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Abstract

Numerical time finite difference schemes in widely used ocean general
circulation models are systematically examined to ensure the correct and
accurate discretization of the Coriolis terms. Two groups of numerical
schemes are categorized. One group is suitable for simulating an inertial
wave in the ocean with the necessary condition for stability being F=fAt<1,
where f is the Coriolis parameter and At is the integration time step in the
model, such as the predictor-corrector Euler scheme, centred difference
(leapfrog) scheme, semi-implicit Euler schemes, and leapfrog scheme with
a semi-implicit approach. The other group is able to serve as a long-term
climate study using a large integration time step which violates F=fAt<1 by
damping out inertial waves, such as the Cox-Bryan and Oberhuber implicit
approaches. Caution should be made in using the Euler forward and other
schemes that produce unstable inertial waves; this problem could be serious
for a calculation longer than a week. The predictor-corrector scheme is
suggested to replace the simple Euler forward scheme. The explicit schemes
tend to overestimate the phase frequency, whereas the implicit schemes
underestimate it. To better simulate the correct phase frequency (i.e. speed),
F<0.1 is suggested.

1 Introduction

The inertial oscillation is a ubiquitous feature in the ocean. It generally
produces anti-cyclonic oscillatory ocean currents in both hemispheres. In
studies of Ekman dynamics due to wind forcing [1], inter-tidal currents,
interactions among wind-induced storms, tides and inertial oscillations, and
geostrophic adjustment in the ocean and coastal seas, inertial motion plays
an important role.

In primitive-equation ocean general circulation models, the inertial mode
naturally exists because the Coriolis terms are explicitly included. The
Coriolis force not only physically produces a rotating wave and current
system, but also introduces a numerical stability constraint (F<1, the so-called
the inertial constraint) in the finite difference equations. This is the
difference between geophysical fluid dynamics and common fluid mechanics
with no Coriolis force. Thus, we ask how well a finite difference scheme
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captures the real physics of this phenomenon (or reproduces the solution of
the corresponding differential equation) in the ocean.

When the non-linear terms must be correctly discretized to conserve
energy and mass in finite difference schemes in terms of numerical stability,
we should pay more attention to the dominant terms in the dynamic
equations of interest. In large-scale ocean dynamics, for instance, the
geostrophic balance is the first-order approximation in which the pressure
gradient and Coriolis terms are comparable and dominant. In coastal, small-
scale, tidal dynamics, the inertial-gravity waves, the rotating Poincaré waves
and inertial oscillations are the major physical processes in which the
pressure gradient, Coriolis, the time derivative and dissipation terms are
dominant. Thus, in any numerical model, these four terms (pressure gradient,
Coriolis, time derivative, and diffusion terms) must be correctly and precisely
differenced to maintain the physics in the original continuum medium. The
purpose of this study is to address which numerical time difference scheme
is correctly and accurately formulated to simulate the inertial oscillations in
the open ocean or to simulate the storm-tide-wind interactions in coastal seas.
If researchers are going to use a model as a tool to study and simulate
coastal processes, which scheme should they choose?

In this study, we emphasize stability analysis of different numerical
schemes in time (rather than in space) and phase error for the inertial
oscillation which have been employed in the Cox-Bryan model (a semi-
implicit approach for the Coriolis terms with a leapfrog time differencing),
the Blumberg-Mellor model (an explicit centred differencing for the Coriolis
terms with a leapfrog scheme in time), the Dietrich et al. model (a semi-
implicit approach for the Coriolis terms with an Euler forward time
differencing), and the Oberhuber model (an implicit approach for the Coriolis
terms with a three-time step predictor-corrector scheme in time). As well,
we study different approaches such as the explicit Euler forward scheme and
a predictor-corrector scheme developed in this study to replace the Euler
forward scheme.

In section 2, we start by obtaining the analytical solution for inertial
oscillations in the ocean, set up different numerical schemes and perform the
stability and phase error analyses. In section 3, we compare the numerical
solutions from the different schemes with the analytical solutions to quantify
each scheme. Finally, we summarize our findings in section 4.

