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We �rst investigate su�cient and necessary conditions of stability of nonlinear distributed order fractional system and then we
generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of
nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition,
we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical
results.

1. Introduction

�ehistory of fractional calculus is more than three centuries
old, yet only in the past 20 years has the �eld received
much attention and interest. �e reader may refer to [1,
2]. �e generalization of dynamical equations using frac-
tional derivatives proved to be useful and more accurate
in mathematical modeling related to many interdisciplinary
areas. Applications of fractional calculus and fractional-order
dierential equations include dielectric relaxation phenom-
ena in polymeric materials [3], transport of passive tracers
carried by �uid �ow in a porous medium in groundwater
hydrology [4], transport dynamics in systems governed by
anomalous diusion [5, 6], long-time memory in �nancial
time series [7], and so on [8, 9]. Stability analysis and control
systems are two of the most important problems such that, in
1996, Matignon [10] �rstly studied stability of �-dimensional
linear fractional systems from a point of view of control.
Since then, many researchers have completed further studies
on the stability of linear fractional dierential systems [11–
14]. For the nonlinear fractional dierential systems, the
stability analysis is much more di�cult and only a few
are available. Some authors [15, 16] studied the nonlinear
fractional dierential system.

Nonlinear systems are very interesting to engineers,
physicists, and mathematicians because most real physi-
cal systems are inherently nonlinear in nature. Nonlinear

dynamical systems can exhibit completely an unpredictable
behavior, the so-called deterministic chaos. Chaos is an
important dynamical phenomenon that has been extensively
studied and developed by scientists and engineers in the
last decades in various �elds such as physical [17], chemical
[18], and ecological systems [19]. Since chaos is useful and
has potential applications in many technological disciplines,
the discovery and the creation of chaos are important. In
1963, Lorenz found the �rst chaotic attractor in a three-
dimensional autonomous system [20]. Later, several dynam-
ical systems exhibiting chaos have been presented in various
branches of science [21]. For example, in 1999, Chen andUeta

found another simple three-dimensional autonomous sys-
tem, which is not topologically equivalent to Lorenz’s system
and which has a chaotic attractor [22, 23]. Similar to integer-
order chaotic systems, the fractional order chaotic systems
have also interested several researchers. I. Grigorenko and E.
Grigorenko extended the study of this prototypical system to
equations of fractional order but, unfortunately, the results
presented in this paper are not correct [24]. In [25, 26], the
chaotic behavior and its control in the fractional order Chen
system are investigated. Also, chaotic behaviors have been
found in the fractional order systems of Chuna [27], Rossler
[28], Coullet [29],modi�edVan der Pol-Du�ng [30], and Liu
[31]. In addition, the fractional order Chen system has been
studied with time-delay in [32].
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�e idea of fractional derivative of distributed order is
stated by Caputo [33] and later developed by Caputo himself
[34, 35], and Bagley and Torvik [36, 37]. Other researchers
used this idea, and interesting reviews appeared to describe
the related mathematical models of partial fractional dier-
ential equation of distributed order. For example, Diethelm
and Ford [38] used a numerical technique along with its
error analysis to solve the distributed order dierential equa-
tion and analyze the physical phenomena and engineering
problems; see [38] and references therein. Recently Saberi
Naja� et al. [39, 40] studied stability analysis of distributed
order fractional dierential equations with respect to the
nonnegative density function. �e aim of the present work
is twofold. First, we consider the stability of �-dimensional
nonlinear distributed order fractional dierential system
with respect to the nonnegative density function and then
we study the stability of distributed order fractional Chen
system.

�is paper is organized as follows. In the next section,
we recall some basic de�nitions of the Caputo fractional
derivative operator, systems with fractional derivatives of
distributed order. Section 3 contains the main de�nitions
and theorems for checking the stability analysis of dis-
tributed order fractional system. In Section 4, we present
the distributed order fractional Chen system and a�erwards
based on the stability theorem of distributed order fractional
systems, the stability of the distributed order fractional
Chen system is discussed. Finally, the numerical solution to
illustrate the validity of the results is presented in Section 5.

