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A&ruct --In a companion paper [4], we utilize the coa.vtrucrice stability 

algorithm of Brayton and Tong in the stability analysis of fixed-point 

digital filters which are in the direct form and in the coupled form. We 

continue this work in the present paper by considering wave digital filters 

and lattice digital filters. We believe that the results of the present paper 

and its companion paper demonstrate that the consrnretioe algorithm 

constitutes an eflectiw and general approach in the qualitative analysis of 

fixed-pointed digital filters. 
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I. INTRODUCTION 

I N THE companion paper [4], we first showed how the 
constructive stability algorithm of Brayton and Tong 

[2], [3] may be applied in the stability analysis of rather 
broad classes of fixed-point digital filters which may be 
endowed with various types of quantization and overflow 
nonlinearities. We then considered, in particular, direct 
form digital filters and coupled form digital filters. Our 
objective was to determine a region in the parameter plane 
of a given digital filter for which the zerokrput digital filter 
is globally asymptotically stable, and consequently, does 
not possess any zero-input limit cycles. The results in 141, 
which use only one approach of stability analysis, seem 
rather encouraging when compared to many of the existing 
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corresponding qualitative results, which make use of a 
variety of diverse methods of analysis. 

In this paper, we continue the stability analysis of fixed- 
point digital filters via the constructive stability algorithm 
by considering a class of wave digital filters and a class of 
lattice digital filters. As in [4], we attempt to compare the 
method of analysis advanced herein with other existing 
methods and results. Furthermore, we establish new stabil- 
ity results for some of the classes of filters which we 
consider. We believe that the results of the present paper, 
combined with those given in [4], demonstrate that the 
constructive algorithm constitutes indeed a very powerful 
tool in the qualitative analysis of second-order fixed-point 
digital filters. 

Throughout this paper we employ the notation, pre- 
liminary results, and some of the main results established 
in [4]. Before reading this paper, it is essential that refer- 
ence be made to sections II, III-A, and III-B of [4]. 

This paper consists of four sections. In Section II we 
develop the extreme matrices for the classes of filters which 
we consider, while in Section III we utilize the constructive 
algorithm in the stability analysis of these filters and we 
make comparisons with existing stability methods and 
results. The paper is closed in Section IV with appropriate 
concluding remarks. 

II. EXTREME MATRICES FOR WAVE DIGITAL 
FILTERS AND LATTICE DIGITAL FILTERS 

In this section, which consists of two parts, we put the 
classes of filters which we consider into suitable forms to 
make it possible to apply the constructive stability al- 
gorithm. In Section II-A we deal with wave digital filters 
while in Section II-B we address lattice digital filters. 

A. Wave Digital Filters 

Wave digital filters are a class of low-sensitivity digital 
filter structures first advanced by Fettweis [5]. These struc- 
tures can be synthesized from equally terminated LC ana- 
log filters by replacing the analog elements by appropriate 

digital realizations. Wave digital filters are either full-syn- 
chronic or half-synchronic. In a full-synchronic filter, the 
arithmetic operations are carried out, at least in principle, 
simultaneously at periodically recurring instants. In a half- 
synchronic filter, the various arithmetic operations are still 
carried out at the same rate, but do not take place simulta- 
neously, even in principle. We only consider full-syn- 
chronic wave digital filters, since most conventional digital 
filters are full-synchronic. A general wave digital filter is 
characterized by an n-port network, as illustrated in Fig. 1. 
Since wave digital filters constitute a class of filters, we 
only consider a specific example of a wave filter synthe- 
sized from an LC network in the next subsection. 

1) Specific Wave Digital Filters Considered: The wave 
digital filter structure which we will examine is based on a 
general second-order low-pass LC filter shown in Fig. 2. 
This section can represent many types of filters, e.g., 
Butter-worth or Chebychev. 

Following the synthesis procedure in Antoniou [l], we 
identify the series and parallel interconnection, as shown in 

01 
- R3 R4 

Rl N 
Rz 

- - 

bl bz 

Fig. 1. General full-synchronic wave digital filter. 

Fig. 2. General second-order LC low-pass analog filter. 

yfJ-:x 
C 

(9 

(b) 

Fig. 3. Synthesis of second-order LC low-pass wave digital filter. (a) 
Identification of wire interconnections. (b) Wave digital filter. 

