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learning rate guarantying convergence stability. The proposed learning rule is the backpropagation algorithm under the condition
that the learning rate belongs to a specified range defining the stability domain. Satisfying such condition, unstable phenomena
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learning rate verifying the convergence stability criteria. Finally, the elaborated training algorithm is applied in several simulations.
The results confirm the effectiveness of the CSBP algorithm.
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1. Introduction

The last few decades have witnessed the use of artificial
neural networks (ANNs) in many real-world applications
and have offered an attractive paradigm for a broad range
of adaptive complex systems. In recent years, ANNs have
enjoyed a great deal of success and have proven useful in
wide variety pattern recognition feature-extraction tasks.
Examples include optical character recognition, speech
recognition, and adaptive control, to name a few. To keep the
pace with the huge demand in diversified application areas,
many different kinds of ANN architecture and learning types
have been proposed to meet varying needs as robustness and
stability.

The area of system identification has received significant
attention over the past decades and now it is a fairly mature
field with many powerful methods available at the disposal of
control engineers. Online system identification methods to
date are based on recursive methods, such as least squares, for
most systems that are expressed as linear in the parameters.

During the past few years, several authors [1–3] have
suggested neural networks for nonlinear dynamical black-
box modelling. The problem of designing a mathematical
model of a process using only observed data has attracted
much attention, both from an academic and an industrial

point of view. Neural models can be used either as simulators
or as models.

Recently, feedforward neural networks have been shown
to obtain successful results in system identification and
control [4]. Such neural networks are static input/output
mapping schemes that can approximate a continuous func-
tion to an arbitrary degree of accuracy. Results have also been
extended to recurrent neural networks [5, 6].

Recent results show that neural network technique seems
to be very effective to identify a broad category of complex
nonlinear systems when complete model information cannot
be obtained. The Lyapunov approach has been used directly
to obtain stable training algorithms for continuous-time
neural networks [7–9]. The stability of neural networks can
be found in [10, 11]. The stability of learning algorithms has
been discussed in [6, 12].

It is well known that conventional identification algo-
rithms are stable for ideal plants [13–15]. In the presence
of disturbances or unmodeled dynamics, these adaptive
procedures can go to instability easily. The lack of robustness
in parameters identification was demonstrated in [10] and
became a hot issue in 1980s. Several robust modification
techniques were proposed in [13, 14]. The weight-adjusting
algorithms of neural networks are a type of parameters
identification; the normal-gradient algorithm is stable when
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Figure 1: Feedforward neural model.

neural-network model can match the nonlinear plant exactly
[6]. Generally, some modifications to the normal-gradient
algorithm or backpropagation should be applied, such that
the learning process is stable. For example, in [12, 16], some
hard restrictions were added to the learning law, and in [11],
the dynamic backpropagation has been modified with NLq
stability constraints.

The paper is organized as follows. Section 2 describes
the neural identifier structure considered in this paper
and the usual backpropagation algorithm. In Section 3 and
through a stability analysis, a constrained adaptive stable
backpropagation algorithm (CSBP) is proposed to provide
stable adaptive updating process. Three simulation examples
give the effectiveness of the suggested algorithm in Section 4.

2. Preliminaries

The main concern of this section is to introduce the feed-
forward neural network, which is the adopted architecture,
as well as some concepts of backpropagation training algo-
rithm. Consider the following discrete-time input-output
nonlinear system:

y(k + 1) = F[y(k) · · · y(k − n + 1),u(k) · · ·u(k −m + 1)].
(1)

The neural model for the plant can be expressed as

ym(k + 1) = F̂(Y(k), θ), (2)

where Y(k) = (y(k), y(k − 1), . . . , y(k − n + 1),u(k),u(k −

1), . . . ,u(k − m + 1)), and θ = [W ,V]T is the weight
parameter vector for the neural model.

