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Abstract— This paper presents a sum of squares (SOS)
approach to the stability analysis of networked control systems
(NCSs) incorporating time-varying delays and time-varying
transmission intervals. We will provide mathematical models
that describe these NCSs and transform them into suitable
hybrid systems formulations. Based on these hybrid systems
formulations we construct Lyapunov functions using SOS
techniques that can be solved using LMI-based computations.
This leads to several advantages: (i) we can deal with nonlinear
polynomial controllers and systems, (ii) we can allow for non-
zero lower bounds on the delays and transmission intervals in
contrast with various existing approaches, (iii) we allow more
flexibility in the Lyapunov functions thereby possibly obtaining
improved bounds for the delays and transmission intervals than
existing results, and finally (iv) it provides an automated method
to address stability analysis problems in NCS.

I. INTRODUCTION

Stability of networked control systems (NCSs) received

considerable attention in recent years and several approaches

are currently available for tackling this challenging problem.

The first line of research that can be distinguished is

the discrete-time modeling approach, see e.g. [5]–[7], [10],

[11], [14], [25], [26], which applies to linear plants and

linear controllers and is based on exact discretization of

the NCS between two transmission times. After a polytopic

overapproximation step, robust stability analysis methods are

used to obtain LMI-based conditions for stability of the NCS.

The sampled-data approach uses continuous-time models

that describe the NCS dynamics in the continuous-time

domain (so without exploiting any form of discretization)

and perform stability analysis based on these sampled-data

NCS models directly, see e.g. [8], [9], [28], [29]. The models

are in the form of delay-differential equations (DDEs) and

Lyapunov-Krasovskii-functionals are used to assess stability

based on LMIs. An alternative approach, recently proposed

in [18], [19], is based on impulsive DDEs that explicitly take

into account the piecewise constant nature of the control sig-

nal, thereby reducing conservatism with respect to the work

based on DDEs. Constructive LMI-based stability conditions

in the latter line of work apply for linear plants and linear

controllers and non-zero lower bounds on sampling intervals

and delays.

A third line of research is formed by the continuous-

time modeling (or emulation) approach, which is inspired

by the work in [27], and extended in [2], [3], [13], [20],

[21]. To describe the NCS, this research line exploits hybrid

modeling formalisms as advocated in [12]. The stability of

the resulting hybrid system model is based on Lyapunov

functions constructed by combining separate Lyapunov func-

tions for the network-free closed-loop system (which has to

be designed to satisfy certain stability properties) and the

network protocol (or, alternatively, adopting directly small

gain arguments). The available stability conditions all apply

for the case of zero lower bounds for the transmission

intervals and delays.

In this paper we propose an alternative computational

method for stability analysis of NCSs, which from a model-

ing point of view is closest to the continuous-time modeling

approach as just discussed, although it includes also the

models based on impulsive DDEs [18], [19], see Remark

1 below. In particular, we will consider here NCSs that

exhibit varying transmission intervals and varying delays,

while dropouts can be included by prolongations of the

transmission intervals. These models will be converted into

a hybrid systems formulations as in [12]. Assuming piece-

wise polynomial plant dynamics (including piecewise affine

systems) and a piecewise polynomial controller Lyapunov

functions can be constructed using sum of squares (SOS)

tools [15], [23], [24]. As a result, this will lead to LMI-

based tests for stability given bounds on the delays and

transmission intervals. With respect to the existing methods,

this approach has various advantages:

1) we can deal with nonlinear (piecewise) polynomial con-

trollers and systems, while the constructive conditions

in the discrete-time and sampled-data approach only can

handle linear plants and controllers;

2) we can easily incorporate non-zero lower bounds on

the transmission interval and delays, as opposed to the

sampled-data approach and emulation approaches;

3) we allow more flexibility in the Lyapunov functions

thereby obtaining less conservative results;

4) we obtain an automated method to address stability

analysis problems in NCS;

5) we do not have to discretize and perform any polytopic

overapproximations as in the discrete-time approach.

Due to these advantages, the SOS-based stability analysis

for NCS appears to be a valid alternative in various situations.

