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Abstract

Fading in wireless channels, the limited battery energy available in wireless handsets, the

changing user demands and the increasing demand for high data rate and low delay pose serious

design challenges in the future generations of mobile communication systems. It is necessary to

develop efficient transmission policies that adapt to changes in network conditions and achieve the

target delay and rate with minimum power consumption.

In this thesis, a number of new paradigms in wireless networks are presented. Dynamic

programming tools are used to provide dynamic network stabilizing resource allocation solutions

for virtualized data centers with clouds, cooperative networks and heterogeneous networks. Exact

dynamic programming is used to develop optimal resource allocation and topology control

policies for these networks with queues and time varying channels. In addition, approximate

dynamic programming is also considered to provide new sub-optimal solutions.

Unified system models and unified control problems are also provided for both secondary

service provider and primary service provider cognitive networks and for conventional wireless

networks. The results show that by adapting to the changes in queue lengths and channel states,

the dynamic policy mitigates the effects of primary service provider and secondary service

provider cognitive networks on each other.

We investigate the network stability and provide new unified stability regions for primary

service provider and secondary service provider cognitive networks as well as for conventional

wireless networks. The K-step Lyapunov drift is used to analyse the performance and stability of

the proposed dynamic control policies, and new unified stability analysis and queuing bound are

provided for both primary service provider and secondary service provider cognitive networks and

for conventional wireless networks. By adapting to the changes in network conditions, the

dynamic control policies are shown to stabilize the network and to minimize the bound for the

average queue length. In addition, we prove that the previously proposed frame based does not

minimize the bound for the average delay, when there are shared resources between the terminals

with queues.

Keywords: access point, ad hoc network, cooperative communication, dynamic

programming, lyapunov drift, network stability, topology control, value iteration

algorithm
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Tiivistelmä

Langattomien kanavien häipyminen, langattomien laitteiden akkujen rajallinen koko, käyttäjien

käyttötarpeiden muutokset sekä lisääntyvän tiedonsiirron ja lyhyemmän viiveen vaatimukset

luovat suuria haasteita tulevaisuuden langattomien verkkojen suunnitteluun. On välttämätöntä

kehittää tehokkaita resurssien allokointialgoritmeja, jotka sopeutuvat verkkojen muutoksiin ja

saavuttavat sekä tavoiteviiveen että tavoitedatanopeuden mahdollisimman pienellä tehon kulu-

tuksella.

Tässä väitöskirjassa esitetään uusia paradigmoja langattomille tietoliikenneverkoille. Dynaa-

misen ohjelmoinnin välineitä käytetään luomaan dynaamisia verkon stabiloivia resurssien allo-

kointiratkaisuja virtuaalisille pilvipalveludatakeskuksille, käyttäjien yhteistyöverkoille ja hetero-

geenisille verkoille. Tarkkoja dynaamisen ohjelmoinnin välineitä käytetään kehittämään opti-

maalisia resurssien allokointi ja topologian kontrollointialgoritmeja näille jonojen ja häipyvien

kanavien verkoille. Tämän lisäksi, estimoituja dynaamisen ohjelmoinnin välineitä käytetään luo-

maan uusia alioptimaalisia ratkaisuja.

Yhtenäisiä systeemimalleja ja yhtenäisiä kontrollointiongelmia luodaan sekä toissijaisen ja

ensisijaisen palvelun tuottajan kognitiivisille verkoille että tavallisille langattomille verkoille.

Tulokset osoittavat että sopeutumalla jonojen pituuksien ja kanavien muutoksiin dynaaminen

tekniikka vaimentaa ensisijaisen ja toissijaisen palvelun tuottajien kognitiivisten verkkojen vai-

kutusta toisiinsa.

Tutkimme myös verkon stabiiliutta ja luomme uusia stabiilisuusalueita sekä ensisijaisen ja

toissijaisen palveluntuottajan kognitiivisille verkoille että tavallisille langattomille verkoille. K:n

askeleen Lyapunovin driftiä käytetään analysoimaan dynaamisen kontrollointitekniikan suoritus-

kykyä ja stabiiliutta. Lisäksi uusi yhtenäinen stabiiliusanalyysi ja jonon yläraja luodaan ensisijai-

sen ja toissijaisen palveluntuottajan kognitiivisille verkoille ja tavallisille langattomille verkoille.

Dynaamisen algoritmin näytetään stabiloivan verkko ja minimoivan keskimääräisen jonon pituu-

den yläraja sopeutumalla verkon olosuhteiden muutoksiin. Tämän lisäksi todistamme että aiem-

min esitetty frame-algoritmi ei minimoi keskimääräisen viiveen ylärajaa, kun käyttäjät jakavat

keskenään resursseja.

Asiasanat: access point, ad hoc-verkko, arvoiteraatioalgoritmi, dynaaminen

ohjelmointi, lyapunov drift, topologian kontrollointi, verkon stabiilius, yhteistyö

kommunikaatio
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Abbreviations

arg max{·} Arguments of the maxima

Conv{·} Convex combination

E{·} Expected value operator

E{·|·} Conditional expectation

lim Limit

lim sup Limit superior

log2(·) Logarithm in base 2

max{·} Maximum

min{·} Minimum

p{·} Probability that the given event occurs

ai Arrival rate at terminal i

amax Maximum arrival rate

APl lth access point

~A Arrival rate vector

b Number of bits in a packet

bis Binary variable

~Bi Vector of binary variables

ci Long-term average service rate at terminal i

cis Long-term average service rate from terminal i to server s

C
Vi j

i Channel capacity

DX Control input in state X

DX Set of feasible control options in state X

f Utilization level

fmin Minimun frequency

fmax Maximum frequency

~G Vector of average long-term service rates

gi Total long-term average service rate at terminal i

gi0 Long-term average service rate between terminal i and access point

gi j Long-term average service rate between terminal i and terminal j

~G∗ Vector of unified average long-term service rates

his Channel gain between terminal i and server s
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hi j Channel gain between terminal i and terminal j

hi0 Channel gain between terminal i and access point

hnl Channel gain between terminal i and access point l

~H Channel gain vector

H Channel state space

Hi Channel state space for terminal i

~Hi Channel gain vector for terminal i

~Hn Channel gain vector for terminal n

~He Equivalent channel gain vector

~He
i Equivalent channel gain vector

I Channel availability indicator

i Terminal index

I Set of terminals

|I | Number of terminals

Ir Channel corruption indicator

j Time index

M Number of active access points

mi j Binary variable

|M | Number of cooperating pairs

N Number of terminals

n Frame index

L Number of potential access points

L Set of potential access points

~P Power vector

Pi Power consumption at terminal i

p j Probability

Pis Power required for transmission from terminal i to server s

pid The probability of secondary user to detect the idling channel

ppd The probability of secondary user to detect the preamble correctly

psd The probability of secondary user to detect the presence of primary user

P̂s Power consumption at server s

Pmax Maximum power available at terminal i

P̂max Maximum power available at terminal s

Ptot
i Total power consumption at terminal i
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pP
H Channel availability probability for primary service provider cognitive

network

pP
return The probability of primary user to return to the channel

pS
H Channel availability probability for secondary service provider cognitive

network

pS
return The probability of secondary user to return to the channel

pP
0 Channel non-availability probability for primary service provider cogni-

tive network

pS
0 Channel non-availability probability for secondary service provider

cognitive network

pP
1 The probability of primary user to be active

pS
1 The probability of secondary user to use the channel

qi Queue length at terminal i

qmax Maximum queue length

q̂i
s Queue length of terminal i at server s

~Q Vector of queue lengths

rnm Service rate from terminal to an access point

~r Service rate vector

s Server index

S Set of servers

|S | Number of servers

t0 Time index

Ui Control action at terminal i

Un nth terminal

UXi
Control action at terminal i in state Xi

~U Vector of control action at terminal i

U Set of control actions at terminals

Û Set of control actions at servers

Û Vector of control action at server s

UXi
Set of control actions at terminal i in state Xi

UX Set of control actions in state X

|UXi
| Number of control actions in a state at terminal i

ÛX̂s
Control action at server s in state X̂s

Ûs Control action at server s

|ÛX̂s
| Number of control actions in a state at server s
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V Positive constant

V i j Cooperative control decision

V̂ Positive number

~V Vector of cooperative control decisions

~VX Vector of cooperative pairs control decisions

V Set of cooperative control decision

WX Control input

wx
n Action at terminal n in state xn

WX Set of control inputs

X System state

Xi System state at terminal i

X̂s System state at server s

X Set of system states

|Xi| Number of states at terminal i

xn System state at terminal n

|X̂s| Number of states at serverl s

~Y Vector of yis

∆ Number of sub-slots

αis Non-negative parameter

α̂s Non-negative parameter

η Frame index

θ Positive number

κ Positive number

κ̂ Positive number

κ̃ Positive number

~λ Average arrival rate vector

λi Average arrival rate at terminal i

λn Average arrival rate at terminal n

Λ Stability region

ΛT Stability region at terminals

ΛS Stability region at servers

~µ Service rate vector

~µ∗ Unified service rate vector

µi Service rate at terminal i

µi j Service rate from terminal i to terminal j
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µnm Service rate between terminal i and access point m

µis Service rate from terminal i to server s

µi0 Requests processed at terminal i

µout
max Maximum service rate

µ̂s Total service rate at server s

µ̂ i
s Service rate server s provides to terminal i

µ̂max Maximum supportable service rate at server s

π Policy

πi Policy at terminal i

πn Policy at terminal n

π̂s Policy at server s

πHi
Steady state probability for channel ~Hi

πH Steady state probability for channel

πHe Steady state probability for channel ~He

πe
Hi

Steady state probability for channel ~He
i

Π Set of feasible power allocation policies

Πi Set of feasible power allocation policies for terminal i

Πn Set of feasible power allocation policies for terminal n

Π̂s Set of feasible power allocation policies at server s

~ϕ Vector of binary variables

ϕi Binary variable

τ Time index

ρ Weight

ρi Positive number

Γ̂ Set of all full power long-term service rates at servers

Γ∗ Set of all full power long-term service rates at terminals

AP Access point

DNA Dynamic network architecture

CN Cognitive network

COP Close to optimal

CPU Central processing unit

CR Cognitive router

CSI Channel state information

CWN Conventional wireless network

DFS Dynamic frequency scaling
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DFS Dynamic voltage scaling

ICT Information and communication technology

InTeNet Inter technology Networking

IT Information technology

MCC Mobile cloud computing

MDP Markov decision process

MIMO Multiple-input multiple-output

MLI Minimun load index

NC Non-cooperative

NW Entire network

OP Optimal

PC Partial cognitive

PSP Primary service provider

PU Primary user

QoS Quality of service

QSI Queue state information

RNL Relative network load

RVM Running variance metric

S Servers

SO1 Suboptimal policy 1

SO2 Suboptimal policy 2

SSP Secondary service provider

SU Secondary user

T Terminals

TDMA Time division multiple access

TS Terminals to servers

UMDP Unconstrained Markov decision process

UP Unconstrained problem

U1 Terminal 1

U2 Terminal 2

VDC Virtualized data center

VIA Value iteration algorithm

VM Virtual machine

VMM Virtual machine monitor

WLAN Wireless local area network
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1 Introduction

Efficient resource allocation schemes are one of the key elements to support the ever

increasing need for high data rate services in wireless networks. There is already a vast

variety of research on resource allocation for wireless networks [1]-[8]. However, we

note that the many resource allocation strategies implemented so far do not consider the

effects of queueing with randomly arriving traffic and time varying channels. This is

despite the fact that control decisions based on both channel state information (CSI)

and queue state information (QSI) have been shown to be effective in providing higher

throughput and smaller delay in the presence of time varying channels and resource

demands [9]-[14]. Managing queue backlog is important in providing resource allocation

strategies that maximize the throughput and minimize the delay in the presence of

time varying channels and changing user demands. This is of particular importance

for the new emerging network paradigms like cognitive networks, dynamic network

architecture (DNA) networks, cooperative networks as well as the networks with data

centers and computing clouds.

In order to be able to respond to the increasing demand of high data rates, adaptation

to the changes in network conditions is necessary. In this thesis, we develop dynamic

network stabilizing algorithms for these advanced, new emerging wireless networks

with queues and uncertain channels. The channel uncertainty is either due to fading

in conventional wireless networks (CWNs) or due to uncertain channel availability

both in primary service provider (PSP) and secondary service provider (SSP) cognitive

networks. We define a unified control problem, where the goal is to maximize the

resource utilization and at the same time provide bound for the average delay in the

presence of both CWNs and PSP/SSP cognitive networks. Dynamic programming

methods that utilize the availability of accurate CSI and QSI are used to provide a

dynamic control policy that by adapting to the changes in network conditions stabilizes

the network and optimizes the usage of the available resources for both CWNs as well

as for PSP/SSP cognitive networks. While dynamic algorithms require high complexity,

they provide the best possible result. Thus, the optimal control policy can be used as a

benchmark for the development of more practical schemes like approximate dynamic

programming based algorithms [15], [16].
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In this thesis, a comprehensive stability analysis is applied to the new network

paradigms that include DNA networks and distributed virtualized data centers. A new

unified stability analysis in different network environments for both PSP/SSP cognitive

networks and for CWNs is also provided in this thesis.

Next, in this chapter, the review of the previous research on network stability is

presented in 1.1. The aims and the outline of the thesis in given in Section 1.2. Finally,

the author’s contributions to the original publications are described in Section 1.3.

1.1 Previous research on network stability

In this section, a brief summary of the previous work done in the field of network

stability is presented.

One of the first papers that introduced the concepts of queue stability and stability

region is [17]. Few years later, the work in [17] was further elaborated in [18] and [19].

The authors in [18] considered the stability of a Markov chain queue length process

in multi-hop radio networks and proposed a centralized maximum throughput link

scheduling policy that was proven to stabilize the network by showing that the system

stability region and the stability region of the policy are equal. It was also shown in

[18] that, if the one step Lyapunov drift gets negative, when the queue lengths are

sufficiently large, the network is stable. The one step drift in [18] was extended into

a cumulative Lyapunov drift in [20]. The study in [19] is a continuation of [18]. In

[19], the authors proposed a stability condition for a system with a set of Markov chain

queues competing for the service of a single server. The system in [19] was defined to

be stable, if the sum of the average rates at which work is entering the queues is smaller

than the sum of the proportion of the time slots the queues can receive service. In

addition, the one step Lyapynov drift proposed in [18] was used to analyse the stability

of a longest connected queue policy in [19], where the authors discovered that a policy

can be shown to be stable if the drift is bounded above. The works in [18] and [19] have

been inspiring further research on network stability and the development of network

stabilizing dynamic algorithms by many researchers.

The longest connected queue policy proposed in [19] was further elaborated in [22],

where the unicast scheduling problem in [19] was extended into a multicast case. The

work in [22] uses the one step Lyapunov techniques to analyse the stability of scheduling

and coding strategies for embedded Markov chain queues. In [23], the square of the

workload was used to analyse the stability of Jackson networks [24]. The ideas in [23]
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were further elaborated in [25], where they proposed a new technique for obtaining

stability of Markovian queueing networks and scheduling policies. In [25] the one step

quadratic Lyapunov functions were used to obtain bounds for the queue assuming that

the system is stable. The work in [25] was later extended in [26], where a programmatic

procedure to analyse the stability of queueing networks and scheduling policies was

proposed. The goal in [26] was to programmatically guarantee a negative one step

quadratic Lyapunov drift for the buffers that get too large, even for the systems that are

not Markovian. More work on the one step Lyapunov drift stability analysis can be

found for switch and router architectures in [27], [28] and [29].

The works in [18], [19] and [20] have inspired the research in [12], where the authors

established a network stability region and develop capacity achieving power allocation

and routing policies for general networks with queues, wireless links and adaptive

service rates. Most of the results on stability in [12], are also published in [10], [13],

[14] and [30]. The authors in [10], [12], [13] extend the cumulative Lyapunov drift

theorem in [20] into a K-step Lyapunov drift and use it to provide new bound for the

average queue length. In addition, in order to analyse the stability of their dynamic

routing and power control policy (DRPC), stationary resource allocation policy were

proposed in [10], [12]. By using the K-step Lyapunov drift theorem, the stationary

policy was used to provide bound for the average queue length in [10], [12]. As the

performance of the DRPC is expected to be better than the performance of the stationary

policy, the proposed bound was assumed to be valid also for DRPC.

A methodology called Lyapunov optimization was proposed in [14], [30] for

designing control policies to maximize long-term average utility subject to the network

stability. Just like in [10], [12] and [13], the works in [14], [30] uses the negativity of

the K-step Lyapunov drift theorem to provide bound for the average queue. Lyapunov

optimization has been used to guarantee network stability optimal cross-layer control

policies for wireless networks also in [31], [32] and [9]. The work on stability and

the bound provided by the extended Lyapunov drift theorem in [12] has been used to

analyse the stability of different resource allocation policies also in [9], [31]-[34].

1.2 Outline and contributions of the thesis

The goal of this thesis is to present a number of new paradigms in wireless networks

with queues and time varying channels. For such networks, the contributions include

solutions for optimal and sub-optimal dynamic resource allocation, topology control and

21



network stability. Unified system models, unified control problems, unified network

stability regions and unified stability analysis are provided for both SSP and PSP

cognitive networks as well as for CWN. Novel approaches to the stability analysis of

dynamic control policies in wireless networks are also provided in this thesis.