2 Stability and Phase Frequency of Time Finite Difference Schemes

2.1 Governing Equations and Analytical Solution. To focus on finite
difference schemes of the Coriolis terms, we choose the linear momentum
equations for a one-layer system without any horizontal variability. The
equations contain the Rayleigh friction terms as well:
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@—fv= -ru, %+fu= -Iv, (1)

or using a complex form

a_‘;ﬂ (if+r) w=0, (2)

where u, v, t, f and r are horizontal velocities in x and y directions, time, the
Coriolis parameter, and the linear bottom friction coefficient in units of s,
respectively, and w=u+iv is the complex velocity with i=(-1)"2. The
analytical solutions for u and v subject to the initial conditions, u,=1 and
v=0 (w,=1), are (u, v)=e™[cos(ft), sin(ft)], or w=exp(-rt+iwgt), where wg=-f
is the exact frequency of the inertial wave. The analytical inertial oscillations
(with amplitude of unity if r=0) will be compared with the numerical results
using finite difference schemes in both inviscid (r=0) and viscous (r#0) cases.
2.2 Euler Forward, Semi-Implicit, and Implicit (Euler Backward,
Oberhuber Type) Schemes. In some numerical models, eq. (2) is
differenced by the values at two time steps using the following scheme:

W"+1=(1—R) Wn-iF[ﬁWnﬂ-F(l—B)Wn] , (3)

where 0<B<1, F=fAt, R=rAt, and n and n+1 denote old and new time steps,
respectively. The different finite difference equations in component form in
this paper were all given in Appendices A-D of Wang and Ikeda [7]. Note
that this scheme becomes an Euler forward if B=0, semi-implicit [5] if B=0.5,
and Euler backward or implicit scheme [6] if B=1, respectively. The model
becomes the inviscid or contains free inertial motion when r=0 (no
dissipation).

To obtain the numerical stability criterion, we assume the solution to have
a Fourier wave form following Wang [8, see his Appendix A]

w=DelvnAt_pj n, (4)

where A=exp(imAt), i, @, At, and n are the eigenvalue, the imaginary number,
phase (or angular) frequency, integration time step, and time at n,
respectively; and D=U,+iV, is the constant amplitude of the velocities. If
M = <, >1, then the numerical solution is neutral, decaying, growing
(unstable) in amplitude. Thus, the stability problem turns to the estimate of
the magnitude of the eigenvalue, A. The phase frequency ® will be
analytically derived as well.
Substituting (4) into (3) gives the solution as follows
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A=L(1-R) -F?B(1-B)]1-iF(1-BR) (5)
1+F2B?

We observe that if the Coriolis force which introduces truncation error to
the finite difference equations is neglected (i.e. F=0), then the true solution
to A of the finite difference equations is M=1-R for r#0 and unity for r=0.

If B=0, the scheme becomes the Euler forward scheme. Taking the
absolute value or modulus of (5) gives |A|=(1+F»)?>1, if r=0; and |A|=[(1-
R)*+F%]"2, if r0. Now we can see that the Euler forward scheme is
unconditionally unstable for inertial oscillations if there is no friction (r=0).
However, with r=0, the model solution might be stable if dissipation of the
numerical model is taken to be large enough to damp out the numerical
instability due to improper discretization of the Coriolis terms only if 1-(1-
F)2 <R< 1+(1-F?)"? [the solution is obtained by solving the quadratic
equation on R: (I-RY’+F’<1]. If F* is much less than unity, the stability
condition is F/2<R<2-F%/2. The lower limit (R>F%2) gives small but
effective friction. Once f=10* s and At=240 s are chosen, associated with
this friction is the e-folding time scale T~r' s~9.6 days. The large viscosity
necessary in the finite difference equations may ruin a physical process with
time scale longer than 10 days, such as mesoscale eddies with time scales
from two weeks to months by seriously smoothing gravity waves and Rossby
waves, etc. Thus, a proper numerical scheme must be carefully examined to
replace this unstable scheme which will be discussed shortly.

If B=0.5 and 1, the scheme becomes the semi-implicit one [5] and the
Euler backward or implicit one [6]. The similar analysis was applied, and
the results and the frequency error were listed in Table 1.

