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Abstract— This article proposes a novel approach to assess
stability of linear systems with delayed and sampled-data
inputs. The paper considers both asynchronous sampling and
input delay. the proposed results are based on an extension
of a recent research on stability of sampled-data systems to
the case where a delay is introduced in the control loop. The
proposed method provides easy tractable sufficient conditions
for asymptotic stability of sampled-data systems under asyn-
chronous sampling and transmission delays. The period and
delay-dependent conditions are expressed using computable
linear matrix inequalities. Several examples show the efficiency
of the stability criteria.

I. INTRODUCTION

In the last decades, a large attention has been taken to
Networked Control Systems (NCS) (see [7], or [22]). Such
systems are controlled systems containing several distributed
plants which are connected through a communication net-
work. In such applications, one has to check the robustness
of a control law with respect to the additional dynamics
introduced by the communication networks. Among these
dynamics, this article focuses on the influence of transmis-
sion delay and asynchronous samplings. The transmission
of a data packet through a network can not be achieved
instantaneously. Transmission delays are unavoidably intro-
duced. Those delays may lead to instability [18]. It is thus
an important issue to develop robust stability criteria with
respect to transmission delays and asynchronous samplings.

Sampled-data systems have extensively been studied in the
literature [1], [3], [5], [23], [24] and the references therein.
It is now reasonable to design controllers which guarantee
the robustness of the solutions of the closed-loop system
under periodic samplings. However the case of asynchronous
samplings still leads to several open problems such that the
guarantee of stability whatever the sampling period lying in
an interval. Recently, several articles drive the problem of
time-varying periods based on a discrete-time approach, [8],
[16], [21]. Note that the discrete-time approaches do not fit
with the case of uncertain systems or systems with time-
varying parameters. Recent papers considered the modelling
of continuous-time systems with sampled-data control in
the form of continuous-time systems with delayed control
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input. In [3], a Lyapunov-Krasovskii approach is introduced.
Improvements are provided in [5], [13], using the small gain
theorem and in [14] based on the analysis of impulsive
systems. These approaches are very relevant because they
deal with time-varying sampling periods and with uncertain
systems (see [3] and [14]). Nevertheless, these sufficient
conditions are still conservative. This means that the condi-
tions obtained by continuous-time approaches are not able to
guarantee asymptotic stability whereas the system is stable.
Recently several authors [2], [19] refine those approaches
and obtain tighter conditions.

When transmission delays are introduced in the control
loop, the problem becomes more complex. It is indeed well
known that delays require a more accurate analysis since the
time-delay systems are of infinite dimension [6], [18]. Sev-
eral articles have been provided to cope with stability of NCS
under sampling and transmission delays. In [3], [11], [15],
stability conditions of systems under asynchronous sampling
and transmission delays are presented. However those con-
ditions are still conservative and require improvements. In
the present article, we provide a novel method to assess
asymptotic stability of such systems. The conditions are
presented as an extension of [20] to the case of time-varying
transmission delays. This problem of NCS is hybrid since we
consider a continuous time model of the plant and a discrete-
time communication. Thus an important improvement ad-
dressed inthis article consists in employing the discrete-time
Lyapunov theorem to continuous-time modelling of sampled-
data systems with delays. The main contribution of this paper
is to consider separately the two types of delays.

This article is organized as follows. The next section
formulates the problem. Section III exposes the novel sta-
bility criteria based on the discrete-time Lyapunov theorem.
Then,in Sections IV and V, asymptotic stability criteria
sampled-data systems are exposed to cope respectively with
the cases of constant and time-varying input delays. Some
examples are provided in Section VI which shows the
efficiency of the method.

Notations. The sets R+, Rn×n and Sn denote respectively
the set of positive scalar, the set of n×n matrices and the set
of symmetric matrices of Rn×n. The notation |·| refers to the
Euclidian norm. For any function f defined over an interval
of the form [a, b] where a < b are saclars, the notation ‖f‖
refers to sups∈[a,b] |f(s)|. The superscript ’T ’ stands for the
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Fig. 1. Control loop of Networked control systems under transmission and
sampling delays

matrix transposition. The notation P > 0 for P ∈ Sn means
that P is positive definite. The symbols I and 0 represent the
identity and the zero matrices of appropriate dimensions.