The thesis is organized into 6 chapters:

– Introduction and the literature review of the previous work on network stability is

presented in Chapter 1.

– The concept of network stability and the analytical tools used to analyse the stability

of time varying queueing networks are presented in Chapter 2.

– The content of Chapter 3 have been presented in [21], where a virtualized data center

(VDC) is considered. The VDC consists of a set of servers hosting a number of

mobile terminals forming a mobile cloud. Using this model, a unified dynamic

optimization problem is formulated for both PSP and SSP cognitive networks and for

CWN. The goal is to maximize the joint utility of the long-term application processing

throughput of the terminals and to minimize the average total power usage while

keeping the network stable. Dynamic programming methods are used to provide a

new unified dynamic control policy for PSP and SSP cognitive networks as well as

for CWNs.

A unified stability region is illustrated and a new unified stability analysis is

proposed for both CWNs and PSP/SSP cognitive networks. The K-step Lyapunov

drift theorem is used to analyse the stability of the proposed optimal control policy.

Our policy is shown to outperform the stationary and the frame based policy proposed

in [10],[12] and to stabilize the network.

Numerical results are provided to support our stability analysis and to evaluate

the performance of the dynamic control policy in the presence of cognitive wireless

networks and CWNs.

– In Chapter 4, an optimal cooperative network control problem over time-slotted

channels with uncertainties is considered. The uncertainties can be either due to fading

in CWNs or due to uncertain channel availability in PSP/SSP cognitive networks. For

this model, a unified optimization problem is formulated and dynamic programming

tools are used to provide a unified optimal cooperative control policy for PSP and

SSP cognitive networks as well as for CWNs.

In order to compare the performance of the cooperative communication to the

conventional non-cooperative case, the stability regions are illustrated for both
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networks. In addition, when the control actions need to be calculated for each network

state, it is important to note that the best network stabilizing policy is the one that

minimizes the maximum queue length over all terminals. The K-step Lyapunov

drift is used to analyse the stability of the optimal control policy and show that

the proposed policy stabilizes the network and minimizes the long-term average

maximum queue length.

For illustration purposes and to validate our stability analysis, the performance

of the optimal dynamic control policy is evaluated with simulations. The results

show that by adapting to the changes in network conditions, the cooperative policy

mitigates the effects of PSP and SSP cognitive networks on each other.

– In Chapter 5, a new paradigm in wireless network access is presented and analysed.

Each terminal in an ad hoc or multi-hop cellular network can be turned into an AP

any time, when it is connected to internet. A new topology control policy is proposed

to maximize the network performance with minimum power consumption and to

stabilize the network. As the implementation of the optimal policy required full

knowledge of CSI and QSI, approximate dynamic programming methods and one

step VIA are used to provide new suboptimal control policies.

In order to evaluate the performance of different policies, the network stability

region and the stability regions of the optimal and sub-optimal policies are illustrated.

Using the K-step Lyapunov drift, the stability and the performance of the optimal

dynamic policy is analysed. Our optimal control policy is shown to stabilize the

network and minimizes the bound for the average delay.

The numerical results are provided in order to support our stability analysis and to

compare the performance of the optimal and sub-optimal control policies to each

other.

– Finally, the main results are summarized in Chapter 6. The future research directions

on this field are also considered in Chapter 6.

The main contributions of this thesis are included in Chapters 3-5.

1.3 Author’s contributions to the thesis

The work on this thesis is based on publications [21], [35] and additional research.

The journal paper [21] has been coauthored with Prof. Savo Glisic, Prof. Yuguang

Fang and Dr. Pan Li. The conference paper [35] has been coauthored with Prof. Savo

Glisic. Author’s supervisor Prof. Savo Glisic provided reviews and suggestions related
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to technical issues, editorial corrections and publication process. Prof. Yuguang Fang

has reviewed journal [21], and Dr. Pan Li has provided some comments on [21]. The

author had the main responsibility for providing the results, analysis and writing the

papers and the thesis.
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2 Analytical tools for stability analysis of time

varying queueing networks

In this chapter, we first present the definition for network stability following with the

most important tools used to analyse the performance and stability of different resource

allocation policies in wireless networks.

2.1 Network stability

Consider a wireless network with a set of I terminals with queues. Let i denote the

index of a terminal and i = {1,2, ...., |I |}, where |I | denotes a number of terminals

within the set I . We use qi(t) to represent the amount of packets (each of size b bits) in

the queue of terminal i in time slot t and let ~Q(t) = [q1(t), ...,q|I |(t)] denote the vector

of such queue lengths. These queues evolve according to time varying arrival processes

ai(t) and service rates µi(t) as

qi(t +1) = max{qi(t)−µi(t),0}+ai(t), (1)

where ai(t) represents the number of arriving packets in time slot t and µi(t) is the

number of packets that can be released in slot t.

As a measure of the fraction of time the unfinished work in the queue is above a

certain value V̂ , an overflow function g(V̂ ) is presented as

g(V̂ ) = limsup
t→∞

1

t
E
{ t

∑
t=0

1[qi(t)>V̂ ]

}
, (2)

where E{·} denotes the expected value and the indicator function 1[X ] takes the value 1

whenever X is satisfied, and 0 otherwise [12]. A single queue is stable, if g(V̂ )→ 0 as

V̂ → ∞ [12]. The whole network is stable, if all individual queues are stable [12].

2.2 Network stability region

Let λi represent long-term average arrival rates for terminal i given as

λi = lim
t→∞

1

t

t−1

∑
τ=0

ai(τ) (3)
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In addition, let~λ = [λ1,λ2, ...,λ|I |] denote the vector of these arrival rates.

Network stability/capacity region Λ is the set of all long-term average arrival rates

that the network can stably support considering all the resource allocation policies

that we can have for the network [18]. Correspondingly, stability region of a specific

resource allocation policy is a set of all long-term arrival rates that a policy can stably

support and it is a subset of the network stability region [18]. For arrival rates outside

the network stability region, the network cannot be stabilized [18].

If a policy supports every point on the network stability region, it is called throughput

optimal. Then, the network stability region and the stability region of the policy are

equal. Thus, the network stability region can be used as an important criteria to analyse

the performance of different resource allocation policies, i.e., the larger the stability

region of the policy, the better.

Let ~µ = [µ1,µ2, ...,µ|I |] denote the vector of service rates, H channel state, πH

steady state probability for channel H, H the set of channel states, P a power allocation

policy and Π the set of the feasible power allocation policies. In addition, let gi represent

long-term average supportable service rate at terminal i and ~G the vector of these average

service rates. Due to the time varying channel state conditions, ~G must be averaged over

all possible channel states H ∈ H . Moreover, ~G is not fixed and depends on resource

allocation policy for choosing the control actions for each H . The network stability

region, i.e, the set of all long-term average service rates ~G that the network can be

configured to support, can then be given as [12]:

∑
H∈H

πHConv{P,H)|P ∈ Π}, (4)

where Conv{ϒH} represents convex hull of the set ϒH that is defined as the set of

all convex combinations p1b1 + p2b2 + ...+ p jb j of elements b j ∈ ϒH and p js are

probabilities summing up to 1. Specifically, the throughput region in (4) can be viewed

as a set of all long-term average service rates that the network can be configured to

support.

2.3 Lyapunov stability

Lyapunov drift has been used as one of the most important tools to analyse network

stability and the stability of different resource allocation policies by many researchers

[10], [12], [13], [14], [18], [19], [22] and [30].

26



According to the author’s best knowledge, the initial forms of the drift were first

used to provide a sufficient condition for stability of a queuing system in [18], [19].

The authors in [18] defined the sufficient condition for stability, where qi(t) can be

considered to be stable, if

E{L[qi(t +1)]−L[qi(t)]|qi(t)} ≤ −κ̂ ∀ qi(t)≥ Ỹ , (5)

where L[qi(t)] = qi(t)
2 and κ̂ > 0. The condition in (5) was later used to prove the

stability of the longest connected queue policy in [19]. Since then, the condition in (5)

has been elaborated to analyse the stability of different resource allocation policies by

many researchers.

We assume that qi(0) < ∞ for all terminals and define the Lyapunov drift as

L[Q(t)] = ∑i∈I qi(t)
2. The 1-step Lyapunov drift can now be given as

E{L[Q(t +1)]−L[Q(t)]|~Q(t)} ≤ B−2 ∑
i∈I

qi(t)E{µi(t)−ai(t)|~Q(t)}, (6)

where B is a positive constant. If there exists κ > 0 such that over all the terminals and

for all time slots t

E{µi(t)−ai(t)|qi(t)} ≥ κ, (7)

the 1-step drift can be defined as

E{L[Q(t +1)]−L[Q(t)]|~Q(t)} ≤ B−2κ ∑
i∈I

qi(t). (8)

Taking expectations of the above inequality over the distribution of queue length,

summing over time slots, dividing by t and using the non-negativity of the Lyapunov

function, we see that the network is stable, and the bound for the average queue length is

given as

limsup
t→∞

1

t

t−1

∑
τ=0

∑
i∈I

E{qi(t)} ≤
B

2κ
. (9)

When the network stochastics require more than one time slot to ensure a negative

drift, the 1-step Lyapunov drift in (6) must be extended into a K-step Lyapunov drift

[20] , where the one step drift proposed in [18] is evaluated K steps into the future. The

K-step drift has been used to analyse the stability of different algorithms in several

publications, such as [9], [12], [13], [30]-[34] and [36]-[40].
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If the Lyapunov function is defined as L[Q(t)] = ∑i∈I q2
i (t), the K-step Lyapunov

drift is given as

E{L[Q(K + t)]−L[Q(t)]|~Q(t)} ≤ K2|I |V − (10)

2 ∑
i∈I

qi(t)
t+K−1

∑
τ=t

E{µi(τ)−ai(τ)|~Q(t)}.

where V is a positive constant and t ∈ {0,1, ...,K −1}.

Consider (10) at times t = ĵK + t0, and by summing over t0 and ĵ from 0 to K −1

and from 0 to Ĵ−1, we get

K−1

∑
t0=0

Ĵ−1

∑
ĵ=0

E{L[Q(( j+1)K + t0)]−L[Q( jK + t0)]|~Q( jK + t0)} ≤ (11)

K3|I |V Ĵ−2
K−1

∑
t0=0

Ĵ−1

∑
ĵ=0

∑
i∈I

qi( jK + t0)
( j+1)K+t0−1

∑
τ= jK+t0

E{µi(τ)−ai(τ)|~Q( jK + t0)}.

If there exists a positive constant κ̃ > 0 such that over all terminals and for each time

slot t

( j+1)K+t0−1

∑
τ= jK+t0

E{µi(τ)−ai(τ)|qi( jK + t0)} ≥ κ̃, (12)

(11) can be rewritten as

K−1

∑
t0=0

Ĵ−1

∑
ĵ=0

E{L[Q(( j+1)K + t0)]−L[Q( jK + t0)]|~Q( jK + t0)} ≤ (13)

K3|I |V Ĵ−2κ̃
K−1

∑
t0=0

Ĵ−1

∑
ĵ=0

∑
i∈I

qi( jK + t0).

Taking expectations of the above inequality, dividing by ĴK and using the non-negativity

of the Lyapunov function, we see that the network is stable, and the bound for the

average queue length is given as

limsup
t→∞

1

t

t−1

∑
τ=0

∑
i∈I

E{qi(τ)} ≤
K2|I |V

2κ̃
. (14)
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3 Resource harvesting in cognitive wireless

computing networks with mobile clouds and

virtualized distributed data centers:

performance limits

In this chapter, we consider a virtualized date center (VDC) consisting of a set of servers

hosting a number of mobile terminals forming a mobile cloud, and study the problem of

resource allocation in the presence of time varying workloads and uncertain channels.

The channel uncertainty may be either due to fading in conventional wireless networks

(CWNs) and/or uncertain link availability and reliability both in primary service provider

(PSP) and secondary service provide (SSP) cognitive wireless networks.

First, a detailed discussion on developing a unified system model for the VDC

(computing cloud) for both PSP and SSP cognitive networks as well as for CWNs is

presented. For this unified model, we characterize the joint stability region and propose

a new unified stability analysis for both PSP and SSP cognitive networks (CNs) and for

CWNs.

We formulate a unified control problem, where the goal is to maximize a joint utility

of the long-term application processing throughput of the terminals and to minimize the

average total power usage in the overall system while keeping the network stable. As the

control problem is to dynamically adjust resources according to channel and workload

fluctuations, we reformulate the problem into a Markov Decision Process (MDP) and

use dynamic programming and Value Iteration algorithm (VIA) [41], [42] to provide a

dynamic control policy that solves the problem for PSP and SSP cognitive networks and

for CWNs. We also analyse the complexity of the proposed dynamic control algorithm.

Lyapunov drift theorem is used to analyse the stability of our dynamic control policy.

It is shown that the policy supports every point on the network stability region and

outperforms the stationary control policy presented in [10]. A frame based policy was

proposed to stabilize the network and to outperform the stationary policy in [10], [12].

In this chapter, we show that the performance of the frame based policy is not better

than the performance of the stationary randomized policy and that the frame based

policy does not provide bound for the average queue length, when there are shared

resources in the network.
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Finally, the performance of the dynamic policy is illustrated with simulations in

the presence of time varying workloads and uncertain channels for both CWNs and

cognitive wireless networks. The simulations support our stability analysis presented in

chapters 3.5 and 3.7. It is also shown by simulations that by adapting to the changes in

network conditions, our control policy mitigates the effect of PSP and SSP cognitive

networks on each other.

The remainder of this chapter is organized as follows. Motivation and the related

work are presented in Section 3.1. Section 3.2 describes the system model and Section

3.3 presents the optimization problem formulation. In Section 3.4, we reformulate the

problem as a MDP, and propose the dynamic control policy. The joint network stability

regions for both SSP and PSP cognitive networks and also for CWNs are derived in

Section 3.5. The complexity of the dynamic policy is analyzed in Section 3.6. In Section

3.7, the unified stability analysis for both PSP and SSP cognitive networks and for CWN

is introduced. The simulations are conducted to validate the theoretical analysis of this

chapter and are presented in Section 3.8. Finally, some concluding remarks are offered

in Section 3.9.

3.1 Motivation and related work

In this section, the motivation behind the research and the related work in this area are

presented.

3.1.1 Motivation

Cloud computing [43]-[46] has gained a lot of attention in recent years as the next

generation computing infrastructure [47]-[51]. There are many surveys that recognize

the importance and miscellaneous usability of cloud computing in the near future

[52]-[57]. Cloud computing allows users to use resources such as servers, storages,

platforms and applications provided by cloud providers remotely and at low cost over

the Internet [58]. Cloud computing is a great technology for its users as it can not only

satisfy even the most intensive computing needs of the customers but it also releases

them from IT infrastructure investments, the complexity of IT management, planning

and maintenance.

Another key advantage of cloud computing is its dynamic provision of computing

resources and services. The cloud resources can be rapidly provisioned and released with
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minimal management efforts and service provider interaction [59]. As a result, cloud

computing resources can be dynamically shared by multiple users in a pay-as-you-go

fashion and based on users’ resource demand. Since these capabilities are provided at

relatively low costs compared to several individual fixed infrastructures managed by a

company or user, cloud computing provides a promising solution for environmentally

conscious IT [54], [60], [61]. There are already a number of organizations that host

and/or offering cloud computing services. At the moment the leading cloud service

providers are Google [62], Amazon [63] and IBM [64].

Cloud computing has also been proposed as an answer to ever increasing demand

for computing resources of the mobile devices by many researchers [52], [53], [65].

Nowadays, smart phones can be connected to Internet either through telecom network or

access points using Wi-Fi [53]. The phones are also capable of supporting a wide range

of applications that significantly increase their demand on storage, computing resources

and power. However, due to the obstacles such as low processing power, limited battery

life, storage, memory and bandwidth, several applications are still unsuitable for smart

phones [66]. By integrating cloud computing with the mobile devices, mobile cloud

computing (MCC) [59] has been introduced as a potential technology to overcome the

resource restrictions on mobile computing [52] allowing mobile users to achieve a wide

variety of mobile services at low cost.

In MCC, mobile devices’ resource intensive computations or data storage happen

remotely at a resource rich cloud. The transfer of computationally intensive applicatios to

be performed at a remote server is commonly referred as computational offloading. It has

been shown in [67] that offloading can save battery life in mobile phones and decrease

the execution times of applications. Applications that can benefit from computational

offloading related to image processing and games, for example, can be found in [68] and

the references therein. Centralized monitoring and maintenance of the software also

increases the security level for mobile devices [65]. With the MCC, more environmental

friendly mobile computing and the dream of information anytime and anywhere is

becoming reality. In addition, by reducing the development and running costs of the

mobile devices and applications, MCC has also gained the attention of entrepreneurs as

a promising provider of profitable business options and new technical functionalities.
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3.1.2 Related work

The issue of power consumption in the information and communication technology

(ICT) sector has been receiving increasing attention in recent years [54], [65], [69], [70].

As cloud computing services become increasingly popular among both businesses and

private users, there is increasing demand for the computational services of the high

performance large-scale data centers, which consume enormous amounts of electrical

power. There is therefore a growing interest in improving the energy efficiency of

today’s data centers and cloud computing facilities [52]. Since the data centers’ energy

consumption have huge impact on environment, providing energy efficient, desired

quality of service (QoS) or service level objectives satisfying, resource management

systems for cloud service data center are increasingly important.

