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Abstract In this paper, we study the stability of

n-dimensional linear fractional differential equation

with time delays, where the delay matrix is defined

in (R+)n×n . By using the Laplace transform, we in-

troduce a characteristic equation for the above system

with multiple time delays. We discover that if all roots
of the characteristic equation have negative parts, then
the equilibrium of the above linear system with frac-
tional order is Lyapunov globally asymptotical stable
if the equilibrium exist that is almost the same as that

of classical differential equations. As its an application,

we apply our theorem to the delayed system in one spa-

tial dimension studied by Chen and Moore [Nonlinear
Dynamics 29, 2002, 191] and determine the asymptot-

ically stable region of the system. We also deal with

synchronization between the coupled Duffing oscilla-

tors with time delays by the linear feedback control
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method and the aid of our theorem, where the domain of

the control-synchronization parameters is determined.
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1 Introduction

Delayed differential equations have been abundantly

studied in [1, 2], and references cited therein. Recently,

time delays and multiple time delays are introduced to

complex dynamical networks, e.g., see [3, 4]. All these

publications are for (integer-order or typical) differen-

tial equations.

Although they have almost the same history as those

of typical differential equations, the fractional(-order)

calculus and differential equations did not attract much

attention till recent decades [5–7]. It was lately found

that many systems can be modelled via using fractional

derivatives. These systems display fractional-order dy-

namics, such as heat transfer, viscoelasticity, electrical

circuit, electro-chemistry, dynamics, economics, poly-

mer physics, and control, see recent two volumes of

Nonlinear Dynamics [8, 9]. Similar to classical differ-

ential systems, the study of stability is always a cen-

tral task for fractional differential systems. In 1996,

Matignon [10] studied stability of n−dimensional lin-

ear fractional systems from a point of view of control.
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Recently, Chen and Moore [11] studied stability of

1-dimensional fractional systems with retard time.

Similar to [3] and [4], in this paper, we introduce

multiple time delays to the fractional differential equa-

tions. Then we study the (asymptotical) stability of

such systems. In details, we briefly introduce the def-

initions of the fractional derivatives and the fractional

equations in Section 2. In Section 3, the main stabil-

ity theorems are proved. The examples are included in

Section 4. These illustrative examples support our the-

oretical analysis. And the conclusions are given in the

last section.

2 Preliminaries

Generally speaking, three fractional derivative def-

initions, i.e., Grünwald–Letnikov fractional deriva-

tive, Riemann–Liouville fractional derivative, and Ca-

puto’s fractional derivative, are mostly used. The for-

mer two definitions are often used by pure math-

ematicians, while the last one is adopted by ap-

plied scientists, since it is more convenient in engi-

neering applications. Here we only discuss Caputo

derivative:

dq x(t)

dtq
= J m−q x (m)(t), α > 0,

where m = �q�, i.e., m is the first integer that

is not less than q , x (m) is a conventional mth

order derivative, J β is the βth order Riemann–

Liouville integral operator, which is expressed as

follows:

J β x(t) = 1

�(β)

∫ t

0

(t − s)β−1x(s) ds, β > 0.

In engineering, the fractional order q often lies

in (0, 1), so we always suppose that the ‘order’

q is a positive number but less than 1 in this

paper.

In the present article, we study the following n-

dimensional linear fractional differential system with

multiple time delays:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dq1 x1(t)

dq1 t
= a11x1(t − τ11) + a12x2(t − τ12)

+ · · · + a1n xn(t − τ1n),
dq2 x2(t)

dq2 t
= a21x1(t − τ21) + a22x2(t − τ22)

+ · · · + a2n xn(t − τ2n),

· · ·
dqn xn(t)

dqn t
= an1x1(t − τn1) + an2x2(t − τn2)