In summary, the Euler forward scheme (f=0) is unconditionally unstable
for the inertial mode in the absence of friction: the larger the time step, the
faster the model blows up, as will be discussed in the next section. By
contrast, the Euler backward scheme (B=1) always dampens inertial waves
[6]: the larger the time step, the faster the inertial oscillations are damped
out. The semi-implicit scheme (B=0.5) is the most accurate [5].

2.3 Predictor-Corrector Scheme. In order to extend integration time of the
Euler forward scheme without changing the two-time step algorithms, a
predictor step and a corrector step are differenced respectively as follows:

w*= (1-R)w?-1iFw?", (6)
wi*l= (1-R) w - iF[Bw™**+ (1-B) w™],

where the superscript star denotes the predicted value. Substituting the
predictor step into the corrector step in (6) leads to

wi'le [ (1-R) -F2B-iF(1-R) B-iF(1-P)1w?,  (7)
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Table 1: A summary of stability analysis and phase frequency errors of different time
finite differencing schemes for inertial oscillations. F=fAt and R=rAt.

Numerical Parameter and Modulus of Amplitude Normalized
Scheme its Scheme Eigenvalue: Stability Frequency
[A]= (=0) o/(-f)=
Sec. 2.2: B=0: Euler (14FH>1 Uncond.
Forward Unstable F! arctan{
Euler i F(1-BR)
B=0.5: semi- 1 Neutral JI1-R-B(1-
Schemes implicit BF1)
B=1: Implicit or | (1+F% <1 Serious
Euler Backward Damping
Sec. 2.3: B=0 (1+F»>1 Uncond.
Unstable F! arctan{
Predictor- F(1-BR)
B:O.S (1+F4/4)1/2>1 Weakly /[I_R_BFZ] }
Corrector Unstable
B=.5+e,e=F48 1 Neutral
Scheme +O(P/16)
B=1 (14F%FH"2< | Weak
1, if F<1 Damping
Sec. 2.4: 1 Neutral F! arcsin{
Leapfrog F/(1-R) }
Scheme
Sec. 2.5: B=0 (144F%1 | Uncond. (2F)! arctan{
Leapfrog Unstable 2F[(1-B)+
Euler Scheme B(1-2R))/(1-
B=05 1 Neutral 2R'4B(1'B)
)
B=1 (144F% 2«1 | Serious
Damping

where 0<B<1. To do the stability analysis, substituting (4) into (7) gives
thefollowing equation for the eigenvalue: A=(1-R-BF*)-iF(1-BR); and taking
the absolute value or modulus gives |A|=[(1-R-BF*)*+F*(1-BR)*]'~.

If r=0 we have the results shown in Table 1, where ¢ is a small positive
number. The scheme with B=0 is unconditionally unstable, with the modulus
being proportional to 1+F%/2, similar to the Euler forward scheme. The
scheme with P=1 slightly damps out the inertial mode if F<1, and the
amplitude retains unity (i.e. neutral) if F=1. Note that when F>1, this
predictor-corrector scheme becomes an unstable scheme.

We can see that if B=0.5, the scheme is still weakly unstable, even though
accuracy has been raised two orders higher than the Euler forward scheme.
To ensure that the eigenvalues fall inside the unit circle [10], we obtain
e=F%8 + O(F%/16) by solving the quadratic equation 1-(2B-1)F>-B*F'=1 on ¢
[71, where B=1/2+e. For instance, if f=10“ s, At=10" s, then £=0.0012.
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Thus B=0.5+e (=0.50012 in this example) ensures this scheme to be
conditionally (F<1) neutral for inertial oscillations. Using this idea, we are
able to modify the Euler forward scheme in a model to be a neutral scheme
with the necessary conditions for stability being F<l and
B=0.5+F*/8+0 (F*/16).

2.4 Leapfrog or Centred (Blumberg-Mellor Type) Scheme. To complete
this investigation, we include the centred (3-timestep) difference schemes
used by the Blumberg-Mellor model [4] and the Cox-Bryan model [2,3] as
discussed in the next section. Eq. (2) can be discretized using the leapfrog
time scheme as follows: w*'=(1-2R)w"'-i2Fw". Using the same method by
substituting (4) into this finite difference equation, we obtain the result listed
in Table 1.