Unfortunately, resources inside the data centers often operate at low utilization due

to inefficient resource allocation [71]. For example, a single idle server can draw as

much as 65% of peak power value if not turned off [72]. In current systems, servers

are also under-used most of the time, as applications’ resource demands are easily

over-estimated in order to handle even the most demanding workloads. As a result,

applications hold resources that they hardly need at all, since large workloads may be

rare. Ideally, unused resources should be released for other applications to use. Efficient

resource management schemes are the key to maximizing the use of the resources both

at the cloud service users and at the data center.

Data center virtualization has been shown to offer great benefits in reducing the

total power consumption and increasing reliability allowing multiple heterogeneous

applications to share resources and run simultaneously on a single server [73], [74], [75].

Virtual Machine (VM) technology increases server utilization by enabling consolidation

of multiple applications on the same server and the sharing of resources among these

applications. By using this technology, it is possible to control the data center so that

the VMs occupy only the necessary resources to serve their applications. However,

achieving the right balance between consolidation and resource utilization of each

application is a critical issue for applications with time-varying demands.

Since workload adaptive resource allocation is important to create high perfor-

mance data centers, dynamic resource allocation in VDCs has been a hot topic among

researchers [71], [76], [77]. In [71], [76] and [77] feedback-driven resource control

systems are designed to automatically adapt to dynamic workload changes and to meet

service level objectives of applications within the shared virtualized infrastructure. Such
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techniques use a feedback control loop, where the goal is to allocate resources to meet

its performance target. However, since feedback techniques require information about

the target performance level, they cannot be used when the goal is to maximize utility.

In [78], the authors propose a dynamic live placement scheme for applications in cloud

computing environments called EnaCloud, where an energy-aware heuristic algorithm

is proposed to minimize the number of running VMs. Much of the previous work on

resource allocation in the VDCs is based on proactive workload adaptive resource

provisioning and steady state queuing models [79], [80], [81]. The work in [79] defines

a dynamic resource provisioning problem for virtualized server systems as a sequential

optimization problem which is solved using a lookahead control. Such a technique is

quite useful when control actions have deadlines to meet, but requires estimates of future

workloads. In [81], dynamic resource provisioning in a virtualized service environment

is based on the estimate of the power usage behavior of the hosted applications. Three

online workload adaptive resource control mechanisms based on steady state queueing

analysis, feedback control theory and the combination of these two are proposed in [80].

This approach requires implementation of the statistical models for the workload, and

resource allocation decisions are then made to meet such a predicted resource demand.

When predictions are accurate, proactive resource allocation does provide very good

performance [82]. In practice, however, predictions may be inaccurate and expensive

since they require workload data analysis and storage space. Research, closest to our

work, can be found in [9]. The work in [9] uses Lyapunov optimization [14] to design

an online control, routing and resource allocation algorithm for a VDC. While this

algorithm adjusts to workload fluctuations, it does not take into account the possible

channel variations between the terminals and the servers. By considering the changing

user demands, control decisions based on both the channel variations and the workload,

have been shown to be effective in providing higher throughput and smaller delay in the

presence of time varying channels and resource demands [11], [12].

In this chapter, a new dynamic resource allocation policy for virtualized cloud

service data center in the presence of uncertain channels and time varying workloads is

proposed. The channel uncertainty is either due to fading in CWNs and/or uncertain

link availability in PSP/SSP cognitive wireless network. By adapting to the changes in

network conditions, the proposed dynamic policy maximizes the long-term application

processing throughput of the terminals and minimize the average total power usage in

the overall system while guaranteeing the network stability. Our dynamic control policy

is shown to support every point on the network stability region, and has been proven to
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be stable using the Lyapunov drift theory. In [10] and [12], a randomized stationary

policy and a frame based algorithm were used to analyse the stability of a dynamic

algorithm. It is shown in [10], [12] that the performance of their dynamic algorithm is

fixed amount worse than the performance of the randomized stationary and the frame

based algorithms. In this chapter, we prove that the performance of our dynamic policy

is better than the performance of the stationary policy and propose a new unified stability

analysis for both PSP and SSP cognitive networks as well as for CWNs. Different from

the works that use steady state queuing and channel models, our approach makes use of

both the queue length state information (QSI) and the channel state information (CSI) to

dynamically adjust the available resources to meet the demand, and to increase the

reliability and resource utilization of the data center.

3.2 System model and assumptions

We consider a network composed of a VDC and a number of mobile terminals with

queues belonging to different clusters of mobile clouds. Let I denote the set of terminals

within a cloud and the VDC is composed of a set of servers S hosting the cloud, as

illustrated in Fig. 1. The servers are processing certain applications delegated to them by

the terminals, for either energy saving or due to the lack of necessary software at the

terminal to process the applications and the VDC may be either centralized or distributed

across the network as in the network with caching [83]. However on purpose, we do not

want to limit our work on a specific network architecture. Our analysis is valid for any

data center with partitioning (virtualization) of the processing resources (centralized or

distributed) and any conventional or PSP/SSP cognitive network characterized by the

primary user (PU) return probability and secondary user (SU) channel sampling quality.

By definition, mobile cloud is a set/cluster of terminals that share a certain pool of

resources [84]. In our case, the terminals share the resources located at the data center.

In order to increase the energy efficiency of cognitive networks, the concepts of SSP

and PSP cognitive networks have been recently introduced in [85]. In this concept, SSP

provides channel state information for secondary users (SUs) so that the complexity

is allocated to the network rather than to the terminals. In this way, a wide range of

terminals can operate as SUs and terminals do not need to have cognitive capabilities.

Let |S | denote the number of servers within the data center and |I | represent the

number of terminals within the cloud. Each server s is transformed into |I | VMs, each

capable of serving a terminal. For simplicity, we assume that each mobile terminal can
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Fig. 1. A cloud with a VDC.

request service only from one server at a time, but the hosting server can change in time.

By dividing the time into frames with index n, we define the following parameter for

each terminal i and server s:

bis(n) =

{
1; If terminal i is served on a VM of server s in frame n.

0; Otherwise.

Let ~Bi(n) = [bi1(n), ...,bi|S|(n)] denote the vector of these parameters in frame n.

Application requests arrive to each terminal i according to a process ai(n) at the

beginning of each frame n. The arrival processes ai(n) are stationary and ergodic

with average rates λi requests/frame. The external arrivals ai(n) are bounded in

their second moments every frame and E{[ai(n)]
2} ≤ (amax)2 for all i ∈ I . Let

~A(n) = [a1(n), ...,a|I |(n)] denote the vector of these arrivals. For analysis purpose, we

assume that the application requests are placed into infinite length transmission buffers

qi(n), that are later defined in Subsection 3.2.3.
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3.2.1 Channel model

Let |his(n)|
2 represent the channel gain between terminal i and server s. A block

fading model is assumed so that the channel values remain fixed during a frame

and may change from frame to frame according to a Markov chain 1. Let ~Hi(n) =

[|hi1(n)|
2, |hi2(n)|

2, ..., |hi|S |(n)|
2] ∈ Hi denote the vector of channel gain processes at

terminal i in frame n. The channel process ~Hi(n) is stationary and ergodic and takes

values on a finite state space Hi. Since the servers can have different locations, it is

possible that the channels between terminal i and different servers are different.

If the channel is used within the CWN, the channel gain vector is given by ~Hi(n) in

every frame n. Let πHi
represent the steady state probability for the channel state ~Hi in

the CWN. The channel processes are channel convergent with steady state probabilities

πHi
.

If the channel is used within the cognitive network, the equivalent channel gain

process ~He
i (n) will have the following form:

~He
i (n) =





~Hi(n); With probability pP
H for PSP CN or

with probability pS
H for SSP CN.

0; With probability pP
0 for PSP CN or

with probability pS
0 for SSP CN.

For the PSP cognitive network,

pP
H = (1− pS

1)+ pS
1 ppd (15)

and

pP
0 = pS

1(1− ppd). (16)

We assume that PU transmits a preamble prior to message transmission to clear the

channel in case that SU is using it (with probability pS
1). Secondary user detects

correctly that preamble and clears the channel with probability ppd. Let pP
1 represent the

probability that a PU is active and pid is the probability that a SU detects the idling

1The finite state block fading Markov chain has been widely used to model the channel in the literature, e.g.

[12], [15], [20]. The model has been used to mathematically characterize Rayleigh fading channel in [86] and

[87]. Using block fading model for the channel, we can dynamically generate artificial channel states that are

analytically tractable and can provide closed-form results. The assumption that the channels hold their states

during a frame is approximation that is valid for systems whose frames are short in comparison to the channel

variation. In practice, channels may vary continuously.
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channel. The derivation of the probability 1 - pP
1 is given in [88]. In the SSP cognitive

network, pS
H is then given as

pS
H = (1− pP

1)pid (17)

and the probability that the channel cannot be used is

pS
0 = (1− pP

1)(1− pid)+ pP
1 . (18)

In other words, SU gets the channel ~Hi(n), if the PU is not active and the SU detects the

idling channel. The channel is not used, if PU is not active but the SU fails to detect the

idling channel or the PU is active. Let πe
Hi

denote the steady state probability for channel

state ~He
i in PSP/SSP cognitive networks given as

πe
Hi

=

{
pP

HπHi
/pS

HπHi
; When ~He

i = ~Hi.

1− pP
H/1− pS

H ; When ~He
i = 0.

We use I(n) to denote the channel availability indicator at the beginning of a frame

n. For the SSP cognitive network, I(n) is defined as

I(n) =

{
1; If ~He

i (n) = ~Hi(n).

0; If ~He
i (n) = 0.

The probability that I(n) = 1 is p[I(n) = 1] = pS
H and the probability that I(n) = 0 is

p[I(n) = 0] = pS
0 . For the PSP cognitive network, I(n) is given as

I(n) =

{
1; If ~He

i (n) = ~Hi(n).

0; If ~He
i (n) = 0.

and the probabilities are p[I(n) = 1] = pP
H and p[I(n) = 0] = pP

0 .

In addition, for the given channel in the SSP cognitive network, we define a channel

corruption indicator Ir(n) during a frame n. In the SSP cognitive network, Ir(n) is given

as

Ir(n) =

{
0; If PU returns to the channel.

1; Otherwise.

where probabilities p[Ir(n) = 1] = 1− pP
return and p[Ir(n) = 0] = pP

return. The PU return

probability pP
return is discussed in [88]. The channel corruption indicator Ir(n) in the PSP

cognitive network is given as

Ir(n) =





0; If SU returns to the channel and does not

detect the presence of PU (collision).

1; Otherwise.
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The probabilities are given as

p[Ir(n) = 1] = (1− pS
return)+ pS

return psd (19)

and

p[Ir(n) = 0] = pS
return(1− psd), (20)

where pS
return is the probability of SU returning to the channel and psd is the probability

that SU correctly detects the presence of PU.

Additional modification of the channel model includes the option what we refer to

as "partial cognitive networks" (PC networks), where the network operator’s overall

resources include both cognitive and conventional (purchased) links [85]. Given πHi
,

πe
Hi

, ~He
i and ~Hi ∈ Hi, deriving the channel model for the PC network is straightforward.

3.2.2 Power consumption

Depending on the current workloads, current channel states, available energy and needed

software, the application requests can be processed either at the terminal or delegated to

be performed at one of the servers hosting the terminal. Let µis(n) denote the number of

requests delivered from terminal i to be processed at the hosting server s in frame n. Let

µi(n) represent the number of requests processed at terminal i in frame n, when there is

a channel available between terminal i and server s, i.e., ~Hi(n) ∈ Hi. In addition, let

µi0(n) denote the number of requests that can be processed at terminal i only, when there

is no channel available between terminal i and server s in frame n, i.e., I(n) = 0. When

I(n) = 0, more applications might be processed at terminal i only and µi0(n)≥ µi(n).

We use Ptot
i (n) = Pi(n)+Pis(n) to represent the total power consumption of terminal

i in frame n, where Pi(n) is the power required to process application requests at terminal

i and Pis(n) is the power required to deliver requests to be processed at server s. Let αi

and αis denote non-negative parameters. In the CWN, we have

Pi(n) = µi(n)αi (21)

Pis(n) =
µis(n)αis

|his(n)|2
. (22)

In the PSP/SSP cognitive networks, Pi(n) and Pis(n) are given as

Pi(n) = I(n)µi(n)αi +(1− I(n))µi0(n)αi (23)

38



Pis(n) =
I(n)µis(n)αis

|his(n)|2
. (24)

Let Pmax denote the maximum power available at each terminal in frame n.

Each server s has a set of resources that are allocated to the VMs hosted on it by its

resource controller. These resources can include, for example, the data center power and

the necessary software at the data center that is not available at the terminals. Both of

these resources can be easily added into the system model, as described in Sections

3.3 and 3.4. However, in this chapter, we only focus on the CPU frequency and power

constraints. All servers are assumed to have identical CPU resources. In our model, CPUs

run at finite number of operating frequencies fmin < f < ... < fmax. At each utilization

level f , the power consumption at server s is estimated as P̂s( f ) = P̂min +θ( f − fmin)
2

[9]. Available techniques such as dynamic frequency scaling (DFS), dynamic voltage

scaling (DVS) and combination of the two can be used to change the current CPU

frequency that affects the CPU power consumption [89], [90]. The maximum power at

server s is given as P̂max = P̂min +θ( fmax − fmin)
2. At utilization level f the maximum

supportable service rate µ̂max( f ) at server s is given as [9]

µ̂max( f ) =
P̂s( f )

α̂s

=
P̂min +θ( f − fmin)

2

α̂s

, (25)

where α̂s represents a non-negative parameter. The VM’s resource allocation can be

changed dynamically online without disrupting the running applications within the

VMs [91]. The resources for each VM are adapted to the changing workloads during its

lifetime. In virtualized server environment the virtual machine monitor (VMM) at any

physical machine handles resource multiplexing and isolation between VMs [91].

3.2.3 Queueing model

Every frame n in the CWN, µi(n)+ µis(n) application requests are removed from

the buffer of terminal i. Let qi(n) denote the queue length at terminal i and ~Q(n) =

[q1(n),q2(n), ...,q|I|(n)] represent the vector of queue lengths at the terminals in frame

n. The queuing dynamics in the CWN are then given as

qi(n+1) = qi(n)+ai(n)− [µi(n)+µis(n)]. (26)

In the cognitive wireless networks, the corresponding queuing process is given as

qi(n+1) = qi(n)+ai(n)− I(n)[µi(n)+ Ir(n)µis(n)]+ [1− I(n)]µi0(n). (27)
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In addition, let yi(n) = qi(n)+ai(n) and~Y (n) is the vector of yi(n)s.

At each server s, the delegated requests can be stored into a buffer reserved for

terminal i at server s before the requests are processed at the server. We use q̂i
s(n) to

denote the queue length of terminal i at server s, Q̂(n) = [q̂1
1(n), q̂1

2(n), ..., q̂1
|S |(n) ; ...;

q̂
|I |
1 (n), q̂

|I |
2 (n), ... q̂

|I |
|S |(n)] denotes the |I |× |S | matrix of the queue lengths at each

server s and Q̂i(n) = [q̂i
1(n), q̂

i
2(n), ..., q̂

i
|S |(n)] represents the ith row of Q̂(n). Let µ̂ i

s(n)

represent the service rate [requests/frame] server s provides to terminal i in frame n. The

queueing dynamics for the application requests of terminal i at server s for both PSP and

SSP cognitive networks is given as

q̂i
s(n+1) = q̂i

s(n)+ I(n)Ir(n)µis(n)− µ̂ i
s(n). (28)

For the CWN, q̂i
s(n+1) is written as

q̂i
s(n+1) = q̂i

s(n)+µis(n)− µ̂ i
s(n). (29)

Finally, let µ̂s(n) = ∑i∈I µ̂ i
s(n) represent the total service rate at server s, and q̂s(n) =

∑i∈I q̂i
s(n) denote the sum of queue lengths at server s.

3.3 Unified problem formulation

In order to derive a unified optimization problem for both CWN and PSP/SSP cognitive

wireless networks, one should note that the service rates for the PSP/SSP cognitive

networks can be derived from the service rates of the CWN. When the number of

requests transmitted from terminal i to server s and the number of requests processes at

terminal i in the CWN are given by µis(n) and µi(n), respectively, the corresponding

service rates for PSP and SSP cognitive networks are defined as

µis(n)
∗ = µis(n)p[I(n) = 1]p[Ir(n) = 1] (30)

µ́i(n)
∗ = µi(n)p[I(n) = 1]+µi0(n)p[I(n) = 0] = µi(n)

∗+µi0(n)
∗, (31)

where µi(n)
∗ = µi(n)p[I(n) = 1] and µi0(n)

∗ = µi0(n)p[I(n) = 0].

Given (30) and (31), the unified power consumption and queueing dynamics for

both PSP and SSP cognitive networks as well as for CWN are

Pi(n) = αiµ́i(n)
∗, (32)
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Pis(n) =
µis(n)p[I(n) = 1]αis

|his(n)|2
, (33)

qi(n+1) = qi(n)+ai(n)− [µ́i(n)
∗+µis(n)

∗] (34)

for each terminal i and

q̂i
s(n+1) = q̂i

s(n)+µis(n)
∗− µ̂ i

s(n) (35)

for each terminal i at server s.

