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Stability Analysis of Fixed-Point Digital Filters 
Using Computer Generated Lyapunov 

Functions- Part I: Direct Form 
and Coupled Form Filters 

KELVIN T. ERICKSON, MEMBER, IEEE, AND ANTHONY N. MICHEL, FELLOW, IEEE 

Abstract -We demonstrate the applicability of the consfrucfioe stubirity 
algorithm of Brayton and Tong in the stability analysis of fixed-point 

digital filters. In the present paper, we consider direct form and coupled 

form filters while in a companion paper we treat wave digital filters and 

lattice filters. 

We compare our results with existing ones which deal with either the 

global asymptotic stability of digital filters or with existence (resp., nonex- 

istence) of limit cycles in digital filters. Several of the present results are 

new while some of the present results constitute improvements over 

existing results. In a few cases, the present results are more conservative 

than existing results. 

It is emphasized that whereas the existing results are obtained by seuerul 

diverse methods, the present results are determined by one unified q- 

poach. 

I. INTRODUCTION 

I N TWO RECENT papers, Brayton and Tong [3], [4] 
established some significant results which make it pos- 

sible to construct computer generated Lyapunov functions 
to analyze the stability of nonlinear systems (by means of a 
constructive algorithm). These results were subsequently 
extended in several ways making it possible to estimate the 
domain of attraction of an equilibrium (see Michel et al. 
[22]) and to apply the constructive algorithm to high- 
dimensional systems (see Michel et al. [20], [21]). Also, the 
results in [21] are applied in the stability analysis of 
interconnected power systems. 

In the present paper and in a companion paper [13], we 
apply the constructive algorithm of Brayton and Tong to 
the stability analysis of several classes of second-order 
fixed-point digital filters. Specifically, in the present paper 
we consider direct form digital filters and coupled form 
digital filters while in [13] we consider wave digital filters 
and lattice digital filters. Nonlinearities which we encoun- 
ter in our analysis of these filters include several types of 
fixed-point quantization effects and overflow effects. 

The results which we obtained yield conditions (in the 
parameter plane for a given filter) under which the digital 
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filters which we consider are globally asymptotically stable 
and as such, do not possess zero-input limit cycles. We 
compare these results with several corresponding existing 
results [l], [2], [5]-[8], [lo], [15], [16], [28] which are con- 
cerned either with the existence or nonexistence of limit 
cycles or with the global asymptotic stability of digital 
filters. For additional references on qualitative analysis of 
digital filters, the reader is referred to the recent survey by 
Fettweis [13a]. For related works, refer also to the paper 
by Parker and Hess [24a] and to the more recent work by 
Mitra and Lawrence [23a]. 

This paper consists of five sections and an appendix. In 
Section II we establish the essential notation, we present 
certain aspects dealing with the Lyapunov stability of 
systems described by difference equations, and we provide 
a summary of the constructive algorithm of Brayton and 
Tong. In Section III we first discuss the types of nonlinear- 
ities that arise in fixed-point digital filters and then we 
show how the constructive algorithm can be applied in the 
stability analysis of digital filters in general and how it can 
be applied to the specific classes of filters mentioned 
above. In Section IV we discuss the results which we 
obtained for the specific filters considered herein, and we 
compare these results with existing ones [l], [2], [5]-[S], 
[lo], [15], [16], [28]. In Section V, several pertinent conclud- 
ing remarks are made while in the Appendix, a brief 
description of the computer programs that were used is 
given. 

II. PRELIMINARIES 

The present section consists of four subsections. In Sec- 
tion II-A we establish essential notation, in Section II-B we 
provide certain aspects of stability analysis of general 
systems described by ordinary difference equations, in 
Section II-C we present some facts concerning extreme 
matrices, and in Section II-D we give a brief summary of 
the constructive stability algorithm of Brayton and Tong. 

A. Notation 

Let U and I’ be arbitrary sets. If u is an element of U, 
we write u E U. We let U U V, U n V, and U x V denote 
the union, intersection and cross product of U and V, 
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respectively. The boundary of U is denoted by Xl. If U is 
a subset of V, we write U c V. 

Let R denote the real line, let R+ = [0, co) and let R” 
denote the set of real valued n-tuples. The symbol 1. ] 
denotes any one of the equivalent norms on R”. If f is a 
mapping of a set X into a set Y, we write f: X + Y. Also, 
B(r) = {x E R”: 1x1 <r}. 

Unless explicitly stated, we will assume that matrices are 
real and square matrices. We let A* denote the transpose 
of the matrix A = [aij], and we let [IAll denote the matrix 
norm of A induced by some vector norm. Sets of matrices 
are denoted by bold faced upper case letters (e.g., S). 

A continuous function C#K R+ + R+ is said to belong to 
class K (i.e., C/I E K) if (p(0) = 0 and if C#I is strictly increas- 
ing on R+. If $J: R+ + R+, if C#I E K, and if lirn,, o3 G(r) 
= 00, then $J is said to belong to cla.ss KR (i.e., $I E KR). 
Also, a function f: R + R is said to belong to a sector 
[k,, k2], where k,, k, E R, if (i) f(0) = 0, and (ii) k,a2 G 
uf(a) G k2a2 for all u E R. 

Let IA{t,+k}, t,ER’, k=0,1,2;*. and let j 
= \/--i-. Finally, let z-l represent one unit delay in the 
block diagram of a digital filter structure. 

B. Systems Described by Difference Equations 

We consider systems described by ordinary autonomous 
difference equations of the form 

x(~+1)=d4dl 0) 
where x(r) E R” for every r E I and g: R” + R”. We 
denote the unique solutions of (1) by x(7; x0, T,,), where 
x(ra; x0, ra) = x0. Since we are dealing with autonomous 
equations, we shall assume without loss of generality that 
me = 0. Any point x, E R” for which it is true that x, = 
g(x,) is called an equilibrium point of (1). We will hence- 
forth assume that x = 0 is an isolated equilibrium of (l), 
i.e., that there exists a constant r > 0 such that B(r) 
contains no equilibrium points of (1) other than the origin. 
Thus we have in particular g(0) = 0. 

We will call any nontrivial periodic solution of (1) a limit 
cycle. It is customary in the study of digital filters to view 
nonzero equilibrium points as limit cycles. Unless other- 
wise stated, we will follow this practice. 

Definition I: (a) The equilibrium x = 0 of (1) is said to 
be stable (in the sense of Lyapunov) if for every E > 0 there 
exists a 6 = 6(e) > 0 such that ]x(r; x0,0)] < e for all r z 0 
whenever 1x0] < 6. 

(b) The equilibrium x = 0 of (1) is said to be asymptoti- 
cally stable (in the sense of Lyapunov) if (i) it is stable, and 
(ii) there exists a number n > 0 having the property that 
lim T’m x(7; x,,O) = 0 whenever 1x0] < n. If in particular 
condition (ii) is true for all x0 E R”, then the equilibrium 
x = 0 of (1) is said to be asymptotically stable in the large 
(a.s.i.1.) or globally asymptotically stable (g.a.s). 

(c) The equilibrium x = 0 of (1) is unstable if it is not 
stable. n 

The principal Lyapunov results which yield conditions 
for stability, asymptotic stability or instability in the sense 
of Definition 1 involve the existence of functions (Lyapunov 

functions) u: R” + R. Such functions are required to have 
certain definiteness properties which we enumerate next. 

Definition 2: (a) A function v: R” + R is said to be 
positive definite if there exists a function J, E K such that 
v(0) = 0 and v(x) > #(lx]) for all x E B(r) for some r > 0. 

(b) A function v is said to be negative definite if - v is 
positive definite. 

(c) A function v: R” + R is said to be radially un- 
bounded if there exists a function J, E KR such that v(0) = 0 
and v(x) 2 #(lx]) for all x E R”. w 

The first forward difference of a function v: R” -+ R 
along the solutions of (1) is given by 

DV(l)b) = &+)I - 44. (2) 

Henceforth, we shall assume that v is continuous and 
that it satisfies a Lipschitz condition in x. 

Theorem 1: (a) The equilibrium x = 0 of (1) is stable if 
there exists a function v: R” + R such that (i) v is positive 
definite, and (ii) D+)(x) Q 0 for all x E B(r) for some 
r > 0. 