+ · · · + ann xn(t − τnn) ,

(1)

where qi is real and lies in (0,1), the initial val-

ues xi (t) = φi (t) are given for − maxi, j τi j = −τmax ≤
t ≤ 0 and i = 1, . . . , n. In this system, time-delay ma-

trix T = (τi j )n×n ∈ (R+)n×n , coefficient matrix A =
(ai j )n×n , state variables xi (t), xi (t − τi j ) ∈ R, and ini-

tial values φi (t) ∈ C0[−τmax, 0]. Its fractional order is

defined as q = (q1, q2, . . . , qn). If qi = q j and τi j = 0,

i, j = 1, 2, . . . , n, then system (1) is actually the one

considered in [10]. If n = 1, then (1) is reduced to the

system studied in [11].

Next, we study the stability of system (1). Taking

Laplace transform [12] on both sides of (1) gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sq1 X1(s) − sq1−1φ1(0) = a11e−sτ11
(
X1(s)

+ ∫ 0

−τ11
e−stφ1(t) dt

) + a12e−sτ12
(
X2(s)

+ ∫ 0

−τ12
e−stφ2(t) dt

) + · · · + a1ne−sτ1n
(
Xn(s)

+ ∫ 0

−τ1n
e−stφn(t) dt

)
sq2 X2(s) − sq2−1φ2(0) = a21e−sτ21

(
X1(s)

+ ∫ 0

−τ21
e−stφ1(t) dt

) + a22e−sτ22
(
X2(s)

+ ∫ 0

−τ22
e−stφ2(t) dt

) + · · · + a2ne−sτ2n
(
Xn(s)

+ ∫ 0

−τ2n
e−stφn(t) dt

)
· · ·

sqn Xn(s) − sqn−1φn(0) = an1e−sτn1
(
X1(s)

+ ∫ 0

−τn1
e−stφ1(t) dt

) + an2e−sτn2
(
X2(s)

+ ∫ 0

−τn2
e−stφ2(t) dt

) + · · · + anne−sτnn
(
Xn(s)

+ ∫ 0

−τnn
e−stφn(t) dt

)
,

(2)

where Xi (s) is the Laplace transform of xi (t) with

Xi (s) = L(xi (t)), 1 ≤ i ≤ n.
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We can rewrite (2) as follows:

�(s) ·

⎛⎜⎜⎜⎝
X1(s)

X2(s)
...

Xn(s)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
b1(s)

b2(s)
...

bn(s)

⎞⎟⎟⎟⎠ , (3)

in which

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b1(s) = a11e−sτ11
∫ 0

−τ11
e−stφ1(t) dt + a12e−sτ12

∫ 0

−τ12
e−stφ2(t) dt

+ · · · + a1ne−sτ1n
∫ 0

−τ1n
e−stφn(t)dt + sq1−1φ1(0)

b2(s) = a21e−sτ21
∫ 0

−τ21
e−stφ1(t)dt + a22e−sτ22

∫ 0

−τ22
e−stφ2(t) dt

+ · · · + a2ne−sτ2n
∫ 0

−τ2n
e−stφn(t) dt + sq2−1φ2(0)

· · · · · ·
bn(s) = an1e−sτn1

∫ 0

−τn1
e−stφ1(t)dt + an2e−sτn2

∫ 0

−τn2
e−stφ2(t) dt

+ · · · + anne−sτnn
∫ 0

−τnn
e−stφn(t)dt + sqn−1φn(0),

�(s) =

⎛⎜⎜⎜⎜⎜⎝
sq1 − a11e−sτ11 −a12e−sτ12 · · · −a1ne−sτ1n

−a21e−sτ21 sq2 − a22e−sτ22 · · · −a2ne−sτ2n

...
...

. . .
...

−an1e−sτn1 −an2e−sτn2 · · · sqn − anne−sτnn

⎞⎟⎟⎟⎟⎟⎠ .

We call �(s) a characteristic matrix of system (1) for

simplicity and det(�(s)) a characteristic polynomial of

(1). The distribution of det(�(s))’s eigenvalues totally

determines the stability of system (1). This can be seen

from the following discussion.