II. PROBLEM FORMULATION

A. System definition

Consider the linear system with a sampled and delayed
input as shown in Figure 1:

ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rn and u ∈ Rm represent the state variable
and the input vector. The matrices A and B are constant
and of appropriate dimension. It is assumed that the network
induces a time-varying transmission delay h and a sampling
of the transmitted signal. The control law is a piecewise-
constant static state-feedback of the form:

u(t) = Kx(sk), sk + h(sk) ≤ t < sk+1 + h(sk+1),

where the gain K in Rn×m is given and where 0 = s0 <
s1 < ... < sk < ... represent the sampling instants from the
sensors. The sequence of {sk}k≥0 is strictly increasing and
goes to infinity as k increases. The transmission delay h(t)
is assumed to be constant or time-varying and such that

∀t, h(t) ∈ [h1 h2], −1 < ε1 ≤ ḣ(t) ≤ ε2 < 1, (2)

where 0 ≤ h1 < h2 and ε1 < ε2. In order to simplify the
notation, hk = h(sk) is introduced. Denote tk = sk + hk.
These instants tk represent the instants where the control
input is updated. The condition ḣ > −1 ensures that the
sequence of tk’s is strictly increasing. The closed loop system
is thus rewritten as

ẋ(t) = Ax(t) +Adx(tk − hk), tk ≤ t < tk+1, (3)

where Ad = BK. Assume that there exists two positive
scalars T1 < T2 such that the difference between two
successive sampling instants Tk = sk+1 − sk satisfies

∀k ≥ 0, 0 ≤ T1 ≤ Tk ≤ T2. (4)

Then the length of the sampling interval in the actuator, T̄k =
tk+1 − tk, satisfies

T̄k = tk+1− tk = sk+1−sk+hk+1−hk = Tk+hk+1−hk.

This show the influence of a time-varying delay in the
synchrony of the sampling at the actuator. This means that
even if the sampling at the sensor is periodic, the sampling
at the actuator becomes asynchronous. The chronological
order of the control values is ensured by the positivity of
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Fig. 2. Examples of a delay generated by a transmission delay hk bounded
by h1 and h2 and an asynchronous sampling of periods Tk

T̄k. Finally the following bounds of the sampling period of
the actuator is bounded by:

∀k ≥ 0 ≤ T̄1 ≤ T̄k ≤ T̄2, (5)

where T̄1 = T1 − (h2 − h1) and T̄2 = T2 + (h2 − h1). Note
that the sampling period at the sensor and at the actuators are
equal if the transmission delay is constant. In other words,
T̄1 = T1 and T̄2 = T2.

Several authors investigated in guaranteeing stability of
such systems. In [3], a continuous-time approach to model
sampled-data systems was developed. It allows assimilating
sampling effects as the ones of a particular delay. We
will further consider (3) as a linear system with uncertain
and bounded delay δ(t) = t − tk + hk. An example of
such delays is presented in Figure 2. In [3], [12] or [11],
the authors propose an aggregated delay formulation. They
develop stability criteria which take into account the delay
δ. However they did not consider the different natures of
the transmission and the sampling delay. More especially the
additional characteristic of sampled delay which is δ̇ = 1 has
not been included and thus leads to conservative conditions.

The discrete-time modelling of such systems is obtained
by integrating the differential equation (3) over the interval
[tk, tk + τ ], for any τ in [0, T̄k],

x(tk + τ) = Ã(τ)x(tk) + Ãd(τ)x(tk − hk),

Ã(τ) = eAτ , Ãd(τ) =
∫ τ
0
eA(τ−θ)dθBK.