A specific control action at terminal i is a decision on how many applications are

processed at the terminal, how many requests are forwarded to server s, and which

specific server s is hosting the terminal i. Let U (n) denote the set of control actions

available at the terminals in frame n, and Ui(n) = {µ́i(n)
∗,µis(n)

∗,bis(n)} ∈ U (n)

represents a specific control action at terminal i in frame n. In addition, ~U(n) =

[U1(n),U2(n), ...,U|I |(n)] is used to represent the vector of control actions in frame n.

The control action at each server s includes selecting the CPU frequency, that affects

the power consumption P̂s(n), as well as CPU resource distribution among different VMs

that host the terminals running on that server. This allocation is subject to the available

control options at each server s. For example, the controller may allocate different

fractions of CPU to the VMs in that frame. We use Û (n) to denote the set of all control

actions available at server s. Let Ûs(n) = {µ̂s(n)} ∈ Û (n) denote a particular control

action taken at server s in frame n under any policy and P̂s(n) is the corresponding

power consumption. The vector of control actions at the data center is given as Û(n) =

[Û1(n),Û2(n), ...,Û|S |(n)].

Let X(n) = {~Y (n),Q̂(n),H(n)} represent the state of the system in frame n with

countable state space X , where H(n) = [|h11(n)|
2, |h12(n)|

2, ..., |h1|S |(n)|
2; |h21(n)|

2,

|h22(n)|
2, ..., |h2|S |(n)|

2; ..., ; |h|I |1(n)|
2, |h|I |2(n)|

2, ..., |h|I ||S |(n)|
2] denote |I | ×

|S | channel gain matrix in frame n. We use DX (n) = {~U(n),Û(n)} to denote the

control input, i.e., the action, in fame n, when the state of the system is X(n). At the

beginning of each frame n, the network controller decides upon the value of DX (n)

depending on the current state of the system X(n). The control input DX (n) takes values

in a general state space DX (n), which represents all the feasible control options in

state X(n). Starting from state X , let π = {DX (1),DX (2), ...} denote the policy, i.e., the

sequence of actions. We use Π to denote the space of all such policies and π ∈ Π.
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It is important to note that the availability of the software resources could be added

here to the system model by simply introducing a binary variable

ϕi(n) =





1; If terminal i has the necessary

software to process the applications.

0; Otherwise.

and rewriting the state as X(n) = {~Y (n),Q̂(n),H(n),~ϕ(n)}, where ~ϕ(n) = [ϕ1(n), ...,

ϕ|I |(n)] is the vector of variables ϕi(n). If ϕi(n) = 0, application requests cannot be

processed at terminal i in frame n.

Let δi represent a non-negative weight used as a normalizing parameter. The goal

is to map from the current X(n) to an sequence of DX (n), that solves the following

optimization problem:

maximize
π∈Π

lim
n→∞

1

n

n−1

∑
η=0

∑
i∈I

E
π
X

{
µ́i(η)∗+ ∑

s∈S

bis(η)µis(η)∗−

δi

Ptot
i (η)

Pmax

}
− lim

n→∞

1

n

n−1

∑
η=0

∑
s∈S

E
π
X

{
P̂s(η)

}
(36)

subject to

λi ∈ ΛT,

qi(η)< ∞ and q̂i
s(η)< ∞,

Ptot
i (η)≤ Pmax and P̂s(η)≤ P̂max.

The constraints are valid for all i ∈ I and s ∈ S and ΛT represents network stability

region presented later in Section 3.5.

The objective in (36) is a constrained dynamic optimization problem and it maximizes

the joint utility of the sum throughput of the applications processed at the terminals

and minimizes the overall power usage both at the terminals and at the data center. It

allows the design of resource allocation policies that adjust to workload and channel

variations. For example, if the current workload is small, then this objective encourages

scaling down the instantaneous capacity in the servers in order to achieve energy savings.

Similarly if the current workload is large, the objective encourages scaling up the

instantaneous capacity by higher power consumption. In addition, (36) encourages to

delay some parts of input traffic by scheduling more packets in good channel states, and

less in poor conditions in order to achieve the maximum long-term throughput with

minimum power consumption.
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3.4 Unified control policy

In this section, we propose a dynamic control policy that solves the constrained dynamic

optimization problem in (36). Every frame n, the policy uses the current QSI and CSI to

define resource allocation decisions Ui(n) and Ûs(n) for each terminal i and server s.

As the exact dynamic programming is computationally very complex, we propose a

solution, where control actions can be calculated separately for each terminal i and

server s.

3.4.1 Resource allocation at the terminals

Let Xi(n) = {yi(n), Q̂i(n), ~Hi(n)} represent the state of terminal i in frame n with

countable state space Xi. In addition, we use UXi
(n) = {µ́i(n)

∗,µis(n)
∗, ~Bi(n)} to

denote the control input, i.e., action, at terminal i in frame n in state Xi(n). The control

input UXi
(n) takes values in a general state space UXi

(n), which represents all the feasible

resource allocation options available in state Xi(n) in frame n. By feasible options

we mean the set of control actions that satisfy the power and the queue constraints,

as we cannot transmit more application requests than there are in the queue. Let

πi = {UXi
(0),UXi

(1), ...} denote the policy, i.e., the sequence of actions, at terminal i,

and Πi represent the space of all such policies.

For each terminal i, the goal is to map from the current QSI and CSI to a policy

π⋆
i ∈ Πi that stabilizes the system and solves the following control problem:

maximize
πi∈Πi

lim
n→∞

1

n

n−1

∑
η=0

E
πi
Xi
{Ti(η)+Si(η)}

subject to lim
n→∞

1

n

n−1

∑
η=0

E
πi
Xi

{Ptot
i (η)

Pmax

}
≤ 1. (37)

In (37),

Ti(η) = [yi(η)− ∑
s∈S

bis(η)q̂i
s(η)]

∑s∈S bis(η)µis(η)∗

µmax
is

, (38)

Si(η) = yi(η)[µ́i(η)∗+ ∑
s∈S

bis(η)µis(η)∗] (39)

and the maximum number of application requests that can be delivered from terminal i

to server s in one frame is

µmax
is = max

{s∈S ,~Hi∈Hi}

Pmax|his|
2

αis

. (40)
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One should note that based on the definition of He
i for PSP/SSP cognitive networks in

Subsection 3.2.1, µmax
is gets the same value for both the PSP/SSP cognitive network and

the CWN. Equation (37) maximizes the long-term average throughput of the terminals

while keeping the energy cost and queues low. For example, high power computationally

intensive application requests at the terminal can be delegated to the hosting server in

order to achieve energy savings at the terminal. If the backlog value at the terminal i is

larger than the backlog of terminal i at server s, the objective in (37) encourages the

terminal to delegate its requests to be processed at the servers.

Formulation as a Markov decision process

We first convert the constrained dynamic optimization problem in (37) into an uncon-

strained problem (UP) and then find the control policy for this UP [15], [41], [42],

[92].

The set of feasible actions UXi
in each state Xi = {yi, Q̂i, ~Hi} is the set of all actions

UXi
= {µ́∗

i ,µ
∗
is,~Bi} that satisfy the power and the queue constraints as we cannot transmit

more packets than there are in the queue, i.e., µ́∗
i +µ∗

is ≤ yi and Ptot
i ≤ Pmax. After taking

an action UXi
= {µ́∗

i ,µ
∗
is,~Bi}, the following state is given as Zi = {qi, Ŷi, ~Hi}, where

Ŷi = [ŷi
1, ..., ŷ

i
|S |] and ŷi

s = q̂i
s +bisµ∗

is. Based on (26) and (29), we get this by noting that

yi − (µ́∗
i +µ∗

is) = qi and q̂i
s +µ∗

is = ŷi
s. It is important to note that for each state Xi = {yi,

Q̂i, ~Hi} with equal Q̂i and ~Hi, where qi ∈ {0,1, ...,yi}, ai ∈ {0,1, ...,yi} and qi +ai = yi,

the set of feasible actions and following states are the same. Thus, state Zi = {qi, Ŷi, ~Hi}

is equivalent to a state Xi = {yi, Q̂i, ~Hi}, if the channels are the same and both qi and ai

take values within the set {0,1, ...,yi} so that qi +ai = yi and q̂i
s takes values within the

set {0,1, ..., ŷi
s} so that ŷi

s = q̂i
s +bisµ∗

is for each server s. When ai = 0 and bisµ∗
is = 0 for

all s ∈ S , we have yi = qi and Q̂i = Ŷi. Then, Xi = {yi, Q̂i, ~Hi} = {qi, Ŷi, ~Hi} = Zi. For

example, let us consider a system with a terminal and 2 servers. In state Xi = {yi, Q̂i,

~Hi}, we let yi = 3 and Q̂i = [q̂i
1, q̂

i
2] = [1,2]. Then, qi = {0,1, ...,3}, ai = {0,1, ...,3},

qi + ai = 3 and [ŷi
1, ŷ

i
2] = [1,2]. When ai = 0 and bisµ∗

is = 0, yi = qi = 3 and q̂i
s = ŷi

s.

Now we have Xi = Zi. This property is important when calculating the value functions in

(48), as W l(Xi) =W l(Zi), if Xi is equivalent to Zi. Let p(Zi|Xi,UXi
) denote the transition

probability from state Xi to state Zi with action UXi
.

For a policy πi, define the reward Di and cost functions Ei as

Di = lim
n→∞

1

n

n−1

∑
η=0

E
πi
Xi

{
Ti(η)+Si(η)]

}
(41)
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and

Ei = lim
n→∞

1

n

n−1

∑
η=0

E
πi
Xi

{ Ptot
i (η)

Pmax(η)

}
. (42)

Let ΠE
i denote the set of all admissible control policies πi ∈ Πi, which satisfy the

constraint Ei(η) ≤ 1 in every frame η . Then, (37) can be restated as a constrained

optimization problem given as

maximize Di; subject to πi ∈ ΠE
i . (43)

The problem (43) can be converted into a family of unconstrained optimization

problems through a Lagrangian relaxation [93]. The corresponding Lagrangian function

for any policy πi ∈ Πi and for every βi ≥ 0 can now be defined as

J
πi

β
(Xi) = lim

n→∞

1

n

n−1

∑
η=0

E
πi
Xi

{
Ti(η)+Si(η)−βiEi(η)

}
. (44)

Given βi ≥ 0, the unconstrained optimization problem is defined as

maximize J
πi

β
(Xi) subject to πi ∈ Πi. (45)

A policy for unconstrained problem is also valid for the original constrained control

problem, when βi is appropriately chosen [15], [93].

The problem given in (45) is a standard MDP with the maximum average reward

criterion. For each initial state Xi ∈ Xi, define a corresponding discounted reward MDP

with value function

Wα(Xi) = maximize
πi∈Πi

∞

∑
n=0

E
πi
Xi

{
αnR[UXi

(n),Xi(n)]
}

(46)

where the discount factor α ∈ (0,1), and a reward from taking an action UXi
(η) in state

Xi(η) is defined as

R[UXi
(n),Xi(n)] = Ti(n)+Si(n)−βiEi(n). (47)

Wα(Xi) is defined as the total expected discounted utility for discount factor α [94]. One

way to solve (46) is to use value iteration algorithm (VIA) [15], [94], [95].

For notational simplicity, we suppress the subscript α . The solution to (46), i.e., the

value functions W ⋆(Xi) for each initial state Xi and the corresponding control sequences

π⋆
i ∈ Πi can be solved with the following value iteration algorithm [15], [95]:

W l+1(Xi) = max
UXi

∈UXi

{R(UXi
,Xi)+α ∑

Zi∈Zi

p(Zi|Xi,UXi
)W l(Zi)}. (48)
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In (48), Zi ⊂ Xi is the set of feasible states that follow state Xi by taking an action UXi
,

and l denotes the iteration index. For each initial state Xi, define the control action in

each state Xi as

arg max
UXi

∈UXi

{
R(UXi

,Xi)+α ∑
Zi∈Zi

p(Zi|Xi,UXi
)W ⋆(Zi)

}
. (49)

3.4.2 Resource allocation at the servers

Let X̂s(n) = [ŷ1
s (n), ..., ŷ

|I|
s (n)] represent the system state at server s in frame n with

countable state space X̂s. Let ÛX̂s
(n) = {[µ̂1

s (n), ..., µ̂
|I |
s (n)]} denote the particular

control action in state X̂s(n), and ÛX̂s
(n) is the set of feasible resource allocation options

in each state X̂s(n). In addition, we use π̂s = {ÛX̂s
(1),ÛX̂s

(2), ...} to denote the sequence

of control actions at server s and Π̂s represents the set of all such policies.

For each terminal s, map from the current queue and channel states to a sequence of

actions that stabilizes the system and solves the following optimization problem:

maximize
π̂s∈Π̂s

lim
n→∞

1

n

n−1

∑
η=0

∑
i∈I

E
π̂s

X̂s

{
ŷi

s(η)µ̂ i
s(η)

}

subject to P̂min ≤ lim
n→∞

1

n

n−1

∑
η=0

E
π̂s

X̂s
{P̂s(η)} ≤ P̂max. (50)

The objective encourages allocating bigger fractions of CPU to the VMs of the terminals

with the biggest backlog values at the server. If the current backlog value of terminal i at

server s is inside the instantaneous capacity region, then this objective also encourages

allocating less CPU to the VMs of the terminals with low backlog values and/or run

CPU at slower speeds to achieve energy savings at the server.

Formulation as a Markov decision process

The set of feasible actions in each state X̂s = [ŷ1
s , ..., ŷ

|I|
s ] is the set of all {[µ̂1

s , ..., µ̂
|I |
s ]}

that satisfy µ̂ i
s ≤ ŷi

s and P̂s ≤ P̂max. After taking an action ÛX̂s
, the following state is given

as Ẑs = {[q̂1
s , ..., q̂

|I|
s ]}. State Ẑs that is equivalent to a state X̂s, where q̂i

s ∈ {0,1, ..., ŷi
s},

bisµ∗
is ∈ {0,1, ..., ŷi

s} and q̂i
s + bisµ∗

is = ŷi
s, as described in Subsubsection 3.4.1. Let

p(Ẑs|X̂s,ÛX̂s
) denote the transmission probability from state X̂s to state Ẑs with action

ÛX̂s
. Just as in Subsubsection 3.4.1, (50) can now be solved by converting it into a MDP

and by finding the control policy for this MDP using the VIA.
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3.5 Achievable rates

In this Section, we characterize the fundamental throughput limitations and present the

unified capacity/stability region of the system given in Fig. 1 for both SSP and PSP

cognitive networks as well as for the CWN. As the optimization can be solved separately

for each terminal i and server s, the supportable arrival rate regions can also be derived

separately for the two cases.

3.5.1 Unified arrival rate region at the terminals

Let gi denote the long-term average number of application requests that can be supported

at each terminal i in the CWN. We use ci to denote the long-term average number of

application requests processed at terminal i, cis represents the long-term average number

of application requests delivered from terminal i to server s and gi = ci +∑s∈S cis.

Given ci and cis for the CWN, the long-term average number of application requests

processed at terminal i and the long-term average number of application requests

delivered from terminal i to server s for the cognitive wireless networks are respectively

given as

c∗is = cis p(I = 1)p(Ir = 1) (51)

ć∗i = ci p(I = 1)+ ci0 p(I = 0) = c∗i + c∗i0, (52)

where c∗i = ci p(I = 1) and c∗i0 = ci0 p(I = 0). Here c∗i0 represents the long-term average

number of requests processed at terminal i, when there is no channel available between

terminal i and server s, i.e., ~He
i = 0. Let g∗i = ć∗i +∑s∈S c∗is denote the long-term average

number of application requests that can be supported at terminal i in PSP/SSP cognitive

networks.

Due to the time varying channel conditions between terminal i and the servers, g∗i

must be averaged over all possible channel states. Moreover, for the given channel

states, g∗i is not fixed and depends on control policy πi ∈ Πi for choosing the control

actions. Thus, numerical calculation of all supportable rates g∗i is computationally very

challenging.

However, based on (21) and (22), the supportable arrival rate region at the terminals

can also be defined by considering only the set of policies, where each terminal transmits

at full power in each frame n. Let OHi
⊂ UXi

represent the set of possible options to

allocate the total power Pmax at each terminal i in channel state ~Hi. In addition, we use

OHi
∈ OHi

to denote a total power allocation action at terminal i, when the system is in
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channel state ~Hi. The long-term average transmission rate of terminal i for the full power

policies is given by g∗maxi
. The set of all full power long-term average transmission rates

g∗maxi
that a terminal can be configured to support is now given as

Γ∗ = ∑
~Hi∈Hi

πHi
Conv{µi(OHi

, ~Hi)
∗+

∑
s∈S

bisµis(OHi
, ~Hi)

∗|OHi
∈ OHi

}+ p(I = 0)µmax
i0 , (53)

where

µmax
i0 = Pmax/αi (54)

is the maximum number of requests that can be processed at terminal i, when there is

no channel available between terminal i and server s. For the PSP and SSP cognitive

networks, p(I = 0) = pP
0 and p(I = 0) = pS

0 , respectively. In the CWN, p(I = 0) = 0.

In (53), addition and scalar multiplication of sets are used, and Conv{B} represents

the convex hull of the set B that is defined as the set of all convex combinations

p1v1 + p2v2 + ...+ p jv j of elements v j ∈ V , where p js are probabilities summing to 1.