Fig. 3(a). The wave digital filter is then formed with one 
parallel wire interconnection and one series wire inter- 
connection, as in Fig. 3(b). The resulting structure, in terms 
of delays, adders, and multipliers is shown in Fig. 4. The 
state equations for the linear wave digital filter with zero 
input ( aI = a2 = 0) are 

XI@ +1> = w1W+C12X*(~) 

-4k +1) = C21Xl(k)+CnX2(k) 

where, 

Cl1 = -l- m,(2+ m,) 

C 12 =m2 

C 21= - 9(2+ m2 + m3) 

c,,=l+m,+m, (1) 
where, 

-2a 

m1=1+2a 

-1 
m2= 

l+a+b+2ab 

-(l+a) 

m3= l+a+b+2ab 
=m,(l+a) (2) 

and where a = C/T, b = L/T, and T denotes the sample 
period of the filter. (For details concerning the evaluation 

of ml, m2,‘m3, refer, e.g., to [l], [3a]). 
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Parallel Connection Series Connection 
(COooCltOr) (Inductor) 

Fig. 4. Linear wave digital filter structure for specific example. 

Fig. 5. Wave digital filter with two quantizers. 
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Fig. 6. Wave digital filter with three quantizers 

b2 

bz 

For the passive LC network of Fig. 2, L > 0 and C > 0 

and thus the wave digital filter parameters are also, u > 0 
and b > 0. Fettweis [6] shows that all wave digital filters 

derived from classical LC networks are also pseudopas- 
sive, and, therefore, globally asymptotically stable, when 
infinite wordlength is used. Therefore, for the example 
considered here, the linear wave digital filter is globally 
asymptotically stable when u > 0 and b > 0. 

We consider two possible structures for a nonlinear wave 
digital filter. Quantization and overflow nonlinearities can 
be applied at the states of the filter. This two quantizer 
structure is shown in Fig. 5. This structure has received 
previous attention by other authors. We also consider 
quantization after each multiplication, as shown in Fig. 6. 
In this case, there are three quantizers. This structure is a 
more realistic implementation of the actual filter using a 
microprocessor. We do not consider overflow nonlineari- 

ties due to the large number of adders. We next present the 
procedure used to generate the extreme matrices which are 
used by the constructive algorithm. 

2) Two Quantizers: The wave digital filter structure which 
we consider is shown in Fig. 5. As in the direct form and 
coupled form filters [4], the quantization and overflow 
nonlinearities are considered together. Under this assump- 
tion, the state equations are 

x,W+l) =hI w~(k)+wz(k)l 

xz@+l)=fz[ w&d + czzxz(k)l 

where fi(-) and f*(e) are the combined overflow and 
quantization nonlinearities. The coefficients cij, i, j = 1,2 
are given in (1) and (2). 

Following the technique outlined in [4, sect. III], the 
state equations are written as 

x(k+l)=M(x(k))x(k) 

where, 

and 

c21x1+ c22x2 1 
@Ax) = “62Ix, + c22x2 . 

The functions a, and a2 are bounded by constants, 

a1 G @l(X) 6 a2 

In our case, 

where k, and k, are defined in [4] by (14) and (13), 
respectively. The extreme matrices of the set M are 

(Refer to [4] for the definition of M.) Therefore, the 

constructive algorithm uses four extreme matrices for each 
point in the a - b parameter plane. If the overflow nonlin- 
earities are absent, then (pi = & = 0 and the set of extreme 
matrices for this case is the same as for the filter with 
saturation or zeroing overflow nonlinearities. 

3) Three Quantizers: The wave digital filter structure 
which we consider is shown in Fig. 6. Note that only 
quantization nonlinearities are present in this filter. The 
state equations for this structure are 

xdk +I> = -x,(k)+2&1[-m1xdk)l 

+ Qz{ ~ZQI [ - v,(k)] > + Q2 [mzxz(k)1 

x2(k +l) = 2Q,[ - v,(k)] + Qz{ mzQ,[ - v,(k)] > 

+Q,{m,Q,[-m,x,(k)l)+Qz[mzxz(k)l 

+ Q3 [v,(k)] +xzW 
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To apply the constructive stability algorithm, we write 
the state equations as 

x(k+l)=M(x(k))x(k). 