A typical multilayer feedforward neural network is
shown in Figure 1, where I j is the jth hidden neuron input,
O j is the jth hidden neuron output i, j, and k indicate
neurons, wi j is the weight between neuron i and neuron j,
while v j is the weight between neuron j and output neuron.
For all neurons, the nonlinear activation function is defined
as

f (x) =
1

1 + e−x
. (3)

The output ym(k) of the considered NN is

I j =
n+m+1∑

i=1

xiwi j , O j = f (I j), j = 1, . . . ,N ,

Ik =
N∑

j=1

O jv j , ym(k) = f (Ik), k = 1.

(4)

Training the neural model is to adjust the weight parameters
so that it emulates the nonlinear plant dynamics. Input-
output training is obtained from the operation history of the
plant.

Using the gradient descent, the weight connecting neu-
ron i to neuron j is updated as

wi j(k + 1) = wi j(k)− ε·
∂J(k)

∂wi j(k)
,

v j(k + 1) = v j(k)− ε·
∂J(k)

∂v j(k)
,

(5)

where J(k) = (1/2)[y(k + 1)− ym(k + 1)]2, and ε is the
learning rate. The partial derivatives are calculated with
respect to the vectors of weights W and V,

∂J(k)

∂v j(k)
= f ′(I j)·(y(k + 1)− ym(k + 1))O j ,

∂J(k)

∂wi j(k)
= f ′(I j)

[ L∑

j=1

f ′(I j)(y(k + 1)− ym(k + 1))v j

]
xi.

(6)

Backpropagation algorithm has become the most popular
one for training of the multilayer perceptron [1]. Generally,
some modifications to the normal-gradient algorithm or
backpropagation should be applied, such that the learning
process is stable. For example, in [12, 16], some hard
restrictions were added in the learning law, and in [11],
the dynamic backpropagation was modified with stability
constraints.

The research on modified algorithms of feedforward
neural networks is becoming a challenging field. These
researches involve the development of heuristic techniques,
which arise out of a study of the distinctive performance
of standard backpropagation algorithm. These heuristic
techniques include such ideas as varying the learning rate
[17], using momentum [18], and rescaling variables [19].

3. Stability Analysis and
CSBP Algorithm Formulation

In the literature, the Lyapunov synthesis [4, 5] consists
of the selection of a positive function candidate V which
leads to the computation of an adaptation law insuring its
decrescence, that is, V̇ ≤ 0 for continuous systems and
∆V(k) = V(k + 1) − V(k) ≤ 0 for discrete-time systems.
Under these assumptions, the function V is called Lyapunov
function and guarantees the stability of the system. Our
objective is the determination of a stabilizing adaptation law
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ensuring the stability of the identification scheme presented
in what follows and the boundness of the output signals. The
stability of the learning process in an identification approach
leads to a better modelling and a guaranteed reached perfor-
mance. The proposed learning rule is the backpropagation
algorithm adopting a constrained learning rate. Satisfying
such condition, unstable phenomena during the learning
process are avoided. This problem has been treated in the
literature of neural identification so this work is considered
as a solution for extended problems. The originality of this
work consists of the constraints themselves. In fact, a choice
of the learning rate with respect to the proposed constraints
ensures an efficient stable identification which is not the case
adopting an arbitrary learning rate especially when it does
not belong to the specified stability domain. In the proposed
one and through the original calculation results, the learning
rate is iterative and computed instantaneously with respect
to the elaborated constraints. The following assumptions are
made for system (1).

Assumption 1. The unknown nonlinear function F(·) is
continuous and differentiable.

Assumption 2. System output y(k) can be measured and its
initial values are assumed to be in a compact set Ω0.

Theorem 1. The stability in Lyapunov sense of the identifi-
cation scheme is guaranteed for a learning rate verifying the
following inequality:

0 ≤ ε ≤
2tr(Jθ·θ)

‖Jθ‖
2 , (7)

where Jθ = [∂J/∂W(k), ∂J/∂V(k)] denotes the gradient of J
with respect to θ.

Proof. Considering the Lyapunov function

VL(k) = tr
(
θ̃T(k)·θ̃(k)

)
, (8)

where tr(·) denotes the matrix trace operation, θ̃(k) = θ(k)−
θ∗, and θ∗ denotes the optimal value of the weight vector
parameters.

