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a b s t r a c t

The presence of a communication network in a control loop induces imperfections,
such as quantization effects, packet dropouts, time-varying transmission intervals, time-
varying transmission delays and communication constraints. The objectives of this paper
are to provide a unifying modeling framework that incorporates all these imperfections
simultaneously, and to present novel techniques for the stability analysis for these
networked control systems (NCSs). In contrast to many other papers that consider
quantization in NCSs, we incorporate quantization effects in the modeling framework
by modeling them as norm-bounded additive disturbances on both plant and controller
signals. We focus on linear plants and controllers, and periodic and quadratic protocols,
which leads to a modeling framework for NCSs based on discrete-time switched linear
uncertain systems. Using an overapproximated system in the form of a polytopic model
with additive norm-bounded uncertainty, we propose LMI-based techniques to analyze
the input-to-state stability (ISS) and the ℓ2-gain properties of the obtained NCS models
with respect to the norm-bounded additive disturbances induced by quantization. These
ISS and ℓ2-gain conditions will be used to assess closed-loop stability and performance
for two classes of quantizers. We illustrate the effectiveness of the developed theory on a
benchmark example of a batch reactor.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Networked control systems (NCSs) are feedback control systems, in which the control loops are closed over a shared
communication network. Compared to a traditional control system, in which the sensors, controllers and actuators
are connected through dedicated point-to-point connections, NCSs offer advantages, such as, e.g., increased flexibility
and maintainability of the system, and reduced wiring. However, NCSs also introduce new challenges that need to be
overcome before the advantages they offer can be fully exploited. Generally speaking, NCSs are subject to network-induced
communication imperfections and constraints that can be categorized into five types: (i) quantization errors, (ii) packet
dropouts, (iii) time-varying sampling/transmission intervals, (iv) time-varying transmission delays and (v) communication
constraints. All these networked-induced imperfectionsmay degrade the closed-loop performance of anNCS, or evenworse,
may cause instability. Therefore, it is important to investigate how these effects influence closed-loop stability of the NCS.
Because in any NCS, all the previously mentioned imperfections are present simultaneously, it is important to develop

✩ A preliminary and shorter version of this paper was presented at the 4th IFAC Conference on Analysis and Design of Hybrid Systems, see van Loon et al.
(2012) [31].
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a comprehensive framework that allows to study the joint presence of all the network-induced effects. Namely, such a
framework allows to make design tradeoffs between control properties, such as stability and performance, and network-
related properties such as delays, scheduling, bandwidth limitations etc. Nevertheless, most of the available literature on
NCS considers only some of the network-induced phenomena.

For instance, [1–3] consider (iii)–(v) simultaneously, [4] focuses on type (i), (ii) and (iv) phenomena, [5] considers (ii) and
(v), [6–9] study (iii) and (iv), [10] considers (ii) and (iv), [11] focuses on (ii) and (iii), where [12,13] study (ii)–(iv), and [14]
considers (i), (iii) and (v). Up to now, the only result that considers all these imperfections simultaneously, although under
some restrictions, is [15].

To study the impact of these networked-induced phenomena on the stability and performance of NCSs, several models
have been developed. Roughly speaking, three different approaches towards modeling and stability analysis have been
considered in the literature, i.e., an approach based on discrete-time parameter varying systems, see, e.g., [2,7,9,13,12], a
continuous-time approach based on impulsive or jump-flow systems, see, e.g., [3,14,15] and an approach based on delayed
(impulsive) differential equations, see, e.g., [4,8,9,16].

In this paper, we focus on linear plants and controllers and study the stability of the corresponding NCSs in the presence
of (i), (iii)–(v) types of network-induced phenomena. The type (ii) network-induced phenomenon, i.e., packet dropouts,
can also be accommodated for by modeling them as prolongation of the transmission interval, see Remark 3. In fact, this
paper generalizes the work of [2] by including quantization, which requires different techniques to analyze the closed-
loop stability and performance, as we will show below. As already mentioned, the only other result in the literature that
can study all networked-induced phenomena simultaneously is [15]. The difference between [15] and the work presented
in this paper is that [15] use a modeling framework based on impulsive systems, while we take an approach based on
discrete-time switched linear uncertain systems. As was shown in [2], the latter approach can lead to less conservative
results (e.g., in terms of allowable bounds on delays and sampling intervals), in the linear context, and allows the controller
to be given in continuous-time as well as in discrete-time. We note that discrete-time controllers are particularly relevant
as NCSs are inherently digital. These aspects strongly motivate the generalization of [2], leading to a unifying framework for
NCSs including all five mentioned network-induced imperfections.

The increasing interest in NCSs stimulates the research on quantized feedback control in general, see, e.g., the overview
paper [17], since one of the limiting factors in an NCS is the finite capacity of the communication channel. Therefore, a
significant amount of research has been devoted to the problem of determining the minimum bit rate that is required to
stabilize a (non)linear system through feedback over a finite-bandwidth communication channel, see, e.g., [18–22], and
references therein. Whereas these works are entirely devoted on the aspect of quantization, we focus in this paper on
incorporating quantization-induced disturbances as one of the stability andperformance limiting factors in a comprehensive
modeling and analysis framework for NCSs, while also including the other networked-induced imperfections and allow for
dynamic output-feedback controllers. In doing so, we focus on two of the most common types of memoryless quantizers
treated in the NCS literature, being, uniform quantizers, see, e.g., [23], and logarithmic quantizers, see, e.g., [19–21]. In
addition, we also comment on how ‘zoom’ quantizers, see, e.g., [18], could be analyzed as well in Remark 5.

Besides quantization, we also consider so-called communication constraints, which are a result of the fact that the
communication network is typically shared by multiple (actuator and sensor) nodes, and only one node can access the
network at a given time instant. Therefore, scheduling protocols are needed that determine when a certain node is allowed
to access the network.Weprovide techniques for assessing stability of theNCS for two classes of protocols, namely, quadratic
and periodic protocols. The two well-known Try-Once-Discard (TOD) and the Round-Robin (RR) protocols are special cases
of these two classes. Finally, we include the uncertainties induced by time-varying delays and transmission intervals within
the discrete-time modeling framework employed here, which leads to discrete-time switched linear system models with
exponential uncertainty. To properly handle this exponential uncertainty, we extend the overapproximation technique
described in [2] to arrive at a discrete-time polytopic model with additive norm-bounded uncertainty that is subject to an
additive disturbance (due to quantization). Using this overapproximated system, we can guarantee input-to-state stability
(ISS) and a certain ℓ2-gain using newly developed conditions based on LMIs. Using these notions of ISS and ℓ2-gain, we can
assess closed-loop stability and performance of the NCS.

The remainder of this paper is organized as follows. After introducing the necessary notational conventions, we introduce
the model of the NCS in Section 2 and propose a method to formulate it as a discrete-time switched linear system that is
subject to a quantization-induced disturbance. In this section, we also introduce the classes of protocols and the types of
(memoryless) quantizers considered in this paper. Furthermore, we give a precise problem formulation. Subsequently, in
Section 3, we formalize a procedure to overapproximate the NCSmodel by a polytopic systemwith additive norm-bounded
uncertainty, by extending the procedure given in [2]. In Section 4, we provide conditions for ISS and the ℓ2-gain of the NCS
in terms of LMIs. How these conditions can be used to guarantee stability of the overall NCS for two quantizers will be
discussed in Section 5. Finally, we illustrate the theoretical results using a numerical benchmark example in Section 6 and
draw conclusions in Section 7. The Appendix contains the proofs of the more technical results.