By defining, 

(a,(x) = QI[ - m,x,l 
- %X1 

(p2(x)= Q2hx23 
mzx2 

Q’4tx) = Q,hQ~bv,l) 
m2Ql[ - mIxI 

Q'5cx) = Q3b,Q1bv,l) 
m,Q,[ - v,] 

(P6(x) = -1-2m,cPl(x)-m,m2~I(x)(a4(x) 

@7(x) = -2m~~~tx)-mlm2~Itx)~~tx) 

- m1m3~1(x)@5(4 

(Ps(x) =l+ m2@2(x)+m3~3(x) 

we can write M(x(k)) as 

w4w = 
[ 

@66(x) m2Q2tx) 
qx) 1 %(x) * 

The functions Qi(x), i = 1, * * *, 5, are bounded by con- 

stants, 

where, 

aI = b, = y1 = 0 

a2=P2=y2=kq. 

The functions @i(x)Q4(x) and Qi(x)Q5(x) are also 
bounded by constants 

&@I < @‘1(x)@&) < 6, 

61 Q q(x)@,(x) < c2 

where, 

6, = El = 0 

6, = c2 = k;. 

The functions ah(x), Q,(x), and @a(x) are also bounded 
by constants, 

(b) 
Fig. 7. General lattice digital filter structure. (a) General lattice struc- 

ture. (b) Two multiplier lattice section. 

where, 

~1=min{[-1-2m,ai-m,m2~j], i,j=l,2) 

~2=max{[-l-2m,cyi-m,m2~j], i,j=1,2) 

q1 = min{ [ -2m,ai - m,m26, - mlm3ck], i, j, k =1,2} 

n2=max{[-2 mlal - mlm2aj - mlm3ek 1, i,i,k=1,2} 

8,=min{ [1+m2j3i+m3yj], i,j=1,2} 

8,=max{[1+m2/3i+m3yj], i,j=1,2}. 

Therefore, we write the extreme matrices of the set M as 

E(M)={[a m;,‘],i,j,k,l=l,2). (4) 

Thus for each individual point in the a - b parameter 
plane, the constructive algorithm uses sixteen matrices. 

B. Lattice Digital Filters 

Since their introduction by Itakura and Saito [12], lattice 
digital filters have been used extensively in the area of 
speech and signal processing [9]. A general lattice filter is 
shown in Fig. 7(a) as a cascade of lattice sections. The 
particular lattice structure we consider is the two multiplier 
lattice of Gray and Markel [ll]. One section of this type of 
lattice filter is shown in Fig. 7(b). Gray and Markel [ll] 
have shown that the linear digital lattice filter will have all 
of its poles within the unit circle (and thus will be globally 
asymptotically stable), if and only if all of the k, parame- 
ters satisfy 

lk,l ~1, m=1,2;**,n. 

We investigate two possible structures for the second- 
order lattice digital filter. In the first structure, the quanti- 
zation and overflow nonlinearities are applied at the states 
of the filter. We consider this first structure since it has 
been studied previously. This second-order filter structure 
is shown in Fig. 8. In the second structure, quantization is 
assumed to take place after each multiplication and over- 
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Fig. 8. Lattice digital filter with two quantizers. 

Fig. 9. Lattice digital filter with three quantizers. 

flow is placed after each addition. This structure with three 
quantizers is a more realistic implementation of the actual 
filter using a fixed-point microprocessor and is shown in 
Fig. 9. 

I) Two Quantizers: The structure of the second order 
lattice digital filter with two quantizers is shown in Fig. 8. 
Again, we consider the quantization and overflow nonlin- 

The extreme matrices of the set M are 

E(M) = 
i[ 

- kp; - k,a, 

(l-k,2)/jj -k,k2Pj ‘i”=1’2 ’ (5) 1 1 
Thus for each individual point in the k, - k, parameter 
plane, the constructive algorithm uses four extreme 
matrices. If the overflow nonlinearities are absent, then 
(pi = & = 0 and the set of extreme matrices for this case is 
the same as for the filter with two saturation or zeroing 
overflow nonlinearities. 

2) Three Quantizers: The lattice digital filter which we 
consider is shown in Fig. 9. The state equations for this 
digital filter are 

x,(k+l) =~1{-Qz[k1x~(k)l-Q3[~2~2t~)l} 

x,(k +I> = P,{x,tk)+Q,[W',(- Qzkxdk)] 

- Q3 [kzxdk)] )I }. 

To apply the constructive stability algorith, we write the 
state equations as 

x(k +l) = M(x(k))x(k). 

