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Abstract— Droop techniques are widely used in distributed
generation systems for the control of parallel inverters oper-
ating in grid-connected and islanded modes. Droop controllers
without communication among the units are based on local
measurements of active and reactive powers and usually allow
the synchronization of the inverters to the common bus. On the
other hand, instabilities can also occur. This paper investigates
the stability of grid-connected droop controlled inverters by
tackling the problem with a large signal perspective. A dynamic
phasor model represented in a reference frame synchronous
with the inverter voltage is proposed. The contraction theory
applied to the model allows to determine an estimate of the
domain of attraction of the stable equilibrium point. Simulation
results demonstrate the effectiveness of the proposed analysis.

I. INTRODUCTION

Modularity and flexibility are fundamental features for
modern power (micro)grids which consist of a continuously
increasing number and variety of different and distributed
power sources and loads. In order to satisfy these properties
the droop technique is a widely used control strategy for
parallel inverters which connect the distributed generation
units to the common bus.

The droop control technique has been proposed more
than twenty years ago [1], and due to the recent growing
interest on distributed generation systems it has received a
renewed attention from the power systems and electronics
engineering researchers. By restricting the state of the art to
grid-connected topologies, good overviews on the topic can
be found in [2], [3], [4], [5] and by consulting the references
therein. On the other hand the control systems community
has dedicated little efforts for a more theoretically rigorous
analysis of the interesting issues related to the control
and stability of distributed generation systems with droop
control. At the best of our knowledge, within the major
control journals and conferences, the only paper specifically
dedicated to the topic is [6]. The major difficulty for the
analysis of droop controlled inverters without communication
among the different units, is due to the typical constraint that
only “local” measurements are available. In that scenario
it is fundamental to design a controller which allows the
inverter synchronization with the grid. Indeed the synchro-
nization underlies the proper power/load–sharing capabilities
of droop controlled inverters [7]. The synchronization of
grid-connected inverters is strictly related to the equilibrium
point(s) stability of the dynamic system under droop control.
The stability, so as the dynamic and steady state performance,
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of droop controlled inverters is significantly influenced by
the line impedance and by the controller parameters [8], [9],
[10]. The stability under droop control is typically analyzed
in the literature by considering the eigenvalues of small
signal linearized models with powers as state variables, see
among others [11], [4], [12]. Dynamic phasor models [13]
have been used in [14], [15] as the base models for the
stability analysis on the corresponding linearized systems.
Unfortunately the small signal approximation is often not
satisfied in practice. The typically wide operating conditions
of distributed generation systems motivate a more detailed
stability analysis possibly valid also for large signals. This
paper proposes a technique for the estimation of the do-
main of attraction of the stable equilibrium point for grid-
connected droop controlled inverters, by using as method-
ological ingredients dynamic phasor models [16], singular
perturbations [17] and contraction theory [18].

The rest of the paper is organized as follows. In Section II
some preliminary definitions and concepts of droop control
and dynamic phasors are presented. The dynamic phasor
framework allows to write the closed loop dynamic model in
a closed form. In Section III the contraction theory applied to
that model allows to estimate the domain of attraction of the
stable equilibrium point. Section IV presents some insights
for the extension of the proposed analysis to the case of
multiple inverters in islanded configuration. The numerical
results reported in Section V demonstrate the effectiveness
of the proposed analysis. Section VI concludes the paper.

II. DYNAMIC PHASOR MODEL UNDER DROOP CONTROL

An equivalent circuit representing H grid-connected in-
verters is shown in Fig. 1. The voltage generated by the
h-th inverter is uh with h = 1, . . . ,H . The grid is modeled
as an ideal sinusoidal voltage source v. The h-th inverter
is connected to the grid through an equivalent resistive
(Rh) and inductive (Lh) impedance, which can also include
the virtual impedances generated by the inner loops of the
inverter controller. The equivalent scheme can be used for
the analysis of both single phase and three phase droop
controlled inverters. Since the grid is modeled as an ideal
voltage source, the entire model can be separated into H
decoupled submodels. Therefore for notational simplicity in
the sequel the subscript ‘h’ will be omitted.

By applying the Kirchhoff Voltage Law to the h-th loop
of the circuit in Fig. 1 the corresponding dynamic model can
be written as

L
d

dt
i = −Ri+ u− v. (1)
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Fig. 1. Equivalent electrical circuit of H grid-connected parallel inverters.

where i is the current and the time dependence of i, u
and v have been omitted. The model (1) is linear and
time invariant with measurable state variable. Therefore from
the system theory perspective the control and the stability
analysis of such a system is a trivial problem. On the
other hand the model becomes significant for the problem
under investigation because, in spite of its simplicity and by
means of its correspondent dynamic phasor representation,
it allows to develop a stability analysis for the power system
with inverter subject to the nonlinear droop control. Indeed,
equivalent circuits similar to that shown in Fig. 1 have been
extensively adopted in the literature for the droop control
analysis [5], [6], [7], [10], [19], [15].