2. Elementary Definitions

In this section, we consider the main de�nitions and proper-
ties of fractional derivative operators of single and distributed
order.

�e dierential and integral operator in fractional calcu-
lus is denoted by ���� , where � and � are the bounds of the
operation and � is the fractional order, which can be rational,
irrational, or even complex. For simplicity and without loss
of generality, in the following, we assume that � = 0 and��� = 0��� . �e continuous integrodierential operator is
de�ned as follows:

��� = {{{{{{{{{{{
����� , � > 0,1, � = 0,∫�
0
(�)−�, � < 0. (1)

�ere are many de�nitions of fractional derivatives of order� > 0 [1, 2], such as Grunwald-Letnikov’s de�nition (GL),
Riemann-Liouville’s de�nition (RL), and Caputo’s fractional
derivative. �e RL de�nition is given as

RL��� � (�) = 1Γ (� − �) ����� ∫�0 (� − )�−�−1� () �, (2)

where � is the �rst integer which is not less than �; that is,� − 1 < � < � and Γ(⋅) is a Gamma function. �e Caputo
fractional derivative of �(�) is de�ned as

���� � (�) = 1Γ (� − �) ∫�0 (� − )�−�−1�(�) () �. (3)

Finally, Grunwald-Letnikov de�nition is given by

GL��� � (�) = lim
ℎ→0

ℎ−�[(�−�)/ℎ]∑
	=0

(−1)	 (��)� (� − �ℎ) . (4)

Fortunately, the Laplace transform of the Caputo fractional
derivative satis�es

L { 
��� � (�)} = ��L {� (�)} − �−1∑
�=0

�(�) (0+) ��−1−�, (5)

where � − 1 < � ≤ � and � is the Laplace variable. �e
Laplace transform of Caputo fractional derivative requires
the knowledge of the initial values of the function and its
integer derivatives of order  = 1, 2, . . . , � − 1. When � ∈(0, 1], is given by

L { 
��� � (�)} = ��L {� (�)} − � (0+) ��−1. (6)

When the fractional calculus operators act on �(�), and we
integrate ���� �(�) with respect to the order, then distributed
order fractional dierential equations can be obtained. In this
brief, the following distributed order fractional dierential
operator notation is adopted:


�(�)� � (�) = ∫�
�−1

" (�) 
��� � (�) ��,� − 1 ≤ � ≤ �, � ∈ N, (7)

where the derivative 
��� is taken to be a fractional derivative
of Caputo type of order � with respect to the nonnegative
density function "(�).

�e idea of distributed order is stated by Caputo [33,
34]. Further the Laplace transform of the Caputo distributed
order satis�es

L { 
�(�)� � (�)} = ∫�
�−1

" (�)
× [��& (�) − �−1∑

�=0
�(�) (0+) ��−1−�]��

= * (�) & (�) − �−1∑
�=0

1��+1* (�) �(�) (0+) ,
(8)

where &(�) is the Laplace transform of �(�) and* (�) = ∫�
�−1

" (�) ����. (9)

A distributed order fractional equations can be de�ned by the
following model:


�(�)� + (�) = � (�, + (�)) ,+ (0) = +0, (10)

where +(�) ∈ R and 
�(�)� +(�) = ∫10 "(�) 
��� +(�)��.
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In [38] the following results about the existence and
uniqueness of solutions for (10) are further presented.

�eorem 1. Let the function " be absolutely integrable on the

interval [0, 1] and satisfy ∫10 "(�)���� ̸= 0 for Re(�) > 0 and� ∈ L
1[0,∞) and + is such that 
��� +(�) < M for � ∈ [0,∞]

for every� ∈ [0, 1]; then initial value problem (10) has a unique
solution.

