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Abstract

Due to major advancements in the area of networking over the past decade, a new

paradigm of control systems has emerged, namely Networked Control Systems. Such

systems differ from classical control systems in that their control loops are closed

around communication networks. Thus the need for new stability and performance

guarantees arises.

In this research we aim to shed some light on the major advancements and in-

herent problems in Networked Control Systems. We also propose several methods

to deal with such systems and characterize their performance when operating under

severe communication limitations. We also present a case study pertaining to the

bilateral teleoperation, a problem that has attracted a significant research effort for

the past 15 years. We present several numerical examples with extended discussions

in order to give insight into the theoretical results.
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Chapter 1

Introduction

In a recent issue of the IEEE Control Systems Magazine [22], Prof. Ray DeCarlo1

provided a list of everyday things that might provide a brief explanation about control

engineering, suitable for novices. Two interesting answers were

i. The left turn arrow appearing on a traffic light, upon sensing the presence of

a car in the turn lane.

ii. Cruise controls keeping your car at a desired speed up and down hills in rain,

snow, and sleet!

While these answers might enlighten non-control engineers about control systems,

we would like to propose another situation where networked control systems come

into play.

Case 1 Imagine two people trying to watch TV, one (controller/ actuator) on top

of a six-floor building trying to change the orientation of the antenna and another

(observer) on the first floor giving updates on the quality of reception. This process

1ECE Department, Purdue University
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Chapter 1. Introduction

inevitably introduces delay between the time when the person on the first floor ‘shouts’

better or worse command, and the time when the person on the 6th floor redirects the

antenna and the action is observed on the first floor (time delay). On the other hand

a better/worse command could be unheard due to a plane passing over the building

(information loss). This interplay between issuing discrete observations that might be

lost and issuing discrete commands that are not felt instantaneously is exactly what

we mean by networked control systems!

Note 1 The situation in Case 1 could be expanded into a multiple antennas (nodes)

setting, which is more interesting since the overall system becomes more complex with

multiple nodes. It is also more realistic, since most of the time there are multiple

actuators and observers trying to access the network.

The above situation, though suitable as an informal example for novices, could be

defined technically as follows.

Definition 1 A Networked Control System (NCS) is a control system whose control

loop is closed around a communications network.

Note 2 Throughout this thesis we only deal with control systems configured in a

feedback fashion. Systems with only feedforward control configurations are trivial,

since the corresponding controllers could be implemented locally, and hence the need

for a network is not justified anymore.

The problem of networked control systems has become a major issue that control

engineers have to deal with due to the vast applications as will be seen in Chapter 2.

It is interesting to note that NCS has been listed among top challenging problems in

control systems today [117]. That is why we focus in this thesis on trying to pinpoint

the main issues and solutions available, and propose several methods to deal with

NCS.

2



Chapter 1. Introduction

1.1 Thesis Outline

The remainder of this thesis is divided into 6 chapters.

1.1.1 Chapter 2

The chapter is a an overview of recent results that deal with NCS. It is divided

into two main sections the first dealing with existing models for networked systems

and various methods used to deal with them. The second section points out the

main problems encountered in NCSs such as packet loss, time delays, and limited

communications.

1.1.2 Chapter 3

In this chapter we propose a new sampled-data model that deals with NCS. We study

the stability and performance of such model through the application of Lyapunov

-based techniques.

1.1.3 Chapter 4

This chapter deals with the effects of packet dropouts on the performance of discrete-

time plants, when the control input is generated via a model plant. The network

effect is manifested via the observation dropout rate between the plant sensors and

the model plant.

3



Chapter 1. Introduction

1.1.4 Chapter 5

In this chapter we utilize results pertaining to the uncertainty threshold principle to

deal with packet dropouts in the control input. The existence of an optimal control

input, depends on the dropping rate of packets.

1.1.5 Chapter 6

Since the effects of the network are vital to networked systems, we present in this

chapter a case study of teleoperated systems. Time delays and channel dynamics are

discussed and a stability result is provided based on passivity theory.

1.1.6 Chapter 7

This chapter summarizes the main contributions of the thesis, provides very recent

results in the area that the author became aware of by the time of completion of the

thesis. We close with suggestions for future work and developments.

1.2 Contributions

The main contributions of this thesis could be summarized briefly as follows. Chapter

2 presents a comprehensive summary of NCSs which is vital for trying to tackle the

area for the first time. We present a novel method to model time delays in NCS in

Chapter 3. Chapter 4 combines for the first time the notion of model-based control

systems with that of mean-square stability in order to address the issue of packet

dropping between the sensors and the controller. Dropping packets in the control

input is studied in Chapter 5, where we utilize the concept of uncertainty threshold

4



Chapter 1. Introduction

principle that was developed in the late 70’s and specialize it into the context of

packet dropping and our ability to derive an optimal control input based on the

statistics of the dropping. In Chapter 6 we study for the first time the effects of

time-delays and network dynamics on the performance of a special type on NCSs,

namely bilaterally teleoperated systems.

5



Chapter 2

Recent Trends in the Stability of

Networked Control Systems

2.1 Introduction

Over the past decade, major advancements in the area of communication and com-

puter networks [87] have made it possible for control engineers to include them in

feedback systems in order to achieve real-time requirements. This gave rise to a new

paradigm in control systems analysis and design, namely Networked Control Sys-

tems. Networked Control Systems (NCSs), are control systems whose control loop

is closed around a communications network. In such systems, the feedback is no

longer instantaneous as in classical control systems [81]. Many systems fall under

such classification and several examples of NCSs can be found in various areas such

as: Automotive industry [47, 54, 85], teleautonomy [80, 102], teleoperation of robots

[2, 34, 72, 74], and automated manufacturing systems [55]. Including the network

into the design of such systems has made it possible to increase mobility, reduce the

cost of dedicated cabling, ease upgrading of systems, and render maintenance easier

6
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and cheaper. The drawback, however, is that the complexity of analysis and design

of such systems increases many folds.

In order to achieve better performance in NCSs, several protocols were specifically

developed to deal with the stringent demands of such control systems. The main

objective of control networks was elegantly stated in [87]:“Control networks must

shuttle countless small but frequent packets among a relatively large set of nodes.”

Many of these network protocols have been described in [43, 56, 78, 87], some of which

are: ControlNet, DeviceNet, Ethernet, LonWorks, CAN, Profibus, P-Net, Archnet,

EIB.

Developing new protocols is a vast field of study for computer scientists and engineers,

however the main concern of controls engineers remains the twin issues of stability

and performance. With such perspective in mind, a massive effort has been expanded

into the study of stability and performance of NCSs (see [20]). In this chapter we

are interested in a comprehensive presentation of existing stability results for NCSs,

and various methods for addressing the issues of analysis and design of such systems

in order to guarantee stability and achieve a performance level.

The chapter is divided into two major sections. Section 2.2 deals with several models

that have been proposed to study the performance and various control schemes in

NCSs. In Section 2.3 we address three challenges that face control engineers when

designing NCSs, namely: Packet loss, time-delay, and limited communication.

For the remainder of this chapter we will refer to the following continuous-time state

space representation of linear time-invariant (LTI) systems

ẋ(t) = Ax(t) + Bu(t) (2.1)

where x(t) ∈ IRn, u(t) ∈ IRm, A, B are real matrices of appropriate dimensions. The

7
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corresponding discrete-time version of the state equation given by

xk+1 = Φxk + Γuk

Φ = eAh

Γ =

∫ h

0

eAsdsB (2.2)

where h is the fixed sampling period.

2.2 Existing Models

In this section we concentrate on presenting several models and control methods that

have been utilized to deal with NCS.

2.2.1 Sampled-Data

The sampled-data model is the first step for design over networks due to our inability

to transmit continuous signals over a digital communications network. The main

objective of such technique is to obtain the longest sampling time h that can achieve

stability, and consequently lower the usage of the network. In [43] the linear time-

invariant system (2.1) was studied with an ideal uniform sampler Sh : vk = v(t =

kh), k ∈ Z+ = {0, 1, 2, . . . } and the corresponding zero-order hold HT : v(t) = vk, t ∈
[kh, (k+1)h), k ∈ Z+, where v is a generic signal. A linear-quadratic-regulator (LQR)

design with full-state feedback [25], for the continuous-time LTI system (2.1) with the

performance index V =
∫ T

t0

(

xT Qx + uT Ru
)

dt, yields the following algebraic Riccati

equation

AT P + PA − PBR−1BT P + Q = 0 (2.3)

8
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with Q ≥ 0 and R > 0, whose solution P > 0 provides the feedback gain K =

−R−1BT P . The solution P is used to construct the control Lyapunov function

V (x) = xT Px. The decay rate of V for the input u = Kx is defined through the

V̇ (x, u) = −xT Lx, where L > 0 and is given by

L � −(A + BK)T P − P (A + BK) = Q − PBR−1BT P. (2.4)

With such working frame, the goal is to characterize the stability of the sampled-

data system with respect to the same control Lyapunov function and a decay rate

close to the original closed-loop continuous-time system, i.e. characterize the couple

(P, ǫL), ǫ > 0, since the original system’s stability is characterized by (P,L). The

interested reader should consult [43] for stability results, which will be omitted here

for brevity.

2.2.2 Model-Based NCS Control

The authors of [69] present an extended structural analysis of NCSs, using an eigen-

value approach. In their model (see Figure 2.1), the network resides between the

sensors attached to the plant, and the actuators. The network is modelled as a

fixed-rate sampling (h) of the continuous plant. They also construct a ‘model’ plant

that provides state estimate (x̂(t)), and the error between the actual plant and the

model plant (e(t) = x(t) − x̂(t)) is used to augment the state-vector, with the input

being u(t) = Kx̂(t). The idea behind this setting is to only transmit the measured

state vector via the network periodically, and interpolate between the samples using

the model plant. This reduces the communication bandwidth requirement of the

networked system, hence lowering the utilization of the network. Then, stability

analysis is applied to the following augmented system




ẋ(t)

ė(t)



 =





A + BK −BK

Ã + B̃K Â − B̃K









x(t)

e(t)



 � Λ





x(t)

e(t)



 (2.5)

9
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where Ã = A − Â and B̃ = B − B̂, in order to obtain necessary conditions for

guaranteeing stability of the closed-loop system. They analyze the performance of

the system when the full state and partial state are available for feedback. Finally,

they end with an analysis for discrete-time systems.

ẋ = Ax + Bu

˙̂x = Âx̂ + B̂û

✲

✲

K

❄

Sensor✲

❅❅

✛

Network h✌✛

Figure 2.1: Model-Based NCS

2.2.3 Perturbation

The use of perturbation theory (see [49]) has been a very effective tool for studying

the stability of NCSs in [10, 107, 108, 109, 110, 111, 115, 116]. The NCS is shown in

Figure 2.2, where û(t) and ŷ(t) are perturbed versions of the original signals u(t) and

y(t), after passing through the network. The controller is designed for the network-

free control system, and then a perturbation analysis is performed for the networked

system. The error introduced by the network is

e(t) �





ŷ(t)

û(t)



−





y(t)

u(t)



 , (2.6)

10
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Plant Gp

Controller Gc

Network

❄

✛

✻

✲ y(t)û(t)

ŷ(t)u(t)

Figure 2.2: Perturbation Model

and the augmented system involves the plant (xp(t)), controller (xc(t)) and the error

state vectors as follows:

ż(t) �





ẋ(t)

ė(t)



 �











ẋc(t)

ẋp(t)

ė(t)











=





Λ11 Λ12

Λ21 Λ22



 z(t) = Λz(t) (2.7)

The matrices Λij; i, j ∈ 1, 2 are defined in terms of the state-space models of the

plant and controller in Figure 2.2. Since the controller is designed to stabilize the

network-free system, then Λ11 is stable, i.e. there exists a matrix P > 0 such that

ΛT
11P + PΛ11 = −I (2.8)

A try-once-discard (TOD) protocol is introduced, where the next node1 to transmit

data on a multi-node network is decided on dynamically or statically based on the

highest weighted error from the last transmission. The goal of analysis for this

and other protocols is to find a maximum transmission interval that guarantees

1A node denotes every component of the system that is connected to the network, such
as sensors and actuators

11



Chapter 2. Recent Trends in the Stability of Networked Control Systems

satisfactory stability performance. The maximum bound on the transmission time

required to guarantee stability of the NCS is given through the following theorem.

Theorem 1 [110, 111] An NCS with p nodes operating under TOD, or under static

scheduling2, is globally exponentially stable provided that the maximum allowable

transfer time τm is given by

τm < min

{

ln(2)

p||Λ|| ,
1

4||Λ||
(√

λmax(P )
λmin(P )

+ 1
)

p(p + 1)
,

1

8λmax(P )
√

λmax(P )
λmin(P )

||Λ||2
(√

λmax(P )
λmin(P )

+ 1
)

p(p + 1)

}

(2.9)

where λmax(P ), λmin(P ) are respectively the maximum and minimum eigenvalues of

the matrix P defined in (2.8), and ||Λ|| is the induced norm of the matrix Λ.