The matrix M(x(k)) is given by 

- k2@2W@4(4 1 - W’,(+Rtb) 
(&(x)[l- k$‘,(x)@3(x)@4(x)] - kIk2@2(x)@3(x)(a,(x)@5(x) 1 

earities together. The state equations for the structure are where, 

x,(k+l)=f,[-k,x,tk)-kzxztk)] 

xztk+1)=f2[(1-k,2)x,(k)-k,kzxztk)] 

al(x)= Q2k4 
klX1 

where fi( 0) and f2( -) -are the combined quantization and 

overflow nonlinearities. 

‘p2(x) = Q3[k2x21 

k2x2 

Following the technique outlined in [4, sect. III], the 
state equations are written as 

Q3(x) = Q,[Wk Qzkx,l-Q&zxzl)l 

x(k+l)=M(x(k))x(k). 
W,(- Q&x&- Q,kxzl) 

By defining 
a4tx) = PI{ - Qzkx~l-Q,kxzl) 

- Qzkx~l-Q,kxzl 

~z{x,+Q,[k,~,(-Qz[k,x,l-Q3[kzxzl)l} 

‘5(x)= xI+Q,[k,P,(-Q,[k,x,l-Q,[kzxzl)l * 

The functions Qi(x), i = 1,. . *, 5 are bounded by constants 

the matrix M(x(k)) can be written as 
q d @)1(x) G a2 

-k,%(x) 

- k,k202(x) 1 
81~~2bw32 

. 
Yld+(x)~Y2 

6, < @4(x) Q 6, 
The function @i(x) and Q2(x) are bounded by constants 

a1 < aI < (~2 
El Q @a,(x) G E2 

where, 

&~~2(-+02 al=pI=yl=o 

where, 

q=&=k,, 

a2=P2=kq. 

a2=/32=y2=kq 

8, = c1 = k, 

S2=Cz=1. 
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Combinations of these functions are also bounded by 
constants, i.e., 

where, for the nonlinearities which we consider, 

{I = VI= kc&, 

S2 = 92 = k, 

8, = k,k,2 

e,= k4’ 

h,=min[ei(l-k&~~y,d,), i,j,k,Z=1,2] 

X2=max[ci(l-k&jy,b,), i,j,k,1=1,2]. 

Thus the extreme matrices of the set M are 

(6) 

- b, 
I - k,k,8, ’ 

In this case, the constructive algorithm uses sixteen ex- 
treme matrices for every point in the k, - k, parameter 
plane. 

If the overflow nonlinearities are absent, the set of 
extreme matrices is not the same as for the filter with 
saturation or zeroing overflow nonlinearities. For this case, 
the constants that bound the combinations of the functions 
in (6) are 

51=111=eI=o 

52 = 92 = k, 

9, = k4’ 

A =l-k2k2 1 1 4 

A,=l. 

III. STABILITYRESULTSBYTHE CONSTRUCTIVE 
ALGORITHM 

In this section, we present the stability results obtained 
by applying the constructive algorithm to the different 
nonlinear filter structures enumerated in Section II. We 
also compare these results with existing results and with 
results obtained by other methods of stability analysis 
(such as the absolute stability theorem of Jury and Lee 
[13]). As mentioned previously, our analysis by the con- 
structive algorithm yields sufficient conditions for global 
asymptotic stability in terms of the parameters of a given 
filter under zero-input conditions. These results constitute 
of course also sufficient conditions for the absence of 
zero-input limit cycles. 

The present section consists of two parts. First, we 
consider wave digital filters and then we treat lattice digital 
filters. 

137 

A. Wave Digital Filters 

For the specific class of wave digital filters presented in 
Section II, we consider the filters implemented with two or 
three quantizers. Apparently, the only known stability re- 
sults apply to this wave digital filter implemented with two 
truncation quantizers. However, we can apply the Jury-Lee 
absolute stability criterion (see [4, th. 41) to some of the 
other cases to obtain stability results. These stability results 
are compared with the stability results obtained by the 

constructive algorithm. 
1) Two Quantizers 

a) Truncation quantizers: Evidently, the only known 
stability analysis for wave digital filters is due to Fettweis 
and Meerkotter [7], [8]. These workers use the concept of a 
stored pseudoenergy to establish the complete stability of 
wave digital filters. (The precise definition of complete 
stability is given below.) The stored pseudoenergy function 
plays the role of a Lyapunov function in their proof. The 
nonlinear arithmetic operations, i.e., overflow and quanti- 
zation, are assumed to be applied to the signals bi (i = 

3,4; . 0) n) in Fig. 1. These signals correspond to the states 
of the specific example which we consider in Fig. 4. 