The throughput region Γ∗ can be viewed as the set of all long-term full power

average service rates g∗maxi
that the terminal can be configured to support. Thus, the

unified supportable rate region ΛT at the terminals for both the PSP and SSP cognitive
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networks as well as for the CWN is the set of all average arrival rates vectors~λ = [λ1,

λ2, ...,λ|I |] for which there exists a control policy πi that satisfies

λi ≤ lim
n→∞

1

n

n−1

∑
η=1

E
πi
Xi
{µi(η)∗+ ∑

s∈S

bis(η)µis(η)∗}+ p(I = 0)µmax
i0 ≤ g∗maxi

(55)

for some g∗maxi
∈ Γ∗, as rates below each point in Γ∗ can likewise be supported.

Specifically,~λ is in the region ΛT if there exists a average service rate vector such that

there exists a control process which supports the rates~λ .

For the CWN, we write λi as λi = λ t
i +∑s∈S λ ts

is , where λ t
i denotes the average

number of supported input requests at terminal i that are processed at terminal i, and

λ ts
is represents the average number of supported input requests at terminal i that are

forwarded from terminal i to server s. In addition, let λ ts
i denote the average number of

supportable input requests processed at terminal i, when bis = 1, and λ t
i = ∑s∈S λ ts

i .

In order to avoid multidimensional illustration of the results, we fix |I |= |S |= 2.

For the channel model given in Section 3.8, the supportable rate region λ
t2
i +λ ts

i2 vs.

λ
t1
i +λ ts

i1 is plotted as a dashed line in Fig. 2 and denoted as ΛTi
. For comparison, the

subset of the region ΛTi
in Fig. 2, illustrates the supportable arrival rate region for the

channels between terminal i and servers, i.e., λ
t1
i = λ

t2
i = 0.

Let λ max
i denote the maximum average number of requests that can be supported

at terminal i in the CWN. It can be seen in Fig. 2, that λ max
i = 8+7 = 15. We have

λ max
i = λ t

maxi
+∑s∈S λ ts

maxis
, where λ t

maxi
denote the maximum number of supported

input requests at the terminal i processed at terminal i and λ ts
maxis

represents the maximum

number of supported input requests at terminal i forwarded from terminal i to server

s. In Fig. 2, it can be seen that λ t
maxi

= 0.5 and ∑s∈S λ ts
maxis

= 8+6.5 = 14.5. Given

λ max
i , the maximum supportable arrival rate at terminal i for the PSP and SSP cognitive

networks is given as

λ cn
maxi

= λ t
maxi

p(I = 1)+ ∑
s∈S

λ ts
maxis

p(I = 1)p(Ir = 1)+ p(I = 0)µmax
i0 . (56)

For the channel model of the CWN given in Section 3.8, the unified supportable arrival

rate region at terminals (ΛT) for both the PSP and SSP cognitive networks as well as for

the CWN is now illustrated in Fig. 3.
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3.5.2 Unified arrival rate region at servers

Let ĝi
s denote the long-term average number of application requests of terminal i

processed at server s, and ĝs =∑i∈I ĝi
s is the long-term average supportable rate at

server s. The long-term average number of application requests ĝs is not fixed and

depends on control policy for choosing the actions.

Let ΛS represent the supportable arrival rate region at server s. In order to calculate

ΛS, we consider only the set of policies that consume the whole P̂max at server s in each

frame n. We use Ôs to represent the set of possible full power allocation options at

server s, and Ôs ∈ Ôs denotes a full power allocation action at server s. One should note

that Ôs ⊂ Ûs. Let ĝmax
s denote the long-term full power average number of requests

processed at server s. The set of full power average number of requests that can be

supported at server s is

Γ̂ = Conv{µ̂1
s (Ôs)+ µ̂2

s (Ôs)+ ...,+µ̂
|I |
s (Ôs)|Ôs ∈ Ôs}. (57)

Specifically, the throughput region Γ̂ can be viewed as the set of all full power long-

term average service rates ĝmax
s that a server can be configured to support. Thus, the

supportable arrival rate region ΛS at server s is the set of all average arrival rates ∑i∈I λ ts
is

50



for which there exists a control policy π̂s that satisfies

∑
i∈I

λ ts
is ≤ lim

n→∞

1

n

n−1

∑
η=1

E{µ̂s(η)} ≤ ĝs ≤ ĝmax
s (58)

for some ĝmax
s ∈ Γ̂ as rates below each point in Γ̂ can likewise be supported.

For comparison, the supportable arrival rate region at server s, ΛS, is illustrated

in Fig. 3 together with ΛT. Since ΛT is a subset of ΛS, it is clear that server s can

support all arrival rates λ inside ΛT. Thus, the network stability region Λ is equal to

ΛT. Stability region is unique for each network and it should not be mixed up with the

stability region of a specific resource allocation policy. The stability region of a resource

allocation policy is a closure of the set of arrival rate vectors~λ that the policy can stably

support, and it is a subset of the network capacity region [12].

3.6 Complexity analysis

In this section, we analyse the complexity of the dynamic control policy proposed in

Section 3.4.

In order to calculate the control policy in (49), we first need to calculate the rewards

in (47) and then the value functions in (48). It is easy to see that the complexity of

calculating the control policy depends not only on the sizes of Xi and X̂s but also on

the number of feasible control options in each state Xi ∈ Xi and X̂s ∈ X̂s. We start with

defining the cardinality of Xi and X̂s.

Let |Xi| and |X̂s| denote the number of states in Xi and X̂s, respectively. In

addition, let |Hi| denote the number of channel states in state space Hi. For arrival rates

inside ΛT, we have limsupn→∞ yi(η) = ymax
i and limsupn→∞ ŷi

s(η) = ŷmax
s for all i ∈ I

and s ∈ S . The total number of states at terminal i is

|Xi|= (ymax
i +1)|Hi|(ŷ

max
s +1)|S | (59)

and the total number of states at servers s

|X̂s|= (ŷmax
s +1)|I |. (60)

The rewards in (47) need to be calculated for each action UXi
∈ UXi

in each state

Xi ∈ Xi. Let |UXi
| and |ÛX̂s

| denote the number of feasible control actions in each state

Xi ∈ Xi and X̂s ∈ X̂s, respectively. In addition, we use µmax
Xi

to represent the maximum

51



number of application requests that can be removed from the buffer of terminal i with

power Pmax in state Xi. The number of feasible actions in state Xi is then given as

|UXi
|= (|S |+1)min{yi,µ

max
Xi

}+1, (61)

and the number of feasible actions in state X̂s as

|ÛX̂s
|= |I |min{∑

i

ŷi
s, µ̂

max
s }+1, (62)

where µ̂max
s = P̂max/αs. The total number of calculated rewards at terminal i and server

s are now given as ∑|Xi| |UXi
| and |X̂s||ÛX̂s

|, respectively.

After calculating all the rewards, we get the value functions W ⋆ by calculating the

value function in (48) l times for each state Xi ∈ Xi until the convergence happens.

Thus, in order to get the value functions, the value functions need to be calculated in

total of l|Xi| times for terminal i and l|X̂s| times for server s. Given the value functions,

the control actions for each state Xi ∈ Xi (X̂s ∈ X̂s) can now be calculated from (49).

3.7 Stabilizing control policies

In this section, we analyse the performance of our dynamic control policy. We show that

the performance of the dynamic policy is better than the performance of the frame based

and stationary policy presented in [10], [12]. In addition, we prove that the frame based

policy, that was proposed to provide performance better than the stationary policy in

[10], [12], does not provide bound for the average queue length.

3.7.1 K-step Lyapunov drift

Our stability analysis relies on Lyapunov drift that specifies a sufficient condition for the

stability of a system with queues. This method is used to prove the stability of different

policies in several publications, such as [10], [12], [14], [38], [39] and [40].

Lyapunov drift at terminal i

The maximum service rate at terminal i is given as

µ∗
maxi

= max{µmax
i ,µmax

i0 }, (63)
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where

µ∗
maxi

= max
{s∈S ,~Hi∈Hi}

µi(Pi)+µis(Pis,his) (64)

and µmax
i0 is given in (54). Such a value exists because the arrival rates are bounded [10],

[12], [14].

Consider the K-step dynamics of unfinished work at terminal i:

qi(t0 +K) = qi(t0)+
t0+K−1

∑
n=t0

ai(n)−
t0+K−1

∑
n=t0

[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗]. (65)

We can write (65) as

qi(t0 +K) = yi(t0)+
t0+K−1

∑
n=t0+1

ai(n)−
t0+K−1

∑
n=t0

[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗], (66)

where yi(t0) = qi(t0)+ai(t0). By adding ai(t0 +K) on both sides of (195), we get

yi(t0 +K) = yi(t0)+
t0+K

∑
n=t0+1

ai(n)−
t0+K−1

∑
n=t0

[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗], (67)

where yi(t0 +K) = qi(t0 +K)+ai(t0 +K). Inserting yi = yi(t0), µ́∗
i + µ∗

is =
1
K ∑

t0+K−1
n=t0

µ́i(n)
∗+∑s∈S bis(n)µis(n)

∗ and ai =
1
K ∑

t0+K
n=t0+1 ai(n) into (67), we have

yi(t0 +K) = yi +Kai −K(µ́∗
i +µ∗

is). (68)

Squaring both sides of (68), defining the Lyapunov function as L(yT) = y2
i and taking

conditional expectations of the inequality given yi(t0), the K-step Lyapunov drift is

given as:

E{L[yT(t0 +K)]−L[yT(t0)]
∣∣yi(t0)} ≤ K2M−2Kyi(t0)×

[
E{

1

K

t0+K−1

∑
n=t0

µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗
∣∣yi(t0)}−E{

1

K

t0+K

∑
n=t0+1

ai(n)
∣∣yi(t0)}

]
, (69)

where

M = (µ∗
maxi

)2 +(amax
i )2. (70)

The above equation represents Lyapunov drift for any resource allocation policy that we

can have for the system and it was first presented in [20].

One should also note that since yi(K) = qi(K)+ai(K), where qi(K) is given in (65),

the policy that minimizes 1
K+1 ∑

K
n=0 yi(n) also minimizes 1

K+1 ∑
K
n=0 qi(n).
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Lyapunov drift at server s

The maximum service rate of terminal i at server s is

µ̂maxi
s , max

{i∈I }
µ̂ i

s(P̂
max). (71)

The K-step dynamics of unfinished work at server s are given by

q̂i
s(t0 +K) = q̂s(t0)+

t0+K−1

∑
n=t0

µis(n)
∗−

t0+K−1

∑
n=t0

µ̂ i
s(n), (72)

that can be written as

ŷi
s(t0 +K) = ŷi

s(t0)+
t0+K

∑
n=t0+1

µis(n)
∗−

t0+K−1

∑
n=t0

µ̂ i
s(n). (73)

By defining Lyapunov function as L(ŷST) = (ŷi
s)

2, the K-step Lyapunov drift is then

given as

E{L[ŷST(t0 +K)]−L[ŷST(t0)]
∣∣ŷi

s(t0)} ≤ K2M̂−2Kŷi
s(t0)×

[
E{

1

K

t0+K−1

∑
n=t0

µ̂ i
s(n)

∣∣ŷi
s(t0)}−E{

1

K

t0+K

∑
n=t0+1

µis(n)
∗
∣∣ŷi

s(t0)}
]
, (74)

where M̂ is given as

M̂ = (µ̂maxi
s )2 +(µmax

is )2 (75)

and µmax
is is defined in (40). Equation (74) represents the Lyapunov drift for any resource

allocation policy yielding service rate µ̂ i
s at server s.

Since ŷi
s(K)= q̂i

s(K)+µis(K)∗, the policy that minimizes maxi∈I

{
1

K+1 ∑
K
n=0 ŷi

s(n)
}

,

also minimizes maxi∈I

{
1

K+1 ∑
K
n=1 q̂i

s(n)
}

.

3.7.2 Randomized stationary policy

In order to support every point in the network stability region described in Section

3.5, it is sufficient to consider only the class of stationary, randomized policies that

take control decisions based on the current channel states only and do not consider

the current workloads. The randomized stationary policy was presented in [12] and it

can be implemented only if the channel steady state probabilities and both the average

long-term capacity and the internal arrival rates c∗is are known in advance. The details on
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the stability analysis and the implementation of a stationary policy can be found in [10],

[12]. Here, we compare the stationary policy and our dynamic control policy to each

other.

The average arrival rates of each terminal i and the average arrival rates of each

terminal i at servers s are assumed to be strictly inside the network stability region Λ, so

that λi +θ ∈ Λ and λ ts
is +θ ∈ Λ. As the the stationary policy does not base its decisions

on the current queue workloads, for every t0 ∈ {0, ....,K − 1} it can be designed to

provide [10], [12]

E{
1

K

t0+K−1

∑
n=t0

µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗
∣∣yi(t0)}−E{

1

K

t0+K

∑
n=t0+1

ai(n)
∣∣yi(t0)} ≥

2θ

3
(76)

for each terminal i and

E{
1

K

t0+K−1

∑
n=t0

µ̂ i
s(n)

∣∣ŷi
s(t0)}−E{

1

K

t0+K

∑
n=t0+1

µis(n)
∗
∣∣ŷi

s(t0)} ≥
2θ

3
(77)

for each terminal i at server s. If a terminal or a server does not have enough (or any)

data to process or send over, null bits are delivered.

Inserting (76) and (77) into right hand side of (69) and (74), respectively, the queuing

bounds for the stationary policy can be given as [10], [12]

limsup
n→∞

1

n+1

n

∑
η=0

E{qi(η)} ≤ limsup
n→∞

1

n+1

n

∑
η=0

E{yi(η)} ≤
3KM

4θ
(78)

for all i ∈ I and

limsup
n→∞

1

n+1

n

∑
η=0

E{q̂i
s(η)} ≤ limsup

n→∞

1

n+1

n

∑
η=0

E{ŷi
s(η)} ≤

3KM̂

4θ
(79)

for all i ∈ I and s ∈ S .

3.7.3 Frame based policy

Frame based policy presented in [10], [12] works like the dynamic policy, but updates

the backlog information every K frames. Given (37) and (50), the frame based policy is

designed to maximize

1

ĴK

Ĵ−1

∑
j=0

( j+1)K−1

∑
n= jK

E

{
[yi( jK)− q̂i

s( jK)]
∑s∈S bis(n)µis(n)

∗

µmax
is

+

yi( jK)[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗]
}

(80)
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at each terminal i and

1

ĴK

Ĵ−1

∑
j=0

( j+1)K−1

∑
n= jK

E{∑
i∈I

ŷi
s( jK)µ̂ i

s(n)} (81)

at each terminal i at server s. The frame based policy was proposed to stabilize the

network and to provide better performance than the stationary policy in [10], [12].

Theorem 1. In order for a policy to provide better performance than the stationary

policy and to satisfy the bounds for average queue lengths in (78) and (79), it should be

designed to maximize

yi(t0)
[
E{

1

K

t0+K−1

∑
n=t0

µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗
∣∣yi(t0)}−E{

1

K

t0+K

∑
n=t0+1

ai(n)
∣∣yi(t0)}

]
> 0

(82)

and

ŷi
s(t0)

[
E{

1

K

t0+K−1

∑
n=t0

µ̂ i
s(n)

∣∣ŷi
s(t0)}−E{

1

K

t0+K−1

∑
n=t0

µis(n)
∗
∣∣ŷi

s(t0)}
]
> 0 (83)

on the right hand sides of (69) and (74) for each terminal i and server s and for every

t0 ∈ {0, ....,K −1}.

Proof. Rewriting (74) as

E{L[ŷST(t0 +( j+1)K)]−L[ŷST(t0 + jK)]
∣∣ŷi

s(t0 + jK)} ≤ K2M̂−2Kŷi
s(t0 + jK)×

[
E{

1

K

t0+( j+1)K−1

∑
n=t0+ jK

µ̂ i
s(n)

∣∣ŷi
s(t0 + jK)}−E{

1

K

t0+( j+1)K

∑
n=t0+ jK+1

µis(n)
∗
∣∣ŷi

s(t0 + jK)}
]

(84)

and summing (84) over j and t0 from j = 0 to j = Ĵ−1 and from t0 = 0 to t0 = K −1,

we get

2K
K−1

∑
t0=0

Ĵ−1

∑
j=0

ŷi
s(t0 + jK)

[
E{

1

K

t0+( j+1)K−1

∑
n=t0+ jK

µ̂ i
s(n)

∣∣ŷi
s(t0 + jK)}−

E{
1

K

t0+( j+1)K

∑
n=t0+ jK+1

µis(n)
∗
∣∣ŷi

s(t0 + jK)}
]
≤ K3M̂Ĵ−

K−1

∑
t0=0

Ĵ−1

∑
j=0

E{L[ŷST(t0 +( j+1)K)]−L[ŷST(t0 + jK)]
∣∣ŷi

s(t0 + jK)}. (85)

If there exists a positive number ρi, such that

[
E{

1

K

t0+( j+1)K−1

∑
n=t0+ jK

µ̂ i
s(n)

∣∣ŷi
s(t0 + jK)}−E{

1

K

t0+( j+1)K

∑
n=t0+ jK+1

µis(n)
∗
∣∣ŷi

s(t0 + jK)}
]
≥ ρi (86)
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for every t0 ∈ {0, ....,K −1} and j ∈ {0, ...., Ĵ}, we can insert ρi on the left hand side of

(85). Now, (85) can be rewritten as

2Kρi

K−1

∑
t0=0

Ĵ−1

∑
j=0

ŷi
s(t0 + jK)≤ K3M̂Ĵ−

K−1

∑
t0=0

Ĵ−1

∑
j=0

E{L[ŷST(t0 +( j+1)K)]−L[ŷST(t0 + jK)]
∣∣ŷi

s(t0 + jK)}. (87)

Taking expectations over the distribution of ŷi
s(t0 + jK), dividing by Ĵ and K2 and using

the non-negativity of the Lyapunov function, we get

2ρi

1

ĴK

K−1

∑
t0=0

Ĵ−1

∑
j=0

E{ŷi
s(t0 + jK)} ≤ KM̂+

1

ĴK2

K−1

∑
t0=0

E{L[ŷST(t0)]}. (88)

Using lim sup on the above inequality, when Ĵ → ∞ yields the performance bound:

limsup
n→∞

1

n+1

n

∑
η=0

E{ŷi
s(η)} ≤

KM̂

2ρi

. (89)

As the derivation of the above bound is similar for (69), it is omitted for brevity.