Theorem 1 indicates that the networked system will maintain stability as long as

the maximum time interval between successive transmissions of any node via the

network does not exceed τm. Maintaining the maximum bound τm between successive

transmissions, guarantees that the error for each node between transmissions does

not exceed a certain threshold error, where the error of a node is calculated by taking

the norm of the sub-vector ei(t), of (2.6) , representing sensors or actuators utilizing

that node.

Similar results for nonlinear systems can be found in [107, 108, 109]. The bound

given in Theorem 1 on τm was improved in [115, 116] to the following,

τm <
λmin(Q)

8λmax(P )
√

λmax(P )
λmin(P )

||Λ||2
(√

λmax(P )
λmin(P )

+ 1
)

p(p + 1)
, (2.10)

2Typical polling or token ring structure

12
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where λmin(Q) is the minimum eigenvalue of the positive definite symmetric matrix

Q that satisfies the following Lyapunov stability equation

ΛT
11P + PΛ11 = −Q (2.11)

and Λ11 is given in (2.7).

2.2.4 Hybrid Systems

NCS have been cast into a hybrid systems context [9, 17, 115, 116]. The motiva-

tion behind this model is that with the presence of the network, a control systems

becomes dependent on packet transmission and reception, hence the system’s in-

put changes/switches at each packet arrival. Consequently, the NCS has continuous

dynamics (plant) and discrete dynamics (control-loop), yielding a hybrid system.

References [115, 116] utilize results previously derived for the stability of hybrid

systems, to find bounds on the delay introduced by the network. In particular, [115]

models the network as a constant delay τ introduced into the full state feedback as

follows:

ẋ(t) = Ax(t) − BKx̂(t), t ∈ [kh + τ, (k + 1)h + τ ]

x̂(t+) = x(t − τ), t ∈ [kh + τ, k = 0, 1, 2, . . . ]
(2.12)

where h is the sampling period. Then the trajectory of the delayed state vector

x(t − τ) is solved for, in terms of x(t) and x̂(t). The bound on the delay τ results

from imposing Schur stability conditions on the following matrix.

H =





eAh −E(h)BK

eA(h−τ ) −e−Aτ (E(h) − E(τ))BK



 (2.13)

where for a given matrix M , E(h)M ≡
∫ h

0
eA(h−η)Mdη.

13
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Another approach that was presented in [9, 17], involved a specialization of the Wit-

senhausen hybrid-state continuous time model in [112]. The Witsenhausen hybrid

model is fully characterized by (M, Ω, f, d, ω,J ), where

• M is the finite set of integers indexing the different partitions of the state space

• Ω is the discrete output set that result from applying ω to mi

• f : M × IRn × IRr → IRn, is the function governing the continuous dynamics of

the system, i.e. ẋ(t) = f (mi, x(t), u(t)), that is continuous in x(t), for a fixed

mi ∈ M

• d : M × J → M, is the discrete state transition function that indicates the

next discrete state, after the current state reaches any switching surface in the

transition/switching set, J

• ω : M → Ω, i.e. for every discrete state we have ω(mi) = oi ∈ Ω

• J is the set of all the switching surfaces in the state space.

The Witsenhausen model was extended in [9, 17] to include N systems connected

through a network, with the key assumption that the network induced delays are

ignored. The N -systems model (see Figure 2.3) was modelled as

(Mi, Vi, Ωi, fi, di, wi,Vi, vi) for 1 ≤ i ≤ N , where the extra terms are defined as:

• Vi is an discrete set describing the input to each plant

• Vi is an extra set of transition/switching surfaces

• vi : M × V → M , is the discrete-input discrete-state transition function that

provides the next discrete state corresponding to the given input.

14
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System 1 System 2 . . . . . . System N

Network

❄

✻

❄

✻

❄

✻

o1 v1 o2 v2 oN vN

Figure 2.3: N Networked Systems

The Witsenhausen model was used for its simplicity in characterizing the NCS. Al-

though not explored in [17], an optimal control analysis was carried out in [112], which

could be extended to the NCS with N systems. The performance of the extended

hybrid model was illustrated through a Heating Ventilating and Air Conditioning

(HVAC) temperature control system for 3 rooms.

2.2.5 Decentralized Systems

A general definition of decentralized systems is found in [46] and can be stated as

follows:

Definition 2 Decentralized systems possess the property that local controllers only

affect the response of specific system outputs. Such systems are also characterized

by the restricted exchange of information between different groups of sensors and

actuators.

A specific version of such systems called the switch box problem was presented in

[43, 44] and is mainly a protocol that governs the behavior of the network. The
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problem involves two periodically varying controllers 3 C1(k) and C2(k) (see Figure

2.4), and the output signals of the plant y1(k), y2(k) going through a switch box (S)

that only allows one signal to go through during each discrete-time interval. The

dynamics of the switch are defined as follows

S0 =





0 0

0 0



 , S1 =





0 Ip2

0 0



 , S2 =





0 0

Ip1 0



 (2.14)

and S(k) is a periodic switching sequence of (2.14) that relates the outputs y1,2 to

the controllers’ inputs v1,2 in the following manner




v1(k)

v2(k)



 = S(k)





y1(k)

y2(k)



 (2.15)

The switch box is also periodically time-varying and the control problem can be

formulated as follows.

Problem 1 If the plant G(s) is stabilitzable and detectable, and given a certain pe-

riodic switching sequence for the switch box to follow, does there exist periodically

time-varying controllers C1(k) and C2(k) that make the closed-loop system exponen-

tially stable.

The solution to the Problem 1 involves the notions of completeness and weak com-

pleteness of a linear time-invariant system which are basically dependent on the rank

of the following system matrix

M((A,B,C,D); z) =





A − zI B

C D



 (2.16)

Several stability results were given in [43], in which the analysis was carried on

through the use of the lifting technique (see [19] for definition) and assignability

measures (see [43] for details).

3Notation is different in this subsection to avoid confusion. k is the time-step and 1, 2
indicate the signal number
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G(s)

✲

✲

✲

✲

C1(k)

C2(k)

❞

❞

❞

❞�
��❅
❅❅

✲

✲
S

✲

✲

y1

y2

u1

u2

v1

v2

Figure 2.4: Switch box problem

2.2.6 Deadband

One control design for NCSs was proposed using deadbands [84]. When the system

(2.2) has a new state value (xk) to transmit over the network, it is compared to

its prior value (xk−1). If |xk − xk−1| > δ, where δ is a threshold value,then x(k)

is transmitted, else no value is broadcast over the network. Several methods were

used to find the value of δ that results in a stable system, since if δ increases above

a threshold value, it may render the system unstable. The method was illustrated

using PI, PID and deadbeat controllers. The main objective behind the deadband

method is to only transmit data when needed, i.e. when the difference between two

successive state values exceeds the threshold δ, hence decreasing the bit-rate needed

to guarantee stability of the networked system.
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2.3 NCS Inherent Issues

There are several issues that arise when dealing with NCS such as packet loss, time-

delay, and limited communication. In the following sections we address each of these

issues and present a fairly comprehensive survey of available results.

2.3.1 Packet Loss

Packet loss is an inherent problem with most computer networks (see [21]) due to

several factors such as transmission time-outs, transmission errors and limited buffer

size. To handle packet loss, transmission protocols are implemented with various

error detection and correction schemes such as: parity bit, frame checksum, and

cyclic redundancy check (CRC). To indicate that a packet has an error is however

easier than correcting it. The previously mentioned methods might then fail, and

hence the packet is deemed lost. There have been several attempts to study the

effect of packet loss on the performance of the networked system [63, 95, 115, 116].

In [115, 116], a sufficient stability analysis was presented using Lyapunov method,

where packet loss/no-loss was modelled as a switch and two closed-loop plant models

were used,

• zk+1 �





xk+1

xnet
k+1



 =





A −BK

A −BK



 zk = Ã1zk, if there is no packet loss

• zk+1 �





xk+1

xnet
k+1



 =





A −BK

0 I



 zk = Ã2zk, if there is packet loss

where the system dynamics are given by (2.2) and the control is a simple state

feedback uk = −Kxnet
k . The vector xnet

k is the state after the network/switch, which

takes the value xk when the packet is delivered or xnet
k−1 if the packet is lost.
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Theorem 2 Consider the plant dynamics given by (2.2), and the state feedback uk =

−Kxnet
k . If the successful transmission rate is r and the non-networked closed-loop

system is stable, then the networked systems retains stability as long as there exists

a Lyapunov function V (xk) = xT
k Pxk, P > 0 and scalars η1 and η2 such that

ηr
1η

1−r
2 > 1

ÃT
1 PÃ1 ≤ η−2

1 P

ÃT
2 PÃ2 ≤ η−2

2 P.

Moreover, if 0 < r ≤ 1 and the open-loop system is marginally stable, then the

netwoked system is exponentially stable. And if the open-loop system is unstable, the

closed-loop system is exponentially stable for all r such that

1

1 − log[λ2
max(A−BK)]

log[λ2
max(A)]

< r ≤ 1

where λmax(.) indicates the maximum eigenvalue of a matrix.

In [63, 95] a stochastic approach was adopted and a Markovian jump system was

examined to model packet loss. The idea is similar to that studied in [115, 116],

however the process of dropping packets is modelled as of Bernoulli trials type4. The

occurrence of the event that a packet is lost is indicated as follows

P{θk = 0} = p

P{θk = 1} = q = 1 − p (2.17)

where θk = 1 indicates that the packet arrives. In case a packet is dropped (θk = 0),

then the previous packet that arrived is used for control. In [63], the analysis starts

4see [105] for details of Bernoulli trials
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with a continuous system, which is then discretized and a Linear Quadratic Regulator

(LQR) analysis is used. However for simplicity, we will illustrate instead the analysis

adopted in [95]. Let the system under study be given in discrete-time as

xk+1 = Axk + Buk

yk = Cxk (2.18)

Using θk in the model we have

ynet
k = θkyk + (1 − θk)y

net
k−1 (2.19)

where ynet
k is the output of the plant after being transmitted through the network.

Augmenting the state vector to include ynet
k , we have

x̄k+1 �





xk

ynet
k−1



 =





A 0

θkC (1 − θk)I



 x̄k +





B

0



uk

ynet
k =

[

θkC (1 − θk)I
]

x̄k (2.20)

For such Markovian jump system a state-space controller was designed, that is also

Markovian jump system. The closed-loop system could be described by

xk+1 = Γθk
xk (2.21)

where Γi
k is the closed-loop system matrix that evolves according to the outcome of

the Markov chain at time step k, and xk is the augmented state vector that involves

the state of the plant x̄k, and that of the controller.

There are several notions of stability that are cited in [95], however we will only define

the mean-square stability in order to state the stability result for (2.21). The system

given in (2.21) with initial conditions x0 and θ0 is mean-square stable if for every

initial state we have limk→∞ E [||xk||2] = 0. Given that the transition probabilities

from state i to state j of θk are given by pij = pj we have the following stability

result.
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Theorem 3 [95] Given pj, j ∈ {1, 2}, the system in (2.21) is mean-square stable

if and only if there exists a matrix P > 0 such that P −∑2
j=1 pjΓ

T
j PΓj > 0.

The result in Theorem 3 is a linear matrix inequality (LMI), and it is very similar to

the idea of finding a common Lyapunov function for switching discrete-time systems.

2.3.2 Delay Analysis

A major problem in NCS is that the network introduces random, possibly un-

bounded5, delays. An extensive study on time-delay systems can be found in [77].

Since the network is utilized to transmit packets of the sampled values of the out-

put/state of the system, and several systems might be connected to the same network,

delay is inevitable and might cause deterioration of the system performance6. There

are several references that deal with the delay involved in NCSs [4, 13, 36, 38, 50, 78,

88, 114]. As seen in Figure 2.5 the general framework for the analysis of time delay in

NCS involves a continuous plant G(s), a sampler (Sh) with rate h, and a zero-order

hold (Hh) device (ZOH), and a discrete controller C(z). The network introduces two

delays, the first τ sc
k between the sensors and the controller , and another τ ca

k between

the controller and plant actuators. Like all sampled-data control systems, there is

also an underlying computational delay τ c representing the time the controller con-

sumes to provide the desired input signal, however, this delay is usually absorbed

into τ ca
k (see [4]).

There are two inherent problems in NCS that result from network-induced delays,

message rejection and vacant sampling [36, 88].