(b) The equilibrium x = 0 of (1) is asymptotically stable 
if there exists a function v: R” + R such that (i) v is 
positive definite, and (ii) Dv(,)(x) is negative definite. 

(c) The equilibrium x = 0 of (1) is asymptotically stable 
in the large if there exists a function v: R” + R such that 
(i) v is radially unbounded, and (ii) Dv(,)(x) is negative 
definite for all x E R”. n 

For further aspects of the Lyapunov theory, refer to 
Miller and Michel[23]. 

We emphasize that if it is possible to find a v-function 
for (1) which satisfies the conditions of Theorem l(c), then 
(a) system (1) has only one equilibrium point, (b) this 
equilibrium will be the origin, (c) this equilibrium will be 
asymptotically stable in the large, and (d) no limit cycles 
will exist for system (1). 

In the last part of the present section, we present an 
algorithm of Brayton and Tong [3], [4] which enables us to 
construct Lyapunov functions of the norm type for system 
(1) which satisfy Theorem l(c) (if x = 0 is a.s.i.1.). In the 
subsequent sections we use such Lyapunov functions in the 
stability analysis of several classes of second-order fixed- 
point digital filters. This analysis will yield conditions 
under which such filters are asymptotically stable and 
cannot possess limit cycles. 

C. Extreme Matrices of a Convex Set of Matrices 

We shall require the concepts of a convex set of matrices, 
an extreme subset of matrices, and an extreme matrix. We 
phrase our definitions in terms of a linear vector space of 
real n x n matrices over the field R. For general defini- 
tions of these concepts, refer to Dunford and Schwartz [9]. 

Definition 3: (a) Let (R”x”, R) denote the real linear 
space of real n x n matrices. A set A c Rnx” is said to be 
convex if X, YEA, kER, and O<k<l, imply that 
kX+(l- k)Y E A. 

(b) Let 4, A, E A and let k E R. A nonvoid subset 
B c A is said to be an extreme subset of A if a proper 
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convex combination kA, +(l- k)A,, 0 < k ~1, is in B 
only if A,, A, E B. An extreme subset of A consisting of 
only one matrix is called an extreme matrix of A. The set 
of extreme matrices of A is denoted by E(A). n 

Consider now in particular the set of 2X2 real matrices 
given by 

A,-= ; ; 
([ I 

, (pi < a Q (Y*, b, c, d are constants 
) 

(3) 

where (pi and (Ye are constants. It is an easy matter to show 
that A, is a convex set and that 

E(4) = { J41? 4, > (4) 

where 

f4,=[: ;] B,,=[y ;I. (5) 
Similarly, if we let 

A,= a b [ 1 c d’ 
qda<a,, Y1GCGY2T 

b and d are constants (6) 

where q, a2, yl, and y2 are constants, then it can easily be 
shown that A, is convex and that 

W2) = P2,Y B227 B239 B241 (7) 

where 

B,,= [;: ;] B22= [y: z] 
.- 

B,,= [;: ;] B,,=[;: :I- 
@) 

Finally, it is readily shown that if 

y1<c<y2, &<d<& (9) 

where (Y~, pi, yi, and ai, i =1,2 are constants, then A is 
convex and 

E(A) = (10) 

We will have occasion to make use of the sets of matrices 
E(A,), E(A,), and E(A) given in (4), (7), and (lo), 
respectively. 

D. Constructive Stability Algorithm 

We begin by rewriting the system of equations (1) as 

x(k +l) = M(x(k))x(k) (11) 

where M(x(k)) is chosen so that M(x(k))x(k) = g[x(k)]. 
For every x E R”, M(x) will be a real n X n matrix. If we 
let M denote the set of all matrices obtained by varying x 
in M(x) over all allowable values, then we can rewrite (11) 
equivalently as 

x(k+l)=M,x(k), M,EM. (12) 
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Brayton and Tong [3], [4] show that the equilibrium x = 0 
of (1) is stable (globally asymptotically stable) if the set of 
matrices M is stable (asymptotically stable). (The precise 
definitions of these two terms are given in the next two 
paragraphs.) In the following, we give a short summary of 
the results of Brayton and Tong. The reader is referred to 
[3] and [4] for further details concerning these results. 

We call a set A of n X n real matrices stable if for every 
neighborhood of the origin U c R”, there exists another 
neighborhood of the origin V c R” such that for every 
M E A’, we have MV c U. Here A’ denotes the multiplica- 
tive semigroup generated by A and MV = {u E R”: u = 
Mu, VEV}. 

In [3] it is shown that the following statements (which 
characterize the properties of a class of stable matrices) are 
equivalent : 

a) A is stable. 
b) A’ is bounded. 
c) There exists a bounded neighborhood of the origin 

W c R” such that MW G W for every M E A. Further- 
more, W can be chosen to be convex and balanced. 

d) There exists a vector norm 1.1 w such that 1 Mxl w =G 1x1 w 
for all M E A for all x E R”. 

Now let PER and let WcR”. Let aW= {uER”: 
u = (YW, w E W}. Since statements c) and d) above are 
related by 

lx/,GnfJa: azo, XGXW) 

it follows that 1x1 w-defines a Lyapunov function, for A, i.e., 
it defines a function v with the property 

o(Mx) < u(x), forallMEAandxER”. 

Next, we call a set of matrices A asymptotically stable if 
there exists a number p > 1 such that pA is stable. (The set 
pA is obtained by multiplying every member of A by p.) In 
[4] it is shown that the following statements (which char- 
acterize the properties of a class of asymptotically stable 
matrices) are equivalent: 

a) A is asymptotically stable. 
b) There exists a convex, balanced, and polyhedral 

neighborhood of the origin W and a positive number y < 1 
such that for each ME A, we have MW L yW. (Here 
~W={UER”: u=yw, WGW}.) 

c) A is stable and there exists a positive constant K 
such that for all MEA’, Ih,(M)I<K<l, i=l;..,n, 
where Xi(M) denotes the i th eigenvalue of M. 
Note that if A is stable, then yA is asymptotically stable 
for all positive y < 1. Note 
stable (pA is stable), then 
such that 

Wxl, < IP~XI, G I4w 

also that if A is asymptotically 
there exists a vector norm 1. Iw 

for all M E A and x E R”. 

In [3] and [4] a construcfive algorithm is presented which 
determines whether a set of m n x n real matrices A = 

{Ml,. . . ,M?-1) is stable. In this algorithm, one starts 
with an initial polyhedral neighborhood of the origin W, 
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and one defines a sequence of sets { W,} by 

W k+p.x k’= (k-l) mod m 

where X[ -1 denotes the convex hull of a set. Now A is 
stable if and only if the final set 

w*= (j w, 
k=O 

is bounded. Note that W * is also given by 

W*=X[uMW,, MEA’]. 

Since all extreme points z of W,,, are of the form 
z = Mju, where u is an extreme point of W,, we need only 
deal with the extreme points of W, in order to obtain 

W k+l=.%-[h$u: z&E(Wk)] 

where E(W,) denotes the set of extreme points of Wk. 
Clearly, the new extreme points E( W,,,) are images of 
E(W,). If IX(M,,)l <l for Mk, E A, then there exists an 
integer Jk, such that 

x[~oM~~wk]=x[j~oM~~wk] 

since W, is a bounded neighborhood of the origin. Notice 
that Jkf can be recognized since it is the smallest Jk to 
satisfy 

Thus W,,, will be formed in a finite number of steps, 
since W, is expressed as the convex hull of a finite set of 
points. 

In practice, W, above is usually chosen as simple as 
possible, i.e., it is chosen as the region defined by 

E( W,) = { w, E R”: xii=l, xij=O, j#i, i=l;.*,n} 

where wi = (xii, xi2, . . . ,xin) E R”. Note that W, de- 
termined in this way is symmetric, and of all symmetric 
polyhedral regions, it possesses a minimal number of ex- 
treme points, namely 2n. 

We call a set of matrices A unstable if A is not stable. In 
[3] the following instability criterion is established: A is 
unstable if there exists a k such that dW, n i3Wk =0 
where 0 denotes the null set. For additional (and im- 
proved) instability criteria, refer to [4]. 

In [4] it is also shown that if a set A of matrices with 
E(A) finite, is asymptotically stable, then the constructive 
algorithm given above will terminate “stable” in a finite 
number of steps. Thus a set A can be determined stable in 
a finite numbers of steps if A is asymptotically stable. We 
have no way of knowing, by means of the constructive 
algorithm alone, that A is asymptotically stable at the 
termination of the algorithm. However, we can show that 
A is asymptotically stable by choosing a p > 1 sufficiently 
small and then showing that PA is stable by using the 
constructive ‘algorithm. 