Before‘ we recall the stability results of Fettweis and 
Meerkotter, we require their definition of complete stabil- 
ity. Consider a general wave digital filter such as the one of 
Fig. 1. Arbitrary initial conditions are present in the filter 
at a certain initial time, t,. The inputs to the filter are zero 
for all time greater than t,, i.e., a,(t, + k) = a,(t, + k) = 0 

for all k z 0. The wave digital filter is said to be completely 
stable if the signals b,(t, + k), i = 1; . e, n become perma- 
nently zero for all k > k, + t, for some k, > 0. Clearly, 
complete stability implies that the filter is free of any limit 
cycles. 

The stability result of Fettweis and Meerkotter is stated 
without proof. The interested reader is referred to [7] and 
[8] for details. 

Theorem I: The wave digital filter of Fig. 1 is com- 
pletely stable if: 

1) the linear n-port network is pseudopassive [6], 
2) the linear n-port network is free of any limit cycles 

under zero-input conditions, and 
3) the nonlinearities fi(.) at b,(i = 3,4;. ., n) satisfy the 

conditions 

Ifi(bi)l Gbi 

Ih( = lbil implies fi( bi) = bi. 

This theorem applies to the specific wave digital filter we 
consider, since all linear wave digital filters derived from 
LC networks are pseudopassive and globally asymptoti- 
cally stable [6]. The nonlinearities which will satisfy condi- 
tion 3) of Theorem 1 are truncation quantizers with any of 
the overflow characteristics that we consider. Thus Theo- 
rem 1 shows that the specific wave digital filter which we 
consider here is free of limit cycles for any parameter 
values when truncation quantization with any overflow is 
applied at the states of the filter. 
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Fig. 10. Region where the specific wave filter with two roundoff quan 
tizers and no overflow is g.a.s. by theorem 4 in [4]. 

To apply the constructive algorithm to the wave digital 
filter structure with two quantizers (Fig. 5), we use the 
extreme matrices determined by (3). The constructive al- 
gorithm shows that the filter is globally asymptotically 
stable for truncation quantization with any overflow for 
parameters a and b satisfying, say 

O<a~100 

O<b<lOO. (8) 

We did not try larger values of the parameters u and b 
because the run time of the computer program increased 
significantly as a and b are increased in value. However, 
this region does cover any reasonable values of these 
parameters, since the larger values of a and b imply that 
the sampling frequency of the filter is fairly high compared 

to the cutoff frequency of the filter. Our result shows that 
the filter is free of limit cycles for any of the parameters in 
the region defined by (8) and thus essentially agrees with 
existing results. 

b) Roundoff quantizers: There do not seem to exist 
results for the stability of wave digital filters when round- 
off quantization is used at the states. However, for com- 
parison purposes we apply the absolute stability criterion 
of Jury and Lee to this case. Applying theorem 4 in, [4] to 
the wave digital filter with two quantizers, as shown in Fig. 

5, the matrix G(z) may be written as 

-1 

- C12z-1 

- c22z 1 
where cll, c12, c21, ad c22 are determined by (1) and (2). 
The matrix H(z), given by 

[ 

2 
--cl,(z-‘+z-‘) -c12z-l-c21z-1 
k 

H(z)= l1 
-1 2 

- CZlZ, -c12z 
-1 

12 - c,,(z-‘f 7) 
k I 

must be positive definite for ]zJ =l. For two roundoff 
quantizers, k,, = k,, = 2. The region in the parameter plane 

- Boundary by Theorem 4 of 141 

Fig. 11. Region where the specific wave filter with two roundoff quan- 
tizers and no overflow is g.a.s. by the constructive algorithm. 

1 2 3 

Fig. 12. Region where the specific wave filter with two roundoff quan- 
tizers and triangular overflow is g.a.s. by the constructive algorithm. 

where the filter is globally asymptotically stable is pre- 
sented as the unhatched region in Fig. 10. 