It is now easy to see that in order for a policy to outperform the stationary policy and

to minimize the long-term average queue length, the policy must be designed to maximize

(82) and (83) at each terminal i and server s and for every t0 ∈ {0, ....,K −1}.

Given (80) and (81), it is easy to see that the frame based policy does not satisfy

Theorem 1. In addition, as the frame based policy is designed to maximize the sum over

all the terminals in (81) and updates queue lengths only every K frame, it is possible that

all/most of the resources are allocated to a single terminal. In such a case,

∑
i∈I

[
E{

1

K

( j+1)K−1

∑
n= jK

µ̂ i
s(n)

∣∣ŷi
s(t0)}−E{

1

K

( j+1)K−1

∑
n= jK

µis(n)
∗
∣∣ŷi

s(t0)}
]
> 0, (90)

but for some individual terminals

[
E{

1

K

( j+1)K−1

∑
n= jK

µ̂ i
s(n)

∣∣ŷi
s(t0)}−E{

1

K

( j+1)K−1

∑
n= jK

µis(n)
∗
∣∣ŷi

s(t0)}
]
< 0. (91)

Thus, the frame based policy does not provide better performance than the stationary

policy and it cannot provide bound for the average queue length as given in (89).
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3.7.4 Dynamic control policy

In this section, we show that our dynamic control policy offers better performance than

the stationary and frame based policy and provides bounds on average delays at each

terminal i and server s.

Theorem 2. Dynamic policy stabilizes the network and the performance of the dynamic

policy is better than the performance of the frame based and the randomized stationary

algorithms.

Proof. Dynamic control policy is designed to maximize (37) at each terminal i and (50)

at each servers s. We rewrite (37) and (50), as

1

ĴK

Ĵ−1

∑
j=0

( j+1)K−1

∑
n= jK

E

{
[yi(n)− q̂i

s(n)]
∑s∈S bis(n)µis(n)

∗

µmax
is

+

yi(n)[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗]
}

(92)

and

1

ĴK

Ĵ−1

∑
j=0

( j+1)K−1

∑
n= jK

E

{
∑

i∈I

ŷi
s(n)µ̂

i
s(n)

}
, (93)

respectively. Noting that yi(n)= yi( jK)+∑
n
η= jK+1 ai(η)−∑

n−1
η= jK [µ́i(η)∗+∑s∈S bis(η)×

µis(η)∗] and ŷi
s(n) = ŷi

s( jK)+∑
n
η= jK+1 µis(η)∗−∑

n−1
η= jK µ̂ i

s(η), we see that the dynamic

policy maximizes

1

ĴK

[
E

{K−1

∑
n=0

[yi(n)− q̂i
s(n)]

∑s∈S bis(n)µis(n)
∗

µmax
is

+ yi(0)[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗]+

[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗]
[ n

∑
η=1

ai(η)−
n−1

∑
η=0

[µ́i(η)∗+ ∑
s∈S

bis(η)µis(η)∗]
]}

+ ...+

E

{ ĴK−1

∑
n=(Ĵ−1)K

[yi(n)− q̂i
s(n)]

∑s∈S bis(n)µis(n)
∗

µmax
is

+ yi((Ĵ−1)K)[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗]+

[µ́i(n)
∗+ ∑

s∈S

bis(n)µis(n)
∗]
[ n

∑
η=(Ĵ−1)K+1

ai(η)−
n−1

∑
η=(Ĵ−1)K

[µ́i(η)∗+ ∑
s∈S

bis(η)µis(η)∗]
]}
]

(94)
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at each terminal i and

1

ĴK

[
E

{K−1

∑
n=0

∑
i∈I

ŷi
s(0)µ̂

i
s(n)+ µ̂ i

s(n)
[ n

∑
η=1

µis(η)∗−
n−1

∑
η=0

µ̂ i
s(η)

]}
+ (95)

E

{ 2K−1

∑
n=K

∑
i∈I

ŷi
s(K)µ̂ i

s(n)+ µ̂ i
s(n)

[ n

∑
η=K+1

µis(η)∗−
n−1

∑
η=K

µ̂ i
s(η)

]}
+ ...+

E

{ ĴK−1

∑
n=(Ĵ−1)K

∑
i∈I

ŷi
s((Ĵ−1)K)µ̂ i

s(n)+ µ̂ i
s(n)

[ n

∑
η=(Ĵ−1)K+1

µis(η)∗−
n−1

∑
η=(Ĵ−1)K

µ̂ i
s(η)

]}
]

at each servers s.

By comparing (80) to (94) and (81) to (95) it can also be seen that unlike the

frame based policy, our dynamic policy allocates more resources to a terminal with

the longest queue so that in every time frame µ́i(n)
∗+∑s∈S bis(n)µis(n)

∗−ai(n) and

µ̂ i
s(n)− µis(n)

∗ are maximized for each queue at terminal i and server s. Thus, our

dynamic policy maximizes the right hand sides of (69) and (74) for all t0 and minimizes

the long-term average queues both at the terminals and at the servers. The dynamic

policy stabilizes the network and its performance is better that the performance of the

randomized stationary or frame based policy.

3.8 Performance evaluation

For illustration purposes, we have evaluated the performance of the dynamic control

policy with simulations. The performance of the optimal dynamic transmission policy is

illustrated in the presence of time varying workloads and uncertain channels both for

CN and PC network as well as for CWN. It is shown that by adapting to the changes in

network conditions, our control policy mitigates the effect of PSP and SSP cognitive

networks on each other. The simulations support our stability analysis presented in

Sections 3.5 and 3.7, and are implemented using Matlab.

3.8.1 Experiment setup

Due to the complexity of the problem, we set |I |= |S |= 2. Although the simulations

are run only for a small system, we would like to point out that the stability analysis

is valid for any size of the system in Section 3.7. The channel process is generated

according to a Markov chain and state transition matrix for the channel between terminal
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i and the hosting servers in the CWN is given as

T =




T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44



=




0.3 0.5 0.2 0

0.1 0.6 0.2 0.1

0.1 0.3 0.5 0.1

0 0.1 0.25 0.65



, (96)

where Tkl is the probability of transitioning from channel state k to l, and the correspond-

ing stationary probabilities p{~Hi = [|h11|
2, |h12|

2]} are given as p{~Hi = [10, 10]}= 0.1,

p{~Hi = [10, 20]}= 0.4, p{~Hi = [20, 10]}= 0.3, p{~Hi = [20, 20]}= 0.2.

For the SSP cognitive network, the probability that the channels between terminal

i and the servers are available for communication is pS
H = 0.9 or pS

H = 0.7, that is

given in (17). The stationary probabilities are then given as p{~Hi = [10, 10]}= 0.09,

p{~Hi = [10, 20]}= 0.36, p{~Hi = [20, 10]}= 0.27, p{~Hi = [20, 20]}= 0.18, p{~Hi = [0,

0]}= 0.1 or p{~Hi = [10, 10]}= 0.07, p{~Hi = [10, 20]}= 0.28, p{~Hi = [20, 10]}= 0.21,

p{~Hi = [20, 20]}= 0.14, p{~Hi = [0, 0]}= 0.3. The probability that PU returns to the

given channel in is pP
return = 0.05.

In the PC network, where the overall resources include both cognitive and con-

ventional links, we assume that the channel between terminal i and server 1 is cog-

nitive and the channel between terminal i and server 2 is a non-cognitive channel.

The probability that the channel between terminal i and server 1 is available for

communication is pS
H = 0.9 or pS

H = 0.7. The stationary probabilities are given as

p{~Hi = [10, 10]}= 0.09, p{~Hi = [10, 20]}= 0.36, p{~Hi = [20, 10]}= 0.27, p{~Hi = [20,

20]}= 0.18, p{~Hi = [0, 10]}= 0.05, p{~Hi = [0, 20]}= 0.05 or p{~Hi = [10, 10]}= 0.07,

p{~Hi = [10, 20]}= 0.28, p{~Hi = [20, 10]}= 0.21, p{~Hi = [20, 20]}= 0.14, p{~Hi = [0,

10]} = 0.15, p{~Hi = [0, 20]} = 0.15. The probability that PU returns to the given

channel between terminal i and server 2 is p
p
return = 0.05.

For a Poisson process, the second moment of arrivals in each frame is finite [12].

Thus, each terminal is assumed to receive requests from applications according to a

Poisson process at an average rate of λi. In the simulations, λi takes values between 1

to 8 requests/frame, and λ1 = λ2. The maximum available power at each terminal is

Pmax = 4W . Let αi = 0.6 in (21), the discount factor α = 0.7 in (46) and αis = 100 in

(22). The Lagrangian multiplier in (44) is fixed to βi = 1. The long-term average sum

power, sum delay, and sum throughput are calculated over N = 20000 frames.

Each CPU is assumed to follow a quadratic power-frequency relationship. Specifi-

cally, CPU is assumed to have a discrete set of frequency options in the interval [1.6GHz,
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..., 2.6GHz] at increments of 0.2 GHz and the corresponding power consumption

(in watts) at frequency f is given by P̂min +θ( f − 1.6GHz)2 where P̂min = 10W and

θ = 10W/(GHz)2. Thus, the CPU power consumption at the highest frequency is 20W .

At each utilization level f , the maximum supportable service rate µmax
is ( f ) is given in

(25), where α̂s = 0.4. Thus, on average, a server running at the minimum (maximum)

speed can process 25 (50) requests per frame.

3.8.2 Numerical Results and Discussions

In the figures we have used the following notations: ’CWN’ - conventional wireless

network, ’CN’ - cognitive network, ’PC’ - partial cognitive network, ’T’- terminals, ’S’-

servers, ’TS’- transmission from terminals to servers and ’NW’ - entire network. In

addition, ’10%’ and ’30%’ represent the probabilities that the channel between terminal

i and server 1 is not available for communication.

The average sum service rates at the terminals (T) and the average sum rates from

terminals to servers (TS) are plotted as a function of λ1 +λ2 for both the CWN and the

PC network in Fig. 4. It can be seen in the figure, that the average sum service rates at

the terminals both in the CWN and the PC network equal λ1 +λ2. In the CWN, almost

all application requests are forwarded to be processed at the servers. In the PC network,

the effect of PSP and SSP cognitive networks on each other is mitigated by processing

considerably more requests at the terminals. If the channel between the terminal and

server 1 is not available for communication, and if the channel between the terminal and

server 2 is bad, the more requests are processed at the terminal, especially when the

arrival rates are low. However, it also can be seen in Fig. 4, that the number of requests

forwarded to the servers gets higher with the increase of λ1 +λ2. This is due to the

smaller processing capabilities at the terminals than at the servers.

The average sum delays at the terminals (T) and the average sum delays over the

entire network (NW) are plotted as a function of λ1 +λ2 for both CWN and PC network

in Fig. 5. It can be seen, that for the given system parameters the processing delay at

the servers decreases as λ1 +λ2 increases, when λ1 +λ2 < 9. This is because, at low

arrival rates, the queues at the servers are short. Thus, in order to maximize (50), it is

more advantageous to delay some of the requests in order to achieve energy savings

at the server. When λ1 +λ2 is large, there is no much processing delay at the servers,

because high arrival rates from the terminals encourage servers to empty their queues by

increasing their processing capabilities. Due to the uncertain availability and reliability
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Fig. 4. Average sum rates vs. λ1 +λ2 for both CWN and PC network.

of the channel between the terminals and server 1 in the PC network, the delay at server

1 is longer in the PC network than in the CWN. Thus, also the overall network delay in

the PC network is longer than that of the CWN. It can also be seen, that the overall

network delay in the PC 30% network is a bit shorter than in the PC 10% network. This

is due to the fact that, even if the channel between the terminals and server 1 is not

available for communication, the channel between the terminals and server 2 is. In

addition, the probability that the transmission over the given channel between terminal i

and server 1 fails is smaller in the PC 30% network than in the PC 10% network, since

p(I = 1)p(Ir = 0) = 0.7×0.5 = 0.35 and p(I = 1)p(Ir = 0) = 0.9×0.5 = 0.45.

The average sum power consumptions both at terminals (T) and servers (S) are

plotted as a function of λ1 +λ2 for CWN and PC network in Fig. 6. As most of the

requests are processed at the servers in the CWN, the power consumption at the servers

is significantly higher than the power consumption at the terminals. Due to the uncertain

availability and reliability of the channel between the terminals and server 1 in the PC

network, terminals consume more power in the PC network than in the CWN. If the

channel between terminal i and server 1 is not available for communication, or if the

channel between terminal i and server 2 is bad, it is more advantageous in terms of

saving the transmission power to process more requests at the terminal. For the given

range of λ1 +λ2, the power consumption at the servers in the CWN is smaller when

λ1 +λ2 ≥ 13 than when 7 < λ1 +λ2 < 13. As mentioned earlier in this chapter, the
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Fig. 5. Average sum delays vs. λ1 +λ2 for both CWN and PC network.
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Fig. 6. Average sum powers vs. λ1 +λ2 for both CWN and PC network.

server consumes at least P̂min even to process only a small amount of data. Thus, the

active servers do not necessarily always process the maximum number of requests

that could be processed with the used power, when 7 < λ1 +λ2 < 13. If λ1 +λ2 is

large, the used power can be better utilized in every frame, and more data can be

processed with the lower power consumption. It can also be seen, that the average sum

power in the PC 30% network is very close to the average sum power in the PC 10%
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Fig. 7. Average sum rates vs. λ1 +λ2 for both CWN and SSP cognitive network.

network. This is because the channel between the terminal and server 2 is non-cognitive

and the probability that the transmission over the given channel between terminal

i and server 1 fails is smaller in the PC 30% network than in the PC 10% network,

i.e., p(I = 1)p(Ir = 0) = 0.7×0.5 = 0.35 and p(I = 1)p(Ir = 0) = 0.9×0.5 = 0.45. In

addition, due to the uncertain link availability and reliability between server 1 and the

terminals, server 1 does not receive as many requests as server 2. However, as severs

consumes at least P̂min to process any amount of data, server 1 consumes almost equal

amount of power as server 2. For the given arrival rates there is not enough requests to

fully exploit the available power at server 1 and that is why the sum power consumption

at the servers increases for all λ1 +λ2.

The average sum service rates at the terminals (T) and the average sum rates from

terminals to servers (TS) are plotted as a function of λ1 +λ2 for both CWN and SSP

cognitive network (CN) in Fig. 7. It can be seen that the average sum service rates at the

terminals equal λ1 +λ2 for both networks supporting our stability analysis in Sections

3.5 and 3.7. However, due to the different network stability regions, the maximum

supportable arrival rates in cognitive wireless networks is smaller than in the CWN. It

can be seen, that the probability to process requests at the terminals is slightly higher

in the CN than in the CWN, when arrival rates are low. This is due to the uncertain

channel availability and reliability between the terminals and the servers. However, for

high arrival rates, most of the requests are processed at the server only also in cognitive
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Fig. 8. Average sum delays vs. λ1 +λ2 for both CWN and SSP cognitive network.

wireless network. For high arrival rates, it is more beneficial in terms of decreasing the

transmission power and the delay to forward the application requests to the servers.

The average sum delays at the terminals (T) and average sum delays over the entire

network (NW) are plotted as a function of λ1 +λ2 for both CWN and CN in Fig. 8.

Due to the uncertain channel availability and reliability between the terminals and the

servers, the delay in the CN is significantly longer than in the CWN. It can also be seen,

that the processing delay at the servers decreases as λ1 +λ2 increases, when λ1 +λ2 is

small. This is because, at low arrival rates, the queues at the servers are short. Thus, it is

more advantageous to delay some of the requests in order to achieve energy savings at

the server. When λ1 +λ2 is large, there is not much processing delay at the servers,

because high arrival rates from the terminals encourage servers to empty their queues by

increasing the capability to process the requests.

The average sum power consumptions both at the terminals (T) and the servers

(S) are plotted as a function of λ1 +λ2 for CWN and CN in Fig. 9. It can be seen in

the figure, that in the cognitive network our policy consumes approximately 10% or

30% less power at the servers than the policy consumes in the CWN. That is due to the

uncertain channel availability between the terminals and the servers in the cognitive

wireless network. It can also be seen, that the power consumption at the terminals in

the cognitive network is slightly smaller or equal to power consumption in the CWN.

The delay in the CN is significantly longer than in the CWN, since the terminals delay
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Fig. 9. Average sum powers vs. λ1 +λ2 for both CWN and SSP cognitive network.

they requests waiting for the available channels or better channel conditions. Thus, the

average power consumption at the terminals in the cognitive network is slightly smaller

than in the CWN.