Next, we observe that the set M given in (12) consists in 
general of infinitely many matrices. However, the following 
result, established in [3], reduces the stability analysis of 
the equilibrium x = 0 of (12) to a finite set of matrices: let 
A be a set of matrices in the linear space of n x n matrices 
and let E(A) be the set of extreme matrices of A. Then 
X(A) is stable if and only if E(A) is stable. Thus if E(A) 
happens to be finite, then the stability analysis of A (and 
hence of (12)) can be accomplished in a finite number of 
steps. 

III. APPLICATION OF THE CONSTRUCTIVE 

ALGORITHM TO THE STABILITY ANALYSIS 
OF DIGITAL FILTERS 

In this section, we show how to apply the constructive 
algorithm of Brayton and Tong to the stability analysis of 
digital filters. This section consists of four parts. In Section 
III-A the types of nonlinearities that occur in fixed-point 
digital filters will be presented. In Section III-B, we present 
the procedure used to determine the extreme matrices for a 
general second-order digital filter. In Section III-C, this 
procedure is applied to two types of second-order digital 
filter structures: direct form and coupled form. (In a 
companion paper [13] we consider wave filters and lattice 
filters.) In Section III-D we briefly discuss the implementa- 
tion of the constructive stability algorithm. 

In Section IV, the stability results obtained by the con- 
structive algorithm for these two filter structures are com- 
pared with existing stability results. 

A. Nonlinearities in Digital Filters 

In digital filters, the representation of signals must by 
necessity have finite precision. This is a consequence of the 
encoding of the signals in a particular format (e.g., fixed or 
floating point) and of the storage of these signals in 
registers which have finite wordlength. Multiplications and 
additions performed in the digital filter generally lead to an 
increase in the wordlength required for the result of the 
operation. If the number of operations performed on a 
signal remains finite, as in a nonrecursive filter, the increas- 
ing wordlength can be handled by using larger registers for 
storing the results of the arithmetic operations. However, 
in a recursive digital filter, a wordlength reduction is 
necessary to prevent the wordlength of the signals from 
increasing indefinitely. 

In the present paper, we assume that the digital filters 
use fixed-point arithmetic. In fixed-point arithmetic, each 
number is represented by a sign bit and a magnitude. Thus 
the magnitude of any number is represented by a string of 
binary digits of fixed length B. When two B-bit numbers 
are multiplied, the result is a 2B-bit number. A quantiza- 
tion nonlinearity is produced when the 2B-bit number is 
reduced in wordlength to B bits. Quantization only affects 
the least significant bits. Addition also poses a problem 
when the sum of two numbers falls outside the represent- 
able range. An overflow nonlinearity results when this 
number is modified so that it falls back within the repre- 
sentable range. In general, the overflow nonlinearity 
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Fig. 2. Overflow characteristics. (a) Saturation. (b) Zeroing. (c) Two’s 
complement. (d) Triangular. 

Fig. 1. Fixed-point quantization characteristics. (a) Roundoff. (b) Mag- 
nitude truncation. (c) Value truncation. 

step sizes and/or different overflow levels. We will assume 
throughout this paper that all quantizers in a filter have the 

changes the most significant bits as well as the least signifi- 
cant bits of a fixed-point number. These two types of 
nonlinearities are well described in the literature (see e.g., 
[24], [25]) and, therefore, will only be briefly discussed 
here. 

Quantization can be performed by substituting the 
nearest possible number that can be represented by the 
limited number of bits. This type of nonlinear operation is 
called a roundoff quantizer and its characteristic is shown 
in Fig. l(a). Another possibility consists of discarding the 
least significant bits in the number. If the signals are 
represented by sign and magnitude then we have a magni- 
tude truncation quantization characteristic, as depicted in 
Fig. l(b). If the signals are represented in a two’s comple- 
ment format, the nonlinearity is a two’s complement or 
value truncation quantization, as shown in Fig. l(c). In this 
paper, value truncation is not considered. Thus the term 
truncation will always refer to magnitude truncation in the 
sequel. 

If an overflow occurs, a number of different actions may 
be taken. If the number that caused the overflow is re- 
placed by a number having the same sign, but with a 
magnitude corresponding to the overflow level, a saturation 
overflow characteristic shown in Fig. 2(a) is obtained. Zero- 
ing overflow substitutes the number zero in case of an 
overflow (see Fig. 2(b)). In two’s complement arithmetic, 
the most significant bits that caused the overflow are 
discarded. In this case, overflows in intermediate results do 
not cause errors, as long as the final result does not have 
overflow. This two’s complement overflow characteristic is 
illustrated in Fig. 2(c). Another way of dealing with over- 
flow is the triangular overflow characteristic (see Fig. 2(d)) 
as proposed by Eckhardt and Winkelnkemper [ll]. 

It is possible to have different wordlengths for the vari- 
ous signals in the filter, resulting in different quantization 

same quantization step size, q, and are of the same type 

(e.g., roundoff or truncation). Similarly, we will assume 
that all overflow nonlinearities in a filter have the same 
overflow level, p, and are of the same type. 

The above nonlinearities may be viewed as belonging to 
a sector [k,, k,]. Thus if f( 0) denotes a given nonlinear- 
ity, then 

k,u2 Q uf (u) < kMu2, for all u E R 

where k,, k, are constants such that - cc < k, G k, ( 00. 
Under the above assumptions, we view the quantization 

nonlinearities as belonging to the sector [0, k4] where 

k,= ;’ 
( , 

for truncation 
for roundoff . 03) 

Henceforth, k, will represent the upper slope of the sector 
that contains the quantization nonlinearity. The overflow 
nonlinearities are viewed as belonging to the sector [k,, l] 
where 

i 

0, for saturation or zeroing 

k,= -f, for triangular 04) 

-1, for two’s complement. 

Henceforth, k, will represent the lower slope of the sector 
which contains the overflow nonlinearity. 

When the above two nonlinear operations are combined 
(i.e., quantization and overflow functions are executed 
simultaneously), then the composite nonlinear operation 
may be viewed as belonging to the sector [k,, k4]. The 
constant k, is determined by the type of overflow being 
performed and the constant k, is determined by the type 
of quantization operation. 

Our representation of a fixed-point digital filter is not an 
exact description of an actual realization of such a filter. 
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Due to the finite number of values that a signal in a digital 
filter can assume, actual realizations of digital filters con- 
stitute finite state machines. The digital filters which we 
analyze are still idealizations in the sense that they are not 
finite state machines. This difficulty does not pose a serious 
problem since we assume that a filter operates in its 
intended range. 

B. General Digital Filter 

In order to apply the constructive algorithm, we repre- 
sent a digital filter by a system of difference equations, 

xtk+l) = gbtk)] (15) 

where k=0,1,2;.. . Following the procedure outlined in 
Section II, we rewrite the given system equations as 

x(k+l)=M(x(k))x(k) (16) 

where M(x(k)) is chosen so that M(x(k))x(k) = g[x(k)] 
for all allowable x. Since we consider only second-order 
systems in this paper, the matrix M may be rewritten as 

We assume that the elements of M satisfy the inequalities 

a1 < a(x(k)) Q a2 41 d btxtk)) Q P2 

Y~G+(~))GY~ 6,~ d(x(k)) Q 6, 

where (Y~, pi, yi, and &, i =1,2 are constants. 
Let M be the set of all matrices obtained by varying 

x(k) in M( x( k)) over all allowable values. The extreme 
matrices of M are given by (see Section II-C) 

E(M) = 
ai Pj i[ 1 4 ’ 

i, j,k,1=1,2 
yk 

By the results of Section II-D, the set M is stable 
(asymptotically stable) if and only if E(M) is stable 
(asymptotically stable). Therefore, we need only determine 
the stability (asymptotic stability) properties of E(M) to 
determine stability (global asymptotic stability) of the dig- 
ital filter described by (15). If the set M is unstable then 
we can draw no conclusion about the stability of (15). 

Using the results of Section II-D, we show that M is 
asymptotically stable by choosing a p > 1 sufficiently small 
and then showing that pM is stable by applying the 
constructive algorithm. For the digital filters treated in the 
present paper, the choice of p = 1.0000001 was satisfactory 
to ascertain asymptotic stability in all cases considered. 