5Packet loss might be thought of as unbounded delay
6This is not always the case, since delay can be adequately utilized to stabilize the

system as in [1]
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G(s) ShHh
✲ ✲

C(z)

τ ca τ sc

❄

✛

✻

✲ ykhu(kh−τca)

y(kh−τsc)ukh

Figure 2.5: Delay Model

• Message rejection: When two or more samples from the sensors reach the con-

troller between two sampling instants, then one of the messages is discarded.

• Vacant Sampling: When no data arrives to the controller during one sampling

period, then the controller uses the previous sample.

The following proposition is then provided, the proof of which can be found in [36].

Proposition 1 [36] The time-variant delays induced by the network, τ sc
k and τ ca

k ,

can be lumped together into one delay τk provided the following conditions hold:

1. Both sensor and controller have the same sampling period h

2. No message rejection or vacant sampling occur

3. τ(.) ≥ 0, a nonnegative function

4. τ(kh+τsc
k

+τca
k

) = τ sc
k + τ ca

k
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5. τ(kh+ǫ) ≤ ǫ, ∀ǫ ∈ [τ sc
k + τ ca

k , h + τ sc
k + τ ca

k )

Assuming the conditions of Proposition 1 are satisfied and the two delays can be

lumped, then 3 cases may arise:

• τ = αh, where α ∈ IN

• τ < h

• τ = (β − 1)h + τ ′, where β ∈ IN, τ ′ < h

We shall study each case separately and introduce the different techniques available

for analysis and design.

Case #1: τ = αh, where α ∈ IN

In such case where the delay is an integer multiple of the sampling period, it can be

considered as a sensor-induced delay and a similar analysis can be followed as in [30].

Let yi
k be the output of the plant subject to delay ih for 1 ≤ i ≤ α. Then the system

can be studied by augmenting the state equations with the delayed measurements of

the state, assuming the full state is available for feedback and the plant is represented

in discrete time.
















xk+1

x1
k+1

...

xα
k+1

















=

















Φ 0 . . . 0

I 0 . . . 0
...

. . . . . .
...

0 0 I 0

































xk

x1
k

...

xα
k

















+

















Γ

0
...

0

















uk (2.22)

where Φ and Γ are defined in (2.2). The analysis can then be completed using the

augmented matrix, since the augmented system is independent of delay.

23



Chapter 2. Recent Trends in the Stability of Networked Control Systems

Case #2: τ < h

In this case the delay is less than the sampling period and the system is modelled as

in [4].

xk+1 = Φxk + Γ0uk + Γ1uk−1

Φ = eAh

Γ0 =

∫ h−τ

0

eAηdηB

Γ1 = eA(h−τ)

∫ τ

0

eAηdηB (2.23)

Case #3: τ = (β − 1)h + τ ′, where β ∈ IN , τ ′ < h

The discrete model here is combination of the previous two models and is represented

as follows.

xk+1 = Φxk + Γ0u(k−β+1) + Γ1u(k−d) (2.24)

where Φ, Γ0 and Γ1 are defined as in (2.23).

In [78] the case #2 model (2.23) was used with the addition of disturbances vk and

wk

xk+1 = Φxk + Γ0uk + Γ1uk−1 + vk (2.25)

yk = Cxk + wk (2.26)

where wk and vk are uncorrelated zero mean Gaussian white noise stochastic pro-

cesses. With such setup, the delay τk is random and depends on the network load

which is modelled as a Markov process (see Figure 2.6). For each state of the network

load, Low, Medium, or High, there exist a corresponding distribution for the delay.
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q
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q
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Figure 2.6: Markov model of the operation load of the communication network

The switching between different network states (rk) is done probabilistically using

transition probabilities

qij = P{rk+1 = i|rk = j}, i, j ∈ {Low,Medium,High} (2.27)

Finally, an LQG optimal control problem is solved to generate a controller that

guarantees stability. In [13] similar analysis as in Cases #2 and #3 was followed,

and an augmented system with the system input being a part of the state vector was

derived. Intervals for the allowable delay that maintains stability of the system were

obtained for the integrator example.

Throughout the preceding time-delay analysis the sampling time of the sensors and

controller were assumed identical, which is the usual case underlying most analysis

and design methods in sampled-data and digital control systems. However, if that is

not the case, an interesting analysis was presented in [62].

A rigorous study was performed in [50] to deal with random delays of integer multiples

of the sampling period h. The network can introduce a random delay ranging from

0h to d1h into the plant output, and from 0h to d2h into the controller output, where
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d1, d2 ∈ IN . The analysis was simplified to the single step delay case, i.e. d1 = 0

and d2 = 1. For this specific case, the system behaves as a Markovian jump system,

and stability is intended in the Mean Square Sense. Stability was first studied for

the single-step delay and two approaches were undertaken, deterministic structural

perturbation and stochastic Lyapunov function analysis. Finally, the results were

extended to the general multi-step delays.

In what follows we present a different approach to deal with network-induced delays

using queues.

Queueing

One scheme that was presented in [18] involved equipping the system with a queue

on the sensor side of the network as shown in Figure 2.7. The queue size is m, i.e. a

Plant

Controller

Queue

Single Register

✲

Channel

�� ✲

❄

❅❅✛

Sensor

h

h′ωkuk

yk

Figure 2.7: NCS with queue

maximum of m delayed measurements to be fed into the channel can be stored. The

sampling times on both sides of the channel are equal (h = h′), and the controller

input ωk could be any of m values {yk, . . . , yk−m}. The current size of the queue n

is transmitted each time a transmission occurs for yk. Depending on the value of

the variable n, the delay index of y can be determined with precision ±1, i.e. ωk is
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either yk−i or yk−i+1 assuming n = i. The controller is then supposed to provide the

best prediction of the actual non-delayed state xk in the mean square sense, since

there is a probability assignment to the events that ωk = yk−i or ωk = yk−i+1, given

that n = i. The above discussion assumes that the full state is available at the

output (yk = xk). Another case was studied when the full state is not available for

feedback, where the prediction was preformed in two stages, the first estimates the

current state, and the second being a refinement of the estimation based on measured

outputs.

2.3.3 Control and Communication

Recent developments in NCS have targeted the issue of limited communication avail-

able for control. By introducing the network into the control system, issues like

channel/network capacity, encoding/decoding schemes and quantization arise. With

regard to control systems, the capacity of the channel/network and its ability to con-

vey a reasonable amount of information plays an important role in characterizing the

stability of the system. Furthermore, the measured system outputs must be trans-

mitted in a packet form over the network, hence the need for sampling, quantization

and encoding/decoding.

A recent line of research in [71, 99, 100] aims to characterize the interplay between

communications and control, and to explore the effect of channel coding/decoding

schemes on the stability of control systems in the deterministic and stochastic sense.

In the same vein, a new notion of capacity called any-time capacity was introduced

in [91].

Another trend for studying NCS has focused on invoking new quantization schemes

that reduce the number of bits to be transmitted over the channel/ network, hence

providing the ability to use channels with limited capacities, as will be seen later.
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Finally, we expose the reader to two concepts that sound promising to study the

phenomenon of chaotic behavior of systems subject to quantization effects, namely

cell-to-cell mapping and the Frobenius-Perron operator.

Information Theoretic Approach

In a leading work in [14], the concept of attention was introduced to the control

of systems. The method involves solving an optimization problem to minimize an

attention functional given by

ζ =

∫

ω

ψ

(

x, t,
∂u

∂x
,
∂u

∂t

)

dxdt (2.28)

The outcome of this study is to obtain a measure for the control effort that has to be

applied to the system to achieve stability. The more the input of the system varies

with respect to time (||∂u
t
||) and the system state (||∂u

∂x
||), the more attention we need

for the system, and the more complex is the control law. This fact reflects on the

NCS in the form of bit-rate; the more attention we need for the system the higher

the bit-rate has to be. Furthermore, the bit-rate affects the capacity required from

the network/channel in an information theoretic context which is the main focus in

[7, 45, 68, 91, 99, 100, 104].

The extensive study in [99] has elegantly cast the control problem over networks into

an information theoretic context. The network in an NCS problem was thought of

as a channel with optimal encoding/decoding and maximum available bit-rate (see

Figure 2.8). Both deterministic and stochastic7 systems were controlled over the

channel/network and the goal was to derive a bound on the bit-rate of the channel

for different encoding and decoding schemes. The following two definitions were

given for controllability and observability of networked systems in an information

theoretic setting.

7Also see [100] for LQG setting
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Figure 2.8: Control system with the channel in feedback loop

Definition 3 [99] The discrete system in (2.2) is controllable with limited bit-rate

if ∀x0, x
⋆ ∈ IRn, ∀ǫ > 0 there exists a controller, encoder and decoder and k(ǫ, x0)

such that ||xk − x⋆|| ≤ ǫ.

Definition 4 [99] The discrete system in (2.2) is asymptotically observable if

there exists a control sequence {uk}, encoder and decoder such that

1. ∀ǫ > 0, ∃δ(ǫ): ||x0||2 ≤ δ(ǫ) ⇒ ||xk − x̂k||2 ≤ ǫ, ∀k ≥ 0

2. ∀ǫ > 0, δ > 0, ∃K(ǫ, δ): ||x0||2 ≤ δ ⇒ ||xk − x̂k||2 ≤ ǫ, ∀k ≥ K

For the controllability and observability notion in Definitions 3 and 4, and several

classes of information patterns (channel encoding and decoding), that are defined in

[99], the general lower bound on the bit-rate to achieve stability and/or asymptotic
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observability was given by8

R >

l
∑

i=1

λu
i (A) (2.29)

where λu
i (A) are the unstable eigenvalues of the matrix A, and l ≤ n is the corre-

sponding number of unstable eigenvalues. Consequently, there is a clear connection

between the unstable eigenvalues of the system under consideration (control setting)

and the bit-rate required (information theoretic setting). Hence the information rate

required depends on the amount of attention to be given to the system, since the

stable eigenvalues do not require attention and they decay to the origin asymptoti-

cally.

This idea that the bit-rate required to stabilize a system over a network was revisited

in [104], but in a quantization setting. The concept of a trapping region was also

used to indicate that we can drive the system to an invariant region after which the

control input can retain the state trajectory inside the invariant set.

The channel capacity was also related to the unstable eigenvalues of the control

system to be stabilized in [7].

Theorem 4 [7] Consider the following scalar discrete-time system

xk+1 = axk + buk (2.30)

that is the sampled version, with sampling period h, of the continuous-time system

with transfer function G(s) = β
s−α

, i.e. a = eαh and b = β
α
(eαh − 1).

There exists as sampling period h and an finite set of admissible inputs of cardinality

greater than eαh and a regular9 selection function f : IRn → U , that makes the closed-

8The same expression was derived in [?] in stochastic sense
9see [7] for complete definition of regularity
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loop system boundable10 if and only if the data-rate satisfies the following condition

R ≥ log eα (2.31)

Note that the largest invariant set can be given by
[−bumax

a−1
, bumax

a−1

]

, where umax is the

largest admissible input level.

Anytime Capacity

When dealing with the channel/network in the feedback loop of systems, it was

shown in [91] that the classical notion of channel capacity should be reexamined

and described specifically for feedback systems. Along with the notions of classical

capacity C, which is the maximum data rate that can be transmitted over the channel

with a specified small probability of error, and the zero-error capacity C0 [96], which

is maximum data rate that can be transmitted over the channel with zero probability

of error, the following novel notion of capacity was introduced.

Definition 5 [91] The α-anytime capacity Canytime(α), is the maximum rate at which

the channel can be used to transmit data with a probability of error that decays at a

rate α, i.e. Canytime(α) = sup{R : ER, K > 0,∀N,∃DR
N , Perror(ER,DR

N) < K2−αN}
where ER is an encoder at rate R and DR

N is the corresponding decoder with delay N .

Having defined the any-time capacity Canytime, we consider the following unstable

scalar system

xk+1 = axk + uk + Wk, t ≥ 0, a > 1 (2.32)

10Being boundable is very similar to being containable [7], a concept defined in Section
2.3.3
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where uk is the input and ||Wk|| ≤ w
2

is a bounded discrete noise process. The main

stability result that relates the any-time capacity to the unstable eigenvalues of the

system is stated next.

Theorem 5 [91, 92] Given the system (2.32), then it is stabilizable over a noisy

channel if and only if Canytime(2 log a) > log a for the channel with feedback.

Finally, it is understood that C0 ≤ Canytime ≤ C.

Quantization Schemes

It is well known [4] that once quantization is introduced into the control loop, it

leads to a complicated nonlinear analysis. It might also lead in specific cases to

limit-cycle oscillations or chaotic behavior (to be studied in the next subsection). As

in digital signal processing [82], quantization can be modelled as an additive white

noise process, and its effect can then be studied in a linear fashion.