1.1. Nomenclature

The following notational conventions will be used. Let Z, N, R, R>0 denote the set of integers, non-negative integers,
real numbers and nonnegative real numbers, respectively. A block-diagonal matrix is denoted as diag(A1, . . . , An) with the
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Fig. 1. Schematic overview of the NCS.

entriesA1, . . . , An on the diagonal andA⊤
∈ Rm×n denotes the transposed ofmatrixA ∈ Rn×m. For a vector x ∈ Rn, we denote

by xi the i-th component and ∥x∥ :=
√
x⊤x =


i |xi|2 its Euclidean norm. For a symmetric matrix A, we denote λmax(A),

λmin(A) as the maximum and minimum eigenvalue of A, respectively. We denote by ∥A∥ :=


λmax(A⊤A) the spectral norm

of a matrix A. Furthermore, for a discrete-time signal z : N → Rn, the ℓ2-norm is defined as ∥z∥ℓ2 =


∞

k=0 ∥zk∥2

and the ℓ∞-norm as ∥z∥ℓ∞
= supk∈N ∥zk∥. Furthermore, we define the sets of signals with a finite ℓ2 or ℓ∞-norm as

ℓp := {z : N → Rn
| ∥z∥ℓp < ∞} for p = {2, ∞}, respectively. We sometimes write symmetric matrices of the form

A B
B⊤ C


, as


A B
⋆ C


. The convex hull and interior of a set A are denoted by coA and intA, respectively.

2. NCS model and problem statement

In this section, we introduce the model describing NCSs subject to quantization, communication constraints (protocols),
varying transmission intervals and delays. We will later comment on how dropouts can be included as well (see Remark 3
below). The NCS that we consider in this paper is schematically depicted in Fig. 1, where ZOH denotes a zero-order hold
function that transforms the discrete-time control input û(tk) to a continuous-time control input û(t), and Qy and Qu
represent the quantizers. The plant is given by a linear time-invariant (LTI) continuous-time model of the form d

dt
xp(t) = Apxp(t) + Bpû(t)

y(t) = Cpxp(t),
(1)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu the control variable available at the actuator, y ∈ Rny the (measured)
output of the plant and t ∈ R>0 the time. The LTI controller is assumed to be given in discrete-time by

xck+1 = Acxck + Bc ŷk
u(tk) = C cxck + Dc ŷ(tk),

(2)

where xc ∈ Rnc denotes the state of the controller, ŷ ∈ Rny a ‘networked’ version of the output of the plant available at the
controller, u ∈ Rnu denotes the controller output and tk are the transmission instants. The ‘networked’ signals ŷ : R>0 → Rny

and û : R>0 → Rnu will be taken left-continuous, meaning that limt↑s ŷ(t) = ŷ(s) and limt↑s û(t) = û(s) for all s ∈ R>0. At
transmission instant tk, k ∈ N, (parts of) the outputs of the plant y(tk) and controller u(tk) are sampled and quantized, after
which they are transmitted over the network. We assume that this data arrives after a delay τk at instant rk := tk + τk, called
the arrival instant. This is illustrated in Fig. 2. The states of the controller xck+1 are updated after the most recently received
output of the plant ŷ is updated, i.e., by using ŷk := limt↓rk ŷ(t). Note that, this update of xck+1 has to be performed in the
time interval (rk, tk+1].

Remark 1. Note that, although we only consider a discrete-time controller in (2), the framework as presented in this paper
also allows the controller to be given in continuous-time, see Remark 4 below.

Let us now explain in more detail the consequences of sampling, delays, zero-order hold, quantization and
communication constraints. To do so, let us consider the case where the plant is equipped with ny sensors and nu actuators
that are grouped into N nodes. At each transmission instant tk, k ∈ N, one node, denoted by σk ∈ {1, . . . ,N}, gets
access to the network and transmits its current values. These transmitted values are received and implemented on the
controller or the plant at arrival instant rk. The sensor(s)/actuator(s), corresponding to the node that is allowed access to the
network, collect their values from a sampled and quantized measurement of the corresponding entries of y(tk) and u(tk).
This quantization process introduces a so-called quantization-induced error in both y(tk) and u(tk), denoted by ϵy(tk) and
ϵu(tk), respectively, which are also illustrated in Figs. 1 and 2. The quantized signals are denoted by ỹ(tk) = y(tk)+ϵy(tk) and
ũ(tk) = u(tk)+ϵu(tk). Wewill make the quantization-induced error precise for two types of quantizers below. Furthermore,
we assume that a transmission only occurs after the previous transmission has arrived, i.e., tk+1 > rk > tk, for all k ∈ N. In
other words, we consider the case where the transmission delays are smaller than the transmission interval, i.e., τk < hk for
all k ∈ N. After each transmission and reception, the values in ŷ and û are updated with the latest received data, while the
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Fig. 2. Illustration of a typical evolution of y and ŷ for a quantized control system.

other values in ŷ and û remain the same. This leads to the following constrained data exchange:
ŷ(t) = Γ y

σk
(y(tk) + ϵy(tk)) + (I − Γ y

σk
)ŷ(tk)

û(t) = Γ u
σk

(u(tk) + ϵu(tk)) + (I − Γ u
σk

)û(tk)
(3)

for all t ∈ (rk, rk+1], whichmodels all the network effects, i.e., sampling, quantization, delays, scheduling and the zero-order
hold. In (3), Γσi := diag(Γ y

σi
, Γ u

σi
), i = {1, . . . ,N}, are diagonal matrices given by

Γi = diag(γi,1, . . . , γi,ny+nu). (4)

In (4), the elements γi,j, with i ∈ {1, . . . ,N} and j ∈ {1, . . . , ny}, are equal to one, if plant output yj is in node i and are zero
elsewhere, and elements γi,j+ny , with i ∈ {1, . . . ,N} and j ∈ {1, . . . , nu}, are equal to one, if the controller output uj is in
node i and are zero elsewhere.

Remark 2. For the sake of generality, we allow both sensors and actuators to be assigned to the same node. However, in
practice, this will rarely be the case and a node will typically contain either sensors or actuators.

The value of σk ∈ {1, . . . ,N} in (3) indicates which node is given access to the network at transmission instant tk, k ∈ N.
Indeed, (3) reflects that the values in ŷ and û are updated just after rk, with the corresponding transmitted values at time
tk, while the others remain unaltered. A scheduling protocol determines the sequence (σ0, σ1, . . .) and particular classes of
protocols will be introduced in Section 2.2.

In this paper,we consider the casewhere both the transmission intervals hk := tk+1−tk, k ∈ N, aswell as the transmission
delays τk := rk − tk, k ∈ N, are time-varying, as also indicated in Fig. 2. We assume that the variations in the transmission
intervals and delays are bounded and contained in the sets [h, h] and [τ , τ ], respectively, with 0 < h 6 h and 0 6 τ 6 τ .
Since we assume that the transmission delays are smaller than the transmission interval, we have that (hk, τk) ∈ Θ , for all
k ∈ N, where

Θ := {(h, τ ) ∈ R2
| h ∈ [h, h], τ ∈ [τ ,min{h, τ̄ })}. (5)

Remark 3. The inclusion of packet dropouts can be realized bymodeling them as prolongations of the transmission interval,
see e.g., [2,3]. To do so, let us assume that there is a bound δd ∈ N on the maximum number of successive packet dropouts.
The stability bounds derived below are then still valid for (hk, τk) ∈ Θ ′, for all k ∈ N, where

Θ ′
:= {(h, τ ) ∈ R2

| h ∈ [h, h
′
], τ ∈ [τ ,min{h, τ })} (6)

in which h
′
:=

h
δd+1 .