II. NCS DESCRIPTION

In this section, we describe a NCS model that includes

time-varying delays and time-varying sampling intervals. In

addition, dropouts might be included by modeling them

as prolongations of transmission intervals. For the sake of

brevity, we will not consider communication constraints

and network protocols, which is also possible based on

the general NCS model discussed in [13] which extends

earlier work [20], inspired by [27]. In the extended version

[1] of this paper, this general setup and the usage of SOS
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techniques for the stability analysis of NCSs including these

communication constraints is discussed.

A. Description of the NCS

Consider the continuous-time plant

ẋp = fp(xp, û), y = gp(xp) (1)

in which xp ∈ R
np denotes the state of the plant, û ∈ R

nu

denotes the control values being implemented at the plant and

y ∈ R
ny is the output of the plant. The plant is controlled

over a communication network by a controller, given by

ẋc = fc(xc, ŷ), u = gc(xc, ŷ), (2)

where the variable xc ∈ R
nc is the state of the controller,

ŷ ∈ R
ny contains the most recent output measurements of the

plant that are available at the controller and u ∈ R
nu denotes

the controller output. The presence of a communication

network causes u 6= û and y 6= ŷ, as will be explained

next. In particular, the considered NCS setup assumes that

the sensor acts in a time-driven fashion and that both the

controller and the actuator act in an event-driven fashion

(i.e. responding instantaneously to newly arrived data). The

controller, sensors, and actuators are connected through a

shared network subject to varying transmission intervals and

varying delays:
1) Varying Transmission Intervals: At the transmission

instants, tk ∈ R≥0, k ∈ N, the plant outputs and control

values are sampled and sent over the network. The trans-

mission instants tk satisfy tk =
∑k−1

i=0 hi ∀k ∈ N, which

are non-equidistantly spaced in time due to the time-varying

transmission intervals hk := tk+1 − tk > 0, with hk ∈
[hmin, hmax] for all k ∈ N, for some 0 ≤ hmin ≤ hmax. We

assume that the transmission instants t0, t1, t2, . . . satisfies

tk+1 > tk, for all k ∈ N and limk→∞ tk = ∞.
2) Varying Delays: The transmitted input and output

values are received after a delay τk ∈ R≥0, with τk ∈
[τmin, τmax], for all k ∈ N where 0 ≤ τmin ≤ τmax. To

describe the admissible range of transmission intervals and

delays, the following standing assumption is adopted

Assumption 1 The transmission intervals satisfy 0 ≤
hmin ≤ hk ≤ hmax and hk > 0 for all k ∈ N such that

limk→∞ tk = ∞, and the delays satisfy 0 ≤ τmin ≤ τk ≤
min{τmax, hk}, k ∈ N

The latter condition implies that each transmitted packet

arrives before the next sample is taken. Hence, without loss

of generality we can assume that τmax ≤ hmax.

The networked-induced errors, defined as ey(t) = ŷ(t)−
y(t) and eu(t) = û(t)−u(t), describe the difference between

what is the most recent information that is available at the

controller/plant and the current value of the plant/controller

output, respectively. In between the updates of the values of

ŷ and û, the network is assumed to operate in a zero-order-

hold (ZOH) fashion. At times tk + τk, k ∈ N, the updates

satisfy

ŷ((tk + τk)
+) = y(tk) (3a)

û((tk + τk)
+) = u(tk) (3b)

at tk + τk. Based on (3) we can derive how the network-

induced error behaves at the update times tk + τk as

e((tk + τk)
+) = e(tk + τk)− e(tk). (4)

See [13] for more details on (4) and the NCS setup.

The problem that we aim to solve in this paper is to deter-

mine stability of the NCS given the bounds hmin, hmax, τmin

and τmax as in Assumption 1, or determine these bounds

such that stability is guaranteed.