Over the past ten years, the quantization issue has become the subject for several

studies for NCSs [15, 24, 27, 28, 37, 42, 43, 57, 58, 66], in order to describe its impact

on the performance of the control system and introduce new quantization schemes

that achieve lower bit-rates, which in turn decrease the use of the network in the

feedback loop.

To the best of the authors knowledge, most of the aforementioned studies were in-

fluenced by the leading work in [24], which was not motivated from an NCS point

of view. The main concern was to demonstrate the behavior of discrete-time lin-

ear systems subject to quantization and operating under state feedback control law.

In order to state the results pertaining to [24], we need some preliminary notation.
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Consider the following discrete-time linear system in (2.2) where x(k) ∈ IRn, and

let J be a finite or countable set. Let Q : IRn → J be a uniform quantization

mapping that results in the following quantization blocks/partitions of the state-

space {Uj = Q−1({j}) : j ∈ J }. It is well known that the quantization operation

introduces errors in the measured state, and Q(x),∀x ∈ IRn can be thought of as

“state measurements containing limited information”. Under such limited informa-

tion about the states, traditional asymptotic stability cannot be achieved as seen in

the following proposition.

Proposition 2 [24] Suppose that Φ in (2.2) has at least one unstable eigenvalue, and

0 ∈ U0 = Q−1(Q(0)) and U0 ⊂ IRn is a bounded partition. Then for every control

input of the following type u(k) = fk(Q(x0), . . . ,Q(xk)), the set of initial conditions

that have trajectories tending to the origin as k → ∞ has Lebesque11 measure zero.

Since asymptotic stability can not be achieved in the traditional sense, the analysis in

[24] proceeds to characterize an invariant trapping set D to which all the trajectories

tend after some time N , depending on the initial condition x0. The analysis then

aimed at characterizing the behavior of the system once the trajectory is inside D.

Two behaviors are studied, deterministic and chaotic which will be seen in the next

subsection, where the results are specialized for scalar systems.

A similar notion was developed to deal with the inability to achieve asymptotic

stability in the traditional sense as seen in Proposition 2, namely containability.

Definition 6 [113] A finite communication control12 system on IRn, is containable

if for any sphere N centered at the origin, there exists an open neighborhood of the

11See [35] for definition of Lebesque measure
12A different nomenclature that indicates an NCS with quantization, coding and decod-

ing.
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origin M and coding and feedback control laws such that any trajectory started in M

remains in N for all time, with M ⊂ N .

Necessary and sufficient conditions were presented that provide containability of the

closed-loop system.

• Necessary: The system ẋ(t) = Ax(t) + Bu(t), x(0) = x0 and y(t) = Cx(t) is

containable only if

τ 2 ≤ D (2.33)

where τ � eδtr(A), and δ is the transmission delay and we are using a D-ary

codewords13.

• Sufficient: Under the same conditions above, and using binary codewords, then

the system is containable if

τ 2n+1
∞ < 2 (2.34)

where τ∞ � ||eδA||∞.

Finally, necessary and sufficient conditions were given for scalar systems as such

Theorem 6 [113] The system under consideration, restricted to the scalar case is

containable if and only if

τ 2 ≤ D

(notice that τ = τ∞ = eδ).

13The coding alphabet contains D symbols, see [33] for more details on coding
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The next step in the analysis of quantized NCS was presented in [15, 28]. The main

idea in [15] was to make the sensitivity of a uniform quantizer time-variant and

include its dynamics in the analysis. The existence of a quantization scheme and

control input will be stated for continuous-time systems only, since they are paralleled

for the discrete-time case. The idea was to utilize a zooming factor z ∈ {−1, 1}
that increases/decreases the quantization sensitivity ∆ to allow sufficient qualitative

indication of the state location that guarantees stability. With such approach the

stability of the un-quantized state/output can be extended to the quantized version.

The following two theorems put the discussion in perspective and can be extended

to the discrete-time case and later to output feedback [15].

Theorem 7 [15] Given a full state feedback gain K that renders the un-quantized

system ẋ(t) = (A − BK)x(t) stable. There exists a control policy of the form

∆(t) = G(z, ⌊t/τ⌋, q(x(⌊t/τ⌋)), ∆(⌊t/τ⌋τ))

u(t) = −KI[k0τ,∞)(t)∆(t)q(x(t))

where q is a uniform quantizer with sensitivity14 ∆(t) and k0 > 0, such that the

solution of the closed-loop system

ẋ(t) = Ax(t) − Bu(t), x0 ∈ IRn

∆(t) = G(z, ⌊t/τ⌋, q(x(⌊t/τ⌋)), ∆(⌊t/τ⌋τ)), ∆(0) = 0

approaches 0 as t → ∞.

14Quantization sensitivity is the difference between two successive quantization levels
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Theorem 8 [15] Given a full state feedback gain K that renders the un-quantized

system ẋ = (A − BK)x stable. There exists a control policy of the form

∆i(t) = Gi(z, ⌊t/τ⌋, q(x(⌊t/τ⌋))) i = 1, . . . , n

u(t) = H(t − ⌊t/τ⌋τ, q(x(⌊t/τ⌋τ)))

where q is a uniform quantizer with sensitivity (∆1(t), . . . , ∆n(t)) and z = 1, such

that the solution of the closed-loop system

ẋ(t) = Ax(t) − Bu(t), x0 ∈ IRn

∆i(t) = Gi(z, ⌊t/τ⌋, q(x(⌊t/τ⌋))), ∆(0) = 0

approaches 0 as t → ∞.

Notice that the scheme utilized with the zoom in and out retains convergence of the

solution to the origin, hence stability is in the asymptotic sense.

In [28] however, a slightly different idea was proposed for the design of the quantizer.

The objective was to quantize as coarsely as possible while maintaining stability.

The measure of coarseness depends on the quantization density measure defined by

ηg = lim
ǫ→∞

sup
#g[ǫ]

− ln ǫ
(2.35)

where g is a quantizer that stabilizes the system and #g[ǫ] is the number of levels

that g has in an interval [ǫ, 1/ǫ]. The coarsest quantizer corresponds to the quantizer

with the smallest quantization density.

On the other hand, the analysis in [28] relied on Control Lyapunov Functions (CLF).

It was shown that a quantizer which is coarsest with respect to a CLF V (x) is of
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logarithmic type, i.e. the levels are far apart when the state trajectory is far from the

origin and get closer in a logarithmic fashion once close to the origin. The idea is that

imprecise knowledge of the state is enough to steer the trajectory in the direction of

the origin. Once close to the origin, more precise knowledge is required to reach the

origin. The results here are also asymptotic contrary to those in Theorem 2.

The most interesting result in [28] is that of the interplay between sampling rate and

quantization coarseness. The quantization density in (2.35) is redefined to include

the effect of uniform sampling of period h as follows:

ηg,h =
1

h
lim
ǫ→∞

sup
#g[ǫ]

− ln ǫ
(2.36)

This density measures the coarseness of the quantizer in space (quantization) as well

as in time (sampling). The optimal sampling time satisfies the following equality

h⋆ =
ln(1 +

√
2)

∑k
i=1 λu

i (A)
(2.37)

where λu
i (A) corresponds to the unstable eigenvalues of the system matrix A. Fur-

thermore, the base for the optimal logarithmic quantizer and the optimal sampling

period are independent, hence they can be chosen separately.

The result in (2.37) can be compared to that given in [37], where a different analysis

was followed, however, a similar result was obtained and is stated here for complete-

ness,

h⋆ =
ln(2)

∑k
i=1 λu

i (A)
. (2.38)

The idea of zooming in and out-type quantization was also explored in [37] as well

as in [58]. Specifically, in [58], the quantizer maintains a fixed number of partitions,

but starts with large quantization partitions that shrink as the trajectory approaches

the origin. The main result of the paper for quantized state-feedback is stated next,

and the result can be paralleled for quantized output-feedback.
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Theorem 9 Global asymptotic stabilization of the system ẋ(t) = Ax(t) + Bu(t),

x ∈ IRn is possible if N ≥ 2n and

max
0≤t≤τ

||eAt||∞ < ⌊ n
√

N⌋ (2.39)

where N is the number of quantization partitions, and ⌊.⌋ is the floor function.

With such results on quantization schemes being brought forward, several other

extensions may be followed in a fairly involved study that appeared recently in [43].

Another interesting analysis appeared in [42] and assumes there are two quantizers

one residing between the plant sensors and the controller, and another between the

controller and the plant actuators. This procedure is the more general in the sense

that the network resides on both sides of the plant/controller, not solely between the

plant sensors and controller.

Chaotic Behavior & Cell-to-Cell Mapping

In [24], the final step of the analysis was to characterize the behavior of the quantized

systems once the trajectory enters the invariant subspace D (see previous section).

For scalar systems, there exists an invariant probability measure µ defined on D such

that

µ : D → D (2.40)

Formally, define (D,A, µ) as a probability space, where D is the sample space, A
is the minimal σ-algebra defined on D, and µ is a probability measure on D. Ba-

sically, the system inside D operates on a density f as an initial condition. Hence,

the evolution of the state trajectory can be characterized through the use of the

Frobenius-Perron operator, which is a special type of Markov operators (see [53]).
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Definition 7 [53] Given a probability space (D,A, µ), and S : D → D a nonsingular

transformation. Then there exists a unique Frobenius-Perron (F-P) operator P :

L1 → L1 corresponding to S and defined by:

∫

A∈A
Pf(x)µ(dx) =

∫

S−1(A)

f(x)µ(dx) (2.41)

The F-P operator posses several appealing properties such as

• Linearity: P(α1f1 + α2f2) = α1Pf1 + Pf2

• Pf ≥ 0, ∀f ≥ 0, f ∈ L1

• ||Pf || = ||f ||

• ||P|| = 1

The main result in [24] is that under specific conditions, there exists an invariant

density f ⋆ (or fixed point of P) defined as

lim
k→∞

||Pkf − f ⋆|| (2.42)

and hence characterization of the state can be achieved asymptotically according to

the density f ⋆.

An extension was presented in [94] for the use of the F-P operator to describe the

statistical behavior of quantized systems. An autonomous quantized system can be

represented by the evolution of the density defined on the state-space described by

the F-P operator, and a density discretizer DN , i.e.

fk+1(x) = Pfk(x), given f0(x)

P(Q(x)|f0(x)) = DNfk(x) (2.43)
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where the discretizer DN is defined by DN : D → WN , which is obviously a projection

of the density f onto an N -dimensional space, that represents the volume of the

density resident in each quantization hyperbox. The method is illustrated through

an enlightening example that involves scalar three quantization levels and density

residing in all 3 levels. The results for autonomous systems were extended to non-

autonomous systems through the use of the Foias operator 15.

Another promising method explored in [94] is the cell-to-cell mapping. For dynam-

ical systems that are modelled by differential equations the continuous solution can

usually be characterized through discrete points in the state-space, called point map

or Poincaré map [40]. This is the approach used when dealing with numerical so-

lutions of differential equations. Since quantization introduces partitions into the

state-space, the cell-to-cell mapping is suggested to describe the evolution of the

state trajectory at discrete times from one cell to the other in the state space. The

idea is to divide each quantization hyperbox into smaller partitions and try to see

where each partition maps into the state space so that the state trajectory of the

quantized systems can be characterized. As we refine the partitions, the accuracy of

characterization is increased and asymptotically the system is fully characterized.

2.4 Conclusions

This chapter has exposed the reader to many results pertaining to the analysis and

design of Networked Control Systems. Several models that were utilized in the study

of NCS such as sampled-data, model-based, and hybrid were presented briefly. Also

some of the most critical problems in the design of NCS such as packet loss, network

induced time-delays, and limited communication in the control loop were presented.

15See [53] for extended exposure to the Foias operator
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In the next chapter, we present a novel sampled-data approach to deal with NCSs

and several stability results based on Lyapunov argument.
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Chapter 3

Networked Control Systems: A

Sampled-Data Approach

In this chapter we present a novel modelling method for networked control systems,

motivated from the sampled-data approach, discussed in Chapter 2. We study suffi-

cient conditions that guarantee exponential stability for the closed-loop system and

illustrate our results via a numerical example. The chapter deals with time-delays of

fixed or random nature indirectly, hence addressing one of the main inherent issues

in NCS, as mentioned in Chapter 2.

The contents of this chapter have been accepted for publication [39].

3.1 New Modelling of NCS

As seen in Chapter 2, there are several trends in modelling networked control sys-

tems. In this section we are going to introduce yet another modelling method and

manipulate it to obtain a generalized LTI sampled-data system. The proposed model
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allows us to avoid the tedious analysis of the effect of the delays introduced by the

network. This is achieved through incorporating the delays into the model of the sys-

tem, and rendering it sufficient to study the stability of the overall system, without

explicitly addressing the actual value and nature of the delays. Before we introduce

the new model, we present our assumptions:

I. The controller and actuators are directly attached to the plant, i.e. no transport

delay exists between the controller and plant actuators.