3.9 Chapter summary

We have considered a virtualized data center (computing cloud) consisting of a set

of servers hosting a number of mobile terminals (a mobile cloud), and have studied

the problem of resource allocation in the presence of time varying workloads and

uncertain channels. The channel uncertainty was either due to fading and/or uncertain

link availability and reliability in PSP/SSP cognitive networks. We have presented

a unified VDC model for both cognitive and conventional wireless networks. For

this unified model, we have designed a new dynamic resource allocation policy that

maximizes the jointly utility of the long-term average throughput and minimizes the

energy consumption, both at terminals and servers, while maintaining network stability.

We have characterized the unified network stability region for both SSP and PSP

cognitive networks as well as for the CWN, and presented a new unified stability

analysis for the three networks. The proposed dynamic policy was shown to support

every point on the network stability region using the Lyapunov drift theory. Performance

evaluation has been carried out in order to compare the performance of dynamic control
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policy in the CWN with the performance of dynamic policy in the SSP/PSP cognitive

wireless networks, and to validate the theoretical analysis of the chapter. The results

have shown that by adapting to the changes in network conditions, our dynamic policy

can mitigate the impact of PSP and SSP cognitive networks on each other. We believe

that the presented approach can be used as a performance benchmark and lays the

foundation for future solutions of different simplified resource allocation schemes in

VDC computing clouds. The major contributions of this chapter can be summarized as

follows:

– A comprehensive unified model of the virtualized data center (computing could) for

both PSP and SSP cognitive networks as well as for CWNs is developed.

– The model decouples performance analysis of PSP and SSP cognitive networks

although their operations are interdependent.

– The mutual impact of PSP and SSP cognitive networks is mitigated by appropriate

adaptation of the access control parameters in the network.

– New unified dynamic control policy is introduced.

– Unified stability region for PSP and SSP cognitive networks and CWNs is character-

ized.

– Unified stability analysis for both PSP and SSP cognitive networks as well as for

CWNs is presented.

– It is shown that the performance of the frame based policy is not better than the

performance of the stationary randomized policy and that the frame based policy does

not provide bound for the average queue length.

– Using the Lyapunov drift theory, it is shown that our dynamic policy supports every

point in the network stability region and that its performance policy is better than the

performance of the stationary randomized policy proposed in [10], [12].
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4 The stability of cooperative cognitive

wireless networks

In this chapter, we propose a number of cooperative strategies in cognitive wireless

networks that generate additional capacity. We consider a mobile cloud with cooperative

communication and queueing, and study the problem of optimal resource allocation in

the presence of uncertain channels. As in Chapter 3, the channel uncertainty is due to

the fading and/or uncertain link availability and reliability both in PSP and SSP CNs.

First, a detailed discussion on the unified system model for both PSP and SSP

cognitive networks and for CWN is presented. For this model, we formulate a unified

optimization problem, where the goal is to assign resources dynamically in reaction

to changes in workloads and channel conditions in order to maximize the long-term

average throughput of the system while providing bound on average delay. As the

control problem is a constrained dynamic optimization problem, dynamic programming

methods are used to provide an optimal dynamic control policy for both PSP and SSP

cognitive networks as well as for CWN.

In order to compare the potential performances of the conventional non-cooperative

(NC) and cooperative communication systems to each other, we establish the unified

network stability regions of the cooperative and NC communication systems for both

PSP and SSP cognitive networks and for CWN. In addition, the concept of Inter

Technology Networking (InTeNet) is introduced to derive an upper bound for the

stability region of the cooperative communication system.

We present a unified stability analysis for both PSP and SSP cognitive networks as

well as for CWNs. We also show that our dynamic control policy minimizes the average

maximum queue length over all terminals and stabilizes the network.

Finally, the simulation results are provided to compare the performance of the

cooperative policy to the corresponding non-cooperative case and to support the

theoretical analysis of this chapter.

This chapter is organized as follows. In Section 4.1, the motivation behind the

research and the related work is presented. The formulation of the unified system

model is described in Section 4.2. In Section 4.3, we model the unified optimization

problem. The unified control problem is formulated as a MDP and solved using VIA in

Section 4.4. In order to compare the potential performances of the NC and cooperative
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communication systems to each other, the unified network stability regions are illustrated

in Section 4.5. Section 4.6 contains the stability analysis and the simulation results are

provided to validate our theoretical analysis in Section 4.7. Finally, some concluding

remarks are offered in Section 4.8.

4.1 Motivation and related work

Here, the motivation behind the work presented in this chapter and the related work on

this area are presented.Fading in wireless channels, the increasing demand for high

data rate services, the limited battery energy available in wireless handsets and the

changing user demands pose serious design challenges in wireless environments that

need to be simultaneously taken into account when planning future wireless transmission

policies in the CWNs. The problem becomes even more complex if the communication

is organized within the SSP cognitive network, where additional disruptions to the

channel are caused by unpredictable returns of users belonging to the PSP CN [85], [96].

It is critical to design efficient control algorithms to adapt to the changes in network

conditions in order to achieve target delay and rate with minimum power consumption.

By using independently fading copies of a signal, diversity techniques can be used to

mitigate the effects of fading and channel uncertainty. The advantages of Multiple-Input

Multiple-Output (MIMO) systems have been widely acknowledged [97]. Although the

use of multiple antennas is clearly advantageous at base stations in cellular system, it

might be impractical in the uplink due to the size, cost and hardware limitations of a

mobile unit.

The broadcast nature of wireless transmissions and work on MIMO systems motivate

the use of cooperative communication to improve the performance of wireless networks

with uncertain channels. User cooperation has been found to allow single-antenna

mobiles in a multi-user environment to reap some of the benefits of MIMO systems by

enabling them to share their antennas and form a virtual multiple-antenna transmitter

[98], [99]. The proposed schemes in cooperative communication area have been shown

to offer significant gains in several metrics such as diversity gains, capacity and power

gains over direct communication and traditional relaying methods [99], [100], [101].

Interested readers are referred to an extensive survey in [102] on this topic.

A variety of techniques such as exploiting diversity, adaptive communication and

power control, are used to combat fading and to meet even more stringent delay, power

and throughput requirements. If the control decisions are based on both the channel
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Fig. 10. A cognitive network.

state and queue length information, taking into account the changing user demands

has been shown to be useful in providing higher throughput and shorter delay in the

presence of time varying channels [11], [12]. Cooperative communication is especially

attractive technique to provide additional reliability offering significant spatial diversity

gains when used together with the above mentioned techniques.

Dynamic cooperation has been also considered in [38] and [103], where a dynamic

control algorithm is a generalization of backpressure algorithms [18]. Our approach is

different in the sense that it includes a number of different cooperative strategies, and it

is one of the first attempts to provide a unified stability region for a cooperative network

both in a CWN and a CN environment.

4.2 System model and assumptions

The cognitive network considered in this work is illustrated in Fig. 10. Each cloud

is composed of an AP and a set of terminals with queues that are located within

transmission range of each other. In a SSP CN, the AP is a cognitive router (CR) serving

a cloud of mobile terminals [104]. In a cellular network, AP is a base station (BS) or a

conventional AP in WLAN. The APs are then connected by a backhaul network to

create the overall network.

In the literature, the term cloud has been used to refer to two different things. Mainly,

the term cloud refers to a static hardware infrastructure, i.e., data center, that consists of

a collection of virtualized servers and forms a large computing system that provides
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Fig. 11. Potential connections between user i and the AP inside the cloud.

users different kind of services like in Chapter 3. Alternatively, the term cloud can also

refer to a set/cluster of terminals sharing a certain pool of resources. For example, an ad

hoc mobile cloud consists of a group of mobile users that share the local resources in the

ad hoc network with each other. In our case, users can borrow temporary channel from

each other or collectively form a distributed MIMO system to repeat the transmission

for a specific user.

Let I represent the set of terminals within a cloud and |I | denotes its cardinality.

Due to the notational complexity to illustrate all possible connections between the

terminals inside the cloud, only the connections between terminal i (i = {1,2, ..., |I |})

and the AP are illustrated in Fig. 11. From the set of potential connections between

terminal i and the AP illustrated in Fig. 11, terminal i selects to connect with an AP

either directly or via another terminal within the cloud. This is illustrated by the solid

lines in Fig. 11.

Time is divided into time frames indexed by n. Application requests arrive to

each terminal i according to a process ai(n) at the beginning of each frame n. The

arrival processes ai(n) are stationary and ergodic with average rates λi requests/slot and

the external arrivals ai(n) are bounded in their second moments every time slot and

E{[ai(n)]
2} ≤ a2

max. Let ~A(n) = [a1(n), ...,a|I |(n)] denote the vector of these arrivals.

For analysis purpose, we assume that the application requests are placed into infinite

length transmission buffers.
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4.2.1 Channel Model

We use hi0(n) to denote the channel state between terminal i and AP in frame n, and

hi j(n) is the channel between terminal i and terminal j. Channel states are assumed

to remain fixed during a frame and change from one frame to another according to a

Markov chain 2. Let vector ~H(n) = [|h10(n)|
2, |h20(n)|

2, ..., |h|I |0(n)|
2, |h12(n)|

2, ... ,

|h1|I |(n)|
2, ..., |h|I |1(n)|

2, ... ,|h|I |(|I |−1)(n)|
2] denote the channel gains in frame n

that represents the cloud of resources shared among the users 3. The vector ~H(n) is

assumed to be stationary and ergodic and takes values on a finite state space H .

If the channel is used within the CWN, the channel gain vector is given by ~H(n) in

every frame n. Let πH represent the steady state probability for the channel state ~H in

the CWN.

When the channel is used within the CN, the equivalent channel gain vector ~He(n)

has the following form:

~He(n) =





~H(n), with probability pP
H for PSP CN or

with probability pS
H for SSP CN

0, with probability pP
0 for PSP CN or

with probability pS
0 for SSP CN

For the PSP cognitive network,

pP
H = (1− pS

1)+ pS
1 ppd (97)

and

pP
0 = pS

1(1− ppd). (98)

Here, we assume that primary user (PU) transmits a preamble prior to message

transmission to clear the channel in case that secondary user (SU) is using it (with

probability pS
1). Secondary user detects correctly that preamble and clears the channel

with probability ppd. Let pP
1 represent the probability that a PU is active and pid is

2The finite state block fading Markov chain has been widely used to model the channel in the literature, e.g.

[12], [15] and [20]. By using block fading model for the channel, we can dynamically generate artificial

channel states that are analytically tractable and provide closed-form results. The assumption that the channels

hold their states during a frame is an approximation, which is valid for systems, whose frames are short in

comparison to the channel variation. In practice, channels may vary continuously.
3This definition differs slightly from the common understanding where the cloud represents a set of computing

resources located in the Internet.
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the probability that a SU detects the idling channel. In that case, in the SSP cognitive

network,

pS
H = (1− pP

1)pid (99)

and the probability that the channel cannot be used is

pS
0 = (1− pP

1)(1− pid)+ pP
1 . (100)

In other words, the channel gains are given by ~H(n), if the PU is not active and the SU

detects the idling channel. The channel is not used, if the primary user is not active

but the SU fails to detect the idling channel or the PU is active (probability pP
1). The

derivation of the probability 1 - pP
1 is given in [88]. Let πHe denote a steady state

probability for channel state ~He in the PSP/SSP cognitive wireless network given as

πHe =

{
pP

HπH/pS
HπH , when ~He = ~H

1− pP
H/1− pS

H , when ~He = 0.

Additional modification of the channel model includes the option in which the

channels towards the APs are owned by the SSP/PSP cognitive network and a separate

band is used for inter terminal communication like Bluetooth or mmWave connections.

This possibility is justified by the assumption that the pair-wise distances between

the terminals are much shorter than the distances between the terminals and the AP.

We call this option InTeNet (Inter Technology Networking) referring to networking

of two different system concepts (e.g., Bluetooth or mmWave and cognitive cellular

networking). One should note that given πHe , πHe , ~He and ~H, the derivation of channel

model in this case is straightforward.

As in Chapter 3, our analysis here also includes what we refer to as "partial cognitive

networks" where the network operator’s overall resources include both cognitive and

conventional (purchased) links [85]. The modification of ~He(n) for such a case is also

straightforward.

4.2.2 Cooperative Strategies

Each terminal has information of their own to send and they might like to cooperate in

order to send this information to the AP at the highest rate possible. Thus, opportunistic

cooperative control decisions within the cloud are required in order to maximize the

long-term average throughput of the network and to maintain acceptably low levels

of unfinished work in all queues. By cooperative decisions we mean that the cloud
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members may choose to either relay data in a non-selfish cooperative manner or to

reassign resources. It is assumed that terminal i can cooperate only with one terminal at

time and that all terminals are willing to help each other inside the cloud, in order to get

help themselves, when needed.

For each feasible cooperative pair (i, j) (i, j ∈ I , i 6= j) in frame n, we define a

parameter mi j(n):

mi j(n) =

{
1, if terminal i cooperates with user j

0, otherwise.

The value of mi j(n) stays fixed during a frame but can change from frame to frame.

Since each terminal i can cooperate only with one terminal at time, ∑ j mi j(n) = 1. Let

M(n) represent the cooperative communication matrix in frame n, defined as

M(n) =




m12(n) m13(n) . . . m1|I |(n)

m21(n) m23(n) . . . m2|I |(n)
...

...
...

m|I |1(n) m|I |2(n) . . . m|I |(|I |−1)(n)



.

Figure 12 illustrates the set of cooperative control options V for each cooperative

pair (i, j). Let |M |= ⌊|I |/2⌋ denote the number of cooperating pairs inside a cloud.

Each frame n is divided into |M | subframes ni j, and each subframe is divided into

3 time slots t. In each subframe ni j, user i always transmits in time slot 1 and user j

( j ∈ I , j 6= i) always transmits in slot 2. This constraint arises from the fact that a

terminal cannot transmit and receive information on the same frequency at the same time.

In the third slot, terminals can cooperate either by relaying or reassigning resources.

When terminals cooperate by relaying, terminal j/i helps terminal i/ j in slot 3 by

forwarding all packets terminal i/ j has transmitted in one of the previous slots, and,

simultaneously, user i/ j repeats its own message from the previous slot. If terminals

reassign resources, terminal i transmits both in its own and third slot of a frame or

terminal j transmits in the second and the third slot of a subframe, as illustrated in Fig.

12. We use V i j(n) ∈ V to represent a cooperative control decision of a cooperative pair

(i, j) in frame n. For notational simplicity, V i j(n) = {0, 1, 2, 3} with values indicated in

Fig. 12. Let ~V (n) represent the vector of cooperative control decisions of all cooperative

pairs (i, j) in frame n.

We denote the transmitted signal of terminal i in slot t by xi(t) and the signal relayed

by terminal j originated from terminal i by xi j(t). In addition, ŷ(t) and ŷi(t) are used
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Fig. 12. Cooperative control options of a cooperative pair (i, j) in subframe ni j.

i transmits j transmits j help i +
i retransmits

i transmits j transmits
i help j +
j retransmits

i transmits j transmits i transmits

i transmits j transmits j transmits

V i j = 0: j relays data of i

V i j = 1: i relays data of j

V i j = 2: reassign resources to i

V i j = 3: reassign resources to j

to denote the received signal at AP and terminal i, respectively. Let w represent the

complex circularly symmetric additive white Gaussian noise (AWGN) with zero mean

and variance σ2. If terminals cooperate by relaying, i.e., terminal j is chosen to help

terminal i in the third slot (i 6= j), the input-output relationship for a subframe is given as

ŷ(t) = hi0(t)xi(t)+w0(t) (101)

ŷ j(t) = hi j(t)xi(t)+w j(t) (102)

ŷ(t +1) = h j0(t +1)x j(t +1)+w0(t +1) (103)

ŷi(t +1) = h ji(t +1)x j(t +1)+wi(t +1) (104)

ŷ(t +2) = h j0(t +2)xi j(t +2)+hi0(t +2)xi(t +2)+

w0(t +2) = h j0(t +2)xi(t +2)+hi0(t +2)xi(t +2)+w0(t +2). (105)

We assume decode-and-forward transmission requiring both the relaying terminal and

the AP to decode the entire codeword without errors.
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If the third slot is assigned to terminal i so that terminal i transmits both in the

first/second and the third slot of a subframe, the received signals are given as

ŷ(t) = hi0(t)xi(t)+w0(t), (106)

ŷ(t +1) = h j0(t +1)x j(t +1)+w0(t +1) (107)

and

ŷ(t +2) = hi0(t +2)xi(t +2)+w0(t +2). (108)

The strategies from Fig. 12 can be generalized by including the help to D users from

|I |−1 users by dividing each frame n into F = |I |+D time slots. The first |I | time

slots are used for each user to transmit their own data. In the additional D slots, one slot

is used to help a particular weak user in such a way that all users are repeating its signal.

This is repeated in D time slots for D weakest users. If the system has only d < D weak

users whose signals in the first transmitted slots cannot provide necessary QoS, then the

system needs to repeat only d transmissions with d possibly dynamically reconfigurable

depending on the overall channel state, resulting in variable frame length F = |I |+d.

We call this strategy a reconfigurable cooperative strategy, which will be considered in

our future work.