B. Hybrid System Formulation

To facilitate the stability analysis, the NCS model is

transformed into a hybrid system [12], [13] of the form

ξ̇ = F (ξ), ξ ∈ C, (5a)

ξ+ = G(ξ), ξ ∈ D, (5b)

where C and D are subsets of R
nξ , F : C → R

nξ and

G : D → R
nξ are mappings and ξ+ denotes the value of the

state directly after the reset. We denote the hybrid system

(5) for shortness sometimes by its data (C,D, F,G).
To transform the NCS setup (1)-(2) and (3) into (5), the

auxiliary variables s ∈ R
ne , τ ∈ R≥0 and ℓ ∈ {0, 1} are

introduced to reformulate the model in terms of so-called

flow equations (5a) and reset equations (5b). The variable s is

an auxiliary variable containing the memory storing the value

e(tk) at tk for the update of e at the update instant tk + τk
as in (4), τ is a timer to constrain both the transmission

interval as well as the transmission delay and ℓ is a Boolean

keeping track whether the next event is a transmission event

or an update event. To be precise, when ℓ = 0 the next

event will be related to transmission (at times tk, k ∈ N)

and when ℓ = 1 the next event will be an update (at times

tk + τk, k ∈ N).

The state of our hybrid system ΣNCS is chosen as

ξ = (x, e, s, τ, ℓ) ∈ R
nξ , where x = (xp, xc). The contin-

uous flow map F can now be defined as

F (ξ) := (f(x, e), g(x, e), 0, 1, 0), (6)

where f , g are appropriately defined functions depending on

fp, gp, fc and gc. See [20] for the explicit expressions of f

and g. Flow according to ξ̇ = F (ξ) occurs when the state ξ

lies in the flow set

C := {ξ ∈ R
nξ | (ℓ = 0 ∧ τ ∈ [0, hmax])∨

∨(ℓ = 1 ∧ τ ∈ [0, τmax])},
(7)

where ∧ denotes the logical ‘and’ operator and ∨ denotes

the logical (non-exclusive) ’or’ operator. The jump map G

inducing resets

(x+, e+, s+, τ+, ℓ+) = G(x, e, s, τ, ℓ),

is obtained by combining the “transmission reset relations,”

active at the transmission instants {tk}k∈N, and the “update

reset relations”, active at the update instants {tk + τk}k∈N.

Using (4), the jump map G is defined at the transmission

resets (when ℓ = 0) as

G(x, e, s, τ, 0) = (x, e, e, 0, 1) (8)
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and the update resets (when ℓ = 1) as

G(x, e, s, τ, 1) = (x, s− e, 0, τ, 0). (9)

The jump map G is allowed to reset the system when the

state is in the jump set

D := {ξ ∈ R
nξ | (ℓ = 0 ∧ τ ∈ [hmin, hmax])∨

∨(ℓ = 1 ∧ τ ∈ [τmin, τmax])}.
(10)

Finally, we define the equilibrium set of the hybrid system

A = {ξ ∈ R
nξ | x = 0 ∧ e = s = 0} for which we would

like to prove stability. Hence, the informal stability problem

phrased at the end of Section II-A translates now to the

question of determining global asymptotic stability (GAS)

of the set A for ΣNCS := (C,D, F,G) (see [12] for exact

definitions of global asymptotic stability of sets). For the

remainder of the paper, we will define χ := (x, e, s) ∈ R
nχ .

Remark 1 The sampled-data system as considered in [17],

which lumped the sensor-controller and controller-actuator

delays into one delay, was modeled as an impulsive delay-

differential equation and focused on linear dynamics with

system matrix A, input matrix B and state feedback con-

trollers of the form u = −Kxp. This model can also be

expressed in this hybrid framework by omitting eu and xc

and taking y = xp = x, f(x, e) = (A−BK)x−BKe and

g(x, e) = (−A+BK)x+BKe.

III. STABILITY ANALYSIS

In this section, we will show how the set A of the hybrid

NCS model ΣNCS can be shown to be GAS by exploiting

SOS techniques. We will first state some fundamental hybrid

system stability results relevant to our purposes and then

present the corresponding SOS theorems, which will be

exploited to set up SOS stability conditions for the presented

NCS model.

A. Stability of Hybrid Systems

First we will use the following definition to specify a

Lyapunov function candidate V (ξ) : dom V → R, with

dom V ⊆ R
nξ , for a hybrid system as in (5). We will use

the concept of a sublevel set of V (ξ) on a subset Ξ of dom

V , which is a set of the form {ξ ∈ Ξ | V (ξ) ≤ c} for some

c ∈ R.