The computation of the ∆VL(k) expression leads to

∆VL(k) = VL(k + 1)−VL(k), (9)

where

VL(k + 1) = tr(W̃T(k + 1)W̃(k + 1)) + ṼT(k + 1)Ṽ(k + 1),

VL(k) = tr(W̃T(k)W̃(k)) + ṼT(k)Ṽ(k).

(10)

The adopted adaptation law is the gradient algorithm. We
have

θ̃(k + 1) = θ(k)− ε·Jθ − θ∗,

W̃(k + 1) =W(k)− ε
∂J

∂W(k)
−W∗,

Ṽ(k + 1) = V(k)− ε
∂J

∂V(k)
−V∗,

(11)
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Figure 2: Evolution of the system output and the neural model
output (ε ∈ stability domain).
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Figure 3: Evolution of the system output and the neural model
output (ε /∈ stability domain).

where the partial derivatives are expressed as

∂J

∂W(k)
=

∂J

∂ym(k + 1)

∂ym(k + 1)

∂W(k)
,

∂J

∂V(k)
=

∂J

∂ym(k + 1)

∂ym(k + 1)

∂V(k)
.

(12)

The partial derivatives are given through

[
∂J

∂Wi j(k)

]

=

[
ym(k + 1)(1− ym(k + 1))·e(k)·

N∑

j=1

V j1·O j·(1−O j)

]
xi,

[
∂J

∂V j(k)

]
=
[
ym(k + 1)(1− ym(k + 1))·e(k)·O j

]
.

(13)

Let A and B be defined as follows:

A = tr(W̃T(k + 1)W̃(k + 1))− tr(W̃T(k)W̃(k)),

B = ṼT(k + 1)Ṽ(k + 1)− ṼT(k)Ṽ(k).
(14)
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The ∆VL(k) expression is calculated as

∆V(k) = A + B

= tr

(
ε2

[
∂J

∂WT(k)

∂J

∂W(k)

]
− 2ε

∂J

∂W(k)
W̃(k)

)

+

(
ε2

[
∂J

∂VT(k)

∂J

∂V(k)

]
− 2ε

∂J

∂V(k)
Ṽ(k)

)

=

(
ε2
∑

i, j

[
∂J

∂Wi j(k)

]2

− 2ε tr

(
∂J

∂Wi j(k)
W̃T(k)

)

+

(
ε2
∑

j

[
∂J

∂V j(k)

]2

− 2ε
∂J

∂V(k)
ṼT(k)

))

= ε2

(∑

i, j

[
∂J

∂Wi j(k)

]2

+
∑

j

[
∂J

∂V j(k)

]2
)

− 2ε

(
∂J

∂V(k)
ṼT(k) + tr

(
∂J

∂W(k)
W̃T(k)

))

≤ ε2

(∑

i, j

[
∂J

∂Wi j(k)

]2

+
∑

j

[
∂J

∂V j(k)

]2
)

− 2ε

(
∂J

∂V(k)
VT(k) + tr

(
∂J

∂W(k)
WT(k)

))

≤ α·ε2 − 2·β·ε,

(15)

where

α =
∑

i, j

[
∂J

∂Wi j(k)

]2

+
∑

j

[
∂J

∂V j(k)

]2

= ‖Jθ‖
2,

β =
∂J

∂V(k)
VT(k) + tr

(
∂J

∂W(k)
WT(k)

)
= tr(Jθ·θ).

(16)

The stability condition ∆VL(k) ≤ 0 is satisfied only if

α·ε2 − 2·β·ε ≤ 0. (17)

Solving this ε, second-degree equation leads to the establish-
ment of the result presented in (7); ∆V(k) ≤ 0 if ε satisfies
the following condition:

0 ≤ ε ≤ εs, (18)

where εs = 2tr(Jθ·θ)/‖Jθ‖
2.

