
−Ψy(e(j)))ey(j))

)

,

(19b)

where

Ψy(e) := diag(ψy1
(e)Iny1

, . . . , ψyℓ′y
(e)Iny

ℓ′y

) (20)

Ψu(e) := diag(ψu1
(e)Inu1

, . . . , ψuℓ′u
(e)Inu

ℓ′u

) (21)

with

ψi(e) :=

{
1 when i = min(argmaxk∈{1,...,ℓ} |ek|)
0 otherwise,

(22)

and e = (e1, . . . , eℓ) is the partition of e according to the ℓ

nodes (after reordering, if needed). With the same arguments

as those for the RR protocol, the difference with [7] is the

term gc(xc, y + ey) − gc(xc, y + (Iny
− Ψy(e))ey) 6= 0 on

the right-hand side of (19b).

The next proposition shows that Assumption 2 is verified

by system (19).

Proposition 2: Under Assumption 1, system (19) satisfies

Assumption 2 with4 j = ℓ̃ := ℓ − 1 + (ℓ − ℓu)(ℓu + 1) +

θ(ℓ− ℓu − 2) (ℓ−ℓu−1)(ℓ−ℓu−2)
2 . �

We conclude this subsection with the following result.

4The function θ is defined Section II.

Lemma 3: Under Assumption 1, system (19) is

UGES with the Lyapunov functional (16) with

M =
(1+Lg)

ℓ̃+1√ne
ℓ̃+1−1

(1+Lg)
√
ne−1 with ℓ̃ defined in Proposition 2. �

Remark 4: We have not been able to prove that the

Lyapunov functional in Lemma 3 obtained from Lemma 1

is locally Lipschitz in e, uniformly in j and x. We will work

on this point in future work.

V. TWO CHANNEL CASE

In this section, we consider NCSs, which have two chan-

nels that are respectively dedicated to transmission of y and

u signals. Hence, all nodes in ey are sent over one channel

and all nodes in eu are sent via a different channel. In

other words, there are no nodes in which both inputs and

outputs are included and using our notation from the previous

sections we have that

ℓ = ℓy + ℓu. (23)

Each channel has its own protocol that governs transmissions

of inputs only or outputs only. With this stronger assumption,

we show in this section that it is possible to obtain different

results via proofs and constructions that are simpler than

the general case that was considered in the previous section.

Hence, a slightly higher cost of implementation (i.e. two

channels rather than one channel) simplifies the controller

design and subsequent analysis significantly5

Under our assumptions, the central point in the analysis

is an auxiliary system of the form

ey(j + 1) =
(

Iny
−Ψy(ey, j)

)

ey(j)
︸ ︷︷ ︸

=:hy(i,ey)

(24a)

eu(j + 1) =
(

Inu
−Ψu(eu, j)

)

eu(j)
︸ ︷︷ ︸

=:hu(i,eu)

+
(

Inu
−Ψu(eu, j)

)(

gc(xc(j), y(j) + ey(j))

− gc(xc(j), y(j) + (Iny
−Ψy(ey, j))ey(j))

)

.

(24b)

Note the difference with (15) since Ψy(eu, j) and Ψy(ey, j)
respectively depend on eu and ey rather than on e as it is

the case in (15). This simplifying but reasonable assumption

allows us to consider the system (24) as a cascade consisting

of the ey subsystem and the eu subsystem with inputs ey and

x. The main result of this section is given next.

Lemma 4: Suppose that the following conditions hold.

1) System (24a) is UGES with a Lyapunov function6

Wy : Z≥0 × R
ny → R≥0, which is locally Lipschitz

in its second argument, uniformly in the first one.

5For simplicity, we assume here that transmissions in both channels occur
at the same time and we use the same MATI for both channels. However,
it is possible to further generalise these results to the case when the two
channels are not synchronised in this manner and different MATIs are used,
see [16] for example.

6Wy is a function (and not a functional as in Section IV-A, since it only
depends on j and ey , and not on the input x). The same comment applies
to Wu.



2) System (24b) with x = 0, ey = 0 is UGES with a

Lyapunov function Wu : Z≥0 ×R
nu → R≥0, which is

globally Lipschitz in its second argument, uniformly

in the first one.

3) Assumption 1 holds.

Then, there exists d > 0 such that the system (24) is UGES

with Lyapunov function W (j, e) :=Wy(j, ey)+ dWu(j, eu)
where j ∈ R≥0 and e ∈ R

ne , which is locally Lipschitz in

e, uniformly in j. �

The advantage of the setup in this section is a simplified

analysis that allows us to use known results on UGES

protocols to combine them. Indeed, we note that items 1)

and 2) of Lemma 4 were shown to hold in [7], [10] for a

large class of commonly used protocols, such as the RR and

TOD protocols. Hence, results of this section apply to a range

of situations when either RR or TOD protocols are used for

the output and input channels. Note that we do not have to

use the same protocol for the output and input channels. For

instance, we can use the RR protocol for the output channel

and the TOD protocol for the input channel, or vice versa.

Remark 5: A notion of UGAS protocols was introduced

in [8]. We can rephrase Lemma 4 so that instead of UGES

protocols, we use UGAS protocols for each subsystem. Since

the system (24) is a cascade system, we can use results in

[17] to construct a UGAS Lyapunov function for the system

(24) using UGAS Lyapunov functions for subsystems. In this

case, we would need to appeal to stability results in [8] to

conclude stability of the overall NCSs. �

Remark 6: The simplified analysis of this section can be

applied also to situations when we use one channel for all

inputs and outputs but the protocol is such that it yields a

cascade system in (12) so that the auxiliary system takes the

form as in (24). Note that in this case it is necessary that

no node contains both inputs and outputs, i.e. ℓ = ℓu + ℓy .

This may give rise to new classes of protocols. For instance,

suppose that we use a periodically time-varying protocol

that on different time intervals acts as TOD for all output

nodes and then TOD for all input nodes. This idea can be

used to generate a range of novel protocols that fit within

our analysis framework. This flexibility is very useful since

different protocols perform differently when applied to a

given plant. �

VI. CONCLUSIONS

We have extended the emulation-based controller design

framework for NCSs to systems controlled with dynamic

controllers that contain direct-feedthrough terms. The exist-

ing stability analysis applies to this case once the stability of

the auxiliary system induced by the protocol and the plant

is established. We have provided several results that can be

used in the case of a single channel or two channels setups.
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