2.1. The NCS as a time-varying switched system

In this paper, we take a discrete-timemodeling approach, and to derive a discrete-timemodel description, we first define
the errors induced by the communication network and the quantizer as

ey(t) := ŷ(t) − y(t)
eu(t) := û(t) − u(t), (7)

for all t ∈ R>0. The discrete-time switched uncertain system can now be obtained by describing the evolution of the states
between tk and tk+1 = tk + hk. To do so, we define xpk := xp(tk), yk := y(tk), uk := u(tk), ỹk := ỹ(tk), ũk := ũ(tk),
ŷk := limt↓rk ŷ(t), ûk := limt↓rk û(t), e

y
k := ey(tk), euk := eu(tk), ϵ

y
k := ϵy(tk) and ϵu

k := ϵu(tk). Since both ŷ and
û, as in (3), are left-continuous piecewise constant signals, we can write ŷk−1 = limt↓rk−1 ŷ(t) = ŷ(rk) = ŷ(tk) and
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ûk−1 = limt↓rk−1 û(t) = û(rk) = û(tk). As (3) and (7) yield ûk−1 = uk + euk and ûk − ûk−1 = Γ u
σk

(ϵu
k − euk), we can

write the exact discretization of (1) as follows:

xpk+1 = eA
phkxpk +

 hk

0
eA

psdsBp(uk + euk) +

 hk−τk

0
eA

psdsBpΓ u
σk

(ϵu
k − euk). (8)

The complete NCS model is obtained by combining (3), (7) and (8) and introducing

x̄k :=

xpk

⊤xck
⊤ eyk

⊤ euk
⊤
⊤

, ϵ̄k :=

ϵ
y
k
⊤ ϵu

k
⊤
⊤

, z̄k :=

y⊤

k u
⊤

k

⊤
, (9)

which results in the following discrete-time model;

x̄k+1 =


Ahk + EhkBDC EhkBD − Ehk−τkBΓσk

C(I − Ahk − EhkBDC) I − D−1Γσk + C(Ehk−τkBΓσk − EhkBD)


  

=:Ãσk,hk,τk

x̄k +


Ehk−τkBΓσk

D−1Γσk − CEhk−τkBΓσk


  

=:B̃σk,hk,τk

ϵ̄k

z̄k =

DC I − D−1  

=:H̃σk

x̄k
(10)

in which Ãσk,hk,τk ∈ Rnx×nx , B̃σk,hk,τk ∈ Rnx×nz , H̃σk ∈ Rnz×nx , with nx := np + nc + ny + nu, nz := ny + nu and

Aρ := diag(eA
pρ, Ac), B :=


0 Bp

Bc 0


, C := diag(Cp, C c), D :=


I 0

Dc I


,

Eρ := diag
 ρ

0
eA

psds, I


, ρ ∈ R.

(11)

Remark 4. In this paper, we consider the case where the controller is given in discrete-time, see (2). However, the type of
model (10) also allows the controller to be given in continuous-time, as was shown in [2] for the case without quantization.
In principle, this only requires the usage of different matrices (11) in (10), as provided in [2].

2.2. Protocols as switching functions

Based on the previousmodeling steps, the NCS is described by a parameter-varying discrete-time switched linear system
(10) that is subject to an unknown disturbance ϵ̄ induced by quantization. In this framework, scheduling protocols are
considered as switching functions determining σk for each k ∈ N. We consider two classes of protocols in this paper that
have been introduced in [2], namely the class of quadratic and periodic protocols. In fact, we make a slight extension to
the class of quadratic protocols. Furthermore, note that two well-known protocols, namely, the Try-Once-Discard (TOD)
protocol and the Round-Robin (RR) protocol, see, e.g., [3,24], are special cases of these two protocol classes.

2.2.1. Quadratic protocols
In this paper, we consider quadratic protocols for which the switching function can be written as

σk = min


arg min

i∈{1,...,N}


x̄k
ϵ̄k

⊤

Qi


x̄k
ϵ̄k


, (12)

in which

Qi =


Q i
11 Q i

12
⋆ Q i

22


, (13)

with certain given matrices Q i
11 ∈ Rnx×nx , Q i

12 ∈ Rnx×nz and Q i
22 ∈ Rnz×nz , with i ∈ {1, . . . ,N}. In the case multiple

x̄k
ϵ̄k

⊤

Qi


x̄k
ϵ̄k


have the same smallest value, the node with the smallest i ∈ {1, . . . ,N}, is given access to the network. The

well-known TOD protocol belongs to this class of protocols. In the TOD protocol, the node that has the largest network-
induced error, i.e., the largest difference between the most recently received values and the current quantized values of the
signals corresponding to the node, given by ŷk−1 − ỹk = (eyk + yk) − (yk + ϵ

y
k) or ûk−1 − ũk = (euk + uk) − (uk + ϵu

k ), k ∈ N,
is granted access to the network.1 Hence, this network-induced error consists of the error induced by the communication
network only and is given by

ẽk :=

(ē1k − ϵ̄1

k )
⊤, . . . , (ēNk − ϵ̄N

k )⊤
⊤

, (14)

1 Note that our formulation of the TOD protocol differs from the general framework presented in [14], as they use the difference between the exact
current data and the already received data. However, in any practical setting, the only data that is available for any scheduling protocol is the current
quantized data and the already received data.
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in which ēk := [eyk
⊤ euk

⊤
]
⊤. By defining êik := Γiẽk, where Γi, i ∈ {1, . . . ,N}, is given by (4), the TOD protocol, as introduced

in [24], is given by

σk = min

arg max

i∈{1,...,N}

{∥êik∥}


= min

arg min

i∈{1,...,N}

{−ẽ⊤

k Γiẽk}


= min


arg min

i∈{1,...,N}


−


ŷk−1 − ỹk
ûk−1 − ũk

⊤

Γi


ŷk−1 − ỹk
ûk−1 − ũk


. (15)

Hence, the TOD protocol can be modeled as in (12) by adopting the following structure in the Qi matrices:

Qi =

 0 0 0
0 −Γi Γi
0 Γi −Γi


, i ∈ {1, . . . ,N}. (16)

2.2.2. Periodic protocols
Another class of protocols that is considered in this paper is the class of so-called periodic protocols. A periodic protocol

is a protocol that satisfies for some Ñ ∈ N

σk+Ñ = σk, for all k ∈ N. (17)

Ñ is then called the period of the protocol. Actually, the well-known RR protocol belongs to this class and is defined by

{σ1, . . . , σN} = {1, 2, . . . ,N}, (18)

and period Ñ = N , i.e., during each period of the protocol every node has access to the network exactly once and in a fixed
sequence.

2.3. Quantization

As mentioned before, the quantizer introduces a quantization-induced error ϵ̄ that can be considered as a disturbance
in the NCS model (10). In this paper, we assume that each plant output and control input is quantized separately according
to the mapping qi : R → Qi, i ∈ {1, . . . , nz}, in which Qi is a finite or countable subset of R. We consider two types of
quantizers in this paper, which are discussed next (and we briefly comment on how another type of quantizer could be
incorporated as well, see Remark 5).