2.5 Cox-Bryan Scheme. Last, we discuss the numerical scheme used by
the Cox-Bryan model [2,3]. Eq. (2) can be discretized using the averaged
velocity values, between times n+1 and n-1, in the Coriolis terms as follows:
wl=(1-2R)W* -i2F[Bw™'+(1-B)w"']. We note that the scheme with B=0,
0.5, 1 (the parameter a in the Cox-Bryan model [3]) corresponds to the Euler
forward scheme, semi-implicit scheme and the fully implicit scheme [3],
respectively. Substituting (4) into this finite difference equation and using
the same method as before, we gives the results in Table 1.

2.6 Phase Frequency Errors. We have examined all the frequency errors
introduced by the various finite difference schemes associated with the
Coriolis terms [7]. Here we only present the results from the predictor-
corrector scheme (Fig. 1). We see that the semi-implicit scheme ($=0.5)
preserves the best phase information of inertial oscillation if F<1. The
scheme with B=0 accelerates the phase frequency, whereas the scheme with
B=1 slows down it with a jump at F=1 where the scheme generates a wave
propagating in the opposite direction to the true wave (w/-f<0). Overall, the
phase frequency can be well preserved when F<0.1. When F—ee, w/-f—0, the
simulated phase frequency is much slower than the true solution.

3 Comparisons between the Numerical and Exact Solutions

To compare the solutions from finite difference equations with the
differential equations, we set, in both differential and finite difference
equations, f=10* s™* and r=0 for the inviscid case and r=2.5x10"° (107) s for
the viscous case, which corresponds to the e-folding (decaying) time scale of
4.5 (45) days.

3.1 Inviscid Cases: r=0. We carried out the following runs using At=240
s, then F=fAt=0.024 <1. Fig. 2 shows the comparisons between the exact or
differential solutions (solid lines) and finite difference or numerical solutions
(dashed lines) for B=0 (upper panel) as discussed in section 2.2, which
corresponds to the Euler forward scheme. Fig. 2 similarly shows the
comparisons from the semi-implicit (middle panel) and implicit (lower panel)
schemes, respectively. We clearly see that the Euler forward scheme (B=0)
is unconditionally unstable, while the semi-implicit scheme ($=0.5) does the
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Fig. 1. The normalized phase speeds of the predictor-corrector scheme (the ratio of
phase speed from the differencing scheme to that from the exact solution) against F=fAt and
B=0, 0.5 and 1. for R=rAt=2.5x10*. The values lower/higher than the solid line (w/-f)
indicate the under/over-estimation by the numerical scheme. Note that the negative values
indicate the waves propagating in the opposite direction to the true waves (true solutions).
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Fig. 2. The time series of inertial current velocity, u only, from the analytical (exact)
solutions (solid curves) and numerical solutions (dashed curves) of the Euler forward scheme
with B=0 (upper panel), semi-implicit scheme with =0.5 (middle panel) and Euler forward
scheme with B=1, as discussed in section 2.2. The integration time step is 240 s.
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best job, and the implicit scheme [6] damps out inertial oscillations.

To emphasize the timestep-dependent growth of the Euler forward
scheme, we conducted a series of 10-day runs using different time steps, At,
equal to 10, 50, 100, 500 and 1000 seconds (see Table 2). We see that the
larger the time step used in the Euler forward scheme, the faster the inertial
oscillations grow. However, a time step of 10 seconds can be used for a
simulation less than 10 days (Table 2).

Table 2. The timestep-dependent growth of the eigenvalue A"=[(1-R)*+F* 1*? at the end
of a 10-day simulation using the Euler forward scheme, where F=fAt with f=10 5. The
values in parentheses are the normalized eigenvalues by their true solutions (1-R)” or the
normalized amplifications.