To apply the constructive algorithm to the wave digital 
filter structure with two quantizers (Fig. 5), we use the 
extreme matrices determined by (3). The regions in the 

parameter plane where the digital filter is globally asymp- 
totically stable by the constructive algorithm for all cases 
are shown in Figs. 11 and 13. Horizontal hatching indicates 
the region where at least one extreme matrix has an eigen- 
value with a magnitude greater than one. Although only a 
portion of the first quadrant is shown, this horizontally 
hatched region extends to at least a = b = 100, which is the 
most extensive region we examined. Vertical hatching indi- 
cates the rest of the region where we can make no conclu- 
sion about the stability of the filter. 

As can be seen from Fig. 11, the constructive algorithm 
yields a less conservative result than the application of , 

theorem 4 in [4]. All of the results obtained for the round- 
off quantization in conjunction with overflow seem to be 
new results (see Figs. 12, 13). 
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1 2 3 

Fig. 13. Region where the specific wave filter with two roundoff quan- 
tizers and two’s complement overflow is g.a.s. by the constructive 
algorithm. 

2) Three Quantizers: To apply the constructive stability 
algorithm to the wave digital filter structure with three 
quantizers (Fig. 6), we used the extreme matrices given in 

(4). For truncation or roundoff quantization, the construc- 
tive algorithm failed to determine any region in the param- 
eter plane where the filter is globally asymptotically stable. 
Although no details are given here, application of the 
Jury-Lee criterion [4, th. 41 also failed to determine any 
region in the parameter plane for a > 0 and b > 0 where 

the filter is globally asymptotically stable. 

B. Lattice Digital Filters 

For the class of second-order lattice digital filters, we 
consider the filter implemented with two or three quan- 
tizers. Apparently, the only known stability results apply to 
the lattice filter with two truncation quantizers. However, 
application of the Jury-Lee criterion (theorem 4 in [4]) 
yields some stability results for filters with three quantizers. 
These results are then compared with the stability results 
obtained by the constructive algorithm. 

I) Two Quantizers: 
a) Truncation quuntizers: Gray [lo] uses energy analo- 

gies to determine the absence of limit cycles in nonlinear 
lattice digital filters. The approach is similar to that of 
Fettweis and Meerkiitter [7]. Gray shows that the nonlinear 
lattice digital filter will be free of limit cycles whenever the 
linear filter is globally asymptotically stable if truncation 
quantization and overflow nonlinearities are applied at 
each section output (i.e., at A, and B,,, of Fig. 7(b)). 
This result applies to any of the overflow characteristics 
that we are considering [4, fig. 21. When applied to a 
second-order lattice filter, this result shows that no limit 
cycles exist, even if truncation quantization and overflow 
are applied only at the states of Fig. 8. 

To apply the constructive algorithm to the stability 
analysis of the lattice structure with two quantizers, we use 
the extreme matrices determined by (5). With truncation 
quantization and any overflow nonlinearity, the construc- 
tive algorithm shows that this nonlinear lattice filter is 

t 

Fig. 14. Region where the lattice filter with two roundoff quantizers and 
saturation, zeroing or no overflow is g.a.s. by the constructive algorithm. 

globally asymptotically stable in the region of the k, - k2 
parameter plane determined by 

Ik,l <l 

lkzl ~1. 

This result agrees with the result of Gray [lo]. 

b) Roundoff quantizers: There do not appear to be any 
stability results for the second-order lattice digital filter 
implemented with two roundoff quantizers (Fig. 8). Al- 
though no details are given here, application of the 
Jury-Lee criterion yields no region in the parameter plane 
where this filter is globally asymptotically stable. To apply 
the constructive algorithm to the lattice structure with two 
roundoff quantizers, we use the extreme matrices de- 
termined by (5). The regions in the k, - k, parameter 
plane where this filter is globally asymptotically stable by 
the constructive algorithm are shown as the unhatched 
regions in Figs. 14-16. A horizontally hatched region indi- 
cates the region where at least one extreme matrix has an 

eigenvalue with a magnitude which is greater than one. 
Vertical hatching indicates the rest of the region where the 
constructive algorithm does not yield any conclusive results 
concerning global asymptotic stability. These regions are 
symmetric about the k,-axis. These results appear to be 
new. 