Definition 1 [12] Consider a hybrid system Σ =
(C,D, F,G) and a compact set A ⊆ R

nξ . The function

V : dom V → R is a Lyapunov function candidate for

(H,A) if

(i.) V is continuous and nonnegative on (C ∪D)\A ⊂
domV ,

(ii.) V is continuously differentiable on an open set O
satisfying C\A ⊂ O ⊂ dom V ,

(iii.)

lim
x→A,x∈dom V ∩(C∪D)

V (x) = 0.

(iv.) the sublevel sets of V on dom V ∩ (C ∪D) are com-

pact

To prove GAS of the set A, we will make use of the

following theorem.

Theorem 1 Consider a hybrid system Σ = (C,F,D,G) and

a compact set A ⊂ R
nξ satisfying G(D ∩ A) ⊂ A. If every

solution of Σ exists for all times t ∈ [0,∞) and there exists

a Lyapunov function candidate V for (Σ,A) that satisfies

Definition 1 and

〈∇V (ξ), F (ξ)〉 < 0 for all ξ ∈ C\A (11)

V (G(ξ))− V (ξ) ≤ 0 for all ξ ∈ D\A, (12)

then the set A is GAS.

B. Stability using SOS techniques

Constructing suitable Lyapunov functions to prove stabil-

ity is known to be a hard problem, certainly in the nonlin-

ear and hybrid context. Here, we provide a computational

approach to this problem based on polynomial Lyapunov

functions and sum of squares techniques (SOS) [4], [15],

[22]–[24]. The main idea is that a polynomial p(x) that can

be written as a sum of squares, i.e. there exist polynomials

p1(x), p2(x), ..., pm(x) such that p(x) =
∑m

i=1 p
2
i (x) for all

x, is clearly nonnegative for all x. As such, inequalities,

as in (11) and (12), can be guaranteed if their left-hand

sides can be expressed as sums of squares (where S-

procedure like relaxations can be used to incorporate the

regional information ξ ∈ C\A in (11) and ξ ∈ D\A in (12)).

The appeal of SOS is that the solution can be computed

using convex semidefinite programming techniques. Indeed

p(x) =
∑m

i=1 p
2
i (x) can be checked by finding a positive

semidefinite matrix Q, and a vector of monomials Z(x) such

that p(x) = Z⊤(x)QZ(x), see e.g. [24].

In the context of stability of hybrid systems (5), when

F and G are piecewise polynomial functions (which in the

case of the NCS models presented earlier, is true when

fc, gc, fp, gp are piecewise polynomial) on their domains

C and D, the Lyapunov stability conditions in Theorem 1

can be transformed into a set of polynomial inequalities. To

formalize this idea, we provide the following two definitions,

where we use the notation R[x1, ..., xn] to denote the set of

polynomials in n variables x1, ..., xn with real coefficients.

Definition 2 A set D is called a basic semialgebraic set if

it can be described as

D = { x ∈ R
n | ei(x) ≥ 0, i = 1, ...,Me and

fj(x) = 0, j = 1, ...,Mf}

for certain polynomials ei(x) ∈ R[x1, ..., xn], i = 1, ...,Me

and fj(x) ∈ R[x1, ..., xn], j = 1, ...,Mf .
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Definition 3 A function p : Ω → R with Ω ⊆ R
n is called

piecewise polynomial if there are M basic semialgebraic sets

Ω1, ...,ΩM such that

(i) Ω =
M⋃

i=1

Ωi

(ii) ∀x ∈ R
n there exists an i ∈ {1, ...,M}

such that p(x) = pi(x) when x ∈ Ωi

To apply SOS techniques to the hybrid model (5),

F : C → R
nξ and G : D → R

nξ need to be piecewise poly-

nomial as in Definition 3. The sets C and D can then

be expressed as C = ∪I
i=1Ci and D = ∪M

m=1Dm with

Ci, i = 1, ..., I and Dm,m = 1, ...,M basic semialgebraic

sets, meaning that

Ci = {ξ ∈ R
nξ | ci,j(ξ) ≥ 0, for j = 1, ..,mi

C ,

c̄i,l(ξ) = 0, for l = 1, .., ni
C},

(13)