2.3.1. Uniform quantizer
The uniform quantizer is defined by

qi(z̄ ik) = ζi

 z̄ ik
ζi


, (19)

where ζi > 0, i ∈ {1, . . . , nz} denotes the step size and ⌊·⌉ : R → Z is the rounding function that rounds off towards

the nearest integer. In the case z̄ik
ζi

in (19) is exactly in between two integers, its value is rounded up towards the nearest

positive integer if z̄ik
ζi

> 0, and is rounded down towards the nearest negative integer if z̄ik
ζi

< 0. This quantizer results in a
quantization error for each input/output signal z̄ ik, i ∈ {1, . . . , nz}, satisfying

|ϵ̄ i
k| = |z̄ ik − qi(z̄ ik)| 6

ζi

2
(20)

for all k ∈ N. Note that this type of quantizers introduces a bounded and nonvanishing quantization error, which prohibits
asymptotic stabilization of theNCS.However,we canprovide conditions thatwill guarantee the solutions to remain bounded
and to converge to a vicinity of the origin. Hence, instead of asymptotic stability, only practical stability of the NCS can be
achieved.

2.3.2. Logarithmic quantizer
Aquantizer is called logarithmic if the quantization levels are linear on a logarithmic scale [19,20], i.e., the set of quantized

levels is described by

Qi
= {±wj | wj = ηi

jwi
0, j ∈ Z} ∪ {0}, (21)

for some wi
0 > 0 in which the quantization density per input/output signal is denoted by ηi ∈ (0, 1), i ∈ {1, . . . , nz},

see [19], where a small ηi corresponds to a course quantizer. According to [19,20], the associated quantizer is defined as
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qi(z̄ ik) =


wj, if z̄ ik ∈


1

1 + δi
wj,

1
1 − δi

wj


and z̄ ik > 0;

−wj, if z̄ ik ∈


−1

1 − δi
wj,

−1
1 + δi

wj


and z̄ ik < 0;

0, if z̄ ik = 0;

(22)

with δi =
1−ηi
1+ηi

, i ∈ {1, . . . , nz}. For this type of quantizers, the quantization-induced error for each input/output signal z̄ ik,
i ∈ {1, . . . , nz}, satisfies for k ∈ N

|ϵ̄ i
k| = |z̄ ik − q(z̄ ik)| 6 δi|z̄ ik|, (23)

see [19,20]. Contrary to the uniform quantizer, the quantization error of the logarithmic quantizer does vanish as z̄k → 0.
Hence, for this type of quantizers, it is possible to provide conditions that guarantee asymptotic stability of the NCS.

2.4. Problem statement: input-to-state stability and ℓ2-gain of the NCS

The problem studied in this paper is to analyze (practical) stability of the NCS given by (1)–(3) and (7), with protocols (12)
or (17), and quantizers (19) or (22), where the time-varying and uncertain transmission intervals and transmission delays
are taken from the setΘ defined in (5). The stability analysis will be based on studying (exponential) input-to-state stability
(EISS) and the ℓ2-gain properties of the system (10). We will show in Section 5 how these stability conditions guarantee
(practical or exponential) stability for the corresponding NCSs with one of the two quantizers studied in this paper.

Let us now formally define the EISS and the ℓ2-gain properties, in which we exploit the linearity properties of the closed-
loop NCS model (10).

Definition 1 ([25]). System (10) with switching sequences satisfying (12) or (17) is said to be exponentially input-to-state
stable (EISS) with respect to ϵ̄ ∈ ℓ∞, if there exist c > 0, γISS > 0 and 0 6 λ < 1 such that for any initial condition x̄0 ∈ Rnx ,
any sequence of transmission intervals (h0, h1, . . .), and any sequence of transmission delays (τ0, τ1, . . .), with (hk, τk) ∈ Θ ,
for all k ∈ N, it holds that

∥x̄k∥ 6 cλk
∥x̄0∥ + γISS sup

s∈[0,k−1]
∥ϵ̄s∥. (24)

Definition 2. System (10) with switching sequences satisfying (12) or (17) is said to have an ℓ2-gain smaller than or equal
to γℓ2 , if there exist a function β : R>0 → R>0 such that for any ϵ̄ ∈ ℓ2 and any initial condition x̄0 ∈ Rnx , any sequence of
transmission intervals (h0, h1, . . .), and any sequence of transmission delays (τ0, τ1, . . .), with (hk, τk) ∈ Θ , for all k ∈ N,
the corresponding output solution satisfies

∥z̄∥ℓ2 6 βℓ2(∥x̄0∥) + γℓ2∥ϵ̄∥ℓ2 . (25)

3. Obtaining a convex overapproximation

In the previous section, we obtained an NCS model in the form of a discrete-time switched uncertain linear system, as
given by (10). However, the development of efficient stability analysis techniques for (10) directly is obstructed due to the
fact that the uncertainties appear in an exponential fashion in both Ãσk,hk,τk and B̃σk,hk,τk . Therefore, we apply a procedure
that overapproximates system (10) by a polytopic system with a norm-bounded additive uncertainty of the form

x̄k+1 =


L

l=1

αl
kĀσk,l + B̄∆kC̄σk


x̄k +


L

l=1

αl
kĒσk,l + B̄∆kF̄σk


ϵ̄k (26)

where Āσ ,l ∈ Rnx×nx , B̄ ∈ Rnx×q, C̄σ ∈ Rq×nx , Ēσ ,l ∈ Rnx×nz , F̄σ ∈ Rq×nz , for σ ∈ {1, . . . ,N} and l ∈ {1, . . . , L}, with L the
number of vertices of the polytope. The vector αk = [α1

k . . . αL
k]

⊤
∈ A, k ∈ N, is time varying with

A =


α ∈ RL

 L
l=1

αl
= 1, αl > 0 for all l ∈ {1, . . . , L}


(27)

and ∆k ∈ ∆, k ∈ N, where ∆ is a norm-bounded set of matrices in Rq×q that describes the additive uncertainty. The system
in (26) is an overapproximation of (10), in the sense that for all σ ∈ {1, . . . ,N}, it holds that

Ãσ ,h,τ B̃σ ,h,τ
  (h, τ ) ∈ Θ


⊆


L

l=1

αl Āσ ,l Ēσ ,l

+ B̄∆


C̄σ F̄σ

 α ∈ A, ∆ ∈ ∆


. (28)
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Overapproximating the uncertain system (10) by (26) in the sense of (28), is convenient for analysis, as obtaining EISS with
a certain upper bound on the ISS-gain γISS, and obtaining a certain upper bound on the ℓ2-gain γℓ2 of the system (26), imply
that the system (10) is EISS with the same upper bound on the ISS-gain γISS and has the same upper bound on the ℓ2-gain
γℓ2 as well.

In this paper, we will employ an overapproximation technique based on gridding and norm-bounding, described in [2],
to construct a polytopic system with a norm-bounded additive uncertainty of the form of (26), satisfying (28). In order
to compute all individual matrices of (26), we slightly extended the procedure described in [2]. The extension lies in the
construction of the matrices Ēσ ,l and F̄σ . Even though this extension is not major, it is necessary for enabling the analysis of
quantization effects. For self-containedness, we provide a concise form of the extended algorithm below.

Procedure 1.

• Select distinct pairs (h̃l, τ̃l) ∈ Θ , l ∈ {1, . . . , L}, called grid points, such that coG = Θ , where G = ∪
L
l=1{(h̃l, τ̃l)}.

Furthermore, select a set of triangles H = {S1, . . . , SM}, with

Sm = co{(h̃lm1
, τ̃lm1

), (h̃lm2
, τ̃lm2

), (h̃lm3
, τ̃lm3

)}, (29)

where lmj ∈ {1, . . . , L}, j ∈ {1, 2, 3} for each m ∈ {1, . . . ,M}. Moreover, H forms a partitioning of Θ in the sense
that

M
m=1 Sm = Θ and for all m, p ∈ {1, . . . ,M} and p ≠ m, we have intSp ∩ intSm = ∅, and intSm ≠ ∅, for all

m ∈ {1, . . . ,M}.
• Define Āσ ,l := Ãσ ,h̃l,τ̃l

and Ēσ ,l := B̃σ ,h̃l,τ̃l
, for all σ ∈ {1, . . . ,N} and (h̃l, τ̃l) ∈ G.