II. The sensors are part of the plant model.

Proposition 3 We model the network as a variable-rate ideal sampler (Sτk
), between

the plant (G) and the controller (C), and a corresponding zero-order hold (Hτk
), as

shown in Figure 3.1.

G

C

w(t) z(t)
u(t) y(t)

u(k) y(k)

✲ ✲
✲

❄

✻
✛

Hτk
Sτk

Figure 3.1: System Model

Consider the following plant model,

ẋ(t) = Ax(t) + B1w(t) + B2u(t)

z(t) = C1x(t) + D11w(t) + D12u(t)

y(t) = C2x(t) (3.1)
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where x(t) ∈ IRn is the state vector, u(t) ∈ IRm is the control input vector, w(t) ∈ IRl

is the vector of exogenous inputs, z(t) ∈ IRp is the vector of controlled outputs, and

y(t) ∈ IRq is the vector of measurable outputs. Finally,

G =











A B1 B2

C1 D11 D12

C2 0 0











=





G11 G12

G21 G22



 (3.2)

We assume that D21 = D22 = 0, i.e. the transfer functions from the control input,

u(t), and from the exogenous input, w(t), to the measured output, y(t), are strictly

proper. The latter condition provides continuity in the measured output vector [8],

i.e. avoiding impulses in the output.

The above framework results in a time-varying system, that has both continuous

and discrete signals, hence a hybrid system. The study of such systems is in general

complex as discussed briefly in Chapter 2 , and a unified theory for such systems is

not yet available [67]. For such reasons, we choose to manipulate the model in order

to obtain a generalized LTI sampled-data system. In order to do so, we employ the

lifting technique [8, 19], and incorporate the ideal sampler and hold devices into the

plant model in the following manner:

G̃ =





Lτk
0

0 Sτk



G





L−1
τk

0

0 Hτk





=





Lτk
G11L

−1
τk

Lτk
G12Hτk

Sτk
G21L

−1
τk

Sτk
G22Hτk





=





G̃11 G̃12

G̃21 G̃22



 (3.3)

where τk = tk − tk−1 is the variable sampling-rate, Lτk
and L−1

τk
are the lifting and

inverse lifting operators, respectively. The transformed system is shown in Figure

3.2.
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G

C

Lτk
L−1

τk

G̃

ũ ỹ

✲ ✲
✲

❄

✻
✛

Hτk
Sτk

✲Lτk
✲w(t) w̃ ✲̃z L−1

τk
✲z(t)

Figure 3.2: The Reconfigured NCS

Next we present the above transformations mathematically.

i. G11 → G̃11

The transfer function G11 relates w(t) to z(t), in continuous time. G̃11 on the

other hand relates w̃ to z̃ both being the lifted signals, corresponding to w(t)

and z(t). Consequently the operator-valued entries of G̃11 are given as follows:

Ã = eAτk

B̃1w̃ =

∫ τk

0

eA(τk−η)B1w(η)dη (3.4)

(C̃1x)(t) = C1e
Atx

(D̃11w̃)(t) = D11w(t) + C1

∫ t

0

eA(t−η)B1w(η)dη

ii. G12 → G̃12

In a similar fashion, we transform B12 and D12 into B12 and D12, respectively.

And G̃12 relates the discrete input uk and the lifted output zk.

B̃2 =

∫ τk

0

eAηdηB2 (3.5)

(D̃12ũ)(t) = D12ũ + C1

∫ t

0

eAηdηB2ũC̃2

iii. G21 → G̃21 and G22 → G̃22

Both transformations follow from (6) and (7).
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After applying the above transformations to (3.2) we obtain an LTI sampled-data

system (G̃), which is shown in Figure 3.2. Then we refer back to the usual H∞

(see [19]) design to obtain the controller (C). Assuming that the controller (C) has

been designed, we present stability analysis results of the overall system in the next

section.

3.2 Stability Analysis

In this section we study the stability of the model presented in the previous section.

We shall start by deriving the closed-loop system that involves G̃22 and the controller

C. Note that we only need to stabilize G̃22 due to the following theorem.

Theorem 10 [8] The controller C internally stabilizes the hybrid system in Figure

3.2, if and only if it internally stabilizes the discrete-time system G̃22 in (3.3).

The plant model of G̃22 is described as follows,

xk+1 = Ãxk + B̃2uk

yk = C̃2xk = C2xk (3.6)

and the controller C is described by the following state-space realization

vk+1 = Acvk + Bcyk

uk = Ccvk + Dcyk (3.7)
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Combining (3.6) and (3.7) we get the following augmented state space representation

sk+1
.
=





xk+1

vk+1





=





Ã + B̃2DcC2 B̃2Cc

BcC2 Ac









xk

vk





.
= Hksk (3.8)

Notice that the above system does not take into account the effects of disturbances.

Consequently, we shall introduce the effects of disturbances, through w(t) in (3.1),

into (3.8) as follows

sk+1 = Hksk +





B̃1w̃

0





.
= Hksk + Γk (3.9)

Before we plunge into the stability analysis, we shall present a general formal defini-

tion of exponential stability for discrete-time systems.

Definition 8 The origin of the system xk+1 = Akxk is exponentially stable if there

exists an α > 0, and for every ǫ > 0 there exists a δ(ǫ) > 0, such that

||xk|| ≤ ǫe−α(tk−t0)||x0|| (3.10)

whenever ||x0|| < δ(ǫ) and t0 ≥ 0. If δ(ǫ) → ∞ then the system is exponentially

stable in the large.

The following theorem utilizes results in [41], and specializes them to solve the prob-

lem at hand.

Theorem 11 The origin of the closed loop discrete-time system (3.8) is exponen-

tially stable in the large provided,

47



Chapter 3. Networked Control Systems: A Sampled-Data Approach

i. sup∀k∈N τk < ∞

ii. ||Hk|| < 1√
2
,∀k ∈ N

Proof. Given ||Hk|| < a < 1,∀k ∈ N , then there exist a symmetric matrix Pk > 0,

such that HT
k PkHk − Pk = −I. Then ||Pk|| ≤ ||I|| + ||HT

k PKHk|| ≤ 1 + a2||Pk|| ⇒
1 ≤ ||Pk|| ≤ 1

1−a2 , since 0 < a < 1.

Let V (sk)
.
= s(k)T Pk−1s(k), then

∆V
.
= V (sk+1) − V (sk)

= sT
k+1Pksk+1 − sT

k Pk−1sk

= sT
k (HT

k PkHk − Pk)sk + sT
k (Pk − Pk−1)sk

= −sT
k Isk + sT

k (Pk − Pk−1)sk

≤ −||sk||2 +

(

a2

1 − a2

)

||sk||2

=

(

2a2 − 1

1 − a2

)

||sk||2 (3.11)

Since ||Pk − Pk−1||max = 1
1−a2 − 1 = a2

1−a2 . For the system to be stable, ∆V must be

less than zero. Therefore,
(

2a2−1
1−a2

)

< 0 ⇒ a < 1√
2
.

The above result guarantees that the system (3.8) is stable. Still required to prove

that it is exponentially stable. Since V (sk)
.
= s(k)T Pk−1s(k) then

||sk||2 ≤ V (sk) ≤
1

1 − a2
||sk||2 (3.12)

Using (3.11), V (sk+1) ≤ V (sk) +
(

2a2−1
1−a2

)

||sk||2 ≤ (2a2 − 2)V (sk). But ||s0||2 ≤
V (s0) ≤ 1

1−a2 ||s0||2 then

V (sk) ≤ (2a2)k.

(

1

1 − a2

)

||s0||2 (3.13)

Combining (3.12) and (3.13) we get,

||sk|| ≤
√

1

1 − a2
.(
√

2a2)k||s0|| (3.14)
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Let α = min{1,− ln(
√

2a2)} and ǫ =
√

1
1−a2 , the result follows.

In the above analysis we have ignored the effect of the disturbances on the system.

So we are going to extend the result of Theorem 11 to compensate for bounded and

vanishing, state-bounded disturbances and in what follows.

Theorem 12 (Bounded Disturbance) Given that the origin of the discrete-time sys-

tem (3.8) is exponentially stable, and that ||Γk|| ≤ γ < +∞ (bounded-input), then

the system (3.9) has a bounded-state output.

Proof. The proof is simple through analyzing the time progression of the state-

vector.

x(k+1) =
∏k

i=0 Hix(0)+
∑k

j=0

(

∏k
i=j+1 Hi

)

.Γj. Taking the limit of k on both sides:

limk→∞ (x(k + 1)) = limk→∞

(

∏k
i=0 Hi.x(0)

)

+ limk→∞

(

∑k
j=0

(

∏k
i=j+1 Hi

)

.Γj

)

⇒ ||x(∞)|| ≤ ||Γ||.
(

1
1−a

)

= γ
1−a

< ∞. Since the first limit tends to zero as k → ∞
and ||Hk|| < a < 1 ⇒ we take the maximum of Hk = a and form a geometric

progression whose answer is
(

1
1−a

)

.

Theorem 13 (Vanishing Disturbance) The origin of the closed loop discrete-time

system (3.9) is exponentially stable in the large provided,

i. sup∀k∈N τk < ∞

ii. ||Hk|| < 1√
2
,∀k ∈ N

iii. ||Γk|| < ||sk||,∀k ∈ N
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Proof. We follow a similar analysis as in Theorem 11. Let ||Γk|| < γ||sk||, where

γ > 0.

∆V
.
= V (sk+1) − V (sk)

= (Hksk + Γk)
T Pk(Hksk + Γk) − sT

k Pk−1sk

= sT
k (HT

k PkHk − Pk)sk + sT
k (Pk − Pk−1)sk

+2sT
k HT

k PkΓk + ΓT
k PkΓk

≤
(

2a2 − 1

1 − a2

)

||sk||2

+

(

2aγ

1 − a2
+

γ2

1 − a2

)

||sk||2 (3.15)

And ∆V in (3.15) is always negative provided that γ < 1. The rest follows as in

Theorem 11.

3.3 Numerical Example

In this section we will consider a numerical example to illustrate the theoretical

stability results derived in Section 3.2, specifically in Theorem 11.

Consider the following scalar continuous-time LTI plant model

ẋ(t) = 0.5x(t) + 10u(t)

y(t) = x(t) (3.16)

whose discrete version is that described in (3.6). Consider also the following discrete-

time LTI controller C

vk+1 = 0.1vk − 0.5yk

uk = −0.5vk − yk (3.17)
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Figure 3.3: Range of τk that corresponds to ||Hk|| < 1√
2

Consequently, the closed-loop system matrix Hk in (3.8), corresponding to (3.16)

and (3.17), is given by

Hk =





e0.5τk − 20(e0.5τk − 1) −10(e0.5τk − 1)

−0.5 0.1



 (3.18)

By Theorem 11, we need to keep the norm of Hk less than 1√
2
. Since we fixed the

values for the controller parameters, we can vary τk to meet the required condition

on Hk. The range of τk for which the induced Euclidean norm1 of Hk is less than 1√
2

is shown in Figure 3.3, where

0.061 < τk < 0.126. (3.19)

In order to fully understand the implications of varying the sampling time τk on the

stability of the system, we will first study the behavior of the closed loop system in

(3.18) given a constant τk.

1The induced Euclidean norm of any matrix M is given by
[

λmax(MT M)
]1/2

, where
λmax denotes the maximum eigenvalue.
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The response of the closed-loop system at the boundary of the range given in (3.19),

i.e. τk = 0.126, is shown in Figure 3.4 where the system retains its stability.
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Figure 3.4: System response for τk = 0.126

We further increase the value to τk beyond 0.126 until we hit the first instability

point. As seen in Figure 3.5, the response of the closed loop system diverges for

τk = 0.164. This conveys the conservativeness of the stability analysis, since the

results are sufficient but not necessary.

Finally, we test the system response for a variable sampling time given by

τk = 0.126 + ǫ × U (3.20)

where U is a uniformly distributed random number between 0 and 1, and ǫ ∈ IR.

This representation of τk allows us to see how far can we sample randomly beyond

the theoretical bound and still maintain stability. As seen in Figure 3.6, the system

diverges for ǫ = 0.076.

It is interesting to compare the two results presented in Figures 3.5 and 3.6. For

the random case, the value of τk depends on the outcome of the random number
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Figure 3.5: System response for τk = 0.164

U given in (3.20), whose mean is 0.038 for the simulation in Figure 3.6. Hence,

average(τk) = 0.126 + average(ǫ × U) = 0.164 which is the same as the fixed τk in

Figure 3.5. Consequently, the random τk behaves like the fixed one on average.