(6)

This equality leads naturally to the introduction of a novel
notation. Define, for all integer k, the function χk : [0, Tk]×
[−hk, 0] → Rn such that for all τ in [0, Tk] and all θ in
[−hk, 0], χk(τ, θ) = x(tk + τ + θ). The set K represents
the set of functions defined by χk as the set of continuous
functions from I × J to Rn, where I ⊂ [0, T̄ ] and J ⊂
[−h2, 0].

Taking τ = tk+1 − tk in (6), a recurrence equation is
obtained of the form x(tk+1) = Ã(Tk)x(tk)+Ãd(Tk)x(tk−
hk). In the particular situation of a delay hk equal to
tk−tk−i where i is an integer, the model can be rewritten as
x(tk+1) = Ã(Tk)x(tk) + Ãd(Tk)x(tk−i). In this situation,
several stability conditions can be seen in the literature (see
for instance [4]) based on the increment of a Lyapunov
function. However, in practice there is no guarantee that the
instant tk − hk corresponds exactly to a previous sampling
instant. Thus there is a need to introduce novel stability
conditions to cope with this type of discrete-time systems.
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In this paper, the aggregated delay δ representing the effect
of the transmission and the sampling delays is split into two
parts. In this paper, a novel method to assess stability of
systems subject to this type of delay is proposed. The main
idea is to consider separately the two types delays. To do
so, the stability conditions are based on the discrete-time
Lyapunov Theorem and leads to less conservative necessary
conditions.

III. MAIN RESULT

This section is motivated by the difference between the
discrete and continuous-time Lyapunov Theorems. As the
problem of sampled-data systems is at the boundary of the
discrete and the continuous-time theories, it is important to
put in clear the difference between them. More especially,
the main idea of this section consists in developing a novel
stability criterion for systems, taken in a continuous-time
model, using the discrete-time Lyapunov Theorem.

Theorem 1: Let V : K → R+ be a functional for which
there exist real numbers 0 < µ1 < µ2 and p > 0 such that

∀χk ∈ K, µ1|χk(0, ·)|p ≤ V (χk(0, ·)) ≤ µ2|χk(0, ·)|p.
(7)

The two following statements are equivalent.
(i) The increment of the functional V is strictly nega-

tive for all k ∈ N and all T̄k ∈ [T̄1, T̄2]

∆V (k) = V (χk(T̄k, ·))− V (χk(0, ·)) < 0;

(ii) There exists a continuous functional V : R×K→
R, which satisfies for all k ∈ N, and all T̄k ∈
[T̄1, T̄2]

V(Tk, χk(·, ·)) = V(0, χk(·, ·)), (8)

and such that, for all k > 0 and for all τ in [0 T̄k],
the following inequality holds

Ẇ(τ, χk) =
d

dτ
{[V (χk(τ, ·) + V(τ, χk(·, ·))]} ,

(9)
Moreover, if one of these two statements is satisfied, the
solutions of the system (3) are asymptotically stable.

Proof: Consider a positive integer k, T̄k satisfying (5)
and τ ∈ [0, T̄k]. Assume (ii) is satisfied. Integrating Ẇ over
the interval [0, T̄k[ and assuming that (8) holds, this directly
implies ∆V (k) < 0 and that (i) holds.

Assume now that (i) is satisfied. Inspired by Lemma 2
in [17], consider the functional V(τ, χk) = −V (χk(τ, ·) +
τ/T̄k∆V (k). Indeed, V is a functional since it is expressed
with respect to ∆V (k) which depends on the function χk. By
simple computations, it is easy to obtain that this functional
satisfies (8) and that Ẇ(τ, χk) = ∆V (k)/T̄k. Thus, Ẇ
has the same sign as ∆V (k). This proves the equivalence
between (i) and (ii).

From the discrete-time Lyapunov theorem, the equilibrium
of the discrete-time system is asymptotically stable.