Since the constructive algorithm shows that the equi- 
librium x = 0 of a given digital filter (15) is globa& 
asymptotically stable, then in particular, no limit cycles will 
exist in such a filter. 

In the Appendix, a brief description is given of the 
computer programs used in our stability analysis of digital 
filters by the constructive algorithm. 

C. Specific Digital Filters 

In this part, we give details of the application of the 
constructive algorithm to the stability analysis of the fol- 
lowing filter structures: a) Direct Form digital filter, and b) 

Fig. 3. Linear second-order direct form digital filter. 

Coupled Form digital filter. A stability analysis of wave 
digital filters and lattice digital filters (by the constructive 
algorithm) will be given in a companion paper [13]. 

For each of the digital filter structures considered, the 
region, in terms of the filter parameters, where the linear 
filter (i.e., the filter without quantization or overflow) is 
globally asymptotically stable is known precisely. Since a 
linear filter is either only stable or is unstable outside of 
this region, we are not interested in nonlinear filters whose 
parameters fall outside of this region. 

Next, we present the particular nonlinear structures for 
each type of filter which we consider. In addition, for each 
nonlinear filter structure we derive the set of extreme 
matrices used by the constructive algorithm. 

1) Direct Form Digital Filter: 
The second-order direct form digital filter has been 

investigated extensively [8]. Since we only consider filters 
with zero input, the recursive parts of the direct form 1 
structure and the direct form 2 structure are equivalent. 
The linear recursive part of this digital filter is shown in 
Fig. 3. 

The region where this linear filter is globally asymptoti- 
cally stable in terms of the parameters a and b is obtained 
by considering the transfer function of the linear filter, 

fw = z2 -“,: _ b. 

Using Jury’s criterion [17], it follows that the ideal second- 
order digital filter is globally asymptotically stable if and 
only if 

PI ~1 
la(+ b ~1. 

This stability region corresponds to the triangular region 
shown in Fig. 4. The linear filter is globally asymptotically 
stable for all coefficients inside this region. 

When the linear second-order direct form digital filter is 
implemented in fixed-point arithmetic, there are two possi- 
ble ways of placing the quantization nonlinearity. Quanti- 
zation can be performed immediately after each multiplica- 
tion. This nonlinear second order digital filter structure is 
shown in Fig. 5, with Q representing a quantizer. Altema- 
tively, the results of the two multiplications may be added 
with full precision and only one quantization is needed. 
This structure is shown in Fig. 6. For both possible quan- 
tizer configurations, the overflow nonlinearity, P, is placed 
after the adder as shown. We next develop the set of 
extreme matrices for each structure. 

a) One quantizer: The structure for the second-order 
direct form digital filter with one quantizer is shown in Fig. 
6. We will consider the quantization and overflow nonlin- 
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+b 

(-2, -11 (2, -1) 

Fig. 4. Region in the parameter plane where a linear second-order direct 
form filter is globally asymptotically stable. 

Fig. 5. Direct form digital filterwith two quantizers. 

Fig. 6. Direct form digital filter with one quantizer. 

earities together. With this assumption, the state equations 
are 

x,(k+l)=f[ax,(k)+bx,(k)l 
X*(k+l)=X1(k) 07) 

where f( .) is the combined quantization and overflow 
nonlinearity. 

Following the technique outlined in Section III-B, the 
state equations are expressed as 

x(k +l) = M(x(k))x(k) 

where M( x( k)) is given by 

Qb)b 
0 1 

with 
(q,) = fbx1+ bl 

ax,+bx, . 

08) 

(1% 

Since we view the quantization and overflow nonlinearities 
as belonging to a sector, the function Q(x) is bounded by 
constants CQ and CX* such that 

a1 Q Q(x) < q!. 

For the particular nonlinearities which we consider, we 
have 

al=ko and (Ye= k, 

where k, and k, are defined by (14) and (13), respectively. 
The extreme matrices of the set M are 

E(M)=([yJ a;], X,2]. (20) 

In this case, for each point (a, b) (in the a - b parameter 
plane), there are two extreme matrices given by A, and A 2, 
where 

A,+2 y] A2=[“fJ “g]. (21) 

If the overflow nonlinearity is absent, then CY~ = 0 and the 
set of extreme matrices in this case is the same as for one 
saturation or zeroing overflow nonlinearity. 

b) Two quuntizers: The structure of the second order 
direct form digital filter with two quantizers is shown in 
Fig. 5. We cannot combine the quantization and overflow 
nonlinearities in this case. The state equations are given by 

'x,(k+l)=~{Q,[ux,(k)l+Q,[bx,(k)l) 
x,(k+l) =x,(k) 

and can be rewritten as 

x(k+l) = M(x(k))x(k) 

where 

M(x) = @Ib)@3W @k+%b)b 
1 0 1 

and 

(a,(x) = Q&xl] @2(x) = Q$+l 

(a,(x) = k-i:b~~l+Q,bd~ 

2 

Q,bx,l+ Q,[bx,l . 

(22) 

(23) 

(24 

When the M(x(k)) given by (23) and (24) is multiplied by 
x(k) = [x,(k) x2(k)]‘, the state equations (22) are ob- 
tained. 

Since the quantization and overflow nonlinearities be- 
long to a sector, the functions al(x), 02(x), and (P3(x) are 
bounded by constants 

ail Q @i(x) d ai2, i =1,2,3 

where 

a11 = a21 - -0 and (Y~~=cx~~= k, 

and 

a31- 0, -k a32 =l. 

The functions 01(x)03(x) and Q2(x&(x) are also 
bounded by constants, pi and y,, such that 

&@l(x)@3(xkb2 and Y1@2(4@3(46Y2 

where 

& = Inin ( %la317 alla32 7 a12a31 Y a12a32) = k,kO 

P2 = max ( alla31~ %la32 7 a12a31, a12(y32) = k, 

yl=min(a2 (Y 1 319 a21a32~ a22a31, a22a32) =kqko 

y2=max(fx2a 1 319 a21a32~ ff22a31, a22a32) =k,. 

The extreme matrices of the set M are 

E(M)=([‘: ‘c], i,j=l,l}. (25) 
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Fig. 7. Linear second-order coupled form digital filter. 

For each point (a, b) in the parameter plane, there are four 
extreme matrices used in the constructive algorithm. For 
this example, these extreme matrices are 

k,W 1 A2=L k,k,a k,b I 
,,:,:1 A,= [‘r ‘f,.’ (26) 

If the overflow nonlinearity is absent, then a31 = & = y1 = 0 
and the set of extreme matrices in this case is the same as 
for the filter with a saturation or zeroing overflow nonlin- 
earity. 

2) Coupled Form Digital Filter: 
The coupled or normal form digital filter was first pro- 

posed by Rader and Gold [26] as a digital filter structure 
whose pole locations are less sensitive than the direct form 
structure to parameter errors. However, the coupled form 
can only realize complex-conjugate poles. With finite 
wordlength parameters this structure also has a uniform 
grid of possible pole locations [24]. The linear recursive 
part of a coupled form digital filter whose poles are at 
a + jb and which has zero input is shown in Fig. 7. 

The linear filter is globally asymptotically stable if and 
only if its poles lie within the unit circle. Equivalently, the 
parameters a and b must satisfy 

a2 + b2 -cl. 

This region corresponds to the interior of the unit circle in 
the a - b parameter plane. 

As in the direct form digital filter, there are two possible 
ways of placing the quantization nonlinearity. Quantiza- 
tion can be performed immediately after each multiplica- 
tion and thus four quantizers will be needed. This filter 
structure is shown in Fig. 8 with Qj, i = 1,. . . ,4 repre- 
senting the quantizers. Alternatively, the results of two 
multiplications may be added with full precision and then 
quantized. This implementation uses two quantizers and is 
shown in Fig. 9. For both possible placements of the 
quantization nonlinearity, the overflow nonlinearities, Pi 
and P2, must be placed after each addition as shown. We 
next develop the set of extreme matrices for each structure 
which will be used by the constructive algorithm. 

Fig. 8. Coupled form digital filter with four quantizers. 