Furthermore, the above de�nition in one dimension can
naturally be generalized to the case of multiple dimensions;

that is, let 4(�) = (+1(�), +2(�), . . . , +�(�))� ∈ R
� and "(�) =("1(�), "2(�), . . . , "�(�))�, 0 < � < 1. �e �-dimension

distributed order fractional system is described as follows:


�(�)� 4(�) = ∫1
0
" (�) 
���4(�) �� = & (�, 4 (�)) , (11)

where


�(�)� 4 (�)= ( 
�1(�)� +1 (�) , 
�2(�)� +2 (�) , . . . , 
��(�)� +� (�)) ,
& (�, 4 (�)) = (�1 (�, +1 (�) , +2 (�) , . . . , +� (�))�2 (�, +1 (�) , +2 (�) , . . . , +� (�))

...�� (�, +1 (�) , +2 (�) , . . . , +� (�))) . (12)

�e result of�eorem 1 can be easily generalized to the initial
value problem of (11).

3. Stability Analysis of Distributed Order
Fractional Systems

In this section, we generalize the main stability properties for
systems of distributed order fractional.�e linear distributed
order fractional systems are expressed as


�(�)� 4(�) = 94 (�) ,4 (0) = 40, (13)

where 4(�) = (+1(�), +2(�), . . . , +�(�))� ∈ R
�, the matrix 9 ∈

R
�×�, and "(�) = ("1(�), "2(�), . . . , "�(�))�, 0 < � < 1. �en

Saberi Naja� et al. [39] have obtained the general solution of
the distributed order fractional systems (13), which is written
by4(�)
= 4 (0) + 1; ∫�

0
∫∞
0

∫∞
0

?−��+��−� cos(��)× sin (@ sin (;A)) sin94 (0) �B���,
(14)

where *(�) = @ cos(;A) + �@ sin(;A), @ = |*(�)|, A = (1/;) arg[*(�)], and B = ?	�.

Now, we will recall some theorems and de�nitions about
linear distributed order fractional equations and then we will
show this theorem for nonlinear distributed order fractional
equations as well.

�eorem 2 (see [39]). �e distributed order fractional system
of (13) is asymptotically stable if and only if all roots of�?�(*(�)D − 9) = 0 have negative real parts.
De�nition 3 (see [39]). �e value of det(*(�)D − 9) = 0 is
the characteristic function of the matrix 9 with respect to

the distributed function *(�), where *(�) = ∫10 "(�)���� is

the distributed function with respect to the density function"(�) ≥ 0.
�e inertia of a matrix is the triplet of the numbers of

eigenvalues of 9 with positive, negative, and zero real parts.
As pointed out in [39], authors have generalized the inertia
concept for analyzing the stability of linear distributed order
fractional systems.

De�nition 4. �e inertia of the system (13) is the tripleD��(�) (9) = (;�(�) (9) , F�(�) (9) , G�(�) (9)) , (15)

where ;�(�)(9), F�(�)(9), and G�(�)(9) are, respectively, the
number of roots of det(*(�)D−9) = 0with positive, negative,
and zero real parts, where *(�) = (*1(�), *2(�), . . . , *�(�))� is
the distributed function with respect to the density function"(�) = ("1(�), "2(�), . . . , "�(�))�.
�eorem 5 (see [39]). �e linear distributed order fractional
system (13) is asymptotically stable if and only if any of the
following equivalent conditions holds:

(1) ;��(�)(9) = G��(�)(9) = 0,
(2) all roots � of the characteristic function of9with respect

to *(�) = (*1(�), *2(�), . . . , *�(�))� satisfy |�BH(�)| >;/2.
Next, we will mainly discuss the stability of a nonlinear

autonomous distributed order fractional system, which can
be described by


�(�)� 4 (�) = & (4 (�)) , (16)

with the initial value4(0) = 40, where
& (4 (�)) = (�1 (+1 (�) , +2 (�) , . . . , +� (�))�2 (+1 (�) , +2 (�) , . . . , +� (�))

...�� (+1 (�) , +2 (�) , . . . , +� (�))) , (17)

4(�) = (+1(�), +2(�), . . . , +�(�))� ∈ R
�, and "(�) = ("1(�),"2(�), . . . , "�(�))�, 0 < � < 1.