3.4 Conclusions

In this chapter we have presented a new method for modelling Networked Control

Systems. The main idea is to view NCS as a variable-rate, sampled-data system.

Then, we utilized some results pertaining to the stability of such sampled-data sys-

tems and extended them to the problem at hand.

In the next chapter, we present a stability analysis for NCSs operating under obser-

vation dropouts, i.e. packet drops in the state observations.
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Figure 3.6: System response for τk = 0.126 + ǫ × U
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Chapter 4

Discrete-Time Model-Based

Control with Observation

Dropouts

In this chapter we will employ various concepts such as model-based control, Marko-

vian Jump linear Systems, and Linear Matrix Inequalities as a numerical analysis

tool for studying the effect of packet dropouts on the stability and performance of a

networked system. Note that packet dropouts is one of the main inherent issues in

NCS, as discussed in Chapter 2.

We start by providing preliminary results needed in the analysis in Section 4.1.

In Section 4.2, we state the problem and the analysis of the proposed solution.

We present a numerical example in Section 4.3, with some discussion of the results

observed. Finally, we conclude in Section 4.4.
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4.1 Preliminaries

4.1.1 Markov Chains 1

A probability space is represented by (Ω,F , P), where

• Ω is a sample or phase space

• F is a σ-algebra of subsets of Ω, i.e

i. ∅ and Ω belong to F

ii. A ∈ F ⇒ Ac ∈ F

iii. A1, A2, · · · ∈ F ⇒
⋃∞

n=1 An ∈ F

• P is a probability measure such that ∀A ∈ F we have P(A) ∈ [0, 1], i.e.

P : A → [0, 1].

Definition 9 Let {θk} be a sequence of random variables that take values in Ω, then

{θk} is a Markov Chain if and only if

P (θk+1 = j|θk = i, θk−1 = ik−1, . . . , θ0 = i0) = P (θk+1 = j|θk = i) =: pk(i, j) (4.1)

for all j, i, ik−1, . . . , i0 ∈ Ω and ∀k, where pk(i, j) is the transition probability from

state i to state j at moment k. In other words, the state of the Markov chain depends

only on the previous state and not the whole history of the chain.

1This section is abstracted from courses on Stochastic Processes and Probability Theory

by Professor Vladimir Koltchinskii, Mathematics and Statistics Department, University of
New Mexico.
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Definition 10 A Markov chain {θk} is said to stationary if and only if pn(i, j) =

p(i, j)∀n

Let P = [p(i, j)]i,j∈Ω denote the transition probability matrix of a Markov chain

{θn}, then a very important property called Irreducibility can be deduced from the

structure of P.

Definition 11 A Markov chain {θk} is irreducible, if there exist only one equivalent

class, i.e. any 2 states in Ω commute, where a state i commutes with another state

j (i ↔ j), if and only if ∃n : pn(i, j) > 0 and pn(j, i) > 0.

If the matrix P is not composed of block diagonal entries, then {θk} is irreducible. To

adapt all these concepts into the context of packet dropping, we consider a Markov

chain {θk} with a binary phase space Ω = {0, 1}, governed by the following transition

probabilities

P (θk+1 = 0|θk = 0) = P (θk+1 = 0|θk = 1) = p

P (θk+1 = 1|θk = 0) = P (θk+1 = 1|θk = 1) = 1 − p (4.2)

Then the state transition probability matrix is given by

P =





p p

1 − p 1 − p



 (4.3)

which is not block diagonal, and hence the chain is irreducible, i.e. the probability

of either state occurring at time k is never zero. This can also be seen from the fact

that P = Pn. Hence, Definition 11 is satisfied.
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4.1.2 Mean Square Stability

Consider the unforced discrete-time stochastic state equation

xk+1 = Λθk
xk (4.4)

where θk ∈ Ω = {0, 1} is a Markov chain, with transition probabilities given by (4.2),

that determines the structure of the state matrix Λ at each time-step k, hence the

system is called a Markovian Jumping system. Although there are various definitions

of stochastic stability for such systems2, we are interested in mean-square stability.

Definition 12 [11] The Markovian Jumping system (4.4) is asymptotically mean

-square stochastically stable (MSS), if for all finite initial conditions x0, θ0 we have

lim
k→∞

E{||xk||2} = 0 (4.5)

The following two Theorems provide conditions for mean-square stability for the

system given in (4.4).

Theorem 14 [23] The system (4.4), with transition probabilities given by (4.2), is

mean-square stable (MSS) if and only if there exists a matrix G > 0 that satisfies the

following Lyapunov-like equation

G − pΛT
0 GΛ0 − (1 − p)ΛT

1 GΛ1 > 0 (4.6)

2See [52] for general stochastic stability definitions or [103, 23] for specific ones.
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Theorem 15 [23] The system (4.4), with transition probabilities given by (4.2), is

mean-square stable (MSS) if and only if λmax(A) < 1, where

A � V H

V � P ⊗ I4

H �





Λ̄0 ⊗ Λ0 0

0 Λ̄1 ⊗ Λ1



 (4.7)

The ⊗ indicates the Kronecker product of two matrices and is defined as follows

Definition 13 Let A be an n × p matrix and B an m × q matrix. The mn × pq

matrix

A ⊗ B =

















a11B a12B . . . a1pB

a21B a22B . . . a2pB
...

...
...

...

an1B an2B . . . anpB

















(4.8)

is called the Kronecker product of A and B.

Note 3 Since Theorems 14− 15 are necessary and sufficient for MSS, then both are

equivalent and we will explore both conditions for stability in Section 4.3.

4.1.3 Linear Matrix Inequalities

In this section we briefly define Linear Matrices Inequalities (LMIs). As mentioned

in [12, 93], the idea of LMIs goes back to the work of A.M. Lyapunov, when he

was studying the stability of dynamical systems. A sufficient condition for stability
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of a dynamical system of the following form ẋ(t) = Ax(t), is that the following

inequalities be satisfied

P > 0

AT P + PA < 0. (4.9)

Formally, see [12], an LMI is an inequality of the form

F (x) � F0 +
m
∑

i=1

xiFi ≥ 0 (4.10)

where x = [x1 x2 . . . xm]T ∈ IRm is called the decision vector to be calculated,

and the symmetric matrices Fi ∈ IRn×n are given, and F : IRn → IRn×n is an affine

function in the variable x.

One important property that we will explore in Section 4.2, is that multiple LMIs

(F1(x) > 0, . . . , Fk(x) > 0) can be converted into

F(x) �





















F1(x) 0 0 . . . 0

0 F2(x) 0 . . . 0

0 0 F3(x) . . . 0
...

...
. . .

...
...

0 0 . . . 0 Fk(x)





















> 0 (4.11)

which is again an LMI. Hence, the problem of solving multiple LMIs is equivalent to

solving a single augmented LMI.

4.2 Problem Formulation

As seen in Chapter 2, model-based control has been a useful tool in studying net-

worked control systems. The main idea is to place the network between the sensors,
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that are directly attached to the plant, and the controller. In [69], the idea was ex-

plored extensively and various stability conditions were obtained for continuous and

discrete plants. In this chapter we concentrate on the discrete version and study the

effects of random packet drops on the performance of the closed-loop system under

state feedback.

Consider the following discrete-time plant model

xk+1 = Axk + Buk (4.12)

with a discrete-time model plant, that does not match exactly the plant model due

to inaccuracy in modelling or identification, given by

x̂k+1 = Âx̂k + B̂uk. (4.13)

It provides the state value for state feedback at each sample time for both the plant

and the model plant, through the following input

uk = Kx̂k. (4.14)

Define the error vector between the plant and the model as ek = xk − x̂k, then along

with (4.12) and (4.13), the following closed-loop system results

zk+1 �





xk+1

ek+1



 =





A + BK −BK

∆A + ∆BK (1 − θk)Â − ∆BK









xk

ek





� Λθk
zk (4.15)

where ∆A = A−Â, ∆B = B−B̂ indicate the error in model matching and θk ∈ {0, 1}
is a Markov chain that indicates reception (θk = 1) or loss (θk = 0) of a packet

containing the state measurement xk. If a packet is received, then it is used as an

initial condition for the next time step in the model plant, otherwise the previous

state of the model plant is used.
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Given the setting above, we have two situations that might result based on the state

of θk

Λ1 =





A + BK −BK

∆A + ∆BK −∆BK



 , if θk = 1

Λ0 =





A + BK −BK

∆A + ∆BK Â − ∆BK



 , if θk = 0. (4.16)

Hence, for the model described in (4.15), MSS means that there exists a symmetric

matrix P , such that the following two LMI’s are satisfied

P > 0

P − pΛT
0 PΛ0 − (1 − p)ΛT

1 PΛ1 > 0 (4.17)

where p is the probability of dropping a packet. According to (4.11) we can transform

the 2 LMIs in (4.17) into a single LMI to study stability.

4.3 Example

In what follows we consider a scalar example that illustrates the analytical results in

Section 4.2. Consider the following plant

xk = 1.5xk + uk (4.18)

and the model plant

x̂k = 1.4x̂k + 0.8uk (4.19)

62



Chapter 4. Discrete-Time Model-Based Control with Observation Dropouts

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

time (sec)

o
u

tp
u

t

Figure 4.1: System response for p = 0%

let K = −1, the resulting closed loop matrices

Λ1 =





0.5 1

−0.1 0.2



 with λ1
1,2 = 0.35 ± 0.278i

Λ0 =





0.5 1

−0.1 1.6



 with λ0
1,2 = 0.6, 1.5 (4.20)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

time (sec)

o
u
tp

u
t

Figure 4.2: System response for p = 10%

63



Chapter 4. Discrete-Time Model-Based Control with Observation Dropouts

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

time (sec)

o
u

tp
u

t

Figure 4.3: System response for p = 43%

where λi
1,2 are the eigenvalues of Λi, i ∈ {0, 1}. Note that the matrix Λ1 has eigen-

values inside the unit circle in the complex plane, hence stable. Meanwhile, Λ0 has

an eigenvalue outside the unit circle, and hence the probability of receiving a packet
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Figure 4.4: λmax(A) versus p
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(1 − p) or dropping it (p) will place a weighting factor on the interplay between a

stable system matrix Λ1 and an unstable one Λ0 in (4.17). This will affect our ability

to obtain a symmetric matrix P > 0, since if the probabilistically dominant matrix

is unstable the LMI is not feasible.

Using the LMI [32] toolbox in MATLAB, we get that the maximum feasible dropping

rate is p = 43% and the corresponding value of

P =





120.7 −420.8

−420.8 4369.6



 (4.21)

To verify the numerical results obtained through LMI’s numerical solver, we simulate

the closed-loop system using Simulink. The system response with no packet losses is

given in Figure 4.1. Notice that due to discrepancy between the plant and the model

plant, more time steps are required to reach steady-state, i.e. the response is slower

than direct state-feedback for the plant.

To recognize the effect of packet dropping we simulate the same system for a small

dropping rate of p = 10%, as seen in Figure 4.2, where the system retains its stability

in mean-square sense. Once a packet is lost the response grows, hence the peaks.

Consequently, the system requires some time constant to redirect the response back

to steady-state level. As also seen, the peaks vary in amplitude with the highest

being attained as a consequence of several consecutive drops. Therefore, the higher

the drop rate the larger is the divergence from the steady-state level. The response

for a p = 43% drop rate is shown in Figure 4.4 where the system is still stable.

It is very interesting to explore the stability condition given in Theorem 15, in order
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to realize that it is equivalent to the LMI stability condition. For p = 43% we have

A =





































0.1075 0.215 0.215 0.43 0.1425 0.285 0.285 0.57

−0.0215 0.344 −0.043 0.688 −0.0285 0.057 −0.057 0.57

−0.0215 −0.043 0.344 0.688 −0.0285 −0.057 0.057 0.114

0.0043 −0.0688 −0.0688 1.1008 0.0057 −0.0114 −0.0114 0.0228

0.1075 0.215 0.215 0.43 0.1425 0.285 0.285 0.57

−0.0215 0.344 −0.043 0.688 −0.0285 0.057 −0.057 0.114

−0.0215 −0.043 0.344 0.688 −0.0285 −0.057 0.057 0.114

0.0043 −0.0688 −0.0688 1.1008 0.0057 −0.0114 −0.0114 0.0228





































(4.22)

and λmax(A) = 0.995 < 1 which is stable. This result illustrates the equivalence

between Theorems 14 - 15.

4.4 Conclusions

In this chapter we have investigated the effects of packet drops on the stability of

networked control systems. We utilized a model-based technique, that coupled with

Markovian Jump Systems stability results, gave us necessary and sufficient results for

the stability of networked systems operating via lossy channels. A simple example

was presented to clarify the presentation and allow the reader to gain insight into

the connotations of theoretical results.