Fig. 9. Coupled form digital filter with two quantizers 

a) Two quantizers: The coupled form digital filter 
structure to be analyzed is shown in Fig. 9. As in the direct 
form digital filter, we assume that the overflow and quanti- 
zation nonlinearities before each delay are combined. With 
this assumption, the state equations for the filter are 

x,(k+l) =.fh,@)-b(k)] 

x&+1) =.f&x,(k)+~x,(k)l (27) 

where fi( 0) and f2( 0) are the combined quantization and 
overflow nonlinearities. 

Following the technique outlined in Section III-B, the 
state equations are written as 

x(k+l)=M(x(k))x(k). 

Defining 

(28) 

the matrix M(x) is given by 

M(x) = @1(x)a - %(x)b 
@2W 1 cp,(x)h . (29) 
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The functions Q1(x) and a2(x) are bounded by constants 

a1 G @‘1(x> < a2 

P6@2(4 G/32. 

For the particular nonlinearities which we consider, these 
constants are 

“l=&=ko 

a2=fi2=kq. 

The extreme matrices of the set M are 

E(M)= { [iii -#YE], i, j=1,2}. (30) 

Therefore, for a given point in the a - b parameter plane, 
the constructive algorithm uses four extreme matrices. If 
the overflow nonlinearities are absent, then CX~ = & = 0 and 
the set of extreme matrices in this case is the same as for 
the filter with two saturation or zeroing overflow nonlin- 
earities. 

b) Four quantizers: The structure of the coupled form 
digital filter with four quantizers is shown in Fig. 8. The 
state equations are given by 

x,(k+1)=P,{Q,[~x,(k>l+Q2[-bx,(k)l} 

x,(k+1)=P,{Q,[bx,(k)l+Q,[~x,(k)l} (31) 

or, equivalently, by 

x(k +l) = M(x(k))x(k) 

where 

a1(x) = Pl{Qlb,l+Q,[-bx21) 
Q1hl+Q2[-b-d 

a2(x) = P2{Q&xll+Q,bx,l~ 
Q,b,l+Q,bx,l 

ip3(x) = Ql[~xll 

a5(x) = Q3;11 

a4(x) = Q2[ - bx21 

- bx, 

Q~(~) = Q4bx21 
ax, * (33) 

1 

The functions ai( are bounded by constants cyij such 
that 

ajl G @j(x) d ai2, i=1,2,3,4,5,6 

where 

an= a21= k,, a12 = a22 - -1 

a31 = cx41 = as1 = as1 = 0 

and 

a32 = a42 = as2 = ah2 = k,. 

Therefore, the functions @,(x)@,(c), Q1(x)ip4(x), 
@,,(x)ip,(x>, and @2(x)O6(x> are bounded by constants 

pi, y,, Si, ei, i=1,2 such that 

Pl G QdxP3(x) =G P2 Yl =s %b>@a,(x> G Y2 

6, < @2(++(x) G 6, 

and 

where 

and 

& = y1 = 6, = cl = k,k, 

p2 = y2 = 6, = c2 = k,. 

The extreme matrices of the set M are 

E(M)= ([:I; ::b], i, j,k,l=1,2]. (34) 

For this filter, there are sixteen extreme matrices for a 
given point in the a -b parameter plane. If the overflow 
nonlinearities are absent, then & = y1 = 6, = e1 = 0 and the 
set of extreme matrices in this case is the same as for the 
filter with two saturation or zeroing overflow nonlineari- 
ties. 

D. Implementation of the Constructive Algorithm 

In the next section, we apply the constructive algorithm 
to the extreme matrices given in (20) (25), (30), and (34) to 
determine regions in the parameter plane for which the 
various filter structures under discussion are globally 
asymptotically stable. To simplify matters, we phrase the 
following discussion in terms of the extreme matrix (20), 

E(M)=J[OL;Y at],i=l,2). 

There are several ways of estimating regions in the a - b 
parameter plane for which the filter given by (17) is 
globally asymptotically stable. We comment on two: 

Method I: Equation (20) is evaluated on a sufficiently 
fine grid in a subset of the a - b parameter plane and the 
constructive algorithm is then applied to each of the result- 
ing sets of extreme matrices. In the Appendix, a brief 
description of the computer programs which accomplish 
this is given. 

Method 2: We can modify the extreme matrices in (20) 
by incorporating intervals for the parameters a and b. For 
example, suppose we want to determine whether the filter 
given by (17) is globally asymptotically stable for all points 
in the rectangle 

D,= {(a,b)ER2: Akl~aak-Sk~afa,+6k~AAk2 

and B,, p 6, - ek f b Q b, + Ed A B,,} 

for some ek > 0, 6, > 0. In this case, the constructive 
algorithm is applied to the set of extreme matrices E,(M) 
given by 
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Remark: In Method 2, the set E,(M) can be further 
simplified by recognizing that for i, j, I = 1,2 we have the 
estimates 

Pkl G (YiAkj G Pk2 9 Ykl G “iBk, Q Yk2 

where Pkl? Pk2? Ykl, and yk2 are appropriate constants (as 
discussed in the next paragraph). Thus for Method 2, the 
set of extreme matrices E,(M) assumes the form 

Ek(M)=([?’ T], i, j=l,Z}. 

For rectangles located in the first quadrant of the 
parameter plane, we have Bkl = kOAk2, pk2 = k,A,,, ykl = 

koBm and yk2 = kgBk2. Therefore, if the filter (17) has 
been. determined to be globally asymptotically stable for 
the point (A,,, B,,) in the a - b parameter plane, then it 
turns out that the filter (17) will actually be globally 
asymptotically stable for parameters located in any rectan- 
gle which lies in the first quadrant of the parameter plane 
and whose upper right-hand comer is (A,,, B,,). 

For rectangles located in the other three quadrants of the 
parameter plane, similar statements apply. n 

Methods 1 and 2 can be combined in an effective 
manner. In this approach, one first uses Method 1 to 
determine a region of stability G for (17) via a grid; and 
then, one attempts to cover as much of G as possible with 
an appropriate set of rectangles, obtained using Method 2, 
to ensure that filter (17) is globally asymptotically stable 
for all parameters corresponding to the subset of G covered 
by the rectangles. 

We found that Method 1 by itself yields quite satisfac- 
tory results and is easily implemented. The results which 
are presented in the next section were obtained by Method 
1. In general, results obtained by Method 2 will be more 
conservative than results obtained by Method 1. 

The above discussion is modified for the extreme matrices 
(25), (30), and (34) in the obvious way. 

IV. COMPARISONOF STABILITYRESULTSBYTHE 
CONSTRUCTIVEALGOFUTHMWITH EXISTING 

STABILITY RESULTS 

In this section, we present results obtained by applying 
the constructive algorithm to different nonlinear digital 
filter structures. For purposes of comparison, we also sum- 
marize existing qualitative results for corresponding filter 
structures. There are two categories of existing qualitative 
results for fixed-point digital filters. The results of one 
category constitute sufficient conditions for the absence of 
limit cycles in a digital filter, while the results in the second 
category provide sufficient conditions for the global 
asymptotic stability of a digital filter. Of course, the results 
in the latter category yield also sufficient conditions for the 
absence of limit cycles. We compare these existing results 
with the stability results obtained via the constructive 
algorithm. Specifically, we will use the constructive al- 
gorithm to ascertain the global asymptotic stability of the 
equilibrium x = 0 of a digital filter; this also guarantees the 
absence of limit cycles in the digital filter in question. 

A. Direct Form Digital Filters 

For a direct form digital filter, we consider the filter 
implemented with one or two quantizers. For both of these 
structures, we summarize existing qualitative results for the 
direct form filter and compare these results with the global 
asymptotic stability results obtained using the constructive 
algorithm. 

I) One Quantizer: 
a) Truncation quantizer: For a second-order direct form 

digital filter with one truncation quantizer and no overflow 
nonlinearity, the largest region in the a - b parameter 
plane where zero-input limit cycles are proven to be absent 
has been reported in Claasen [5]. This result has also been 
reported in [8]. This region, where limit cycles do not exist, 
is the same region in the parameter plane where it is shown 
by Claasen and Kristiansson [6] that the direct form digital 
filter with one saturation overflow nonlinearity is asymp- 
totically stable. 

Theorem 2[5]: No zero-input limit cycles exist in the 
second-order direct form digital filter of Fig. 6 with one 
truncation quantizer and no overflow nonlinearity if the 
following conditions are satisfied: 

F,qldn)l <I. 