�eorem 6. Let 4̂ = (+̂1, +̂2, . . . , +̂�)� be the equilibrium of

system (16); that is, 
�(�)� 4̂ = &(4̂) = 0 and J = (K&/K4)|�=�̂ is the Jacobian matrix at the point 4̂; then the point4̂ is asymptotically stable if and only if all roots � of the
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Figure 1: Chaotic attractor of the integer-order Chen system (21) with (�, ", L) = (35, 3, 28).
characteristic function of J with respect to *(�) = (*1(�),*2(�), . . . , *�(�))� satisfy |�BH(�)| > ;/2.
Proof. Let P(�) = 4(�)−4̂, where P(�) = (P1(�), P2(�), . . . , P�(�))
is a small disturbance from a �xed point. �erefore


�(�)� P (�) = 
�(�)� (4 (�) − 4̂) , (18)

since 
�(�)� (4(�)−4̂) = 
�(�)� 4(�)− 
�(�)� 4̂ and 
�(�)� 4̂ =0; thus, we have

�(�)� P (�) = 
�(�)� 4 (�) = & (4 (�)) = & (P (�) + 4̂)

= & (4̂) + JP (�) + higher order terms ≈ JP (�) .
(19)
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Table 1: Stability analysis of system (22) for various density functions."	(�) = G(� − T	) � = 1, 2, 3 "	(�) = G(� − T1	) + G(� − T2	) � = 1, 2, 3
(�, ", L) T = (T1, T2, T3) D��(�) (J) (�, ", L) (T11, T12)(T21, T22)(T31, T32) D��(�) (J)
(35, 6, 11) (0.95, 0.9, 0.9) +̂1 W→ (0, 2, 0)+̂2 = +̂3 W→ (1, 2, 0) (35, 3, 29) (0.85, 0.3)(0.65, 0.3)(0.95, 0.3) +̂1 W→ (1, 0, 0)+̂2 = +̂3 W→ (2, 0, 0)
(30, 3, 28) (0.7, 0.8, 0.9) +̂1 W→ (1, 0, 0)+̂2 W→ (0, 2, 0) (35, 3, 28) (0.95, 0.1)(0.95, 0.1)(0.95, 0.1) +̂1 W→ (1, 0, 0)+̂2 = +̂3 W→ (20, 18, 0)
(35, 3, 28) (0.85, 0.9, 0.95) +̂1 W→ (1, 0, 0)+̂2 = +̂3 W→ (2, 0, 0) (50, 3, 20) (0.25, 0.85)(0.25, 0.95)(0.25, 0.75) +̂1 W→ (0, 4, 0)+̂2+̂3 W→ (1, 0, 0)
System (18) can be written as


�(�)� P (�) ≈ JP (�) , (20)

with the initial value P(0) = 40 − 4̂.
�e analytical procedure of linearization is based on the

fact that if the matrix J has no purely imaginary eigenvalues,
then the trajectories of the nonlinear system in the neigh-
borhood of the equilibrium point have the same form as
the trajectories of the linear system [41]. Hence, by applying
�eorem 2, the linear system (20) is asymptotically stable if
and only if all roots � of the characteristic function of J with

respect to *(�) = (*1(�), *2(�), . . . , *�(�))� satisfy | arg(�)| >;/2, which implies that the equilibrium 4̂ of the nonlinear
distributed order fractional system (16) is as asymptotically
stable.