• Construct the matrix Λ̄ = diag(Ap, 0), and decompose it into its real Jordan form, i.e., Λ̄ := TΛT−1, where T is a
transformation matrix and Λ = diag(Λ1, . . . , ΛK ), with Λi ∈ Rni×ni , i ∈ {1, . . . , K}, the i-th real Jordan block of Λ̄.

• Compute for each real Jordan blockΛi theworst case approximation errors δA
i , δ

Eh
i and δ

Eh−τ

i , i ∈ {1, . . . , K}, of all triangles
Sm ∈ H , m ∈ {1, . . . ,M}. For the sake of brevity, we refer to [2, Eq. (35) in Procedure III.1] for the exact definition of
these approximation errors.

• Define

C̄σ :=

 T−1 0
T−1BDC T−1BD

0 −T−1BΓσ

 , F̄σ :=

 0
0

T−1BΓσ

 ,

and

B̄ :=


T T T

−CT −CT −CT


· diag(δA

1 I1, . . . , δ
A
K IK , δ

Eh
1 I1, . . . , δ

Eh
K IK , δ

Eh−τ

1 I1, . . . , δ
Eh−τ

K IK ), (30)

with Ii ∈ Rni×ni an identity matrix of size complying with the i-th real Jordan block Λi, i ∈ {1, . . . , K}.
• The additive uncertainty set ∆ ⊆ R3(np+nc )×3(np+nc ) is now given by

∆ =

diag(∆1, . . . , ∆3K ) | ∆i+jK

∈ Rni×ni , ∥∆i+jK
∥ 6 1, i ∈ {1, . . . , K}, j ∈ {0, 1, 2}


. (31)

Although in this paper, we employ an overapproximation technique which is based on gridding and norm-bounding (GNB),
all other existing techniques that embed the original model with the exponential uncertainties in a discrete-time polytopic
model (with or without additive norm-bounded uncertainties) can be used as well. For instance overapproximation
techniques based on the Jordan normal form approach (JNF) [12], on the Cayley–Hamilton theorem (CH) [26], and on Taylor
series [7], can be employed in a similar fashion. However, according to [27], the GNBmethod seems to be themost favorable
of these four techniques considering both numerical complexity and accuracy. Moreover, Procedure 1 can be extended to
make it an automated procedure that iteratively refines the overapproximation (by adding additional grid points where
necessary), yielding an overapproximation that is arbitrarily tight in an appropriate sense. For the sake of brevity, we do
not discuss this extension and refer to [2, Procedure III.1] for the details on this extension. However, in the example section
below, we briefly illustrate the functionality of this refinement procedure.

4. Input-to-state and ℓ2-stability of switched systems with parametric uncertainty

In the previous sections, we obtained a switched discrete-time uncertain NCS model (10) and introduced an
overapproximation technique to embed system (10) in a switched polytopic system with norm-bounded uncertainty as
in (26), satisfying (28). In this section, we will employ this overapproximated system to develop conditions that guarantee
EISS and an upper bound on the ℓ2-gain, given a particular protocol and a set Θ as in (5). In the following lemmas, we state
general sufficient conditions in terms of dissipation inequalities that guarantee EISS and an upper bound on the ℓ2-gain.
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Lemma 3. Consider the system (26) with switching function (12) or (17) and uncertainty set ∆ as in (31). Suppose there exist
some positive scalars α1, α2, α3, κ and a function V : Rnx × N → Rnx such that

α1∥x̄k∥2 6 V (x̄k, k) 6 α2∥x̄k∥2 (32a)

V (x̄k+1, k + 1) − V (x̄k, k) 6 −α3∥x̄k∥2
+ κ∥ϵ̄k∥

2 (32b)

for all x̄k ∈ Rnx , ϵ̄k ∈ Rnz and all k ∈ N, with x̄k+1 given by (26) for some αk ∈ A and some ∆k ∈ ∆. Then, the system (26) is EISS
with respect to bounded disturbances with c =


α2
α1

, λ =


1 −

α3
α2

∈ [0, 1) and ISS-gain

γISS =


α2κ

α1α3
. (33)

A function that satisfies (32) is called an EISS-Lyapunov function.
Proof. The proof follows from Theorem 2.5 of [28], adopted for linear gains. �

Lemma 4. Consider the system (26) with switching function (12) or (17) and uncertainty set ∆ as in (31). Suppose there exist
some positive scalars α1, α2, α4, κ and a storage function V : Rnx × N → Rnx such that

α1∥x̄k∥2 6 V (x̄k, k) 6 α2∥x̄k∥2 (34a)

V (x̄k+1, k + 1) − V (x̄k, k) 6 κ∥ϵ̄k∥
2
− α4∥z̄k∥2 (34b)

for all x̄k ∈ Rnx , z̄k, ϵ̄k ∈ Rnz and all k ∈ N, with x̄k+1 given by (26) for some αk ∈ A and some ∆k ∈ ∆. Then, the system (26) has
an ℓ2-gain smaller than or equal to

γℓ2 =


κ

α4
. (35)

Proof. The proof is given in Appendix A. �

Lemmas 3 and 4 will be used to prove the main results that we will present below. The proof of these results will be
based on the existence of a function V that satisfies the following inequality constraint

V (x̄k+1, k + 1) − V (x̄k, k) 6 −α3∥x̄k∥2
− α4∥z̄k∥2

+ κ∥ϵ̄k∥
2, (36)

for some α3, α4, κ > 0, as this expression simultaneously implies both (32b) and (34b).
In the next section, we will provide sufficient conditions in terms of LMIs under which system (26), and thus the NCS

model (10) (due to (28)), with a given quadratic or periodic protocol, is EISS and has an upper bound on the ℓ2-gain. To do
so, let us introduce the set of matrices R given by

R = {diag(r1I1, . . . , rK IK , rK+1I1, . . . , r2K IK , r2K+1I1, . . . , r3K IK ) | ri > 0 for i ∈ {1, . . . , 3K}}, (37)
where Ii ∈ Rni×ni is an identity matrix of the size of the i-th real Jordan block Λi, i ∈ {1, . . . , K}, of Λ̄.

4.1. Quadratic protocols

Wewill now analyze EISS and the ℓ2-gain for the system (10) with protocol (12). Therefore, let us introduce a candidate
EISS-Lyapunov function/ℓ2-gain storage function of the form

V (x̄k, k) = x̄⊤

k Pix̄k, (38)
in which i = min{j ∈ {1, . . . ,N} | x ∈ Ωj} and where the set Ωj is given by

Ωj =


x̄
ϵ̄


∈ Rnx+nz

 x̄
ϵ̄

⊤

Qj


x̄
ϵ̄


6


x̄
ϵ̄

⊤

Qf


x̄
ϵ̄


for all f ∈ {1, . . . ,N}


. (39)

Theorem 5. Assume that there exist positive definite matrices Pi, i ∈ {1, . . . ,N}, matrices Ri,l ∈ R, i ∈ {1, . . . ,N} and
l ∈ {1, . . . , L}, positive scalars α3, α4, κ , non-negative scalars ξi,f , i, f ∈ {1, . . . ,N}, satisfying