The end of the proof consists in ensuring that the solutions
of the continuous-time system are not diverging within a
sampling period. Consider any τ ∈ [0, Tk]. From (7),

Fig. 3. Illustration of the proof of Theorem 1

it follows that V (χk(τ, ·) < λ2|χk(τ, ·|. From (6), the
following equality holds

x(tk + τ) = Ã(τ)χk(0, 0) + Ãd(τ)χk(0,−hk),

where Ã and Ãd are given in (6). Since those matrix
functions are considered on τ ∈ [0, T̄2], is continuous
over this interval and are independent of the indice k, it
is clear that there exist a constant parameter λ∗ such that
|χk(τ, 0)| ≤ λ∗‖χk‖. Since ‖χk‖ is converging to zero as
tk tends to infinity, it is clear that x also converges to zero
as tk tends to infinity.

A graphical illustration of Theorem 1 is shown in Figure
3. The main idea remains in showing the equivalence be-
tween the conditions on the decreasing increment ∆V (k) =
V (χk(Tk, ·)) − V (χk(0, ·)) < 0 and the existence of a
continuous functionalW which coincides with the Lyapunov
function V at the sampling instants and which is strictly de-
creasing within all sampling intervals. The main contribution
of Theorem 1 is that the introduction of the functional V
allows the Lyapunov-Krasovskii functional V to be locally
increasing.

IV. CASE OF CONSTANT INPUT DELAY

In this section, a study on asymptotic stability of the
solutions of sampled-data systems with constant input delay
is provided. The objective is to design a class of functionals
which satisfy the conditions proposed in Theorem 1.

Theorem 2: For given delay h > 0 and two positive scalar
T1 < T2, assume that there exist Q > 0, R1 > 0 and R2 >
0 ∈ Sn, P > 0, U > 0 and S1 ∈ S2n and three matrices S2

and X ∈ R2n×2n, Y ∈ R5n×2n that satisfy for i = 1, 2

Π1(h) + Ti(N
T
2 XN2 + Π2) < 0, (10)[

Π1(h)− TiNT
2 XN2 TiY

TiY
T −TiU

]
< 0, (11)

where

Π1(h) = 2NT
1 PN0 −NT

12S1N12 − 2NT
2 S2N12

+MT
1 QM1 −MT

2 QM2 −MT
5 R1M5

+MT
0 (R1 + hR2)M0 −MT

12R2/hM12 − 2Y N12

Π2 = NT
0 (UN0 + 2S1N12 + 2ST2 N2),
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and

M0 =
[
A 0 0 Ad 0

]
,M1 =

[
I 0 0 0 0

]
,

M2 =
[

0 I 0 0 0
]
, M3 =

[
0 0 I 0 0

]
,

M4 =
[

0 0 0 I 0
]
, M5 =

[
0 0 0 0 I

]
N0 = [MT

0 M
T
5 ]T , N1 = [MT

1 M
T
2 ]T , N2 = [MT

3 M
T
4 ]T ,

M12 = M1 −M2, N12 = N1 −N2

Then the system (3) is asymptotically stable for any
asynchronous sampling lying in [T1, T2] and the delay h.

Proof: Consider the classical functional for time-delay
systems:

V (x) = yT (t)Py(t) +
∫ t
t−h x

T (s)Qx(s)ds

+
∫ t
t−h ẋ

T (s)(R1 + (h− τ + s)R2)ẋ(s)ds
(12)

where y(t) = [xT (t) xT (t − h)]T . Rewriting the previous
functional using the notation

V (χk) = χ̄Tk (τ)Pχ̄k(τ) +
∫ 0

−h χ
T
k (τ, s)Qχk(τ, s)ds

+
∫ 0

−h χ̇
T
k (τ, θ)(R1 + (h+ θ)R2)χ̇k(τ, θ)dθ

(13)
where χ̄k(τ) = [χTk (τ, 0) χTk (τ,−h)]T . The objective is
here to ensure that the variation of the of V between two
successive sampling instant is negative. This means that
∆V = V (χk(Tk, ·))−V (χk(0, ·)) is definite negative for all
positive integer k. For any integer k consider the additional
functional