Obviously, if a linear fractional differential equa-

tion has a non-zero equilibrium, we can move this

equilibrium to the origin by the translation transform.

Throughout the paper, we always suppose that (1) has
a zero solution and all complex computations are done
in the branch of the principle value of argument.

3 Main theorems

In this section, we establish several stability theorems.

Multiplying s on both sides of (3) gives

�(s) ·

⎛⎜⎜⎜⎝
s X1(s)

s X2(s)
...

s Xn(s)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
sb1(s)

sb2(s)
...

sbn(s)

⎞⎟⎟⎟⎠ . (4)

If all roots of the transcendental equation det(�(s)) = 0

lie in open left half complex plane, i.e., Re(s) < 0, then

we consider (4) in Re(s) ≥ 0. In this restricted area,

(4) has a unique solution (s X1(s), . . . , s Xn(s)). So, we

have

lim
s→0, Re(s)≥0

s Xi (s) = 0, i = 1, . . . , n.

From the assumption of all roots of the characteristic

equation det(�(s)) = 0 and the final-value theorem of

Laplace transform [12], we get

lim
t→+∞ xi (t) = lim

s→0, Re(s)≥0
s Xi (s) = 0, i = 1, . . . , n.

It immediately follows the theorem below.

Theorem 1. If all the roots of the characteristic equa-
tion det(�(s)) = 0 have negative real parts, then the
zero solution of system (1) is Lyapunov globally asymp-
totically stable.

Remark 1. If τi j = τ > 0 for i, j = 1, . . . , n and q1 =
q2 = · · · = qn = 1, then the characteristic matrix and

characteristic equation of (1) are reduced to s I − Ae−sτ

and det(s I − Ae−sτ ) = 0, respectively. They coincide

with the usual definitions of the characteristic matrix

and characteristic equation of delayed equations. Es-

pecially, if τ = 0, then the characteristic matrix and

characteristic equation of (1) are respectively reduced

to s I − A and det(s I − A) = 0, which agree with the

typical definitions for typical differential equations.

Corollary 1. Suppose τi j = 0 for i, j = 1, . . . , n and
q1 = q2 = · · · = qn = α ∈ (0, 1). If all the roots of the
equation det(λI − A) = 0 satisfy | arg(λ) |> απ

2
, then

the zero solution of system (1) is Lyapunov globally
asymptotically stable.

This result is Theorem 2 of [10]. Here, we can very

easily prove it by using Theorem 1 of the present paper.

Proof: For this case, (1)’s characteristic equation be-

comes det(sα I − A) = 0. Let λ be sα , then s = λ
1
α .

Because all the roots λs of equation det(λI − A) =
0 satisfy | arg(λ) |> απ

2
, it follows that | arg(s) |=|

arg(λ
1
α ) |> π

2
. So all the characteristic roots of sys-

tem (1) have negative real parts. This completes the

proof. �
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Corollary 2. Suppose that τi j = 0, and all qi s are ra-
tional numbers between 0 and 1, for i, j = 1, . . . , n.
Let M be the lowest common multiple of the denomina-
tors ui s of qi s, where qi = vi/ui , (ui , vi ) = 1, ui , vi ∈
Z+, i = 1, . . . , n, and set γ = 1/M. Then the zero so-
lution of system (1) is Lyapunov globally asymptotically
stable if all the roots λs of the equation

det

⎛⎜⎜⎜⎝
λMq1 − a11 −a12 · · · −a1n

−a21 λMq2 − a22 · · · −a2n
...

... · · · ...
−an1 −an2 · · · λMqn − ann

⎞⎟⎟⎟⎠ = 0

(5)

satisfies | arg(λ)| > γπ/2.

From Theorem 1, the characteristic equation of (1)

are of fractional powers of s. This corollary tells that

the characteristics equation of (1) can be transformed

to an integer-order polynomial equation if all qi s are

rational numbers, simplifying the computations.