Pi + Q̄ i
11 Q̄ i

12 0 Ā⊤

i,lPj C̄⊤

i Ri,l α3I α4H̃⊤

i

⋆ κ I + Q̄ i
22 0 Ē⊤

i,lPj F̄⊤

i Ri,l 0 0

⋆ ⋆ Ri,l B̄⊤Pj 0 0 0
⋆ ⋆ ⋆ Pj 0 0 0
⋆ ⋆ ⋆ ⋆ Ri,l 0 0
⋆ ⋆ ⋆ ⋆ ⋆ α3I 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ α4I


≽ 0 (40)
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for all i ∈ {1, . . . ,N}, l ∈ {1, . . . , L} with Q̄ i
11 :=

N
f=1 ξi,f (Q i

11 − Q f
11), Q̄

i
12 := Q̄ i

21
⊤

:=
N

f=1 ξi,f (Q i
12 − Q f

12) and
Q̄ i
22 :=

N
f=1 ξi,f (Q i

22 − Q f
22). Then, the system (10) with protocol (12), with matrices Q i

11, Q
i
12 and Q i

22, i ∈ {1, . . . ,N},
given by (13), is EISS with an upper bound on the ISS-gain γISS given by (33), in which α1 = mini∈{1,...,N} λmin(Pi) and
α2 = maxi∈{1,...,N} λmax(Pi), and has an ℓ2-gain γℓ2 smaller than or equal to (35).

Proof. The proof is given in the Appendix. �

4.2. Periodic protocols

Wewill nowanalyze EISS and ℓ2-gain properties of the system (10) for the class of periodic protocols (17). Let us introduce
positive definite matrices Pi, i ∈ {1, . . . , Ñ}, and a time-dependent periodic candidate EISS-Lyapunov function/ℓ2-gain
storage function, for k ∈ N, of the form

V (x̄k, k) = x̄⊤

k Pk mod Ñ x̄k, (41)

where k mod Ñ denotes kmodulo Ñ , which is the remainder of the division of k by Ñ .

Theorem 6. Assume that there exist positive definite matrices Pi, i ∈ {1, . . . , Ñ}, matrices Ri,l ∈ R, i ∈ {1, . . . , Ñ} and
l ∈ {1, . . . , L}, and positive scalars α3, α4, κ , satisfying

Pi 0 0 Ā⊤

σi,lPi+1 C̄⊤

σi
Ri,l α3I α4H̃⊤

σi

⋆ κ I 0 Ē⊤

σi,lPi+1 F̄⊤

σi
Ri,l 0 0

⋆ ⋆ Ri,l B̄⊤Pi+1 0 0 0
⋆ ⋆ ⋆ Pi+1 0 0 0
⋆ ⋆ ⋆ ⋆ Ri,l 0 0
⋆ ⋆ ⋆ ⋆ ⋆ α3I 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ α4I


≽ 0, (42)

where PÑ+1 := P1, for all i ∈ {1, . . . , Ñ}, l ∈ {1, . . . , L}. Then, the system (10) with protocol (17), is EISS with an upper bound
on the ISS-gain γISS given by (33), in which α1 = mini∈{1,...,Ñ}

λmin(Pi) and α2 = maxi∈{1,...,Ñ}
λmax(Pi), and has an ℓ2-gain γℓ2

smaller than or equal to (35).

Proof. The proof follows the same lines of reasoning as the proof of Theorem 5 and is therefore omitted. �

5. Stability conditions for different quantizers

In the previous section, we derived conditions for guaranteeing EISS and an upper bound on the ℓ2-gain of the switched
discrete-timeuncertain system (10) and protocols (12) or (17) in terms of LMIs.With these results,we can formulate stability
conditions for the NCS with both types of quantizers (uniform and logarithmic quantizers) discussed in Section 2.3.

5.1. Uniform quantizer

The bound on the quantization-induced disturbance of the i-th component of ϵ̄k, given a uniform quantizer, is given by

(20). Using the fact that ∥ϵ̄k∥2
=
nz

i=1 |ϵ̄ i
k|

2, we arrive at a bound on ϵ̄k given by ∥ϵ̄k∥ 6

nz
i=1


ζi
2

2. Using both this bound
on ϵ̄k and assuming EISS of (10) as in Definition 1 (which can be verified by using the conditions in Theorem 5 or Theorem 6),
we arrive at an ultimate bound (UB) for the solutions x̄k of (10) as k → ∞, given by

lim sup
k→∞

∥x̄k∥ 6 γISS sup
s∈N

∥ϵ̄s∥ 6 γISS

 nz
i=1


ζi

2

2

, (43)

that depends on both the ISS-gain γISS as well as the quantization density of all input/output signals, where the ISS gain γISS
can be expressed as follows

γISS =

 max
i∈{1,...,N}

λmax(Pi)κ

min
i∈{1,...,N}

λmin(Pi)α3
, (44)

in which α3, κ > 0 and Pi > 0, i = 1, 2, . . . ,N , satisfy the conditions of Theorem 5 or Theorem 6.
As indicated by (43), practical stability of the system (10) is achieved with respect to the quantization step-size ζi,

i ∈ {1, . . . , nz}, since it holds that selecting ζi → 0, for all i ∈ {1, . . . , nz}, implies that lim supk→∞ ∥x̄k∥ → 0. However, for
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any fixed ζi, the solutions x̄k to system (10) have a certain UB. To obtain the smallest upper bound on the UB in (43), we aim
atminimizing γISS subject to the LMIs (40) or (42), with free variables Pi, and positive scalarsα3 and κ . Hence, we takeα4 = 0
in (40) or (42), sincewe are not interested in the ℓ2-gain. Note that, minimizing the γISS is a nonlinearminimization problem,
which is in general not straightforward to solve. However, one efficient technique to solve this problem is discussed next.

Minimizing the upper bound on the ISS gain of the system (10), with protocols (12) or (17) is achieved by fixing α3 > 0,
and putting a bound on bothmaxi∈{1,...,N} λmax(Pi) andmini∈{1,...,N} λmin(Pi), by using the additional constraintsωI 6 Pi 6 ωI ,
for some ω, ω > 0. Consequently, we have α1 = mini∈{1,...,N} λmin(Pi) > ω and α2 = maxi∈{1,...,N} λmax(Pi) 6 ω, for all
i ∈ {1, . . . ,N} using protocol (12) and i ∈ {1, . . . , Ñ} for protocol (17). Subsequently, we minimize over κ .

5.2. Logarithmic quantizer

The quantization-induced disturbance of the i-th component of ϵ̄k using a logarithmic quantizer is given by (23), and is
directly related to the quantization density ηi, i ∈ {1, . . . , nz}, for each input/output signal. Using the Euclidean norm, we
arrive at a bound on ϵ̄k given by ∥ϵ̄k∥

2 6 maxi∈{1,...,nz } δ2
i ∥z̄k∥

2. Using this bound in (36) results in

V (x̄k+1, k + 1) − V (x̄k, k) 6 −α3∥x̄k∥2
+ (κδ̄2

− α4)∥z̄k∥2, (45)

in whichwe defined δ̄ := maxi∈{1,...,nz } δi. In order to achieve global exponential stability (GES), we require that (κδ̄2
−α4) 6

0. Therefore, we have that δ̄ 6


α4
κ
, which is the inverse of the upper bound on the ℓ2-gain (35), i.e., γ −1

ℓ2
. As a result, the

absolute minimum required quantization density for all input/output signals in order to obtain GES is given by ηi >
1−γ −1

ℓ2
1+γ −1

ℓ2

,

i = {1, . . . , nz}. Consequently, it is of interest to minimize the upper bound on the ℓ2-gain (35) as this yields the coarsest
logarithmic quantizers that still guarantee GES of the NCS.