V(τ, χk) = (Tk − τ)ζTk (τ)[S1ζk(τ) + 2S2χ̄k(0)]
+(Tk − τ)

∫ τ
0

˙̄χTk (s)U ˙̄χk(s)ds
+(Tk − τ)τ χ̄Tk (0)Xχ̄k(0),

(14)

where T̄k is in the interval [T̄1, T̄2] and ζk(τ) = χ̄k(τ) −
χ̄k(0). It is clear from the definition of V that the condition
(8) is satisfied. As suggested in the theorem, no additional
constraint is introduced on S1, S2, U and X and V is not
necessary positive definite within two sampling instants. This
corresponds to the improvement with respect to the previous
approaches exposed in [11], [15]. Note that the positivity of
U is not required but we will be introduced in the sequel.

The rest of the proof consists in ensuring Ẇ < 0 over
[0 T̄k[. The computation of the derivative of Ẇ leads to

Ẇ(τ, χk) = 2χ̄Tk (τ)P ˙̄χk(τ) + χ̇Tk (τ, 0)(R1 + hR2)χ̇k(τ, 0)
+χTk (τ, 0)Qχk(τ, 0)− χTk (τ,−h)Qχk(τ,−h)

−χ̇Tk (τ,−h)R1χ̇k(τ,−h)−
∫ 0

−h χ̇
T
k (τ, s)R2χ̇k(τ, s)ds

+(Tk − τ) ˙̄χTk (τ)[U ˙̄χk(τ) + 2S1ζk(τ) + 2S2χ̄k(0)]
−ζTk (τ)[S1ζk(τ) + 2S2χ̄k(0)]
−
∫ τ
0

˙̄χTk (s)U ˙̄χk(s)ds+ (Tk − 2τ)χ̄Tk (0)Xχ̄k(0).
(15)

Applying Jensen inequality to the first integral, we have that

−
∫ 0

−h χ̇
T
k (τ, s)R2χ̇k(τ, s)ds ≤
−(χk(τ, 0)− χk(τ,−h))T R2

h (χk(τ, 0)− χk(τ,−h))

Consider the augmented vector ξk(τ) =
[χ̄Tk (τ) χ̄Tk (0) χ̇Tk (τ,−h)]T and a matrix Y ∈ R5n×2∗n.
The following equality holds

2ξTk (τ)Y [χ̄k(τ)− χ̄k(0)] =

∫ τ

0

[
2ξTk (τ)Y ˙̄χk(s)

]
ds. (16)

Since U is assumed to be positive definite and thus non
singular, a classical bounding ensures that for all τ ∈ [0, Tk]
and for all s ∈ [0, τ ]

2ξTk (τ)Y ˙̄χk(s) ≤ ξTk (τ)Y U−1Y T ξk(τ) + ˙̄χTk (s)U ˙̄χk(s).

Integrating the previous inequality over [0, τ ], the following
inequality is obtained

−
∫ τ
0

˙̄χTk (s)U ˙̄χk(s)ds ≤ −2ξTk (τ)Y (χ̄k(τ)− χk(0))
+τξTk (τ)Y U−1Y T ξk(τ).

(17)
Noting that

χ̇k(τ, 0) = Aχk(τ, 0) +Adχk(0,−h) = M0ξk(τ),
χk(τ, 0) = M1ξk(τ), χk(τ,−h) = M2ξk(τ),
χk(τ, 0)− χk(τ,−h) = M12ξk(τ), χ̄k(τ) = N1ξk(τ),
χ̄k(0) = N2ξk(τ), ζk(τ) = χ̄k(τ)− χk(0) = N12ξk(τ)
˙̄χk(τ) = [(M0ξk(τ))T χ̇Tk (τ,−h)]T = N0ξ(τ)

and substituting (17) into (15), the following inequality is
obtained for all τ ∈ [0, Tk[

Ẇ(τ, χk) ≤ ξTk (τ)[Π1(h) + (Tk − τ)Π2

+(Tk − 2τ)NT
2 XN2 + τNU−1NT ]ξk(τ).