Using the expressions of Jθ and θ, we obtain

εs =
2
[
tr
(
H1·WT(k) + H2·VT(k)

)]

D +
∑

j([ym(k + 1)(1− ym(k + 1))·e(k)·O j])2 ,

(19)

where H1 denotes {[ym(k+1)(1− ym(k+1))·e(k)·
∑N

j=1 V( j,

1) · O j · (1 − O j)]xi}
i∈[1···n]
j∈[1···m], H2 denotes {[ym(k + 1)(1 −

ym(k + 1)) · e(k) ·O j]} j∈[1···m], and D denotes
∑

i, j([ym(k +

1)(1− ym(k + 1)) · e(k) ·
∑N

j=1 V( j, 1) ·O j · (1−O j)]xi)2.
The previous result is useful in the case of a backprop-

agation adaptation law adopting the same learning rate for
training in all the neural network architecture. An extension
is made in the next section. This extension consists in the fact
of considering two different constrained learning rates which
improve the efficiency of the first elaborated algorithm.

Theorem 2. Let εI = [εW , εV ]T be the learning rates for the

tuning parameters of the neural identifier θ = [W ,V]T and let
λ be defined as

λ =
[
λ1, λ2

]T
, where

λ1 =
∂ym(k)

∂W(k)
,

λ2 =
∂ym(k)

∂V(k)
.

(20)

Then asymptotic convergence is guaranteed if the learning rates
are chosen to satisfy

εW ≺
2(

λ1 max

)2 , εV ≺
2(

λ2 max

)2 , (21)

where

λ1 max =

∥∥∥∥
∂ym(k)

∂W(k)

∥∥∥∥
2

=

√√√√max

([
∂ym(k)

∂W(k)

]T
·

[
∂ym(k)

∂W(k)

])
,

λ2 max =

∥∥∥∥
∂ym(k)

∂V(k)

∥∥∥∥
2

=

√√√√max

([
∂ym(k)

∂V(k)

]T
·

[
∂ym(k)

∂V(k)

])
.

(22)

Lemma 1. If the learning rates are chosen as εW = εV = ε,
then one has the convergence condition

ε ≺
1(

λ1 max

)2 +
1(

λ2 max

)2 . (23)

Proof. Considering the Lyapunov function

VL(k) =
1

2
e2(k), (24)

where

e(k) = y(k)− ym(k). (25)

The computation of the ∆VL(k) expression leads to

∆VL(k) = VL(k + 1)−VL(k),

∆VL(k) =
1

2

(
e2(k + 1)− e2(k)

)

= ∆e(k)

[
e(k) +

1

2
∆e(k)

]
,

(26)

where ∆e(k) = [∂e(k)/∂θ(k)]T∆θ(k).
The expression of ∆W(k) is given by

∆θ(k) = θ(k + 1)− θ(k),

∆WI(k) = εI · e(k) ·
∂ym(k)

∂θ(k)
.

(27)
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Substituting the expression of ∆e(k) in ∆VL(k), we have

∆VL(k) =

[
∂e(k)

∂θ(k)

]T
εIe(k)

∂ym(k)

∂θ(k)

·

{
e(k) +

1

2

[
∂e(k)

∂θ(k)

]T
εIe(k)

∂ym(k)

∂θ(k)

}

= −

[
∂ym(k)

∂θ(k)

]T
εIe(k)

∂ym(k)

∂θ(k)

·

{
e(k)−

1

2

[
∂ym(k)

∂θ(k)

]T
εIe(k)

∂ym(k)

∂θ(k)

}

= −

[
∂ym(k)

∂θ(k)

]T
εIe

2(k)
∂ym(k)

∂θ(k)

·

{
1−

1

2

[
∂ym(k)

∂θ(k)

]T
εI
∂ym(k)

∂θ(k)

}

= −e2(k) ·

{
1

2

[
∂ym(k)

∂V(k)

]T
εV

[
∂ym(k)

∂V(k)

]

×

(
2−

[
∂ym(k)

∂V(k)

]T
εV

[
∂ym(k)

∂V(k)

])

+
1

2

[
∂ym(k)

∂W(k)