Proof: Obviously, the characteristic equation is

det

⎛⎜⎜⎜⎝
sq1 − a11 −a12 · · · −a1n

−a21 sq2 − a22 · · · −a2n
...

...
. . .

...

−an1 −an2 · · · sqn − ann

⎞⎟⎟⎟⎠ = 0. (6)

Denote λ by sγ , then s = λ
1
γ , hence (6) is changed

to (5). | arg(s) |=| arg(λ
1
γ ) |> π

2
due to the argument

assumption of Equation (5). The conclusion holds. �

Corollary 3. If q1 = q2 = · · · = qn = α ∈ (0, 1), all
the eigenvalues λs of A satisfy | arg(λ) |> απ

2
and the

characteristic equation det(�(s)) = 0 has no purely
imaginary roots for any τi j > 0, i, j = 1, . . . , n, then
the zero solution of system (1) is Lyapunov globally
asymptotically stable.

Since the characteristic equation of (1) is a transcen-

dent, finding the its eigenvalues is often difficult. How-

ever, to find the eigenvalues of the coefficient matrix

A of (1) is comparatively easier. This result simplifies

computations of the original problem.

Proof: Assume that l(λ) = det(λI − A)

and φ(λ) = det(�(λ
1
α )) − det(λI − A), then

l(λ) + φ(λ) = det(�(λ
1
α )). Obviously, l(λ) =

λn + c1λ
n−1 + · · · and φ(λ) = (

∑n
i=1 dii e−λ

1
α τi i +

d0)λn−1 + (
∑n

i, j=1 hi j e−λ
1
α τi j + h0)λn−2 + · · ·, where

d0, h0, c1, dii , hi j , . . . are constants.

Clearly, there exists an area {λ | | λ |> r , | arg(λ) |≤
απ
2

} such that | l(λ) |>| φ(λ) | and there are no roots to

l(λ) = 0. According to Rouché Theorem [13], there

is no root of l(λ) + φ(λ) = 0 in the above same

area.

Note that all the zero points of l(λ) are in the area

| arg(λ) |≥ απ
2

. If there is a zero point of l(λ) + φ(λ) =
0 in the area | arg(λ) |< απ

2
, then there exist a set

of parameters τi j (i, j = 1, . . . , n) such that λ passes

through one of the two lines: arg(λ) = απ
2

and arg(λ) =
−απ

2
, between −r and r , this contradicts the assump-

tions of this theorem, since the assumption that there

is no purely imaginary roots to det(�(s)) = 0, which

is to say there are no roots λ, where | arg(λ) |= απ
2

, for

det(�(λ
1
α )) = 0. Thus, all the roots of det(�(λ

1
α )) = 0

satisfy | arg(λ) |> απ
2

, i.e. det(�(s)) 
= 0 for Re(s) >

0. The proof is finished. �

It immediately follows that we have the result below.

Corollary 4. If q1 = q2 = · · · = qn = α ∈ (0.5, 1),
all the eigenvalues λs of A satisfy | arg(λ) |> π

2
,

and the equation det(�(λ
1
α )) = 0 has no purely

imaginary roots for any τi j > 0, i, j = 1, . . . , n, then
the zero solution of system (1) is Lyapunov globally
asymptotically stable.

Corollary 5. Suppose that all qi s are rational num-
bers between 0 and 1, for i, j = 1, . . . , n. Let M
be the lowest common multiple of the denominators
ui s of qi s, where qi = vi/ui , (ui , vi ) = 1, ui , vi ∈ Z+,
i = 1, . . . , n, and set γ = 1/M. If all the roots λ of
Equation (5) satisfies | arg(λ)| >

γπ

2
and the character-

istic equation det(�(s)) = 0 has no purely imaginary
roots for any τi j > 0, i, j = 1, . . . , n, then the zero so-
lution of system (1) is Lyapunov globally asymptotically
stable.
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Proof: Let

l(λ) = det

⎛⎜⎜⎜⎜⎝
λMq1 − a11 −a12 · · · −a1n

−a21 λMq2 − a22 · · · −a2n

...
...