Dm = {ξ ∈ R
nξ | dm,j(ξ) ≥ 0, for j = 1, ..,mm

D ,

d̄m,l(ξ) = 0, for l = 1, .., nm
D}

(14)

where ci,j(ξ), c̄i,l(ξ), dm,j(ξ) and d̄m,l(ξ) ∈ R[ξ] are poly-

nomials. Hence, the hybrid system (5) can now be written

in the form

ξ̇ = Fi(ξ), ξ ∈ Ci, i = 1, ..., I (15a)

ξ+ = Gm(ξ), ξ ∈ Dm, m = 1, ...,M. (15b)

We will use the above notation to expand Theorem 1 in

the spirit of [23] by applying a technique similar to the S-

procedure, called the positivstellensatz [15], [24], in order

to encode the information that the inequalities (11) and (12)

only have to be satisfied on the sets C\A and D\A.

Theorem 2 Given a hybrid system Σ = (C,F,D,G) as in
(15) with the sets C = ∪iC and D = ∪mD where Ci is of
the form (13) and Dm is of the form (14) and Fi and Gi

polynomial functions for all i = 1, ..., I and m = 1, ...,M .
Furthermore, consider a compact set A ⊂ R

nξ satisfying
G(D ∩ A) ⊂ A. If every solution of Σ exists for all times
t ∈ [0,∞) and there exist (i.) a function V (ξ) for (Σ,A) that
satisfies Definition 1, (ii.) polynomials r̄i,l(ξ) and s̄m,l(ξ) ∈
R[ξ] and (iii.) SOS polynomials ri,j(ξ) and sm,j(ξ) ∈ R[ξ]
such that

〈∇V (ξ), Fi(ξ)〉+

mi
C∑

j=1

ri,j(ξ)ci,j(ξ)+

+

ni
C∑

l=1

r̄i,l(ξ)c̄i,l(ξ) < 0 ∀ ξ 6∈ A, i = 1, ..., I, (16)

V (Gm(ξ))− V (ξ) +

mm
D∑

j=1

sm,j(ξ)dm,j(ξ)+

+

nm
D∑

l=1

s̄m,l(ξ)d̄m,l(ξ) ≤ 0 ∀ ξ 6∈ A, m = 1, ...M, (17)

then the set A is GAS.

Proof See [1]. �

Remark 2 The SOS relaxation technique as in Theorem

2 can also be applied to encode that the function V (ξ)
only has to be nonnegative on (C ∪D)\A into polynomial

inequalities (as required in Definition 1) in a similar way.

SOS conditions only guarantee non-negativity of poly-

nomials (i.e. non-strict inequalities) but, of course, proving

asymptotic stability requires the Lyapunov derivative (16)

being negative definite (satisfying a strict inequality). Thus,

we need a way to verify that a given polynomial function

is negative or positive definite by checking SOS (positive

semidefinite) conditions. We will use the following proposi-

tion from [22] to check for positive definiteness of a given

polynomial.

Proposition 1 Given a polynomial p(ξ) ∈ R[ξ] of degree 2d,

let W (ξ) =
∑nξ

i=1

∑d

j=1 ǫi,jξ
2j
i be such that

d∑

j=1

ǫi,j > γ for all i = 1, ..., n (18)

with γ a positive number, and ǫi,j ≥ 0 for all i and j. Then

the condition

p(ξ)−W (ξ) ≥ 0 (p(ξ)−W (ξ) is SOS) (19)

guarantees the positive definiteness of p(ξ), i.e. p(ξ) > 0 for

all ξ 6= 0.

Proposition 1 and Theorem 2 form the basis to build the

SOS programs that can prove stability of our NCS model (5)

with (6)-(10).

C. Stability of Hybrid NCS models via SOS techniques

In this section we will specify how to set up and verify

GAS of the set A = {ξ ∈ R
nξ | χ = 0} of the hybrid NCS

models using SOS techniques. The essential steps are the

formulation of the hybrid model (5) with F : C → R
nξ and

G : D → R
nξ being piecewise polynomial as in Definition

3, and applying Theorem 2 and Proposition 1 to derive a

suitable SOS program.