Total time steps (n) | 86400 | 17280 8640 1728 864
Time Step, At (sec) 10 50 100 500 1000 True
solution

r=0 1.04 1.24 1.54 8.65 | 73.59 1.0

r=2.5x 107 s 0.958 1.14 1.413 7.934 67.56 0917
(1.04) | (1.24) | (1.54) (8.65) | (73.66)

r=2.5x 10°s?! 044 0.523 | 0.649 3.652 | 31.27 0421
(1.04) | 1.24) | (1.54) | (8.67) | (74.23)

3.2 Viscous Cases: r#0. To confirm that the above findings are still valid
for the viscous fluid, we compare the results in the viscous case, which is
closer to reality. In the following runs, we set At=240 s. Similar to the
inviscid case, we also conducted the amplitude growth of inertial oscillations
calculated from the Euler forward scheme using different time steps for both
small and large viscosity cases: r=2.5x10” s and r=2.5x10° s™* (Table 2).
As we see, the normalized amplitudes (amplification) are the same as those
with r=0, independent of viscosity values.

4 Conclusions

Based on the careful investigations in the preceding sections, we can apply
Table 1 as our summary:

1. To correctly simulate inertial waves and the geostrophic adjustment
process in the ocean and coastal seas, only four types of numerical schemes
are suggested to apply to this purpose. These are 1) the semi-implicit
scheme for the Coriolis terms with forward differencing in time with $=0.5
[5], 2) the predictor-corrector scheme with B=0.5+e (e=F%8), 3) the
Blumberg-Mellor scheme [4], and 4) the Cox-Bryan scheme with $=0.5 only
[2,3].

2. The Euler forward scheme with =0, the predictor-corrector scheme
with B=0 and the Cox-Byran scheme [3] with B=0, are unconditionally
unstable and must be used with caution by modellers. We have developed
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the predictor-corrector scheme with $>0.5 to replace the unstable Euler
forward scheme.

3. For the climate study, the long integration time step violating F<1 in
the model is usually used. Thus, the fully implicit numerical scheme for the
Coriolis terms must be used to remove this inertial constraint (i.e. F<1) by
damping inertial waves. Only two schemes, Cox-Bryan with B>0.5 [3] and
Oberhuber [6] schemes, can serve this purpose.

4. To correctly model the phase frequency of the inertial wave, F<0.1 is
strongly suggested.  Generally speaking, the explicit schemes [4]
overestimate the phase frequency while the implicit schemes [3,6]
underestimate it when 0.1<F<1. The semi-implicit scheme [5] does the best
job when F<1. When F becomes large, the simulated phase frequency is
much slower than the true solution, i.e. w/-f—0.

References

1. Maas, L.R.M. & van Haren, J.J.M. Observations on the vertical structure
of tidal and inertial currents in central North Sea, J. Mar. Res., 1987, 45,
293-318.

2. Bryan, K. A numerical method for the study of the circulation of world
ocean, J. Comput. Phys., 1969, 4, 347-376.

3. Cox, M.D. A primitive equation, three-dimensional model of the ocean,
GFDL Ocean Group Technical Report No. 1, Geophys. Fluid Dyn. Lab.,
Princeton University, 1984.

4. Blumberg, A.F. & Mellor, G.L. Diagnostic and prognostic numerical
circulation studies of the South Atlantic Bight, J. Geophys. Res., 1983, 88,
4579-4592.

5. Dietrich, D.E., Marieta, M.G. & Roache, P.J. An ocean modeling system
with turbulent boundary layers and topography: numerical description,
Intern. J. Num. Methods in Fluids, 1987, 7, 833-855.

6. Oberhober, J.M. Simulation of the Atlantic circulation with a coupled sea
ice-mixed layer-isopycnal general circulation model. Part I: Model
description, J. Phys. Oceanogr., 1993, 23, 808-829.

7. Wang, J. & Ikeda, M. On inertial stability of finite difference schemes in
ocean general circulation models, 1995 (submitted to J. Mar. Sys.).

8. Wang, J. Interannual variability of sea-ice cover in Hudson Bay, Baffin
Bay and the Labrador Sea, and numerical simulation of ocean circulation
and sea-ice cover in Hudson Bay, Ph.D. Thesis, McGill Univ., Montreal,
162 pp, 1993.