. . .
...

−an1 −an2 · · · λMqn − ann

⎞⎟⎟⎟⎟⎠ ,

and φ(λ) = det(�(λ
1
γ )) − l(λ). The rest proof is the

same as that of Corollary 3, so it is omitted here. �

4 Applications

Chen and Moore [11] considered the following delayed

fractional equation:

dq y(t)

dtq
= K p y(t − τ ), (7)

where q and K p are real numbers and 0 < q < 1, time

delay τ is a positive constant.

They got a stability condition of (7), given by a tran-

scendent inequality via the Lambert function [11, 14].

Here we derive another stability condition, which is

very convenient for application.

The characteristic equation of (7) is

sq − K pe−τ s = 0. (8)

Assume that s = ωi = |ω|(cos π
2

+ i sin(±π
2

)) is a root

of (8), where ω is real number and when ω > 0, we take

i sin π
2

, while when ω < 0, we take i sin(−π
2

). Then one

gets

|ω|q
(

cos
qπ

2
+ i sin

(
± qπ

2

))
−K p (cos ωτ − i sin(±ωτ )) = 0.

That is,

|ω|q cos
qπ

2
− K p cos ωτ = 0

and

|ω|q sin
qπ

2
+ K p sin ωτ = 0.

From the above two equations, one obtains

(|ω|q )2 + K 2
p − 2|ω|q K p cos

(
qπ

2
+ ωτ

)
= 0.

Thus, we can easily get that when

qπ

2
± (−K p)1/qτ 
= (2k + 1)π,

where k ∈ Z , Equation (8) has no purely imaginary

roots.

According to Corollary 3, one has the following con-

clusion.

Stability condition of (7). If K p < 0,
(−K p)1/q 
= 1

τ
((2k + 1)π − q

2
π ) and (−K p)1/q 
=

− 1
τ

((2k + 1)π − q
2
π ), where k ∈ Z, then the zero solu-

tion of system (7) is Lyapunov globally asymptotically
stable.

In what follows, another application is presented.

Recently, chaos synchronization of fractional dif-

ferential equation attracts increasing interests [15–20]

due to its potential applications in control processing

and secure communication [10]. Here we take Duffing

oscillator as an example. A fractional version of the

Duffing oscillator is described as

⎧⎪⎪⎨⎪⎪⎩
dq x1

dtq
= y1

dq y1

dtq
= −ky1 + x1(t − τ ) − x1(t − τ )3 + B cos t,

(9)

where 0 < q < 1, τ > 0, and k, B are positive num-

bers.

We choose (9) as a drive system and regard the non-

linear item as a driving signal. The corresponding re-

sponse system is defined by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dq x2

dtq
= y2 − k1(x2 − x1)

dq y2

dtq
= −ky2 + x2(t − τ ) − x1(t − τ )3

+B cos t − k2(y2 − y1),

(10)

where k1, k2 are control parameters under investigation.
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Subtracting (9) from (10), one gets the error system

as follows⎧⎪⎪⎨⎪⎪⎩
dqex

dtq
= ey − k1ex

dqey

dtq
= −(k + k2)ey + ex (t − τ ),

(11)

where ex = x2 − x1, ex (t − τ ) = x2(t − τ ) − x1

(t − τ ), and ey = y2 − y1.

Obviously, the synchronization between (9) and (10)

is equivalent to the globally asymptotical stability of the

zero solution to error system (11).

For error system (11), the coefficient matrix A is

described by

A =
(−k1 1

1 −(k + k2)

)
and its characteristic equation det(�(s)) is given as

det(�(s)) =
∣∣∣∣ sq + k1 −1

−e−sτ sq + (k + k2)

∣∣∣∣
= s2q + (k1 + k + k2)sq

+k1(k + k2) − e−sτ = 0. (12)

Suppose that s = ωi = |ω|(cos π
2

+ i sin(±π
2

)) is a

root of (12), where ω is real number and when ω > 0,

we take i sin π
2

whilst when ω < 0, we take −i sin π
2

.