Remark 5. Themodeling and analysis framework presented in this paper also allows to include another class of quantizers,
namely, ‘zoom quantizers’, as introduced in [18]. Namely, under the assumption that all quantizers have an infinite range,
there exists a bound on the quantization error. This guarantees that the zoom quantizer is allowed to ‘zoom in’ continuously,
thereby guaranteeing that the quantization error dynamics to be GES. This allows us to guarantee GES of the NCS, provided
that the system (10) is EISS. This is due to the fact that a cascade of a GES system (describing the quantization error dynamics)
with an EISS system (being system (10)) is guaranteed to be GES.

Remark 6. Note that using system (10)with (12) or (17),we can only prove the above stability properties at the transmission
instants, while the states of (1) actually also evolve continuously between these transmission times. However, by using
conditions presented in [29], we can show that obtaining an upper bound on the UB for system (10) in the case of a uniform
quantizer or proving GES of system (10) in the case of a logarithmic quantizer implies that the continuous-time NCS has an
upper bound on the UB or is GES as well. Essentially, this can be done by showing that the intersample behavior is bounded
as function of the norms of the states at the transmission instants. However, for the sake of brevity, we will not formally
establish this result.

6. Illustrative example

In this section, we illustrate the presented theory using a well-known benchmark example in the NCS literature, see,
e.g., [3,24], consisting of a linearized model of a batch reactor controlled by a continuous-time proportional and integral
controller. We refer to the aforementioned references for details regarding the linearized model as well as the controller.
Furthermore, the numerical results in this section are obtained by using a Matlab NCS Toolbox, which is currently being
developed and is discussed in [30].

As in [3,24], we assume that the controller is given in continuous-time and directly connected to the actuators. Hence,
only the two plant outputs are communicated via a network and nz = ny = 2. As already indicated in Remark 4, this requires
slightmodifications of thematrices (11). The fact that only two plant outputs are communicated over a shared network leads
to the construction of two sensor nodes, N = 2, where the first node contains plant output y1 and the second node contains
y2, i.e., Γ1 = diag(1, 0) and Γ2 = diag(0, 1). Furthermore, we assume that dropouts do not occur in this example, although
they could easily be accommodated for as indicated in Remark 3. The lower bounds on the transmission intervals and delays
are selected as h = 10−3 and τ = 10−3, respectively. Both upper bounds h and τ on the transmission intervals and delays
are left open, where the NCS toolbox [30] employs an optimization algorithm to determine Pareto optimal values for h and
τ , using the LMIs in Theorems 5 and 6. Hereto, a convex overapproximation of the NCS model (10) is required. We use the
GNB overapproximation technique, as already implemented in the NCS toolbox [30], i.e., we employ Procedure 1 in which
we select the maximum number of grid points L = 100, to obtain an appropriate overapproximation of the NCS model (10)
as in (26), satisfying (28). This procedure typically starts from a rough initial partitioning of Θ with a small number of grid
points, which for instance, for the values of h = 0.045 and τ = 0.0245, consists of the two triangles, as in (29), as indicated
by the thick lines in Fig. 3. The automatic refinement method, as mentioned briefly in Section 3 and implemented in the
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Fig. 3. A typical subdivision of the set Θ into a set of triangles.
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Fig. 4. Numerical results of minimization of γISS , resulting in various upper bounds on the UB.
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Fig. 5. Numerical results for the logarithmic quantizer.

NCS toolbox, includes new grid points and thus creates new triangles in order to minimize the size of the norm-bounded
uncertainties in (26). This refinement procedure results after a few iterations in the partition of Θ as in Fig. 3. Following
this procedure for various values of h and τ for the quantization-free case, and verifying feasibility of the corresponding
LMIs lead to a tradeoff curve, guaranteeing GES, as represented for the NCS with RR protocol by the solid black line in both
Figs. 4 and 5. In the remainder of this example, we only present simulation results obtained for the RR protocol for the sake
of brevity.

First we consider the case where both output signals are quantized using a uniform quantizer with step size ζi = 10−3,
i = 1, 2. The objective is now to obtain the smallest upper bound on the UB (43) by minimizing the ISS-gain (33) of (10) as
described in Section 5.1. Hereto, we exploit the convex overapproximation of (10) and check for numerous combinations of
h and τ whether the LMIs of Theorem 6 are feasible, while minimizing γISS. This provides information on an upper bound
on γISS depending on the bounds h and τ on the transmission intervals and delays, respectively. Using this information in
(43), together with the quantization step sizes of both plant outputs ζi, i = 1, 2, we can compute an upper bound on the UB
on the states. The results for this example are depicted in Fig. 4, where we selected α3 = 10−3, ω = 10−1 and ω = 50. The
non-quantized curve forms a boundary for an NCS with uniform quantizer as beyond this boundary, we cannot guarantee
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a finite UB. Notice that the gradient of the UB becomes steeper the closer we approach the curve for UB → ∞. This means
that, for this example, we can have a significantly smaller upper bound on the UB by allowing only a slight reduction in h
and/or τ .

For the NCS with a logarithmic quantizer, the ℓ2-gain of (10) is directly related to the minimum required quantization
density ηi, i = 1, 2, for all plant output signals. We obtain tradeoff curves as a function of this quantization density,
guaranteeing GES of (10), by selecting these ηi and, thereby, fixing the ℓ2-gain. Subsequently, we use the convex
overapproximation of (10) to check for a grid in both h and τ whether the LMIs (42) are feasible. The results for a numerical
analysis are depicted in Fig. 5, where we selected α3 = 10−10, α4 = 10−3 and chose κ = α4

(1+ηi)
2

(1−ηi)2
for three distinct values

of ηi, which are selected equal in this example for both output signals, i.e., ηi = 0.8, ηi = 0.85 and ηi = 0.9, i = 1, 2. As
in Fig. 4, the solid black line represents the non-quantized tradeoff curve, as it requires infinitely dense quantization steps
(ηi → 1, i = 1, 2) to reach this curve. From Fig. 5 it can be observed that a denser quantizer is required as we approach the
non-quantized curve more closely.

7. Conclusions

In this paper, we analyzed the stability of networked control systems (NCSs) that are subject to quantization effects, time-
varying transmission intervals, time-varying delays and communication constraints and discussed how dropouts could be
included as well. The analysis is performed using a comprehensive modeling framework for NCSs based on discrete-time
switched linear uncertain systems. To handle the exponential uncertainty in the systemmatrices caused by the presence of
varying transmission intervals and delays, a procedure that yields a convex overapproximation has been used and extended.
Exploiting the resulting overapproximated systems, we derived LMI-based conditions that guarantee exponential input-to-
state stability (EISS) and ℓ2-stability of the NCS and showed how these conditions can be used to compute an ultimate
bound on the state for uniform quantizers, and to prove global exponential stability (GES) for logarithmic quantizers. The
application of the newly derived theory to a benchmark example showed that the developed theory can be used to make
tradeoffs between the various network properties, such as bounds on transmission intervals and delays, the quantization
properties and control criteria, such as ultimate bounds (in case of uniform quantizers) and GES (in case of logarithmic
quantizers). Consequently, this work provides designers of NCSs with new and computationally efficient tools to support
their multi-disciplinary design choices.
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Appendix A. Proof of Lemma 4

Since the storage function V satisfies (34), we have for any n ∈ N that

n
k=0

(V (x̄k+1, k + 1) − V (x̄k, k)) 6

n
k=0


κϵ̄⊤

k ϵ̄k − α4z̄⊤

k z̄k

, (A.1)

which is equivalent to

0 ≤ V (x̄n+1, n + 1) 6

n
k=0

κ∥ϵ̄k∥
2
−

n
k=0

α4∥z̄k∥2
+ V (x̄0). (A.2)

Now letting n → ∞, we have

∥z̄k∥ℓ2 6


κ

α4
∥ϵ̄k∥ℓ2 +


1
α4

V (x̄0), (A.3)

where we used the inequality
√
a + b 6

√
a +

√
b, for a, b > 0, which satisfies (25) with γℓ2 =


κ
α4

, for all disturbances

for which


∞

k=0 ∥ϵ̄k∥
2 is finite.