The voltage supplied by the inverter can be written as

u =
√

2U cos θ (2)

where U > 0 is the amplitude and θ is the instantaneous
phase of the inverter voltage. Both U and θ will be de-
termined by the droop controller. The grid voltage can be
written as

v =
√

2V cos(θ − x), (3)

where V is the grid voltage amplitude and x is the phase
delay between the inverter and the grid voltages. With the
definitions above one can write

d

dt
(θ − x) = ω, (4)

where ω is the constant and known frequency of the grid.
The definition of a dynamic phasor requires the choice of

a reference time-varying angle. In what follows the reference
angle is chosen to be θ, i.e., the phase of the inverter voltage.
This choice is different from the typical choice adopted for
the dynamic phasor models of power systems, where the
grid voltage phase ωt is usually considered as the reference
angle. Instead, the selection of the “local” inverter angle will
allow to write in closed form the dynamic model under droop
control and will also ensure the model modularity useful for
the case of multiple inverters. From (3), the dynamic phasor

V̂ associated to the signal v is defined as the complex time–
varying signal

V̂ = VR + VI = V e−x, (5)

where VR and VI are the real and imaginary parts of V̂
respectively. From (3) the original signal v can be obtained
by taking the real part of V̂ eθ:

v =
√

2Re{V̂ eθ}. (6)

According to (2) and the definition (5), since the reference
phase is θ, the dynamic phasor Û will be real, i.e.

Û = UR = U. (7)

Similarly to (6), the original signal u can be recovered from
Û by using

u =
√

2Re{Ûeθ}. (8)

The dynamic phasor Î of the current i is defined as

Î = zR + zI = Ie−φ, (9)

where φ is the time-varying angle delay of i with respect to θ,
zR and zI are the real and imaginary parts of Î , respectively,
and the signal i can be obtained from Î by using

i =
√

2Re{Îeθ}. (10)

The choice of the notations zR and zI to indicate the real
and imaginary parts of Î will be clear in the sequel. By
using (6), (8) and (10) in (1), the dynamic model can be
equivalently reformulated in terms of the dynamic phasors:

Re

{(
L
d

dt
Î + LÎ

d

dt
θ +RÎ − Û + V̂

)
eθ
}

= 0. (11)

The equation (11) must be satisfied for any θ ∈ [0, 2π), and
therefore is equivalent to

L
d

dt
Î + LÎ

d

dt
θ +RÎ − Û + V̂ = 0. (12)

The amplitude U and the phase θ of the inverter voltage
are determined by means of the droop control. In order to
present the basic principle of this technique it is useful to
recall how the classical concepts of active power and reactive
power can be extended to the dynamic phasors domain. Let
us define

P = Re{Û Î∗}, (13a)

Q = Im{Û Î∗}, (13b)

where the superscript ‘∗’ is used to indicate the complex
conjugate. At steady-state

d

dt
Î = 0,

d

dt
θ = ω, (14)

and (13) correspond to the classical definitions of active
and reactive powers. By considering (7) and (12) at steady-
state, (13) become

P =
U

Z2
[R(U − V cosx) + ωLV sinx], (15a)

Q =
U

Z2
[ωL(U − V cosx)−RV sinx], (15b)
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where Z =
√
R2 + (ωL)2. The power flow equations for

purely inuctive lines can be obtained from (15a) and (15b)
with R = 0 and Z = ωL:

P =
V

ωL
U sinx ≈ V

ωL
Ux, (16a)

Q =
1

ωL
U(U − V cosx) ≈ 1

ωL
U(U − V ), (16b)

where the approximation is for |x| � 1. From (16) it is
clear that for purely inductive lines the approximated active
power P depends on the angle delay between the inverter
voltage u and the grid voltage v, while the approximated
reactive power Q depends on the difference between U and
V without an explicit dependence on x.

The droop control principle is inspired by the decoupling
feature of (16): the reactive power can be controlled by acting
on U and the active power can be controlled through x. More
involved equations can be derived from (15)–(16) in order to
apply a similar decoupling principle in the case of non-purely
inductive lines. In droop controlled inverters, the angle θ and
the amplitude U of the inverter voltage u are then obtained
through the following droop equations

d

dt
θ = ω +m(P̄ − P ), (17a)

U = Ū + n(Q̄−Q), (17b)

where P and Q are given by (13) with (12), Ū , P̄ , Q̄ are the
inverter’s voltage, the active and reactive power references
respectively, m and n are the droop control parameters.