If (a2/4)+ b > 0, q(n) is defined as 

q(n) = - * Gv cz> 
2 

and 

A,, A, =; f $+b. 

If ( u2/4)+ b < 0, the q(n) is rewritten as 

- ).n+l 
q(n) = 7 

sln(P> 
Sk(b) 

where 

r=J-b, p = arccos a 
2r. 

n 

The region in the a - b parameter plane where no limit 
cycles exist for a direct form filter with one truncation 
quantizer is represented by the unhatched region of Fig. 
10. Only half of the region is shown since it is symmetric 
with respect to the b axis. 

Limit cycles in a second-order direct form digital filter 
with only an overflow nonlinearity have been studied by 
Ebert, Mazo, and Taylor [lo]. They show that no overflow 
oscillations exist in the digital filter when saturation over- 
flow or triangular overflow is used. For two’s complement 
overflow, they show that a necessary and sufficient condi- 
tion for the absence of limit cycles in the filter is given by 

Ial+ lb1 ~1. (35) 

This region in the a - b parameter plane is depicted as the 
unhatched region in Fig. 11. Ebert, Mazo, and Taylor also 
state that zeroing overflow also leads to oscillations, but no 
analysis is presented in [lo] to justify this assertion. How- 



ERICKSON AND MICHEL: FIXED-POINT DIGITAL FILTERS: PART I 123 

Fig. 10. Region where a direct form filter with one truncation quantizer Fig. 12. Region where a direct form filter with one truncation quantizer 
is free of limit cycles by Theorem 2. and saturation, zeroing or no overflow is g.a.s. by the constructive 

algorithm. 

Fig. 10(a). Region where a direct form filter with one zeroing overflow 
I 

nonlinearity is free of limit cycles by Willson [28]. Fig. 13. Region where a direct form filter with one truncation quantizer 
and triangular overflow is g.a.s. by the constructive algorithm. 

Fig. 11. Region where a direct form filter with one two’s complement 
overflow nonlinearity is free of limit cycles by (35). 

ever, Willson [28] obtains an estimate in the a - b parame- 
ter plane where limit cycles do not exist in second-order 
direct form filters with no quantization and zeroing over- 

flow. This region is depicted as the unhatched region in 
Fig. 10(a). Willson also shows that in the case of second- 
order direct form filters with quantization and zeroing 
overflow and with parameter pairs (a, b) belonging to the 
unhatched region of Fig. 10(a), the amplitudes of limit 
cycles can be made arbitrarily small by sufficiently decreas- 
ing the quantization step size. For earlier results dealing 
with the problem addressed by Willson [28], see Sandberg 

1271. 
To apply the constructive algorithm to the direct form 

filter with one truncation quantizer, we use the extreme 
matrices determined by (20). The region of global asymp- 
totic stability in the a - b parameter plane obtained by the 
constructive algorithm for this filter with a truncation 
quantizer and saturation, zeroing or no overflow is shown 
in Fig. 12. The regions in the parameter plane where this 
digital filter is globally asymptotically stable with triangu- 
lar and two’s complement overflow are shown in Figs. 13 
and 14, respectively. The stability results obtained by the 
constructive algorithm for the overflow nonlinearity without 
quantization are the same as the results obtained for the 
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Fig. 14. Region where a direct form filter with one truncation quantizer 
and two’s complement overflow is g.a.s. by the constructive algorithm. 

overflow and truncation quantization nonlinearities com- 
bined. 

When quantization is considered separately, the con- 
structive algorithm yields the same region in the parameter 
plane where the filter is globally asymptotically stable as 
the result of Claasen [5] which deals with the absence of 
limit cycles. If we consider the overflow nonlinearity only, 
then the stability results by the constructive method are 
more conservative than those of Ebert, Mazo and Taylor 
[lo] for saturation or triangular overflow. However, the 
constructive algorithm yields the same region where limit 
cycles are absent for the filter with truncation quantization 
and two’s complement overflow as Ebert, Mazo and Taylor 
for a single two’s complement overflow nonlinearity. 

Results contained in Willson [28] pertaining to the case 
of no quantization and zeroing overflow (see Fig. 10(a)) 
can be compared to our results pertaining to the same 
conditions (see Fig. 12). An examination of Figs. 10(a) and 
12 shows that neither result implies the other (i.e., the 
unhatched region of Fig. 12 does not contain the un- 
hatched region of Fig. 10(a), and vice versa). 

Those results in Willson [28] which are concerned with 
the case of quantization and zeroing overflow (where limit 
cycle amplitude can be controlled by quantization step 
size) and the present results complement each other. In- 
deed, our results indicate that for most of the unhatched 
region in Fig. 10(a), limit cycles do not exist at all. 

The present results obtained by the constructive al- 
gorithm for any overflow combined with a truncation 
quantizer seem to be new. 

b) Roundoff quantizer: For the direct form digital filter 
with one roundoff quantizer, Claasen et al. [7] have derived 
a sufficient condition for the absence of zero-input limit 
cycles. To develop sufficient conditions for the absence of 
limit cycles in the filter structure shown in Fig. 6 with just 
the quantization nonlinearity, consider a nonlinear discrete 
system with one nonlinear element, Q, depicted in Fig. 
15(a). In considering zero-input limit cycles, the linear part 
of the system, IV, is described by the transfer function 

y=Q(x) 

(b) 
Fig. 15. Nonlinear discrete system considered in Theorem 3. (a) Nonlin- 

ear discrete system. (b) Sector in which Q must lie. 

W(z) where X(z) = W( z)Y(z). For Q, we assume that 

Q(O) = 0 

O&Q., , xzo 
X 

[Q(x+~)-Q(x)]~>o, forallxand h 

Q(-x)=-Q(x)- (36) 

assumptions imply that the nonlinear characteristic 
the sector shown in Fig. 15(b) and is a nondecreas- 

These 
lies in 
ing, odd and symmetric function of x. 

Theorem 3[7]: Let the discrete system be modeled as 
shown in Fig. 15(a), containing a linear part described by 
the transfer function W(z), which must be finite for ]z] = 1, 
and a nonlinearity satisfying (36). Limit cycles of length N 
are absent from the discrete system if there exist ‘Ye, /3, > 0 
such that for I = 0, 1, . . . , [ N/2], 

N-l 

c {~,(l-z~)+/3,(I+z~)} -k <O 
p=l 1 1 

(37) 

where zI = ejQn/N)I and [r] denotes the integer part of r. 
Claasen et al. [7] implement this criterion by transfor- 

ming it into a linear programming problem and applying 
existing linear programming algorithms. The region in the 
parameter plane where no limit cycles exist is approxi- 
mated by taking a large value of N (e.g., N = 70). For 
roundoff quantization (k = 2), the region in the parameter 
plane where no limit cycles exist by Theorem 3 is identified 
by the unhatched region in Fig. 16. This criterion can also 
be applied to the case of one magnitude truncation quan- 
tizer, but the region obtained where no limit cycles exist is 
smaller than the region determined by Theorem 2. 

The extreme matrices determined in (20) were used to 
apply the constructive algorithm to the stability analysis of 
the direct form digital filter with one roundoff quantizer. 
The region of global asymptotic stability in the parameter 
plane obtained by the constructive algorithm for this filter 
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1 

Fig. 16. Region where a direct form filter with one roundoff quantizer Fig. 18. Region where a direct form filter with one roundoff quantizer 
and no overflow is free of limit cycles by Theorem 3. and triangular overflow is g.a.s. by the constructive algorithm. 

Ab Ab 

Fig. 17. Region where a direct form filter with one roundoff quantizer 
and saturation, zeroing or no overflow is g.a.s. by the constructive 
algorithm. 

with a roundoff quantizer and saturation, zeroing or no 
overflow is shown in Fig. 17. For this case, the region 
where the filter is determined to be globally asymptotically 
stable by the constructive algorithm, is slightly larger than 
the region obtained by applying Theorem 3. The horizon- 
tally hatched area indicates the region where at least one of 
the extreme matrices has an eigenvalue with magnitude 
greater than one. Limit cycles have been found by others in 
all of the horizontally hatched region [8]. Vertical hatching 
indicates that remaining region for which the constructive 
algorithm is unable to predict global asymptotic stability. 