In the next chapter, we exploit the uncertainty threshold principle to study the

performance of a networked system operation under packet losses in the plant input.
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Chapter 5

Optimal Control under Input

Uncertainty

In this Chapter we utilize results pertaining to the uncertainty threshold principle

[5, 51], in order to address the existence of an optimal state-feedback control input,

when the packets are being dropped between the controller output and the plant

actuators, which was one of the main inherent issues in NCS, as discussed in Chapter

2.

5.1 Problem Statement

Consider the following plant model

xk+1 = Axk + θkBuk (5.1)

operating under the state-feedback control law

uk = −Gkxk (5.2)
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where θk is a Markov chain that takes values in the phase space Ω = {0, 1}, as in

Chapter 4. Our objective is to study the existence of an optimal feedback control

law u⋆
k that minimizes a certain quadratic cost functional. A more general problem

is that of the uncertainty threshold principle [5, 51], that can be easily simplified to

solve our problem (see also [48]).

5.2 Uncertainty Threshold Principle

Let γk, θk, and ξk be random sequences with the corresponding mean values µγ, µθ,

and µξ = 0 and variance values σ2
γ, σ2

θ , and σ2
ξ , respectively. Consider the following

discrete-time dynamical system

xk+1 = γkAxk + θkBuk + ξk (5.3)

where σ2
γθ is the cross correlation between the uncertainty in the system matrix A

and input random sequences, and ξ is independent of γ and θ.

Our objective is to derive an optimal state-feedback control input u⋆
k that minimizes

the following cost functional

J = E

(

1

N

N
∑

s=0

xT
s Qxs + uT

s Rus

)

(5.4)

where Q ≥ 0, R > 0, and the pair (Q1/2, A) is observable.

Using stochastic dynamical programming [3], the optimal input is described by

u⋆
k = −

(

[

R + (µ2
θ + σ2

θ)B
T Pk+1B

]−1
(µγµθ + σ2

γθ)B
T Pk+1A

)

xk (5.5)

where Pk is described recursively backward in time through the Riccati-like equation

Pk = (µ2
γ + σ2

γ)A
T Pk+1A + Q

− (µγµθ + σ2
γθ)

2AT Pk+1B
[

R + (µ2
γ + σ2

γ)B
T Pk+1B

]−1
BT Pk+1A (5.6)
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with PN = 0.

With the above setting we have the following theorem that states the uncertainty

threshold principle, which guarantees the convergence of the iterative equation (5.6),

and consequently the boundedness of the cost function (5.4).

Theorem 16 [51] Under state-feedback, an optimal infinite horizon solution for the

system (5.3) exists if and only if

max
i

|λi(A)| <
1

β
(5.7)

where β2 � µ2
γ + σ2

γ −
(µγµθ+σ2

γθ)2

µ2
θ
+σ2

θ

≥ 0.

The requirement throughout the proof of Theorem 16 is that the matrix B ∈ IRn×n

be invertible (see [48, 51]), which is a major assumption on the structure of the

system. However, as remarked in [51], it is believed that this requirement is just

necessary and can be eliminated through more detailed analysis of the convergence

of (5.6).

5.3 Numerical Example

Consider the system (5.1) again. In order to apply the results from Theorem 16,

we need to calculate the first and second order statistics of the Markovian random

variable θk.

µθ = E(θ) =
2
∑

i=1

i × P(θ = i) = 1 − p (5.8)

σ2
θ = E(θ − µθ)

2 = E(θ2) − µ2
θ = (1 − p) − (1 − p)2 = p(1 − p) (5.9)
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v/s probability of dropping a packet p

And the resulting value for β is

β =

√

1 − µ2
θ

µ2
θ + σ2

θ

=

√

σ2
θ

µ2
θ + σ2

θ

=
√

p ⇒ 1

β
= p−1/2 (5.10)

The plot for the maximum allowable eigenvalue of A versus the probability of drop-

ping a packet is shown in Figure 5.1. As the value of p approaches 1, the system

behaves like an open-loop with no control input available, and hence the maximum

eigenvalue of A that can be tolerated is λmax(A) < 1, i.e. an already stable system.

On the other hand, if p approaches 0, i.e. the probability of dropping a packet is

very low, virtually any maximum eigenvalue of A can be tolerated as long as the pair

(A,B) is controllable.

To illustrate the point for a specific example, consider again the system (5.1) with

A = 1.5 and B = 1. According to Theorem 16 and (5.10), we have p < 0.444 as

an upper bound on the dropping rate of packets under which we can still guarantee

the existence of an optimal control input. The values of Pk for N = 100 that solve

(5.6) recursively are shown in Figure 5.3. As observed, the solution of (5.6) diverges
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Figure 5.2: Pk for different values of p: (a) p = 0.2 (b) p = 0.4 (c) p = 0.5

between p = 0.4 and p = 0.5, as predicted.

5.4 Conclusions

In this chapter we have utilized the uncertainty threshold principle to address the

issue of information loss in the control input, when the drop is characterized by a

Markov chain with finite first- and second-order statistics.

In the next chapter, we present a case study of teleoperated systems taking into

consideration the delays and possible dynamics of the underlying network.
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Chapter 6

Impact of Network Dynamics on

the Stability of Teleoperation

This chapter aims at shedding some light on the effects of a dynamic channel with

delay, on the performance of a teleoperated system under force feedback. The net-

work in this case is a dynamical channel with delays, which extends current results

that model the network as a pure time delay. Hence, this case study of teleoperated

systems is vital for the general understanding of the role of network or channel dy-

namics and its effect on the networked system’s performance. It is interesting to note

though that in this chapter the analysis assumes that the network is solely dedicated

to the teleoperated system. Also note that the chapter partially addresses the notion

of network-induced time-delays, that was introduced in Chapter 2.

Partial contents of this chapter have been published in [72], and the full content is

currently under review for publication [73].
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6.1 Introduction

The increasing interest in controlling dynamical systems via networks make the anal-

ysis and design of communication networks an important problem. Since communi-

cation means data transfer from at least one source node to one destination node,

the communication delays (network-induced, propagation, round trip-time) in the

channel, as well as possible dynamics, become important in characterizing the per-

formance of the overall scheme (oscillations, instability, packet loss).

In this context, we are interested in characterizing the way that delays and dynamics

affect communication channels connecting, for example, the master and slave sites

(bilateral teleoperation) through the Internet. It is well known that the passivity of

the channel (see, e.g.[2, 29, 75, 76]) may be used to guarantee desirable characteris-

tics for the closed-loop schemes (see also [64]). The techniques proposed to perform

such an analysis use the scattering transformation [2] or the waves variable transfor-

mation [75, 76], if the delays are assumed constant. The case of time-varying delays

was considered in [65, 74] using the wave transformation approach, but under some

assumptions on the delay variation.

Assume now that the communication channel is shared not only by the master and

slave, but also by various source-destination pairs: the information of the remote

and/or local sites is transmitted in small packets and is routed in real-time through

a finite, but possibly large number of intermediate nodes. In such a situation, the

network traffic will also impact the communication delay [106] and it seems difficult

to assume that the delay between the master and the slave is constant through the

channel. As remarked in [65] or [74], a more realistic assumption is to consider time-

varying delays. Note however that their analysis of the communication channel is

based on the property that the delay is a C1 function, a hypothesis quite difficult to

satisfy in the Internet environment.
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Based on the comments above, a reasonable way to handle such a problem is to

consider a distributed time-varying delay in the communication channel satisfying

two assumptions: first, that the corresponding kernels (see section 2) are L2, and

second that the information delay from master to slave or from slave to master is

known to fall within certain known bounds.

While the first assumption is a standard one, the second is suggested by some of the

(standard) congestion control algorithms (see [98] and the references therein), where

packet losses induce a retransmission procedure if some acknowledgements have not

arrived in due time, called retransmit time-out. The time-out values depend on the

actual status of the network (for example, the corresponding round-trip time) and

some “reference” values (minimal or some average round-trip time). In our case, one

assumes that these values have been fixed at the beginning of the connection to some

reasonable values with respect to the traffic load and the service guarantees in the

channel.

In our opinion, these seem to be the minimal assumptions required on the communi-

cation channel if transport or propagation delays in the network are to be considered.

Note that we are not interested in this chapter to analyze the overall system’s dy-

namics, which is the main focus of ongoing studies. The analysis section in this

chapter can be traced back to an earlier co-work by the author in [72].

Before we start our analysis we would like to point out some recent advances in the

area of teleoperation. First a new configuration was presented in [83] where instead

of the velocity and force being communicated along the channel, they transmit the

position and integral of the force. Moreover they prove that the system retains

the passivity property under the new signals being communicated. Several related

studies have come to the attention of the author by the time of completion of this

chapter, namely in the latest issue of the IEEE Proceedings [26, 90, 79].
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In Section 6.2 we present the proof of passivity of the dynamic channel with time-

delay. Simulations that illustrate the results are shown in Section 6.3 with some

discussion related to the results in Section 6.3.1. And we conclude in Section 6.4.

Master

ẋm(t) um(t) us(t) ẋs(t)✲

✛
Fm(t) Fs(t)vm(t) vs(t)

Scattering Trans

✲h1(t, θ)

h2(t, θ)✛
Scattering Trans

✲

✛
Slave

✛✟✟❍❍
✛

✲❍❍✟✟
✲γ1

γ2

Figure 6.1: The controlled system.

6.2 Passivity Analysis with Dynamic Channel

Consider a standard bilateral teleoperation system [2], and the wave variable trans-

formation to preserve passivity. Based on [76], the velocity ẋ and the force F are

transformed into the wave domain via:

um(t) =
Fm(t) + bẋm(t)√

2b
vm(t) =

Fm(t) − bẋm(t)√
2b

us(t) =
Fs(t) + bẋs(t)√

2b
vs(t) =

Fs(t) − bẋs(t)√
2b

(6.1)

where b > 0 is the so-called characteristic wave impedance (a trade-off between force

and velocity), subscript m denotes the master and subscript s the slave, respectively,

see Figure 6.1.

The key idea of the transformation is to include velocity and force information which

make the system relatively robust to interactions with unknown environments. Fur-

ther comments can be found in the references cited above. Let us consider that the
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communication channel includes some distributed delays, that is:

us(t) = γ1

∫ 0

−τ1

h1(t, θ)um(t + θ)dθ, (6.2)

vm(t) = γ2

∫ 0

−τ2

h2(t, θ)vs(t + θ)dθ, (6.3)

where τ1 and τ2 are known, and the kernels h1, h2 are L2 (see the arguments in the

introduction). The gains γ1 and γ2 will be computed latter, and are used to render the

communication channel passive with respect to the considered wave transformation.

As in [76], let us compute the overall power input in the communication channel:

Pinput(t) = ẋm(t)Fm(t) − ẋs(t)Fs(t). (6.4)

Using the wave transformations (6.1), one gets:

Estored =

∫ t

0

Pinput(ξ)dξ

=
1

2

∫ t

0

[

um(ξ)T um(ξ) − γ2
2vm(ξ)T vm(ξ) − γ2

1us(ξ)
T us(ξ) + vs(ξ)

T vs(ξ)
]

dξ,

(6.5)

that leads to:

Estored =
1

2

∫ t

0

(

um(ξ)T um(ξ) + vs(ξ)
T vs(ξ)

)

dξ

−γ2
1

2

∫ t

0

(∫ 0

−τ1

h1(ξ, θ)um(ξ + θ)dθ

)T

·
(∫ 0

−τ1

h1(ξ, θ)um(ξ + θ)dθ

)

dξ

−γ2
2

2

∫ t

0

(∫ 0

−τ2

h2(ξ, θ)vs(ξ + θ)dθ

)T

·
(∫ 0

−τ2

h2(ξ, θ)vs(ξ + θ)dθ

)

dξ

(6.6)

if ones uses the definition (6.2)-(6.3) of the delays in the communication channel.
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Let us apply Hölder’s inequality [89] for the channel from the master to the slave:

(∫ 0

−τ1

h1(ξ, θ)um(ξ + θ)dθ

)T

·
(∫ 0

−τ1

h1(ξ, θ)um(ξ + θ)dθ

)

≤
(∫ 0

−τ1

h1(ξ, θ)
T h1(ξ, θ)dθ

)

·
(∫ 0

−τ1

um(ξ + θ)T um(ξ + θ)

)

, (6.7)

and the similar one for the channel from the slave to the master, respectively.