It is now possible to determine a closed form for the
dynamic phasor model of the droop controlled system. By
considering (17a) and (12) with (4), (5) and (7) one obtains

d

dt
x = m(P̄ − P ), (18a)

L
d

dt
Î = −(R+ ωL)Î −  d

dt
xLÎ + U − V e−x. (18b)

By using (9), the current equation (18b) can be split into its
real and imaginary parts:

L
d

dt
zR = −RzR + ωLzI +m(P̄ − P )LzI + U − V cosx,

(19a)

L
d

dt
zI = −ωLzR −RzI −m(P̄ − P )LzR + V sinx.

(19b)

We need now to eliminate the variables P and U from (18a)
and (19). By using (7) and (9) in (13), one obtains

P = Re{UÎ∗} = UzR, (20a)

Q = Im{UÎ∗} = −UzI . (20b)

Note that the simplicity of the expressions (20) is due to
the choice of the inverter phase θ as the reference angle
for the dynamic phasor representation. By substituting (20b)
in (17b), and by computing U from the resulting equation it
follows

U =
Ū + nQ̄

1− nzI
. (21)

Then (20a) can be rewritten as

P =
Ū + nQ̄

1− nzI
zR. (22)

Finally, the closed loop model can be obtained by substitut-
ing (21) and (22) in (18a) and (19):

d

dt
x = m

(
P̄ − Ū + nQ̄

1− nzI
zR

)
, (23a)

L
d

dt
zR = −RzR +XLzI +m

(
P̄ − Ū + nQ̄

1− nzI
zR

)
LzI

+
Ū + nQ̄

1− nzI
− V cosx, (23b)

L
d

dt
zI = −XLzR −RzI −m

(
P̄ − Ū + nQ̄

1− nzI
zR

)
LzR

+ V sinx, (23c)

where XL = ωL. For sufficiently small values of the
inductance L, the model (23) is in the so called singular
perturbation form [17] with x being the slow variable, zR
and zI the fast variables and L the small parameter. Note
that the assumption of L being small does not imply that
XL is small too.

III. STABILITY ANALYSIS

In this section the stability of the model (23) is analyzed by
using the contraction theory. In order to recall the contracting
region concept let us consider a state space model in the form

d

dt
x̂ = f̂(x̂) (24)

with initial condition x̂0 and f̂(x̂) : Rn → Rn being smooth.
A subset C ⊂ Rn of the state space is said contracting
region if the symmetric part of the Jacobian matrix function
is negative definite:

C ,

{
x̂ ∈ Rn :

1

2

(
∂f̂(x̂)

∂x̂
+
∂f̂(x̂)

∂x̂

T)
≤ −βI

}
, (25)

with β > 0 and I being the identity matrix [18].
The contracting region has an interesting interpretation.

Consider an initial condition x̂(1)0 ∈ C and the corresponding
trajectory, say x̂(1)(t), generated by (24). If one can find a
ball B(t) centered in x̂(1)(t) and such that B(t) ⊂ C for
all t ≥ 0, then any other trajectory x̂(2)(t) given by the
initial condition x̂

(2)
0 ∈ B(0) remains in B(t) for all t > 0

and, further, the difference x̂(2)(t) − x̂(1)(t) exponentially
converges to zero as the time t tends to infinity. A similar
converse result holds, see [18]. If x̂(1)0 ∈ C is an equilibrium
point, then the contracting region, if exists, it represents
an estimate of the domain of attraction, which is defined
as the set of initial conditions around x̂

(1)
0 such that the

corresponding trajectories converge to that equilibrium, but
not necessarily exponentially, e.g., with polynomial rate.

We are now ready to prove that the slow subsystem
obtained from the droop controlled system is contracting.
The following theorem provides also an expression for the
estimate of the contracting region.
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Theorem 1: Consider the system (23). The slow subsys-
tem obtained from (23) by considering L as a small param-
eter can be written in the following differential algebraic
equation form

d

dt
xs = f(xs, Us), (26a)

0 = g(xs, Us), (26b)

where g(xs, Us) defines a unique mapping Us(xs) :
[−π, π) ⊂ R → DUs ⊆ R+. Moreover, the region defined
by

C =

{
xs ∈ [−π, π) :

(
2Us(xs) +

XL

n

)
cosxs

+
R

n
sinxs − V > 0

}
,

(27)

where

Us(xs) = −ξ(xs)
2

+

√
ξ2(xs)

4
+

Z2

nXL
(Ū + nQ̄), (28)

and

ξ(xs) =
Z2

nXL
− RV

XL
sinxs − V cosxs, (29)

is a contracting region for (26).