(18)
Based on a convexity argument on τ , the right hand-side
term is negative definite if and only if

Π1(h) + Tk(Π2 +NT
2 XN2) < 0,

and
Π1(h) + Tk(Y U−1Y T −NT

2 XN2) < 0.

Using the same convexity argument on Tk ∈ [T1, T2], the
LMI’s (10) and (11) are retrieved. By virtue of Theorem 1,
asymptotically stability of the system (3) is guaranteed.

Note that the conditions from Theorem 2 include robust
stability properties with respect to the input delay h. This
means that (10) and (11) require the system to be stable at
least for the transmission delay h and T1 = T2 = 0.

V. CASE OF TIME-VARYING INPUT DELAY

Consider that input delay h is now time-varying and
satisfies (2). In the sequel the notations ηk(τ) and η̇k(τ)
stands for the time-varying delay h(t) (= h(tk + τ)) and
its time-varying derivative ḣ(t) (= ḣ(tk + τ)). Since the
transmission is time-varying, the samplings at the actuator
and at the sensor are not the same. Then it the sequel,
the stability criteria focuses on the sampling at the actuator
denote by T̄k ∈ [T̄1, T̄2]. The following theorem is proposed:

Theorem 3: Consider a time-varying delay h which satis-
fies (2) and two positive scalar 0 ≤ T̄1 < T̄2, assume that
there exist Q > 0, R1 > 0 and R2 > 0 ∈ Sn, P > 0, U > 0
and S1 ∈ S2n and three matrices S2 and X ∈ R2n×2n, Y1
and Y2 ∈ R5n×2n that satisfy for i = 1, 2 and j = 1, 2[

Π3(hj) + T̄i(N
T
2 XN2 + Π2) (1− ε2)hjY2

(1− ε2)hjY
T
2 −(1− ε2)hjR2

]
< 0,

(19)
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 Π3(hi)− T̄iNT
2 XN2 T̄iY1 (1− ε2)hjY2

T̄iY
T
1 −T̄iU 0

(1− ε2)hjY
T
2 0 −(1− ε2)hjR2

 < 0,

(20)
where Π2 and the matrices Ni and Mi are given in Theorem
2 and

Π3(hj) = 2NT
1 PN0 −NT

12S1N12 − 2NT
2 S2N12

+MT
1 QM1 − (1− ε2)MT

2 QM2

+MT
0 (R1 + hjR2)M0 − 1/(1− ε1)MT

5 R1M5

−2Y1N12 − 2(1− ε2)Y2M12,

The system (3) is thus asymptotically stable for the sampling
period T and the time-varying input delay h.

Proof: Consider the same functional as defined in
Theorem 2 but with a time-varying delay ηk(τ) = h(tk+τ):

V (χk) = χ̄Tk (τ, 0)Pχ̄k(τ, 0)

+
∫ 0

−ηk(τ) χ
T
k (τ, s)Qχk(τ, s)ds

+
∫ 0

−ηk(τ) χ̇
T
k (τ, θ)(R1 + (ηk + θ)R2)χ̇k(τ, θ)dθ

(21)
where zk(τ) = [χTk (τ) χTk (τ,−ηk(τ))]T and the additional
functional V

V(τ, χk) = (T̄k − τ)ζ∗k
T (t)[S1ζ

∗
k(t) + 2S2zk(0)]

+(T̄k − τ)
∫ t
tk
żT (s)Uż(s)ds

+(T̄k − τ)τzTk (0)Xzk(0),

(22)

where ζ∗k(τ) = zk(τ) − zk(0), φk(τ) = [zTk (τ) zTk (0) (1 −
η̇k(τ))χ̇Tk (τ,−ηk(τ))]T . Following the proof of Theorem 2,
we prove that the functional V satisfies (8), is continuous
with respect to the time variable and W and V coincide at
all sampling instants. The computation of the derivative of
Ẇ leads to