Remark 7. �e nonlinear distributed order fractional system

(16) in the point 4̂ is asymptotically stable if and only if;��(�)(\) = G��(�)(\) = 0.
4. Distributed Order Fractional Chen System

�e Chen system is described by the following nonlinear

dierential equations on R
3 [22, 23]:+̇ (�) = � (_ (�) − + (�)) ,̇_ (�) = (L − �) + (�) − + (�) ` (�) + L_ (�) ,̇̀ (�) = + (�) _ (�) − "` (�) , (21)

where +, _, and ` are the state variables and �, ", and L
are three system parameters. �e above system has a chaotic
attractor when � = 35, " = 3, and L = 28 as shown in Figure 1.
�e corresponding distributed order fractional Chen system
(21) can be written in the form

�1(�)� + (�) = � (_ (�) − + (�)) ,

�2(�)� _ (�) = (L − �) + (�) − + (�) ` (�) + L_ (�) ,

�3(�)� ` (�) = + (�) _ (�) − "` (�) , (22)

where "	(�) for � = 1, 2, 3 denote the nonnegative density
function of order � ∈ (0, 1]. As a generalization of nonlinear
fractional order dierential equation into nonlinear dis-
tributed order fractional dierential equation, the linearized
form of the system (22) at the equilibrium points +̂1 =(0, 0, 0), +̂2 = (√"(2L − �), √"(2L − �), 2L − �), and +̂3 =(−√"(2L − �), −√"(2L − �), 2L − �), that is, 
�1(�)� +̂(�) =&(+̂) = 0, can be written in the form


�(�)� 4 (�) = J4 (�) , (23)

where 4(�) = (+(�), _(�), `(�))�, "(�) = ("1(�), "2(�), "3(�))�,0 < � ≤ 1, and J = (K&/K4)|�=�̂� for � = 1, 2, 3. �e Jacobian
matrix of distributed order fractional Chen system (22) at the
equilibrium point4∗ = (+∗, _∗, `∗) is given by

J = [[
−� � 0L − � − `∗ L −+∗_∗ +∗ −" ]] . (24)

Remark 8. If "	(�) = G(� − T	), where 0 < T	 ≤ 1 for � = 1, 2, 3
and G(�) is the Dirac delta function, then, we have the follow-
ing fractional incommensurate-order Chen system [25]:


��1� + (�) = � (_ (�) − + (�)) ,

��2� _ (�) = (L − �) + (�) − + (�) ` (�) + L_ (�) ,

��3� ` (�) = + (�) _ (�) − "` (�) . (25)

Based upon �eorem 6, the stability of the distributed
order fractional Chen system can be reached with ease. For
analyzing the stability of the distributed order fractional
Chen system, we compute D��(�)(J) in the case that the density
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Figure 2: �e equilibrium point +̂1 of the distributed order fractional Chen system (22) with (T1, T2, T3) = (0.95, 0.9, 0.9) and (�, ", L) =(35, 6, 11) is asymptotically stable.

function varies. �e results are shown in Table 1 for some
parameters �, ", and L.
5. Numerical Methods

As pointed out in [38], distributed order fractional dieren-
tial equations may be regarded as a generalization of single-
term fractional dierential equations


��� + (�) = � (�, + (�)) (26)

or multiterm fractional dierential equations
�∑
	=1
A	 
���� + (�) = � (�, + (�)) , 0 < �1 < �2 < ⋅ ⋅ ⋅ < ��. (27)

�erefore, in this section, numerical method to solving of
(26) and (27) is presented. �e approximate Grunwald-
Letnikov’s de�nition is given below, where the step size of ℎ
is assumed to be very small [2, 42, 43]


����_ (�) ≈ ℎ−� �∑
	=0
L(�)	 _ (��−	) , (28)
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Figure 3: �e equilibrium point +̂2 of the distributed order fractional Chen system (22) with (T1, T2, T3) = (0.7, 0.8, 0.9) and (�, ", L) =(30, 3, 28) is asymptotically stable.

where �� =  ℎ ( = 0, 1, . . .) and L(�)	 (� = 0, 1, . . .) are
binomial coe�cients, which can be computed as [43]L(�)0 = 1, L(�)	 = (1 − 1 + �� ) L(�)	−1 . (29)