2) Three Quantizers: There do not seem to be any exist- 
ing stability results for lattice digital filters with three 
quantizers (Fig. 9). However, for purposes of comparison, 
we apply the absolute stability criterion of Jury and Lee [4, 
th. 41 to this structure without the overflow nonlinearities. 
Applying theorem 4 in [4] to the lattice digital filter with 
three quantizers, as shown in Fig. 9, we obtain the matrix 

G(z), 
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b2 

I I 

Fig. 15. Region where the lattice filter with two roundoff quantizers and Fig. 17. Region where the lattice filter with three truncation quantizers 
triangular overflow is g.a.s. by the constructive algorithm. and no overflow is g.a.s. by theorem 4 in [4]. 

c I 

I I 

-1 

Fig. 16. Region where the lattice filter with two roundoff quantizers and Fig. 18. Region where the lattice filter with three roundoff quantizers 
two’s complement overflow is g.a.s. by the constructive algorithm. and no overflow is g.a.s. by theorem 4 in [4]. 

The matrix H(z), given by 

2 

k 11 
kl k,- k,z-’ 

H(Z)= k, &+k,(z-‘+ z-‘) k,z-‘+ k2z-2 

k, - k,z-’ k,i= + k2z-2 ++k2(z-2+iZ) 
33 

must be positive definite for IzI = I. For three truncation matrices determined in (7). The regions in the parameter 

quantizers, k,, = k,, = k,, =l. The region in the parame- plane where the filter is globally asymptotically stable for 

ter plane where the filter is globally asymptotically stable is all cases are presented in Figs. 19-26. The horizontally 

shown as the unhatched region in Fig. 17. For three hatched regions are those regions where at least one ex- 

roundoff quantizers, k,, = k,, = k,, = 2. The region where treme matrix has an eigenvalue whose magnitude is greater 

the filter is globally asymptotically stable for this case is than one. Vertical hatching indicates the rest of the region 
presented as the unhatched region in Fig. 18. These regions where no conclusion can be drawn concerning the global 
are symmetric about the k,-axis. stability of the filter by the constructive algorithm. 

To apply the constructive algorithm to the lattice struc- 
ture with three quantizers (Fig. 9), we use the extreme 

As can be seen in Figs. 19 and 23, less conservative 
results are obtained by the constructive algorithm than by 
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- Boundory for Theorem 4 

in [41 

Region where the lattice filter with three truncation quantizers 
and no overflow is g.a.s. by the constructive algorithm. 

Fig. 22. Region where the lattice filter with three truncation quantizers 
and two’s complement overflow is g.a.s. by the constructive algorithm. 

Fig. 19. 

Boundary by Theorem 4 

in [4l 

Fig. 20. Region where the lattice filter with three truncation quantizers 
and saturation or zeroing overflow is g.a.s. by the constructive algorithm. 

Fig. 23. Region where the lattice filter with three roundoff quantizers 
and no overflow is g.a.s. by the constructive algorithm. 

2 

1 
k2 

I 

I 

- 
kl 

/ 

-1 

Fig. 21. Region where the lattice filter with three truncaton quantizers Fig. 24. 
and triangular overflow is g.a.s. by the constructive algorithm. 

Region where the lattice filter with three roundoff quantiers 
and saturation or zeroing overflow is g.a.s. by the constructive algorithm. 
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I/ 

Fig. 25. Region where the lattice filter with three roundoff quantizers 
and triangular overflow is g.a.s. by the constructive algorithm. 

Fig. 26. Region were the lattice filter with three roundoff quantizers and 
two’s complement overflow is g.a.s. by the constructive algorithm. 

application of the Jury-Lee criterion. All of the stability 
results for the filters with overflow nonlinearities seem to 
be new. 

IV. CONCLUDINGREMARKS 

In this paper, we applied the constructive stability al- 
gorithm of Brayton and Tong to the stability analysis of 
several classes of second-order fixed-point wave digital 
filters and lattice digital filters. Our objective was to de- 
termine regions in the parameter planes of these filters for 

which these filters are globally asymptotically stable. In 
particular, our results yield sufficient conditions under 
which a filter, with an appropriate set of parameters, does 
not possess any zero-input limit cycles. 

We demonstrated that the present results yield tight 
stability bounds by comparing them with existing results 
and also, with results obtained by other methods (such as 
absolute stability results). Many of the results which we 
obtained for the various filter structures considered appear 
to be new. 

We believe that the results of this paper, combined with 
the results obtained in [4] demonstrate that the constructive 

algorithm offers and effective and general approach for the 
qualitative analysis of fixed-point digital filters. 
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