Ẇ(τ, χk) = 2zTk (τ)P żk(τ) + χTk (τ, 0)Qχk(τ, 0)
+χ̇Tk (τ, 0)R1χ̇k(τ, 0) + ηk(τ)χ̇Tk (τ, 0)R2χ̇k(τ, 0)
−(1− η̇k(τ))χTk (τ,−ηk(τ))Qχk(τ,−ηk(τ))
−(1− η̇k(τ))[χ̇Tk (τ,−ηk(τ))R1χ̇k(τ,−ηk(τ))

+
∫ 0

−ηk(τ) χ̇
T
k (τ, s)R2χ̇k(τ, s)ds]

+(T̄k − τ)żk(τ)T [Użk(τ) + 2S1ζ
∗
k(τ) + 2S2zk(0)]

−ζ∗k
T (τ)[S1ζ

∗
k(τ) + 2S2zk(0)]−

∫ τ
0
żTk (s)Użk(s)ds

+(T̄k − 2τ)zTk (0)Xzk(0).
(23)

From the definition of the delay ηk(τ) given in (2), and
knowing that the matrices Q, R1 and R2 are positive definite,
we have −(1− η̇k(τ)) ≤ −(1− ε2) and

−(1− η̇k(τ))χ̇Tk (τ,−ηk(τ))R1χ̇k(τ,−ηk(τ))
≤ −1/(1− η̇k(τ))φTk (τ)MT

5 R1M5φk(τ)
≤ −1/(1− ε1)φTk (τ)MT

5 R1M5φk(τ)

For any matrix Y2 ∈ R5n×2n, the first integral of (23) is
bounded as follows

−
∫ 0

−ηk(τ) χ̇
T
k (τ, s)R2χ̇k(τ, s)ds ≤
−2Y2(χk(τ, 0)− χk(τ,−ηk(τ)))
+ηk(τ)φTk (τ)Y2R

−1
2 Y T2 φk(τ),

and for any matrix Y1 ∈ R5n×2n and for all τ ∈ [0, T̄k[, the
following inequality is obtained

−
∫ τ
0
żTk (s)Użk(s)ds ≤ −2φTk (τ)Y1(zk(τ)− zk(0))

+τφTk (τ)Y1U
−1Y T1 φk(τ),

(24)
Using the definition of the matrices Mi’s and Ni’s and using
the previous inequality into (23), the following inequality is
obtained for all τ ∈ [0, Tk[

Ẇ(τ, χk) ≤ φTk (τ)[Π1(ηk(τ)) + (T̄k − τ)Π2

+(T̄k − 2τ)NT
2 XN2 + τY1U

−1Y T1
+ηk(τ)Y2R

−1
2 Y T2 ]φk(τ).

Consider here that ηk and τ are independent variables.
Applying a convexity argument on τ and on ηk, the right
hand-side term is negative definite and applying the Schur
complement, the conditions (19) and (20) are obatined. By
virtue of Theorem 1, asymptotically stability of the system
(3) is guaranteed.

If the minimal bound of the transmission delay h1 is zero
and T1 ≤ h2, the lower bound of the sampling period at
the actuator is T̄1 = 0 from equation (5). Then the previous
theorem can be simplified into the following corollary.

Corollary 1: If h1 = 0, the conditions (19) and (20)
become

Π1(0) < 0, Π1(0) + T̄2(NT
2 XN2 + Π2) < 0,[

Π1(h2) (1− ε2)h2Y2
(1− ε2)h2Y

T
2 −(1− ε2)h2R2

]
< 0,

 Π1(h2)− T̄2NT
2 XN2 T̄2Y1 (1− ε2)h2Y2

T̄2Y T1 −T̄2U 0
(1− ε2)h2Y

T
2 0 −(1− ε2)h2R2

 < 0,

Remark 1: It is clear that discrete-time approaches pro-
posed for instance in [5] or in [10] leads to less conservative
stability conditions. However it is possible to extend those
stability criteria to the case of polytopic uncertainties. Since
all the stability conditions provided in this article are linear
with respect to the system matrices A and Ad, it is possible
to extend Theorems 2 and 3 to cop with parameter uncertain-
ties. This makes the proposed method relevant with respect
compared to discrete-time approaches.