]T
εW

[
∂ym(k)

∂W(k)

]

×

(
2−

[
∂ym(k)

∂W(k)

]T
εW

[
∂ym(k)

∂W(k)

])}

= −e2(k) ·

{
1

2
εV

∥∥∥∥
[
∂ym(k)

∂V(k)

]∥∥∥∥
2

×

(
2− εV

∥∥∥∥
[
∂ym(k)

∂V(k)

]∥∥∥∥
2
)

+
1

2
εW

∥∥∥∥
[
∂ym(k)

∂W(k)

]∥∥∥∥
2

×

(
2− εW

∥∥∥∥
[
∂ym(k)

∂W(k)

]∥∥∥∥
2
)}

,

∆VL(k) ≤ 0,

(28)

so

2− εW

∥∥∥∥
∂ym(k)

∂W(k)

∥∥∥∥
2

≤ 0, 2− εV

∥∥∥∥
∂ym(k)

∂V(k)

∥∥∥∥
2

≤ 0. (29)

Finally, when we define the matrix norm ‖·‖2 by

‖ρ‖2 =

√
max

(
ρT · ρ

)
, (30)

the theorem results are established.
The stability condition ∆VL(k) ≤ 0 is satisfied only if

εW ≺
2(

λ1 max

)2 , εV ≺
2(

λ2 max

)2 , (31)
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Figure 4: Evolution of the system output and the neural model
output (ε ∈ stability domain).
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Figure 5: Evolution of the system output and the neural model
output (ε /∈ stability domain).

where

λ1 max =

∥∥∥∥
∂ym(k)

∂W(k)

∥∥∥∥
2

=

√√√√max

([
∂ym(k)

∂W(k)

]T
·

[
∂ym(k)

∂W(k)

])
,

λ2 max =

∥∥∥∥
∂ym(k)

∂V(k)

∥∥∥∥
2

=

√√√√max

([
∂ym(k)

∂V(k)

]T
·

[
∂ym(k)

∂V(k)

])
,

λ1 max =

∥∥∥∥
∂ym(k)

∂W(k)

∥∥∥∥
2

=

√√√√max

([
∂ym(k)

∂W(k)

]T
·

[
∂ym(k)

∂W(k)

])
,

λ2 max =

∥∥∥∥
∂ym(k)

∂V(k)

∥∥∥∥
2

=

√√√√max

([
∂ym(k)

∂V(k)

]T
·

[
∂ym(k)

∂V(k)

])
.

(32)

Remark 1. Through simulations, learning rates are chosen
belonging to the defined learning rates stability range to
prove the effectiveness of the proposed CSBP algorithm. The
learning rate which guarantees convergence corresponds to

εW =
2

φ +
(
λ1 max

)2 , εV =
2

φ +
(
λ2 max

)2 , (33)
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Figure 6: Evolution of the system output and the neural model
output (ε ∈ stability domain).

where φ is a small value guarantying the convergence stability
condition.

4. Simulation Results

In this section, two discrete time systems are considered to
demonstrate the effectiveness of the result discussed below.

4.1. First-Order System. The considered system is a famous
one in the literature of neural adaptive control and identi-
fication. The system is described by the following recurrent
equation [2]:

y(k + 1) =
y(k)

1 + y(k)2 + u(k)3. (34)

For the neural model, a three-layer NN was selected with
two inputs, three hidden and one output nodes. Sigmoidal
activation functions were employed in all the nodes.

The weights are initialized to small random values. The
learning rate is evaluated at each iteration through (21). It is
also recognized that the training performs very well when the
learning rate is small.

As input signal, a sinusoidal one is chosen in which the
expression is defined by

u(k) = 0.5 · cos

(
0.05kπ +

π

5

)
. (35)

The simulations are realized in the two cases during 120
iterations. Two learnning rate values are fixed in and out of
the learning rate range presented in (7).