Given the definitions of C and D for ΣNCS , it is necessary

to partition C and D by the discrete state ℓ ∈ {0, 1} in the

following way

C0 = { ξ ∈ R
nξ | ℓ = 0, τ ≥ 0, hmax − τ ≥ 0}, (20a)

C1 = { ξ ∈ R
nξ | ℓ = 1, τ ≥ 0, τmax − τ ≥ 0}, (20b)

with corresponding polynomial flow map

F0(ξ) = F1(ξ) = F (χ, τ, ℓ) =

(f(x, e), g(x, e), 0, 1, 0) (21)

and

D0 = { ξ ∈ R
nξ | ℓ = 0, τ − hmin ≥ 0,

hmax − τ ≥ 0}, (22a)

D1 = { ξ ∈ R
nξ | ℓ = 1, τ − τmin ≥ 0,

τmax − τ ≥ 0}, (22b)
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with corresponding polynomial jump map

G0(ξ) = G0(χ, τ, ℓ) = (x, e, e, 0, 1), (23a)

G1(ξ) = G1(χ, τ, ℓ) = (x, s− e, 0, τ, 0). (23b)

Note that C = C0∪C1, with Ci, i = 0, 1 basic semialgebraic

sets, satisfying (13) and D = D0 ∪D1, with Dm, m = 0, 1
semialgebraic sets, satisfying (14). In addition, the mappings

G0(ξ), G1(ξ) and F0(ξ) = F1(ξ) = F (ξ) are polynomial

functions, provided that f(x, e) and g(x, e) are. This shows

that F : C → R
nξ and G : D → R

nξ are piecewise

polynomial, under the standing assumption that f(x, e) and

g(x, e) are polynomial. Using the above expressions for

Ci, i = 0, 1 and Dm,m = 0, 1, the polynomials ci,j and

dm,j are defined as shown in Table I.

ci,j(ξ) dm,j(ξ)
c0,1 = τ d0,1 = τ − hmin

c0,2 = hmax − τ d0,2 = hmax − τ
c1,1 = τ d1,1 = τ − τmin

c1,2 = τmax − τ d1,2 = τmax − τ

TABLE I: SOS relaxations for NCS

We did not include the equality constraints (e.g. ℓ = 0 for

C0 or ℓ = 1 for C1) as we will encode them through the

use of multiple Lyapunov functions explicitly depending on

ℓ. The Lyapunov function candidate we propose to use is of

the form1

V (ξ) = Vℓ(χ, τ) = ϕℓ(τ)W̃ℓ(χ). (24)

We specify that the function ϕℓ(τ) is a polynomial with

odd degree and W̃ℓ(χ) is a polynomial with an even degree.

This choice of Lyapunov function is inspired by [2], [13].

Combining Proposition 1 and Theorem 2 leads to the polyno-

mial constraints as shown in Table II, where the inequalities

will be implemented through SOS conditions. The notation

Constraint Set

1
∑d

j=1
ǫℓ,i,j ≥ γ, ǫℓ,i,j ≥ 0

2 Vℓ(χ, τ)−
∑mC

j=1
qℓ,j(χ, τ)cℓ,j(τ) ≥ 0

3 −〈∇Vℓ(χ, τ), F (ξ)〉 −Wℓ(χ)−
∑

2

j=1
rℓ,j(χ, τ)cℓ,j(τ) ≥ 0

4a V0(χ, τ)− V1(Ḡ0(χ, τ))−
∑

2

j=1
s0,j(χ, τ)d0,j(τ) ≥ 0

4b V1(χ, τ)− V0(Ḡ1(χ, τ))−
∑

2

j=1
s1,j(χ, τ)d1,j(τ) ≥ 0

5 qℓ,j(χ, τ) ≥ 0, rℓ,j(χ, τ) ≥ 0, sℓ,j(χ, τ) ≥ 0

TABLE II: SOS program for a NCS

Ḡi(χ, τ), i = 0, 1 denotes the jump map Gi(ξ), i = 0, 1
restricted to the elements corresponding to χ and τ , i.e.

Ḡ0(χ, τ) = (x, e, e, 0) and Ḡ1(χ, τ) = (x, s − e, 0, τ). The

constraints must hold for all ℓ ∈ {0, 1} and i ∈ {1, 2, .., nχ}.