�en, general numerical solution of (26) and (27) can be
expressed as

ℎ−� �∑
	=0
L(�)	 + (��−	) = � (�, + (�)) ,

A1ℎ−�1 �∑
	=0
L(�1)	 + (��−	) + ⋅ ⋅ ⋅ + A�ℎ−�� �∑

	=0
L(��)	 + (��−	)= � (�, + (�)) ,

(30)

where L(��)	 for � = 1, . . . , � are binomial coe�cients calculated
according to (29). Equations in (30) can be rewritten as the
following forms:
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Figure 4: Chaotic attractor of the distributed order fractional Chen system (22) with (T1, T2, T3) = (0.85, 0.9, 0.95) and (�, ", L) = (35, 3, 28).
+ (��) = � (+ (��−1) , ��−1) ℎ� − �∑

	=1
L(�)	 + (��−	) ,+ (��)= 1∑��=1 ��ℎ−��× [[� (+ (��−1) , ��−1) − �∑

�=1
A�ℎ−�� �∑

	=1
L(��)	 + (��−	)]] .

(31)

Based on the previous algorithm,we can obtain the numerical
solution of the fractional dierential equations (26) and
multiterm fractional dierential equations (27), where  =1, 2, . . . , i for i = j/ℎ and where j is the total time of the
calculation.

To verify the e�ciency of the obtained results in Table 1,
the numerical solution for the distributed order fractional
Chen system has been computed. In the following calcula-
tions, let j = 10, ℎ = 0.005 with the initial conditions(0.2, −0.5, 0.2).
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Figure 5: Chaotic attractor of the distributed order fractional Chen system (22) with (T11, T12, T21, T22, T31, T32) = (0.85, 0.3, 0.85, 0.3, 0.85, 0.3)
and (�, ", L) = (35, 3, 29).

Figure 2 shows that the system (22) with parameters(�, ", L) = (35, 6, 11) and (T1, T2, T3) = (0.95, 0.9, 0.9) is
asymptotically stable in the equilibrium +̂1. Figure 3 dem-
onstrates that the system (22) with parameters (�, ", L) =(30, 3, 28) and (T1, T2, T3) = (0.7, 0.8, 0.9) is asymptotically
stable in the equilibrium +̂2. From Figure 4, we can see that

for the distributed order Chen system (21) with parameters(�, ", L) = (35, 3, 28) and (T1, T2, T3) = (0.85, 0.9, 0.95)
is chaotic. Figure 5 demonstrates that the system (22)
with parameters (�, ", L) = (35, 3, 29) and (T11, T12, T21,T22, T31, T32) = (0.85, 0.3, 0.85, 0.3, 0.85, 0.3) has chaotic
attractor. Figure 6 shows the chaotic attractor for the
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Figure 6: Chaotic attractor of the distributed order fractional Chen system (22) with (T11, T12, T21, T22, T31, T32) = (0.95, 0.1, 0.95, 0.1, 0.95, 0.1)
and (�, ", L) = (35, 3, 28).
distributed order Chen system (22) for parameters(�, ", L) = (35, 3, 28) and (T11, T12, T21, T22, T31, T32) =(0.95, 0.1, 0.95, 0.1, 0.95, 0.1). From Figure 7, we can
see that the system (22) is asymptotically stable in the
equilibrium +̂1 with parameters (�, ", L) = (50, 3, 20)
and (T11, T12, T21, T22, T31, T32) = (0.25, 0.85, 0.25, 0.95,0.25, 0.75).

6. Conclusion

In this paper, we introduced the nonlinear distributed order
fractional dierential equations with respect to a nonnegative
density function; hence the asymptotical stability for such
systems has been investigated. In addition, we presented the
distributed order fractional Chen system and then in two
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Figure 7: �e equilibrium point +̂1 of the distributed order fractional Chen system (22) with (T11, T12, T21, T22, T31, T32) = (0.25, 0.85, 0.25,
0.95, 0.25, 0.75) and (�, ", L) = (50, 3, 20) is asymptotically stable.

special cases the stability for the distributed order fractional
Chen is discussed. Numerical solutions were coincident with
results of Table 1 described in Section 4. All numerical results
are obtained using MATLAB 7.8.
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