Simulation results are given through Figures 2 and 3.
Figures 2 and 3 show that if the learning rate belongs

to the range defined in (7), the stability of the identi-
fication scheme is guaranteed. It is shown through this
simulation that the identification objectives are satisfied.
Out of this variation domain of the learning rate, the
identification is instable and the identification objectives are
unreachable.

4.2. Second-Order System. An example is used to illustrate
the effectiveness of the proposed constrained updating law.
Consider a nonlinear discrete time plant

y(k) = 50 tanh
[
φ(k − 1)

]
+ 0.5u(k − 1), (36)

where φ(k−1) = 2.102(((24+ y(k−1))/3)y(k−1)−8(u2(k−
1)/(1 + u2(k − 1)))y(k − 2)).

The process dynamic is interesting. In fact it has the
behaviour of a first-order lowpass filter for input signal
amplitude about 0.1, the behaviour of a linear second-order
system in the case of small amplitudes (0.1 < |u| < 0.5), and
the behaviour of a nonlinear second-order system in the case
of great input amplitudes (0.5 < |u| < 5) [20].

For the neural model, a three-layer NN was selected with
three inputs, three hidden and one output nodes. Sigmoidal
activation functions were employed in all the nodes.

The weights are initialized to small random values. The
learning rate parameter is computed instantaneously. As
input signal, a sinusoidal one is chosen which the expression
is defined by

u(k) = 0.5 · cos

(
0.005kπ +

π

3

)
. (37)

The simulations are realized in the two cases during 120
iterations. Two learning rates values are fixed in and out of
the learning rate range presented in (7).

Simulation results are given through Figures 4 and 5.
The simulation results, through Figures 4 and 5, show

that a learning rate arbitrarily chosen out of the predefined
stability domain leads to an unstable identification of
the considered system; however, a specified learning rate
belonging to the range verifying stability condition ensures
the tracking capability and the stability of the identification
scheme

Example 1 (identification of semiconductor manufactur-
ing process). This example illustrates the advantage and
effectiveness of our approach-on-line self-tuning property
(stability). We consider here the SISO simple first-order
linear process of the form [21]

y(k + 1) = φy(k) + α + βu(k) + N(k + 1), (38)

where α and β are process parameters, φ is the autoregressive
coefficient, and N denotes the noise term that follows an
ARMA process:

N(k) =
1− cz−1

1−wz−1
· r(k). (39)

In this simulation, r(k) is a uniform distribution and the
system parameters are chosen as

α = 2, β = 2, φ = 0.1, c = 0.7,
w = 1.0, r(k) = 1− 2 · rand (k).

(40)

Here, the current output of the plant depends on four
previous outputs and four previous inputs. In this case,
the feedforward neural network, with four input nodes for
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Figure 7: Evolution of the system output and the neural model
output (ε /∈ stability domain).

feeding the appropriate past values of y(k) and u(k) were
used. In this paper, only four values are fed into the FFNN to
determine the output ym(k). In training the FFNN, we used
100 epochs. The testing input signal is used to determine the
identification results and is given by (37).

The weights are initialized to very small random values.
The learning rate parameter is calculated each iteration.

The simulations are realized in the two cases. Two
learning rates values are fixed in and out of the learning rate
range presented in (21) (see Figures 6 and 7).

In order to compare the performances of different
learning rate, rules are chosen in and out the learning rate
stability range.

Adopting an adaptive constrained learning rate inside the
stability domain, faster convergence, stability, and tracking
capability are guaranteed.

5. Conclusion

To avoid unstable phenomenon during the learning process,
constrained stable backpropagation algorithm is proposed
(CSBP). A stable adaptive updating process is guaranteed. A
Lyapunov analysis is made in order to extract new updating
formulations which contain a set of inequality constraints.
Both the convergence rate and the tracking capability of the
CSBP algorithm are mainly determined by the learning rate.
For a larger learning rate, one has the faster convergence but
the poorer tracking capability; while for a smaller learning
rate, one gets the slower convergence but the better tracking
capability. With The CSBP algorithm, faster convergence,
stability, and tracking capability are guaranteed. The appli-
cability and the effectiveness of the approach presented are
proved through simulation examples.
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