For roundoff quantization and triangular overflow, the 
region in the parameter plane where the filter,is determined 
to be globally asymptotically stable by the constructive 
algorithm, is indicated in Fig. 18. The corresponding region 
when two’s complement overflow is used is shown in Fig. 
19. Again, horizontal hatching indicates the region where 
at least one of the extreme matrices has an eigenvalue with 
magnitude greater than one. Vertical hatching indicates the 

I \ 

Fig. 19. Region where a direct form filter with one roundoff quantize1 
and two’s complement overflow is g.a.s. by the constructive algorithm. 

Fig. 20. A general discrete system with many nonlinearities. 

rest of the uncertain region where we can draw no conclu- 
sion about the stability of the system. These results appear 
to be new. 

2) Two Quantizers: 
For two roundoff quantizers or two truncation quan- 

tizers, an absolute stability criterion by Jury and Lee [18] 
can be used to determine sufficient conditions for the 
global asymptotic stability of the second-order direct form 
filter with two quantizers. A discrete system with several 
nonlinearities is represented by the system shown in Fig. 
20. The m nonlinear elements are represented by the vector 
valued function f(a) where fi(ui) is the output of the ith 
nonlinear element. The input of this element is the i th 
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component of the vector u. The inputs and outputs of the 
nonlinear elements are interconnected by linear filters with 
transfer functions gij(z), which are assumed to be control- 
lable and observable [14]. The functions gij(z) are the 
elements of the m X m transfer matrix G(z). We assume 
that each element gij(z) has all of its poles within the unit 
circle except possibly one pole at z = 1. The linear filter 
with the transfer function gij(z) connects the output of the 
jth nonlinear element and the input of the ith nonlinear 
element. We assume that the nonlinearities fi(ui) satisfy 
the following conditions: 

9 h(O) = 0, i=1,2;*.,m 

ii) for all ui # 0 

iii) a(k)+0 implies y(k)+0 

iv) - 4it”i) <oo 

*< da, (38) 

where kii is the ith diagonal element of the m X m matrix 
K. 

Theorem 4[18]: The system of Fig. 20 satisfying the 
above conditions for G(z) with nonlinearities described by 
(38) is globally asymptotically stable if 

H(z)=2K-.‘+.G(z)+G*(z)>O, for all ]z( =l 

(39) 

where G*(z) denotes the conjugate transpose of G(z) and 
“ > ” signifies that the matrix is positive definite. n 

A sufficient condition which guarantees the absence of 
limit cycles in a direct form filter with two quantizers 
which is equivalent to Theorem 4 is given in Claasen et al. 

171. 
For the second-order direct form digital filter with two 

quantization nonlinearities, as shown in Fig. 5, the matrix 
G(z) may be written as 

The matrix H(z), given by 

H(z)= l1 

i 

2 
- - az-’ - (az-‘) 
k 

- az-’ - ( bxe2) 

-bze2- (az-‘) $--bzp2- (bz-*) 
22 I 

must be positive definite for ]z] = 1. For magnitude trunca- 
tion quantizers, k,, = k,, = 1. The corresponding region in 
the parameter plane where the filter is globally asymptoti- 
cally stable is shown as the unhatched region in Fig. 21. 
Only half of the region is shown, since it is symmetric 
about the b axis. For two roundoff quantizers, k,, = k,, = 
2. The region where the filter is globally asymptotically 
stable for this case is presented in Fig. 22. 

We note that Theorem 4 cannot be readily applied to 
triangular or two’s complement overflow nonlinearities, 
since nonlinearities described by (38) are constrained- to lie 
entirely in the first and third quadrants. 

Fig. 21. 

Fig. 22. 

2 
N 

a 

Region where a direct form filter with two truncation quan- 
tizers and no overflow is g.a.s. by Theorem 4. 

Region where a direct form filter with two roundoff quantizers 
and no overflow is g.a.s. by Theorem 4. 

To apply the constructive stability algorithm to this filter 
structure, we use the extreme matrices determined in (25). 
The regions in the parameter plane, determined by the 
constructive algorithm, where the digital filter is globally 
asymptotically stable, are identified for all cases as the 
unhatched regions in Figs. 23-28. Only half of these re- 
gions are shown since they are symmetric about the b-axis. 
Horizontal hatching indicates the region where at least one 
extreme matrix has one eigenvalue with a magnitude greater 
than one. Vertical hatching indicates the rest of the region 
where we can draw no conclusion about the stability of the 
system. 

As can be eeen from Figs. 23 and 26, the constructive 
algorithm obtains in this case less conservative results than 
the application of Theorem 4. Other workers have shown 
that limit cycles exist in this filter with truncation quantiza- 
tion and no overflow for all of the horizontally hatched 
region of Fig. 23 [S]. For this filter with roundoff quantiza- 
tion and no overflow, other workers have found that limit 
cycles exist in most of the horizontally hatched region of 
Fig. 26 [8]. All of the results obtained for the overflow 
nonlinearities seem to be new. 
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1 

2 
e 
0 

I --- Boundary determined by Theorem 4 

Fig. 23. Region where a direct form filter with two truncation quan- 
tizers and saturation, zeroing or no overflow is g.a.s. by the constructive 
algorithm. 

1 

7 _-- Boundary by Theorem q 

Fig. 26. Region where a direct form filter with two roundoff quantizers 
and saturation, zeroing or no overflow is g.a.s. by the constructive 
algorithm. 

1 

Fig. 24. Region where a direct form filter with two truncation quan- Fig. 27. Region where a direct form filter with two roundoff quantizers 
tizers and triangular overflow is g.a.s. by the constructive algorithm. and triangular overflow is g.a.s. by the constructive algorithm. 

kb kb 

Fig. 25. Region where a direct form filter with two truncation quan- Fig. 28. Region where a direct form filter with two roundoff quantizers 
tizers and two’s complement overflow is g.a.s. by the constructive and two’s complement overflow is g.a.s. by the constructive algorithm. 
algorithm. 



128 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-32, NO. 2, FEBRUARY 1985 

B. Coupled Form Digital Filters 

For coupled form digital filters, we consider the fixed- 
point filter implemented with two or four quantizers. For 
both structures considered, we summarize existing results 
on the stability of the filter and then compare these results 
with the stability results obtained by the constructive al- 
gorithm. 

I) Two Quantizers: 
For the coupled form digital filter of Fig. 9, previous 

results indicate that this structure is free of overflow and 
quantization limit cycles when truncation is used in the 
quantizer. Barnes and Fam [l] show that the coupled form 
is free of limit cycles due to overflow nonlinearities. They 
consider autonomous nonlinear systems of the type 

x(k +1) =f[Ax(k)] 

where f( .) is a bounded nonlinear function defined on R”. 
Specifically, they assume the existence of a real number 
p > 0, such that for every x E R” 

IfWlz G PlXl2 

where (- I 2 denotes the Euclidean vector norm on R”. Let 
1) A I I 2 denote the matrix norm of A induced by the Euclidean 
norm. They show that if 

PII4I, -cl (41) 
then no autonomous limit cycles will exist in the system 
described by (40). The coupled form filter of Fig. 9 without 
the quantizers fulfills condition (41) and thus no limit 
cycles exist. Jackson [15] extends these results to also 
include the quantization nonlinearity by noting that the 
truncation quantization nonlinearity also fulfills the condi- 
tion (41). 

For roundoff quantizers, Barnes and Shirmaka [2] show 
that quantization limit cycles will not be supported by the 
coupled form for parameters located within the unit square 
depicted in Fig. 29. They consider the second-order linear 
filter of Fig. 7 described by the state equations: 

x,(k+l) =ax,(k)-bx,(k) (42) 

x,(k+l)=bx,(k)+ax,(k). (42) 

Letting f( 0) denote roundoff quantization, the autono- 
mous system with two roundoff quantizers is given by 

xl@ -4 =f bxlW- &@)I 
x,(k+l)=f[bx,(k)+ax,(k)]. (43) 

Their assertion and its proof are given here because we will 
extend it to the case when overflow nonlinearities 
present. 

Assertion 2 [2]: For the system given by (43), if 
point (a, b) is within the unit square of Fig. 29, then 

Ix@+lh+(k)l,. 

are 

the 

Proof: We consider the construction of embedded 
squares in Fig. 30. If x(k) is on the boundary of square 1 
in Fig. 30, then x(k + 1) will be within or on the boundary 
of square 2. Furthermore, if x(k) is at a midpoint of a side 

Fig. 29. Region where a coupled form filter with two or four roundoff 
quantizers and any overflow is free of limit cycles by Assertion 1. 