124 S.J.L.M. van Loon et al. / Nonlinear Analysis: Hybrid Systems 10 (2013) 111–125

Appendix B. Proof of Theorem 5

The proof is based on showing that (38) is both an EISS-Lyapunov function as well as an ℓ2-gain storage function for
the discrete-time switched uncertain system (10) with protocol (12). As a consequence, (38) should fulfill the hypotheses
of Lemmas 3 and 4. Due to positive definiteness of the matrices Pi, i ∈ {1, . . . ,N}, conditions (32a) and (34a) are satisfied
with α1 = mini∈{1,...,N} λmin(Pi) and α2 = maxi∈{1,...,N} λmax(Pi). Hence, it remains to show that V as in (38) fulfills (36) if
the conditions in the theorem are satisfied, for all [x̄⊤

k ϵ̄⊤

k ]
⊤

∈ Ωi, i ∈ {1, . . . ,N}, and x̄k+1 ∈ Rnx , z̄k, ϵ̄k ∈ Rnz and some

scalars α3, α4, κ > 0. Since, for all [x̄⊤

k ϵ̄⊤

k ]
⊤

∈ Ωi, it holds that

x̄k
ϵ̄k

⊤

(Qi − Qf )

x̄k
ϵ̄k


6 0, f ∈ {1, . . . ,N}, we have that (36)

is satisfied if there exists ξi,f > 0, such that

x̄⊤

k+1Pjx̄k+1 − x̄⊤

k Pix̄k 6 −α3x̄⊤

k x̄k − α4x̄⊤

k H̃
⊤

i H̃ix̄k + κϵ̄⊤

k ϵ̄k +

N
f=1

ξi,f


x̄k
ϵ̄k

⊤

(Qi − Qf )


x̄k
ϵ̄k


, (B.1)

or equivalently
Ãσk,hk,τk x̄k + B̃σk,hk,τk ϵ̄k

⊤

Pj

Ãσk,hk,τk x̄k + B̃σk,hk,τk ϵ̄k


− x̄⊤

k Pix̄k

6 −α3x̄⊤

k x̄k − α4x̄⊤

k H̃
⊤

i H̃ix̄k + κϵ̄⊤

k ϵ̄k +

N
f=1

ξi,f


x̄k
ϵ̄k

⊤

(Qi − Qf )


x̄k
ϵ̄k


, (B.2)

for all j ∈ {1, . . . ,N}. Because (26) is an overapproximation of (10) in the sense of (28), we have that (B.2) is implied by
x̄
ϵ̄

⊤ 
Ξ11 Ξ12
⋆ Ξ22


  

=:Ξ̄


x̄
ϵ̄


6 0, (B.3)

in which

Ξ11 :=


L

l1=1

αl1 Āi,l1 + B̄∆C̄i

⊤

Pj


L

l2=1

αl2 Āi,l2 + B̄∆C̄i


− Pi − Q̄ i

11 + α3I + α4H̃⊤

i H̃i,
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
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αl1 Āi,l1 + B̄∆C̄i

⊤

Pj


L
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αl2 Ēi,l2 + B̄∆F̄i


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12,
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
− κ I − Q̄ i

22,

for all α ∈ A, ∆ ∈ ∆ and α3, α4, κ > 0, where the matrices Q̄ i
11, Q̄

i
12 and Q̄ i

22 are defined in the theorem. The inequality
in (B.3) is equivalent to requiring that Ξ̄ ≼ 0, for all α ∈ A, ∆ ∈ ∆ and i ∈ {1, . . . ,N}. By taking a Schur complement,
realizing that Pj ≻ 0 for all j ∈ {1, . . . ,N}, and using that α ∈ A, we obtain that Ξ̄ ≼ 0 is equivalent to

L
l=1 αlGi,l ≽ 0 with

Gi,l =

Pi + Q̄ i
11 − α3I − α4H̃⊤

i H̃i Q̄ i
12 (Āi,l + B̄∆C̄i)

⊤Pj
⋆ κ I + Q̄ i

22 (Ēi,l + B̄∆F̄i)⊤Pj
⋆ ⋆ Pj

 (B.4)

for all α ∈ A, ∆ ∈ ∆ and i ∈ {1, . . . ,N}. A necessary and sufficient condition for
L

l=1 αlGi,l ≽ 0, for all α ∈ A and
i ∈ {1, . . . ,N}, is that Gi,l ≽ 0 for all i ∈ {1, . . . ,N} and l ∈ {1, . . . , L}. Now observe that for all ∆ ∈ ∆, it holds that
[C̄i F̄i]⊤(Ri,l − ∆⊤Ri,l∆)[C̄i F̄i] ≽ 0, for all Ri,l ∈ R, i ∈ {1, . . . ,N} and l ∈ {1, . . . , L}. Hence, Gi,l ≽ 0 ifPi + Q̄ i

11 − α3I − α4H̃⊤

i H̃i Q̄ i
12 (Āi,l + B̄∆C̄i)

⊤Pj
⋆ κ I + Q̄ i

22 (Ēi,l + B̄∆F̄i)⊤Pj
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i ∆⊤Ri,l∆C̄i C̄⊤

i Ri,lF̄i − C̄⊤
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⋆ F̄⊤

i Ri,lF̄i − F̄⊤

i ∆⊤Ri,l∆F̄i 0
⋆ ⋆ 0

 ≽ 0, (B.5)
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or equivalently, if the following inequality (obtained after applying two successive Schur complements),

I 0 0
0 I 0

∆C̄i ∆F̄i 0
0 0 I

−C̄i −F̄i 0
−I 0 0
−H̃i 0 0



⊤
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Pi + Q̄ i
11 Q̄ i

12 0 Ā⊤

i,lPj C̄⊤

i Ri,l α3I α4H̃⊤

i

⋆ κ I + Q̄ i
22 0 Ē⊤

i,lPj F̄⊤

i Ri,l 0 0

⋆ ⋆ Ri,l B̄⊤Pj 0 0 0
⋆ ⋆ ⋆ Pj 0 0 0
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⋆ ⋆ ⋆ ⋆ ⋆ α3I 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ α4I





I 0 0
0 I 0

∆C̄i ∆F̄i 0
0 0 I

−C̄i −F̄i 0
−I 0 0
−H̃i 0 0


≽ 0 (B.6)

is verified. Note that (B.6) is satisfied by the satisfaction of (40) for all i ∈ {1, . . . ,N} and l ∈ {1, . . . , L}. Since (B.6) holds
under the conditions in the theorem, we can conclude that both (32) and (34) are satisfied which proves that V as in (38)
is an EISS-Lyapunov function and an ℓ2-gain storage function. Consequently, this guarantees that (10) with protocol (12),
is EISS with respect to ϵ̄, and has an upper bound on the ISS-gain γISS given by (33), with α1 = mini∈{1,...,N} λmin(Pi) and
α2 = maxi∈{1,...,N} λmax(Pi), and has an ℓ2-gain smaller than or equal to γℓ2 in (35).
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