Proof: By assuming L = 0 in (23) it follows

d

dt
xs = m

(
P̄ − Ū + nQ̄

1− nz̄I
z̄R

)
, (30a)

0 = −Rz̄R +XLz̄I +
Ū + nQ̄

1− nz̄I
− V cosxs, (30b)

0 = −XLz̄R −Rz̄I + V sinxs, (30c)

where xs represents the “slow” varying angle and (z̄R, z̄I)
the steady-state real and imaginary parts of the current’s
dynamic phasor. Denoting by Us the slow droop controlled
voltage, from (21) it follows

Us =
Ū + nQ̄

1− nz̄I
, (31)

and (30) can be rewritten in the form (26):

d

dt
xs = m

(
P̄ +

R

nXL

(
Us − (Ū + nQ̄)

)
− V

XL
Us sinxs

)
,

(32a)

0 = U2
s +

(
Z2

nXL
− RV

XL
sinxs − V cosxs

)
Us

− Z2

nXL
(Ū + nQ̄). (32b)

For any positive n, (32b) will always have a single real
positive root. Then (32b) defines a unique map between
the positive Us and xs ∈ [−π, π). Therefore, by using the
implicit function’s theorem, the Jacobian function of (26) can
be written as

Jf =
∂

∂xs
f(xs, Us) +

∂

∂Us
f(xs, Us)

d

dxs
Us (33)

where

d

dxs
Us = −

(
∂

∂Us
g(xs, Us)

)−1
∂

∂xs
g(xs, Us), (34)

and, more specifically
∂

∂xs
f(xs, Us) = −mV

XL
Us cosxs, (35a)

∂

∂Us
f(xs, Us) =

m

XL

(
R

n
− V sinxs

)
, (35b)

∂

∂xs
g(xs, Us) =

(
−RV
XL

cosxs + V sinxs

)
Us, (35c)

∂

∂Us
g(xs, Us) = 2Us +

(
Z2

nXL
− RV

XL
sinxs − V cosxs

)
.

(35d)

From (32b) and (35d) one obtains

∂

∂Us
g(xs, Us) = Us +

1

Us

Z2

nXL
(Ū + nQ̄) > 0, (36)

then by using (34) and (35) in (33) and by exploiting (36),
it follows that (33) being negative is equivalent to[

2Us +

(
Z2

nXL
− RV

XL
sinxs − V cosxs

)]
cosxs

+

(
− R

XL
cosxs + sinxs

)(
R

n
− V sinxs

)
> 0. (37)

Then, the region C defined by (27)–(29) is a contracting
region for (32).

The numerical results in Section V will show that Theo-
rem 1 provides a good estimate for the region of attraction
of the desired equilibrium point under droop control.

Notice that, though the model (23) has been obtained by
considering a single phase equivalent circuit, it is simple
to show that the same model represents also an analogous
balanced three phase circuit where the real and imaginary
components of the dynamic phasor are replaced by the direct
and quadrature currents represented in a reference frame
synchronous with the inverter voltage [20]. In particular for
the three phase case the direct and quadrature components
can be obtained by applying a Park transformation and a
rotation on the measured instantaneous signals.

IV. MULTIPLE ISLANDED INVERTERS

The procedure for the construction of the dynamic phasor
model for grid-connected inverters can be also applied to
the case of multiple islanded inverters, whose scenario cor-
responds to the equivalent circuit depicted in Fig. 1 where
the voltage source representing the grid is replaced by a
generic resistive (R) and inductive (L) load. In this case the
voltage v represents the voltage on the common load which
is not constrained by the grid. By using the same approach
presented in Section II the dynamic phasor of the voltage of
each inverter is represented with respect to its local phase
reference, say θh for the inverter voltage uh and θv for the
load voltage:

uh =
√

2Uh cos θh, (38a)

v =
√

2V cos θv =
√

2V cos(θh − xh), (38b)
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with the following equation defining xh
d

dt
(θh − xh) =

d

dt
θv = ωv, (39)

and ωv is unknown. By applying the Kirchhoff Voltage and
Current Laws one obtains

Lh
d

dt
ih = −Rhih + uh − v, (40a)

L
d

dt
i = −Ri+ v, (40b)

i =

H∑
h=1

ih, (40c)

where h = 1, . . . ,H , and the voltage uh of the h-th inverter
is subject to the droop equations

d

dt
θh = ω +mh(P̄ − Ph), (41a)