The function Wℓ(χ), ℓ = 0, 1 is defined as

Wℓ(χ) =

nχ∑

i=1

d∑

j=1

ǫℓ,i,jχ
2j
i (25)

1Note that the multiple Lyapunov function V (ξ) = Vℓ(χ, τ)
can be written as one single polynomial Lyapunov function
V (ξ) = ℓV1(χ, τ) + (1− ℓ)V0(χ, τ).

as in Proposition 1. This function only needs to depend on

χ = (x, e, s) to guarantee (16) of Theorem 2 because A =
{ξ ∈ R

nξ | χ = 0}. Note that Constraint 3 is derived from

combining (19) and (16).

Feasibility of this SOS setup proves stability of a NCS

with varying delays and varying sampling intervals that

satisfy Assumption 1.

IV. COMPARATIVE EXAMPLES

We will illustrate our SOS approach on two different NCS

examples.

A. Example 1 - Sampled Data

A ‘classic’ and well studied system (see [16] and the

reference therein), is given by ẋp(t) = u(t), u(tk) =
−xp(tk). For constant sampling interval and no delays, the

system can be guaranteed to be stable for sampling times

up to 2 seconds. In [16], stability of the system for variable

sampling intervals is guaranteed for sampling intervals hk ∈
[0 1.99], k ∈ N in a delay-free situation, which corresponds

to hmin = 0 and a hmax of 1.99. This does not include

much conservatism, as can be concluded from the constant

sampling interval result. The results obtained in [16], when

delays are present, are given in Figure 1.

Two SOS programs (SOSPs) are constructed using the

setup in Table II. Both programs use a quadratic W̃ℓ(x, e, s)
function, however, the first program uses a linear function

ϕ(τ) and the second program uses a third order function

for ϕ(τ). Already with ϕ(τ) being a polynomial of third

order, the results of [16] are almost replicated, as shown in

Figure 1, whereas taking ϕ(τ) to be linear results in more

conservative results. The flexibility of our SOS approach

allows to gradually increase the order of ϕ(τ) and reduce

conservatism in the results, as Fig. 1 shows.
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[16], example 2

Fig. 1: Tradeoff curves for sampled data NCS.

B. Example 2 - Polynomial Sampled-Data

In this example we will show that our method can find

Lyapunov functions for a plant with polynomial dynamics.

The system we consider is given by ẋp(t) = −x3
p(t) +

x2
p(t)u(t), which is stabilized by a stabilizing state feedback

u(t) = −xp(t) when a network is not present.

The constraints from Table II are implemented in a SOS

program. We specify the order of W̃ℓ(x, e, s) to be six and

the function ϕ(τ) to be linear, which results in a seventh

order V (ξ). Tradeoff curves are calculated and shown in

Figure 2, showing that indeed, we can analyze a NCS with

a polynomial plant and controller in a systematic manner.
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Fig. 2: Tradeoff curves for system with polynomial dynamics.

V. CONCLUSIONS

In this paper we have presented a sum of squares (SOS)

approach for the stability analysis of NCSs that display

varying delays and varying sampling intervals. The NCS

was modeled as a hybrid system which allowed for general

continuous-time polynomial plant and controller dynamics.

In order to use SOS techniques, the flow and jump map

of the hybrid system were transformed into piecewise poly-

nomial functions. This transformation was explicitly shown

for the cases consisting of a sampled-data system without

communication constraints. As expected, increasing of the

order of the polynomial Lyapunov function leads to improved

bounds on the delays and transmission intervals (at the cost

of more computational complexity). Next to a reduction in

conservatism, our method offers various other advantages

with respect to existing approaches, such as dealing with

non-zero lower bounds on varying delays and transmission

intervals, dealing with nonlinear (polynomial) plants and

controllers, not requiring an overapproximation of the NCS

(as needed in the discrete-time approach) and finally, the

SOS-based approach offers an automated method to tackle

the stability problem for NCS including varying delays

and transmission intervals. Interestingly, the consideration

of communication constraints and network protocols is also

possible in the presented framework using the general NCS

models in [13], see the extended version [1] of this paper for

details. Actually it is shown in [1], for the NCS benchmark

example of the batch reactor, that this SOS-based approach

provides improved bounds for the delays and transmission

intervals compared to the recent results in [13].
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