VI. EXAMPLES

• Example 1 [3], [14]

ẋ(t) =
[

0 1
0 −0.1

]
x(t) +

[
0 0

−0.375 −1.15

]
x(sk).

• Example 2 [2]

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(sk)

The results are summarized in Table I for time-varying
sampling and constant delay and in Table II for time-varying
sampling and delay.

Consider the case of constant transmission delays indi-
cated obtained by solving Theorem 2 using T̄1 = T1 = 0. It
can be seen in Table I that it delivers less conservative results
than the existing ones based on a continuous time-approach.
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Ex.1 h2 10−3 0.2 0.4 0.6 0.8 1 1.075
[15] 1.111 0.714 0.469 0.269 0.069 - -
[12] 1.043 0.846 0.650 0.456 0.262 0.071 -
[11] 1.638 1.063 0.786 0.541 0.301 0.054 -

Th. 2 1.717 1.435 1.149 0.858 0.540 0.167 10−3

Ex.2 h2 10−3 0.5 1 2 3 4 4.472
[15] 1.278 0.878 - - - - -
[12] 1.867 1.380 1.042 0.608 0.314 0.090 10−3

[11] 1.970 1.368 0.868 0.212 0.038 - -
Th. 2 2.624 2.126 1.929 1.530 1.118 0.605 10−3

TABLE I
MAXIMAL SAMPLING PERIOD AT THE ACTUATOR T FOR SEVERAL

CONSTANT DELAY USING THEOREM 2 FOR EXAMPLES 1 AND 2.

Ex.1 h2 10−3 0.2 0.4 0.6 0.8 1 1.075
[15] 1.111 0.804 0.544 0.296 0.070 - -
[12] 1.042 0.843 0.643 0.443 0.243 0.043 -
[11] 1.638 1.063 0.786 0.541 0.301 0.054 -

Th. 31 1.670 1.209 0.994 0.760 0.479 0.095 -
Th. 32 1.658 1.084 0.718 0.203 - - -

Ex.2 h2 10−3 0.5 1 2 3 4 4.472
[15] 1.278 0.575 - - - - -
[12] 1.867 1.368 0.868 - - - -
[11] 1.970 1.368 0.868 0.443 0.212 0.038 -

Th. 31 2.407 1.770 1.488 1.010 0.179 - -
Th. 32 2.387 1.590 1.228 - - - -

TABLE II
MAXIMAL SAMPLING PERIOD AT THE ACTUATOR T̄ FOR SEVERAL

TIME-VARYING TRANSMISSION DELAYS USING THEOREM3 FOR

EXAMPLES 1 AND 2.

Concerning the time-varying transmission delay case, we
consider h1 = 10−4, T̄1 = 0, ε1 = −0.2 and the two case
ε2 = 0.5 and 0.8, respectively denoted by the superscripts
1 and 2 in Table II. They show the influence of the delay
variation ε2. The influence of ε1 is not presented here because
it is not as relevant as the one of ε2. First, we can see
that, for small value of ε2, here ε2 = 0.5, the result are
less conservative than existing once. However for larger
values of ε2, i.e. ε2 = 0.8, the maximum allowable sampling
period obtained by solving the Theorem 3 still delivers less
conservative results than the existing ones for small values of
h2. However Theorem 3 becomes more conservative when
h2 is larger. Note that in [9], stability conditions based on
Theorem 1 have been improved to avoid the dependence on
the derivative of the transmission delays, i.e. on the εi’s.

VII. CONCLUSION

An novel analysis of NCS under asynchronous sampling
and input delay is provided in this article. This approach
is based on the discrete-time Lyapunov Theorem applied to
the continuous-time model of the NCS. Tractable conditions
are derived to ensure asymptotic stability. The examples
show the efficiency of the method and the reduction of the
conservatism compared to other results from the literature.
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