Uh = Ū + nh(Q̄−Qh). (41b)

By using arguments similar to those presented in Section II
it simple to determine the following model

d

dt
xh = ω − ωv +mh(P̄ − Ph), (42a)

Lh
d

dt
Îh = −(Rh + ωLh)Îh − mh(P̄ − Ph)LhÎh

+ Uh − V e−xh , (42b)

L
d

dt
Î = −(R+ ωvL)Î + V, (42c)

Î =

H∑
h=1

Îhe
xh , (42d)

with

Uh =
Ū + nhQ̄

1− nhzI,h
, (43a)

Ph =
Ū + nhQ̄

1− nhzI,h
zR,h. (43b)

The dynamic model (42) represents 3H+4 real equations
in terms of the following 3H + 4 real unknowns: xh (H
variables), Îh (2H variables), Î (2 variables), V (1 scalar
variable) and ωv (1 scalar variable). Note that ω is a known
parameter, θv does not appear in the equations, and the
synchronization frequency ωv is not fixed a priori. The
differential algebraic structure of the model for islanded in-
verters suggests the possibility of a stability analysis through
arguments similar to those presented in Section III. This is
a direction for future research.

V. SIMULATION RESULTS

The simulations have been carried out by considering the
following nominal values of the control and line parameters:
n = 10−4 V/VAr, m = 10−4 rad/sW, P̄ = 1005 W,
Q̄ = 525 VAr, Ū = 223 V, V = 220 V, R = 0.2 Ω,
XL = 1 Ω, ω = 2π 60 rad/s. The equilibrium points
of (32) are (xeqs,1, U

eq
s,1) = (0.018, 223) and (xeqs,2, U

eq
s,2) =

(−2.77, 214). It is simple to demonstrate that (xeqs,2, U
eq
s,2)

is an unstable equilibrium point. The contracting region,

0 0.5 1 1.5

− 5
6π

−1.36

0.018

1.396

5
6π
π

t [s]

x
s

[r
ad

]

Fig. 2. Evolution of xs for different initial conditions. The thick line
represents the trajectories starting at the boundaries of B while the dashed
line represents the trajectories starting outside B.

0 0.2 0.4 0.6 0.8 1

0

0.5

1

t [s]

x
,z

R
,z

I

Fig. 3. Angle x (solid line), direct zR (dashed line) and quadrature zI
(dotted line) currents of (23) in p.u. with respect to π/12 rad for x and
100 A for zR and zI .

corresponding to (xeqs,1, U
eq
s,1), estimated by using Theorem 1,

is C = (−1.36, 1.74). The open set B = (−1.36, 1.396)
centered in xeqs,1 is contained (at any time) in C. By using the
contraction theory, any trajectory x(i)s (t) such that the initial
condition x(i)s,0 ∈ B will exponentially converge to xeqs,1, and
B represents an estimate of the domain of attraction of xeqs,1.
Fig. 2 shows the exponential convergence to the equilibrium
point xeqs,1 = 0.018 of the angle xs for different initial
conditions inside and outside B. This result is confirmed by
the simulations carried out by using the full order model (23),
see Fig. 3.

The presence of slow and fast modes in (23) depends
on the control parameter m, so as it might be conjectured
from (23a). Fig. 4 shows that a sufficiently small m will
ensure a dynamic separation of one order of magnitude
between the modes of the linearized system. Fig. 5 shows
the sensitivity of the contracting region C estimated through
Theorem 1 with respect to L and n.
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Fig. 4. Ratio between the real part of the complex eigenvalue and the real
eigenvalue of the linearized system from (23) around the equilibrium points
corresponding to m ∈ [10−4, 10−3] and L = 5Lnom (circle), L = Lnom

(cross) and L = Lnom/5 (square).
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Fig. 5. Boundaries of the contracting region C with respect to the line
inductance L ∈ [Lnom/5, 5Lnom] for n = 10−4 (solid line), n = 5 ×
10−4 (dashed line) and n = 10−3 (dotted line).

VI. CONCLUSIONS

The dynamic phasor model of an inverter subject to droop
control and connected to the grid, for a realistic set of
parameters, highlights a clear dynamic separation between
the fast currents and the slow angle time evolutions. The use
of the singular perturbation technique allows to discuss the
stability of the system by considering the simpler reduced
order dynamic model. The application of the contraction
theory provides an estimate of the domain of attraction of
the exponentially stable equilibrium point. The simulation
results have confirmed the theoretical analysis.

Directions of future research are the application of the
proposed stability analysis to the dynamic phasor model for
parallel inverters in islanded modes and the stability analysis
for the fast subsystem.
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