Fig. 30. Imbedded squares in state space of coupled form filter. 

of square 1, then x(k + 1) will be within or on the boundary 
of square 3. Thus the desired result follows. n 

Since the norm is decreasing monotonically, they con- 
clude that no limit cycles exist in the filter when (a, b) is 
within the unit square. 

When overflow is considered with roundoff quantiza- 
tion, then the coupled form filter will not support limit 
cycles when the poles are within the unit square of Fig. 29. 
This conclusion follows immediately from Assertion 1. The 
proof of this assertion is the same if the operator f( .) in 
(43) represents a roundoff and overflow, since 

Ifwl Q I4 
where P( .) represents any of the overflow nonlinearities in 
Fig. 2. 

To apply the constructive algorithm to the coupled form 
digital filter with two quantizers, we use the extreme 
matrices determined in (30). When truncation quantizers 
are used with any type of overflow, the constructive al- 
gorithm shows that this filter is globally asymptotically 
stable everywhere that the linear filter is globally asymptot- 
ically stable. This result is identical to existing results. For 
roundoff quantizers with any type of overflow, the con- 
structive algorithm shows that this filter is globally asymp- 
totically stable when the parameters a and b satisfy 

a2 + b2 < 0.25. 

This region is smaller than the region in the parameter 
plane where Barnes and Shinnaka [2] show that no limit 
cycles exist. It is not too surprising that our results are 
more conservative in this case, since the constructive al- 
gorithm essentially shows that a filter is globally asymptot- 
ically stable for a class of nonlinearities whereas Barnes 
and Shinnaka consider some specific nonlinearities. 
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Fig. 31. Region where a coupled form filter with four truncation quan- 
tizers and no overflow is free of limit cycles by (44). 

2) Four Quantizers: 
For the coupled form digital filter with quantizers after 

each multiplication in Fig. 8, the only known result deals 
with the absence of limit cycles in this structure without 
overflow. When truncation quantization is used without 
overflow, Jackson and Jude11 [16] state that no limit cycles 
exist if the parameters of the coupled form structure of Fig. 
8 satisfy 

a2 + labI+ b2 ~1. (44) 

However, no proof of their assertion is given in [16]. This 
region in the parameter plane where no limit cycles exist is 
shown as the unhatched region in Fig. 31. (The region is 
symmetric about both the a and b axes.) For roundoff 
quantizers, Barnes and Shinnaka [2] prove that limit cycles 
due to quantization will not exist if the parameters of the 
coupled form filter are within the unit square shown in Fig. 
29. They consider the linear filter of Fig. 7 described by 
(42). Letting f(a) denote roundoff, the autonomous system 
with four roundoff quantizers is represented by 

dk+l)=f bdk)l+f [-bx2(k)l 

x2(k +l) =f [b(k)] +f [ax,(k)]. 

If the point (a, b) is within the unit square of Fig. 29, then 

lx(k+l)l,< lx(k)12 

and thus no quantization limit cycles exist. The interested 
reader is referred to [2] for details of the proof. The 
extension of their proof to overflow nonlinearities does not 
seem obvious at this time, even though their proof could be 
extended in the case of the coupled form filters with two 
roundoff quantizers. 

To apply the constructive algorithm to this filter struc- 
ture, we use the extreme matrices determined in (34). The 
regions in the parameter plane, determined by the con- 
structive algorithm, where the digital filter is globally 
asymptotically stable, are shown for all cases as the un- 
hatched regions in Figs. 32-37. Horizontal hatching identi- 
fies a region where at least one extreme matrix has an 
eigenvalue with a magnitude greater than one. Vertical 

Boundarv by Ewotion 44 

Fig. 32. Region where a coupled form filter with four truncation quan- 
tizers and saturation, zeroing or no overflow is g.a.s. by the constructive 
algorithm. 

I 

.5 1 

Fig. 33. Region where a coupled form filter with four truncation quan- 
tizers and triangular overflow is g.a.s. by the constructive algorithm. 

hatching identifies the rest of the region where we can draw 
no conclusion about the stability of the filter. Only the first 
quadrants of these regions are shown since they are sym- 
metric about both the a and b axes. 

As indicated in Fig. 32, the constructive algorithm de- 
termines a region where limit cycles are absent which is 
larger than the region where Jackson and Jude11 [16] indi- 
cate the absence of limit cycles for four truncation quan- 
tizers and no overflow nonlinearities. However, with four 
roundoff quantizers, the constructive algorithm determines. 
a region where no limit cycles exist that is smaller than the 
region where Barnes and Shinnaka [2] prove the absence of 
limit cycles (Fig. 29). Again, this is to be expected, since 
our result by the constructive algorithm determines the 
region where the filter is globally asymptotically stable for 
a class of nonlinearities whereas only a specific nonlinear- 
ity (i.e., roundoff quantization) is considered in [2]. All of 
the results obtained by the constructive algorithm for 
saturation and two’s complement overflow with roundoff 
or truncation quantization seem to be new results. 
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Fig. 34. Region where a coupled form filter with four truncation quan- 
tizers and two’s complement overflow is g.a.s. by the constructive 
algorithm. 

.5 1 

Fig. 35. Region where a coupled form filter with four roundoff quan- 
tizers and saturation, zeroing or no overflow is g.a.s. by the constructive 
algorithm. 

V. CONCLUDING REMARKS 

The fixed-point digital filter structures which we analyzed 
demonstrate that the Brayton-Tong constructive algorithm 
is a powerful tool in the stability analysis of fixed-point 
digital filters. We have obtained new results for many of 
the structures which we analyzed. We also improved upon 
many existing stability results. Our results are more con- 
servative only for a few cases. In these cases, the existing 
results consider a specific nonlinearity, whereas the con- 
structive algorithm obtains a stability result which applies 
to a class of nonlinearities. 

Following is a summary of the results obtained by the 
constructive algorithm for the various digital filter struc- 
tures which we studied. For comparison, the references for 
the existing results are also listed. 

New stability results 
1) direct form, one quantizer with overflow, 
2) direct form, two quantizers with overflow, 
3) coupled form, four quantizers with overflow. 

I j 0 
c 

,5 1 

Region where a coupled form filter with four roundoff quan- 
and triangular overflow is g.a.s. by the constructive algorithm. 

.5 1 

Fig. 37. Region where a coupled form filter with four roundoff quan- 
tizers and two’s complement overflow is g.a.s. by the constructive 
algorithm. 

Improvement upon existing results: 
1) direct form, one zeroing overflow only [27], 
2) direct form, one roundoff quantizer without overflow 

[71? 
3) direct form, two quantizers without overflow [18], 
4) coupled form, four truncation quantizers without 

overflow [16]. 
Same as existing results: 
1) direct form, one truncation quantizer without over- 

flow [51, 
2) coupled form, two truncation quantizers with or 

without overflow [l]. 
More conservative than existing results: 
1) direct form, saturation or triangular overflow only 

WI? 
2) coupled form, two roundoff quantizers with or without 

overflow [2], 
3) coupled form, four roundoff quantizers without over- 

flow [2]. 
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A&ruct --In a companion paper [4], we utilize the coa.vtrucrice stability 

algorithm of Brayton and Tong in the stability analysis of fixed-point 

digital filters which are in the direct form and in the coupled form. We 

continue this work in the present paper by considering wave digital filters 

and lattice digital filters. We believe that the results of the present paper 

and its companion paper demonstrate that the consrnretioe algorithm 

constitutes an eflectiw and general approach in the qualitative analysis of 

fixed-pointed digital filters. 
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I. INTRODUCTION 

I N THE companion paper [4], we first showed how the 
constructive stability algorithm of Brayton and Tong 

[2], [3] may be applied in the stability analysis of rather 
broad classes of fixed-point digital filters which may be 
endowed with various types of quantization and overflow 
nonlinearities. We then considered, in particular, direct 
form digital filters and coupled form digital filters. Our 
objective was to determine a region in the parameter plane 
of a given digital filter for which the zerokrput digital filter 
is globally asymptotically stable, and consequently, does 
not possess any zero-input limit cycles. The results in 141, 
which use only one approach of stability analysis, seem 
rather encouraging when compared to many of the existing 
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