Then one has

|ω|2q (cos qπ + i sin(±qπ )) + |ω|q (k1 + k + k2)

×
(

cos
qπ

2
+ i sin

(
± qπ

2

))
+ k1(k + k2)

− cos ωτ + i sin ωτ = 0.

Separating real and imaginary parts gives

|ω|2q cos qπ + |ω|q (k1 + k + k2) cos
qπ

2

+ k1(k + k2) = cos ωτ

and

|ω|2q sin(±qπ ) + |ω|q (k1 + k + k2) sin

(
± qπ

2

)
= − sin ωτ.

From above two equations, one has(
|ω|2q cos qπ + |ω|q (k1 + k + k2) cos

qπ

2

+k1(k + k2)

)2

+
(

|ω|2q sin(±qπ )

+|ω|q (k1 + k + k2)

× sin

(
± qπ

2

))2

= 1,

i.e,

|ω|4q + 2(k1 + k + k2)2 cos
qπ

2
· |ω|3q

+ (
(k1 + k + k2)2 + 2k1(k + k2) cos qπ

) |ω|2q

+2k1(k + k2)(k1 + k + k2) cos
qπ

2
· |ω|q

+k2
1(k + k2)2 = 0. (13)

Obviously, when 0 < q < 1 and the following condi-

tion holds

k1 ≥ 0, k2 ≥ 0, (14)

then (13) has no real solutions, meaning that (12) has

no purely imaginary roots under assumption (14).

If we choose

k1 > 0, k2 >
1

k1

− k, (15)

then two eigenvalues of coefficient matrix A of (11) are

negative.

So, when k1 and k2 satisfy both (14) and (15), system

(11) satisfy the conditions of Corollary 3. Therefore, we

have the following theorem.

Theorem 2. If k1 and k2 satisfy both (14) and (15),
then the zero solution of system (11) is Lyapunov glob-
ally asymptotically stable. Therefore, synchronization
between systems (9) and (10) can be achieved.

Numerical simulations are given in Fig. 1. Here, we

find a chaotic attractor for q = 0.86, τ = 0.12 and a

limit cycle for q = 0.66, τ = 0.12, see Fig. 1(a) and (c),

respectively. These limit sets can be synchronized by

the drive-response configuration (9) and (10). For the
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Fig. 1 The chaotic attractor and limit cycle of delayed fractional
Duffing oscillator and their synchronization between systems (9)
and (10), where k = 0.25, B = 7.5. (a) Chaotic attractor, where
q = 0.86, τ = 0.12. (b) Synchronization error of chaotic attrac-

tor, where q = 0.86, τ = 0.12, k1 = 4.6, k2 = 0. (c) Limit cycle,
where q = 0.66, τ = 0.12. (d) Synchronization error of limit cy-
cle, where q = 0.66, τ = 0.12, k1 = 6, k2 = 6

chaotic attractor, the control parameters are chosen as

k1 = 4.6, k2 = 0, and for the limit cycle, the control pa-

rameters are chosen as k1 = 6, k2 = 6, see Fig. 1(b) and

(d). Of course, there are some other choices for the con-

trol parameters values as long as they satisfy Theorem

2. In all simulations, we apply the Adams–Bashforth–

Moulton scheme, for references see [21, 22].

5 Conclusions

In the present paper, we study the stability of fractional

systems with multiple time delays. The characteristic

equation for such systems is first defined. Based on this

introduced characteristic equation, several interesting

stability criterions are derived. Using these obtained

results, we successfully determine a sufficient stabil-

ity condition for a delayed fractional differential equa-

tion. We also apply our results to the synchronization

of limit sets between fractional Duffing systems with

retard time. These two examples are in line with the

theoretical analysis.
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