Denote :

α1(ξ) =

(∫ 0

−τ1

h1(ξ, θ)
T h1(ξ, θ)dθ

)

, (6.8)

α2(ξ) =

(∫ 0

−τ2

h2(ξ, θ)
T h2(ξ, θ)dθ

)

. (6.9)

Then we have:

Estored ≥ 1

2

∫ t

0

[

um(ξ)T um(ξ) − γ2
1

∫ 0

−τ1

α1(ξ)um(ξ + θ)T um(ξ + θ)dθ

]

dξ

+
1

2

∫ t

0

[

vs(ξ)
T vs(ξ) − γ2

2

∫ 0

−τ2

α2(ξ)vs(ξ + θ)T vs(ξ + θ)dθ

]

dξ (6.10)

under zero initial conditions and standard bilateral teleoperation diagram (see Figure

6.1).

Using the Fubini Theorem [89], we will have:

Estored ≥ 1

2τ1

∫ 0

−τ1

[∫ t

0

um(ξ)T um(ξ) − α1(ξ)γ
2
1τ1um(ξ + θ)T um(ξ + θ)dξ

]

dθ

+
1

2τ2

∫ 0

−τ2

[∫ t

0

vs(ξ)
T vs(ξ) − α2(ξ)γ

2
2τ2vs(ξ + θ)T vs(ξ + θ)dξ

]

dθ

(6.11)

Then, we have the following result:
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Proposition 4 The communication channel defined above is passive under the wave

transformation (6.2)-(6.3) if the gains γi, i = 1, 2 in the communication channel

satisfy the condition:

γi <
1

√

τi sup
t>0

∫ 0

−τi

hi(t, θ)
T hi(t, θ)dθ

, (6.12)

under zero initial condition.

Proof: The notations (6.8)-(6.9) and the condition (6.12) imply that:

γ2
1τ1α1(t) < 1, (6.13)

γ2
2τ2α2(t) < 1, (6.14)

for all t > 0.

Using such corrections in (6.11) on the corresponding products α1(ξ)τ1γ1 and

α2(ξ)τ2γ2, it follows that a lower bound on the stored energy has the form :

Estored ≥ 1

2

∫ 0

−τ1

(∫ t

t+θ

um(ξ)T um(ξ)dξ

)

dθ +
1

2

∫ 0

−τ2

(∫ t

t+θ

vs(ξ)
T vs(ξ)dξ

)

dθ

(6.15)

which is positive since each term in the corresponding integrals is positive. This ends

the proof.

Remark 1 Since h1(·, ·) and h2(·, ·) are L2 kernels, it follows that both gains γ1 and

γ2, respectively are well-defined.
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6.3 Numerical Example

In this section we will present a numerical example to illustrate the effects of the

channel on the behavior of the teleoperation system. Consider the first-order dy-

namical system with delay

Hi(s, θ) =
e−sθ

s + ρ
(6.16)

which translates into the following L2 kernel

hi(t, θ) = e−ρ(t−θ) (6.17)

And the corresponding gain to the kernel (6.17) is specified by

γi <
1

√

τi supt>0

∫ 0

−τi
(e−ρ(t−θ))

T
(e−ρ(t−θ)) dθ

=

=
1

√

τi supt>0
e−2ρt(1−e−2ρτi )

2ρ

=

=

√

2ρ

τi(1 − e−2ρτi)
(6.18)

The teleoperation system that we shall study is shown in Figure 6.2. It consists of a

first order dynamical system with a PI controller with respect to velocity. The same

Channel

✲ ♠

bs+k
s

1
s+1

♠✲✛

❄

✻

✛

Fs

ẋs ẋ

Fe = 0

✛

+ −

Figure 6.2: Slave’s side of the system
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Figure 6.3: Hi(s, θ) = 1 and γi = 1

system is found on the Master’s end of the channel. Fe is the contact force induced

by the environment when the system faces an obstacle, and is assumed equal to zero

in the simulations.

In order to avoid reflections in the channel, we put the teleoperation system under

force control as in [75]. This is possible since the transformations (6.1) can be always

defined as long as one wave signal and one power signal are supplied as inputs [75].

We also match the proportional gain of the controller to that of the channel. The

virtual model at the Master side of the channel is assumed to be exactly like the

actual model on the Slave side. We simulated the teleoperation system operating

under different channels and the results are summarized in the following.

• The response of the system with no-delay and inactive channel (hi(t, θ) =

1, γi = 1) is shown in Figure 6.3. As seen the Slave’s velocity converges to the

Master’s velocity.

• Another example is seen in Figure 6.4, where a constant delay of 2 seconds was
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Figure 6.4: Hi(s, θ) = e−2s and γi = 1

added to the channel on both channels, i.e. θ = 2. The Slave velocity does not

track the Master’s velocity anymore, although it stays bounded. Decreasing the

gain to γi = 0.5, we obtain a better response as shown in Figure 6.5. However,

the Slave’s response still does not converge to the Master’s response.

• Finally, we introduce a dynamic channel with delay that produces the response

shown in Figure 6.6. The response is unstable. Designing the gains as in (6.18)

for ρ = 0.5 and τi = 2, we have γ < 0.76. The response with a gain of γ = 0.7

is shown in Figure 6.7, where the system regains its stability.

6.3.1 Discussion

As seen in Section 6.3 there are different perspectives in teleoperated systems when a

dynamic channel is considered. When the delay is introduced, it distorts the response

of the system on the Slave’s side and the Slave feels a delayed effect of the reference

velocity on the Master’s side and vice versa. However, when the gains are adjusted,
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Figure 6.5: Hi(s, θ) = e−2s and γi = 0.5

the wave signals inside the channel are diminished and hence the growing effect

that was introduced by the delay is attenuated by the gains. However, the systems

cannot see the channel as a transparent media anymore and will converge to different

steady-state levels. On the other hand, the introduction of the dynamic channel with

delay rendered the overall system unstable. This was due to the fact that the chosen

pole of the channel transfer function caused it to behave like an integrator, hence

magnifying the wave signals and in turn the reference velocities. The gains soothed

the effect of this magnification by attenuating at the same rate, hence balancing

the effect of the channel. Note finally, that a dynamic channel might change the

impedance matching that we had in the pure delay case and further investigation of

the matter is required.
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Figure 6.6: Hi(s, θ) = e−2s

s+0.5
and γi = 1

6.4 Conclusions

In this chapter we have studied the effect of network dynamics on the performance

of teleoperated systems. This effect was obvious in the simulations and a passivity

analysis was utilized to compensate for it.

In the next chapter, we present our conclusion of the thesis, including the most recent

results that were not included in the manuscript due to time constraints, and state

our recommendations for future extensions of the results stated in the thesis.
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Figure 6.7: Hi(s, θ) = e−2s

s+0.5
and γi = 0.7
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Chapter 7

Conclusions and Future Work

The objective of this thesis was to present a systematic overview of the main prob-

lems inherent to networked control systems, and provide new methods to tackle these

problems. We presented a comprehensive survey of the literature in Chapter 2, that

can serve as a tutorial for engineers starting to explore the area of networked sys-

tems. A new sampled-data model was proposed to study such systems accompanied

with sufficient Lyapunov stability arguments. The issue of packet drops was ad-

dressed in a probabilistic fashion and the solution was provided through the theory

of Markovian jump systems and the uncertainty threshold principle. A case study

of teleoperated systems through networks was discussed and inherent problems such

as channel dynamics and time delay were investigated.

7.1 Recent Advances

There are several papers that have recently appeared, by the time of submission of

the thesis, hence we only mention them briefly.

In [70] variable sampling times were used in model-based networked control systems,

85



Chapter 7. Conclusions and Future Work

to provide extensions to results previously obtained in [69]. New results pertaining to

packet dropouts were provided in [6, 60, 61, 97]. A nonlinear input-output stability

analysis has been developed in [101]. Quantization issues were addressed in [16, 59].

The effects of communication constraints on the design of networked control systems

was presented in [31]. In [86] a fault-tolerant networked control systems approach

was taken through the study of time-triggered protocol (TTP) for communication.

7.2 Future Work

The area of networked control systems is still a raw arena for research efforts, and

constitutes a new paradigm for control engineers to explore. Hence, our work in this

thesis has the potential to be further expanded in several directions.

The stability results derived for the sampled-data model in Chapter 3, may yet be

expanded to become necessary and sufficient for the sampling time. This is due to

the fact that Lyapunov analysis provides only sufficient results.

Further exploration of the stochastic nature of packet dropouts is in order, to take

into consideration the type of protocols and network dynamics. Our approach was to

model the dropout as a Markov chain, which did not take into account retransmis-

sions utilized in some protocols. Even though retransmissions are hard to analyze in

terms of control systems, there is a possibility that they might improve the system

performance when an observer-type analysis is utilized.

The case study of teleoperated systems is a vital problem that is of interest to several

engineering communities, and several problems need to be addressed such as channel

dynamics and delays. Chapter 6 has constituted our first steps into the area of

teleoperation and further studies are being currently pursued to relate the control

design on both sides of the channel taking into account the knowledge about the
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channel dynamics and inherent delays.

Throughout the thesis we have dealt with linear systems, however we would investi-

gate how our results might be extended to nonlinear systems. This might be possible

in the case of the sampled-data analysis presented in Chapter 3, through extending

the Lyapunov-type results to nonlinear systems.

Finally, we would like to point out that the analysis presented in this thesis is general

in the sense that we did not consider a specific underlying network type, structure,

or operating protocol. Hence, the results can be applied to wired or wireless type of

networks, with the knowledge that several models were devised for the latter.

87



References

[1] C.T. Abdallah, P. Dorato and J. Benitez-Read, “Delayed Positive Feedback
Can Stabilize Oscillatory Systems,” Proceedings of the IEEE American Control
Conference, San Francisco, California USA, pp. 3106-3107, June 1993.

[2] R.J. Anderson and M.W. Spong, “Bilateral Control of Teleoperators with Time
Delay,” IEEE Transactions on Automatic Control, AC-34, no.5, pp. 494-501,
May 1989.

[3] M. Aoki, Optimization of Stochastic Systems, 2nd Edition, Academic Press, CA,
1989.

[4] K.J. Åstrom and B. Wittenmark, Computer Controlled Systems: Theory and
Design, 2nd Edition, Prentice Hall, Englewood Cliffs, NJ, 1990.

[5] M. Athans, R. Ku and S.B. Gershwin, “The Uncertainty Thershold Principle:
Some Fundamental Limitations of Optical Decision Making Under Dynamic
Uncertainty,” IEEE Transactions on Automatic Control, vol. 22, no. 3, pp. 491-
495, June 1977.

[6] B. Azimi-Sadjadi, “Stability of Networked Control Systems in the Presence of
Packet Losses,” Submitted to the IEEE Conference on Decision and Control,
2003.

[7] J. Baillieul, “Feedback Coding for Information-based Control: Operating Near
the Data-Rate Limit,” Proceedings of the IEEE Conference on Decision and
Control, Las Vagas, Nevada USA, pp. 3229-3236, Dec. 2002.

[8] B.A. Bamieh and J.B. Pearson, “A General Framework for Linear Periodic Sys-
tems with Applications to H∞ Sampled-Data Control,” IEEE Transactions on
Automatic Control, vol. 37, pp. 418-435, April 1992.

88



References

[9] O.V. Beldiman, Control Networks, Department of Electrical and Computer En-
gineering, Duke University, 1998.

[10] O. Beldiman, L.G. Bushnell, G.C. Walsh, H.O. Wang and Y. Hong, “Perturba-
tions in Networked Control Systems,” Proceedings ASME-IMECE DSCD, New
York, NY, November 2001.

[11] K. Benjelloun and E.K. Boukas, “Mean Square Stochastic Stability of Linear
Time-Delay System with Markovian Jumping Parameters,” IEEE Transactions
on Automatic Control, vol. 43, no. 10, pp. 1456-1460, October 1998.

[12] S. Boyd, L. El-Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities
in System and Control Theory, SIAM Studies in Applied Mathematics, vol. 15,
Philadelphia, Pennsylvania, 1994.

[13] M.S. Branicky, S.M. Phillips and W. Zhang, “Stability of Networked Control
Systems: Explicit Analysis of Delay,” Proceedings of the IEEE American Control
Conference, Chicago IL, vol. 4, pp. 2352-2357, June 2000.

[14] R.W. Brockett, “Minimum Attention Control,” Proceedings of the IEEE Con-
ference on Decision and Control, San Diego, California USA, December 1997.

[15] R.W. Brockett and D. Liberzon, “Quantized Feedback Stabilization of Linear
Systems,” IEEE Transactions on Automatic Control, vol.45, no.7, pp.1279-1289,
July 2000.

[16] F. Bullo and D. Liberzon, “On Quantized Control and Geometric Optimization,”
Submitted to the IEEE Conference on Decision and Control, 2003.

[17] L. Bushnell, O. Beldiman and G. Walsh, “An Equivalence between a Control
Network and a Switched Hybrid System,” Lecture Notes in Computer Science,
v. 1386, p.64-80, Springer-Verlag 1998.
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