4.2.3 Channel Capacities

Let B = 3|M | denote the number of time slots t in frame n. In addition, we use CV i j

i

represent the channel capacity of user i for the given V i j. Given the power constraint

Ptot(t) per user per slot and ~H(n), the channel capacities are given as

C0
i = min

{ 1

B
log2

(
1+

∣∣hi j

∣∣2 Ptot

σ2

)
,

1

B
log2

(
1+

2 |hi0|
2

Ptot +
∣∣h j0

∣∣2 Ptot

σ2

)}
. (109)

C0
j (P

tot,H) =
1

B
log2

(
1+

∣∣h j0

∣∣2 Ptot

σ2

)
. (110)

C1
i (P

tot,H) =
1

B
log2

(
1+

|hi0|
2

Ptot

σ2

)
(111)

C1
j (P

tot,H) = min
{ 1

B
log2

(
1+

∣∣h ji

∣∣2 Ptot

σ2

)
,

1

B
log2

(
1+

2
∣∣h j0

∣∣2 Ptot + |hi0|
2

Ptot

σ2

)}
. (112)
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C2
i (P

tot,H) =
2

B
log2

(
1+

|hi0|
2

Ptot

σ2

)
(113)

C2
j (P

tot,H) =
1

B
log2

(
1+

∣∣h j0

∣∣2 Ptot

σ2

)
(114)

C3
i (P

tot,H) =
1

B
log2

(
1+

|hi0|
2

Ptot

σ2

)
(115)

C3
j (P

tot,H) =
2

B
log2

(
1+

∣∣h j0

∣∣2 Ptot

σ2

)
(116)

Requiring the relaying users and the AP to decode the entire codeword without errors

results in the minimum of the two capacity bounds in (109) and (112). We have assumed

that the system bandwidth is 1 Hz.

4.2.4 Queuing Model

Assuming that mi j(n) = 1, let µi0(n) denote the total service rate from terminal i to the

AP, and µ ji(n) is used to represent endogenous arrivals transmitted from terminal j to

terminal i in frame n. Let ~µ(n) = [µ10(n), µ20(n), ..., µ|I |0(n)] represent the vector of

service rates, and µi(n) = µi0(n)−b ji(n)µ ji(n), where b ji(n) = 1, if user i relays the

packets of terminal j in frame n, i.e., V i j(n) = 1, or b ji(n) = 0 otherwise (V i j(n) = 0,

V i j(n) = 2 of V i j(n) = 3). For simplicity, the service rates ~µ(n) are restricted to integral

multiples of packet lengths.

The arriving packets are placed into infinite transmission buffers that are assumed to

be initially empty. Let ~Q(n) = [q1(n), q2(n), ..., q|I |(n)] represent the vector of queue

lengths in frame n and qi(n) is used to denote the queue length of terminal i in frame n.

In the CWN, the queueing process is given as

qi(n+1) = qi(n)+ai(n)−µi(n). (117)

In the PSP/SSP cognitive network, the queuing dynamics evolve as

qi(n+1) = qi(n)+ai(n)− I(n)µi(n), (118)

where the channel corruption indicator is given by I(n). If the transmission over the

channel fails in the SSP/PSP cognitive network, I(n) = 0. In the PSP cognitive network
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I(n) is given as

I(n) =





0; If SU returns to the channel and does not

detect the presence of PU (collision)

1; Otherwise

Let pS
return denote the probability that SU returns to the channel. Then, we have

p[I(n) = 1] = (1− pS
return)+ pS

return psd (119)

and

p[I(n) = 0] = pS
return(1− psd), (120)

where psd is the probability that SU correctly detects the presence of PU. For the given

channel in the SSP cognitive network, the channel corruption indicator I(n) is given as

I(n) =

{
0; If PU returns to the channel

1; Otherwise

where

p[I(n) = 1] = 1− pP
return (121)

and

p[I(n) = 0] = pP
return. (122)

The PU and SU return probabilities pP
return and pS

return are discussed in [88].

Given the power constraint Ptot(t) per user per slot the queue length and H(n), the

service rates µi(n) should satisfy the following capacity constraint in frame n:

µi(n)≤CV i j

i (n). (123)

It is also assumed that we cannot transmit more packets than there are in the queue.

4.3 Unified optimization problem

In order to derive a unified optimization problem for both CWN and PSP/SSP cognitive

wireless networks, one should note that the service rate for PSP/SSP cognitive networks

can be derived from the service rate of the CWN. When the service rate of terminal i in

the CWN is given by µi0(n), the service rates in the PSP and PSP cognitive networks

can be given as

µi0(n)
∗ = µi0(n)pP

H p[I(n) = 1] (124)
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and

µi0(n)
∗ = µi0(n)pS

H p[I(n) = 1], (125)

respectively. In addition, let ~µ(n)∗ = [µ10(n)
∗, ...,µ|I |0(n)

∗] to denote the vector of

these service rates.

Let yi(n) = qi(n)+ai(n) and~Y (n) = [y1(n), ...,y|I |(n)] denotes the vector of yi(n)s.

We use X(n) = {~Y (n), ~H(n)} to denote the state of the system in frame n with countable

state space X . We use ~VX (n) to represent the vector of control decisions of the |M |

cooperative user pairs in frame n, when the state of the system is X(n) and MX (n) denote

the cooperative communication matrix in state X(n). At the beginning of each frame

n, the network controller decides on the values of MX (n) and ~VX (n), and determines

the transmission rates µi0(n)
∗ on each link by allocating a power vector ~P(n) = [P1(n),

P2(n), ..., P|I |(n)] depending on the entire history of state evolutions. In addition, let

UX (n) ={~µ(n)∗, MX (n), ~VX (n)} represent a control input, i.e., an action, during frame

n in state X(n). The action UX (n) takes values in a general state space UX , which

represents all feasible control options available under state X(n). By feasible options

we mean the set of control actions that satisfy the power and queue constraints, as

we cannot transmit more packets than there are in the queue. Starting from state X ,

let π = {UX (0),UX (1), ...} denote a policy, i.e., sequence of actions, that in frame

n,(n = 0,1, ...), generates an action UX (n) depending on the entire history of previously

chosen state-action pairs UX (η) for η = {0,1,2, ...,n−1}. Let Π denote the state space

of all such policies. We assume that centralized control is possible so that the network

controller has access to full backlog and channel state information.

For policy π , let us now define a parameter zi as

zi =
λi

limn→∞
1
n ∑

n−1
η=0 µi(η)∗

. (126)

The control problem is to map from the current queue states and channel gains to an

optimal sequence of UX (n), i.e., policy π , that stabilizes the system and solves the

following optimization problem:

maximize
π∈Π

lim
n→∞

1

n

n−1

∑
η=0

E
π
X

{
∑

i∈|I |

µi(η)∗
}

subject to max{z1, ...,z|I |} ≤ 1 (127)

In (127), the control decisions are made based on queue length and channel state

information of the terminals within the cloud. Thus, the terminals with a short/empty
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queue and a good channel can help the terminals with a long queue and a bad channel by

relaying packets or by letting the weakest terminals to use the additional time slot. The

idea is to efficiently allocate system resources resulting in significant gains in several

metrics, especially, when the cooperating terminals have different user demands.

4.4 Optimal Control Policy

The control problem given in (127) is a constrained dynamic optimization problem.

One way to solve it is to convert it into an unconstrained problem [41], [42]. The

unconstrained problem is a standard Markov Decision Process (MDP) and we define the

optimal policy for this MDP using the Value iteration algorithm [15], [94].

4.4.1 Formulation as a Markov Decision Process

The set of feasible actions UX in each state X = {~Y , ~H} is the set of all actions that

satisfy the constraint in (123) and we cannot transmit more packets than there are in

the queue. After taking an action UX , the following state is denoted as S. We now let

p(S|X ,UX ) to denote the transmission probability from state X to state S with action UX .

For a policy π ∈ Π, we define reward and cost functions as

D = lim
n→∞

1

n

n−1

∑
η=0

E
π
X{ ∑

i∈|I |

µi(η)∗} (128)

and

E = max{z1, ...,z|I |}, (129)

respectively. Given the constraints in (127), let ΠE denote the set of admissible control

policies π ∈ Π that satisfy (109) - (116) and E ≤ 1. Then, the objective can be restated

as a constrained optimization problem given as [15]

maximize D; subject to π ∈ ΠE . (130)

The problem in (130) is converted into a family of unconstrained optimization

problems through a Lagrangian relaxation [93]. Given (117) and (118), it is easy to see

that a policy that minimizes max{z1, ...,z|I |} is equivalent to a policy that is designed to

minimize max{q1(n+1)}, ..., q|I |(n+1)} in every frame. Thus, the corresponding
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Lagrangian function for any policy π ∈ Π and β ≥ 0 can now be defined as,

Jπ
β (X) = lim

n→∞

1

n

n−1

∑
η=0

E
π
X

{
∑

i∈|I |

µi(η)∗−βmax{q1(η +1), ...,q|I |(η +1)}
}
. (131)

The Lagrangian multiplier β indicates the relative importance of queue lengths over

the throughput; larger value of β corresponds to placing more importance on keeping the

queue lengths short. Given β ≥ 0, we define the unconstrained optimization problem as

maximize Jπ
β (X) subject to π ∈ Π. (132)

An optimal policy for unconstrained problem is optimal also for the original constrained

control problem when β is appropriately chosen [15], [93].

The problem given in (132) is a standard MDP with maximum average reward

criterion. For each initial state X , we define the corresponding discounted cost MDP

with value function

Wα(X) = maximize
π∈Π

E
π
X

{
∞

∑
η=0

αη R[X(η),UX (η)]

}
, (133)

where the discount factor α ∈ (0,1), and the reward from taking an action UX in state X

is defined as

R[X(η),UX (η)] = ∑
i∈|I |

µi(η)∗−βmax{q1(η +1), ...,q|I |(η +1)}. (134)

The value function Wα(X) can be defined as the optimal total expected discounted

reward for discount factor α [94]. One way to solve (133) is to use value iteration

algorithm (VIA) [15], [94].

VIA is a standard dynamic programming approach to recursively compute an

ε-optimal policy π∗ for (133) [95]. For notational simplicity, we drop the subscript α .

The solution to (133), i.e., the optimal value functions W ∗(X) for each initial state X and

the corresponding discount optimal policies π∗ ∈ Π, can be solved with the following

iterative algorithm:

W l+1(X) = max
UX∈UX

{
R(X ,UX )+α ∑

S∈XS

p(S|X ,UX )W
l(S)
}
, (135)

where XS is the set of feasible states that follow state X by taking an action UX , and

p(S|X ,UX ) is the transition probability from state X to state S with action UX . For each

initial state X , define the best action UX for each state X as

arg max
UX∈UX

{
R(X ,UX )+α ∑

S∈XS

p(S|X ,UX )W
∗(S)

}
. (136)
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4.5 Achievable rates

In this section, we characterize the fundamental throughput limitations and establish the

unified stability regions of cooperative and NC communication systems for both SSP,

PSP cognitive networks, and for CWN. In addition, the concept of InSyNet is used

to derive an upper bound for the stability region of the cooperative system with |I |

users inside the cloud. As a performance measure we use a parameter referred to as

"harvested capacity", which is defined as difference in the stability region of the new

cooperative strategies and the stability region of the conventional NC system.

4.5.1 A unified cooperative network stability region

Given the power constraint Ptot per user per slot, let U H
Ptot denote the set of all possible

resource allocation options in channel state ~H that satisfy the power constraint Ptot, and

UH
Ptot ∈ U H

Ptot represents a control action in channel state ~H. Given the power constraint

Ptot per user per slot, let g∗i0 denote the long-term average rate that can be supported by

the channel between terminal i and the AP and g∗ji denotes the long-term average rate

that is supported by the channel between terminals j and i. Let ~G∗ = [g∗1, g∗2, ..., g∗|I |]

denote the vector of average long-term supportable data rates, where g∗i = g∗i0 −g∗ji. We

use gi to represent the long-term rate in the CWN. For PSP and SSP cognitive networks,

g∗i is given as

g∗i = gi p
P
H p(I = 1) (137)

and

g∗i = gi p
S
H p(I = 1), (138)

respectively.

Due to the time varying system state conditions, ~G∗ must be averaged over all

possible channel states. Moreover, ~G∗ is not fixed and depends on transmission policy

for choosing the best actions for each ~H ∈ H . Since the numerical calculation of all

supportable rates ~G∗ is computationally very challenging, we simplify the problem

and consider only the policies that use the maximum power Ptot in every time slot.

Assuming orthogonal scheduling of the cooperative users, the network stability region

can be defined by considering only the set of policies where each active user i uses

maximum transmit power in slot t. Let Û H
Ptot ⊂ U H

Ptot represent the set of all possible

control actions in channel state ~H that use maximum available power in every time slot,

and ÛH
Ptot ∈ Û H

Ptot denote a specific control action belonging to the set Û H
Ptot . In addition,

83



let Ĝ∗ = [ĝ∗1, ..., ĝ∗|I |] represent the long-term average transmission rate vector for the

full power policies. The set of all full power long-term average transmission rates Ĝ∗

that the network can be configured to support, can now be written as:

Γ∗ = ∑
H∈H

πHConv{µ(ÛH
Ptot ,H)∗|ÛH

Ptot ∈ Û
H

Ptot}, (139)

where the addition and scalar multiplication of sets is used, Conv{BH} represents convex

hull of the set BH that is defined as the set of all convex combinations p1b1 + p2b2 +

...+ p jb j of elements b j ∈ BH and p js are probabilities summing to 1. Specifically, Γ∗

represents the set of data rates for set of policies that use maximum power in every time

slot and it is a subset of the total supportable arrival rate region.

The throughput region in (139) can be seen as the set of all long-term full power

average service rates. Thus, the unified stability region of the cooperative communication

system ΛC is the set of all arrival rates vectors~λ = [λ1, ..., λ|I |] for which there exists a

transmission policy π that satisfies

λi ≤ lim
n→∞

1

n

n−1

∑
η=1

E
π
X{µi(η)∗} ≤ ∑

H

πH ĝ∗H (140)

for some Ĝ∗ =∑H πHĜ∗
H ∈ Γ∗, as rates below each point in Γ∗ can likewise be supported.

The average long-term supportable service rates in channel state ~H is given by Ĝ∗
H .

Specifically,~λ is in the region ΛC if there exists a long-term average rate vector ~G∗ such

that there exists a transmission process which supports the rates~λ .

In order to facilitate the illustration of the unified stability region, we fix |I |= 2.

Let λ
p
i , λ s

i denote the supportable rates in PSP and SSP cognitive networks, respectively.

For the channel model given in Section 4.7, the unified cooperative stability region ΛC is

illustrated in Fig. 13, where λi is given as

λi = λ
p
i /pP

H p(I = 1) (141)

for PSP cognitive network and

λi = λ s
i /pS

H p(I = 1) (142)

for SSP cognitive network. One should not that~λ ∈ ΛC is a necessary condition for

stability and ~λ strictly interior to ΛC is a sufficient condition for the system to be

stabilized by a transmission policy [12].
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4.5.2 InTeNet:Inter Technology Networking

For comparison, InTeNet concept that is a hybrid of mmWave and macrocell technology

is introduced to derive an upper bound for the capacity region of the proposed cooperative

communication network. Within a mobile cloud of |I | users, mmWave or Bluetooth

connections are used in such a way that the users mutually exchange their packets to be

transmitted to the AP of the macro network. The incoming mmWave technology can

provide high capacity on short distances and can be used to exchange the data between

the users within the cloud. We can implement this by assuming that the channel between

the users within the cloud is ideal so that infinitesimal slot (of negligible length) is

needed to exchange the data among the users within the cloud. Then, the user with

the best macro channel transmits all data from the cloud to the AP. If the Bluetooth or

separate mmWave channel is used, then intercloud and cloud to AP transmissions can be

active simultaneously.

We start with establishing the stability region of InTeNet, when |I |= 2 and both

users are assumed to have infinite buffers. Users within the cloud know each other’s

data and the maximum supportable rate is achieved when a user with the best channel

transmits the data of both users to the AP. Thus, the maximum supportable long-term
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average arrival rate for the 2-user InTeNet is given as

λi ≤
1

2
∑

H∈H

πH max{log2(1+ |h10|
2Ptot), log2(1+ |h20|

2Ptot)}. (143)

For both PSP and SSP cognitive networks as well as CWN, the unified stability region

of the two-user InTeNet, ΛITN1, is illustrated in Fig. 13, where λi is given in (141) and

(142) for PSP and SSP cognitive networks, respectively.

As |I | grows, the probability that one of the users within the cloud has the best

possible channel increases, and the maximum supportable rate is given as

λi ≤
1

|I | ∑
H∈H

πH max
{

log2(1+ |h10|
2Ptot),

log2(1+ |h20|
2Ptot), ..., log2(1+ |h|I |0|

2Ptot)
}
. (144)

The upper bound for the stability region of the cooperative communication network

can be derived by considering the stability region of an InTeNet, where |I | → ∞. In

this case, each user within the cloud can use the best possible channel between the users

and the AP in each frame given as hmax = max{i,H∈H }{hi0}. The overall capacity from

the cloud to the AP in frame n is then

∑
i∈I

1

|I |
log2(1+ |hmax|2Ptot) = log2(1+ |hmax|2Ptot) (145)

as opposed to the approach without Bloethoot or mmWave, where

∑
i∈I

1

|I |
log2(1+ |hi0|

2Ptot). (146)

Let ΛITN2 represent the stability region of InTeNet, when |I | → ∞. For fair comparison,

we assume that there are only two users within the infinite user cloud that have external

arrivals. The maximum supportable arrival rate region ΛISN2 can now be illustrated in

Fig. 13, that is given as

λi ≤
1

2
{log2(1+ |hmax|2Ptot)}. (147)

4.5.3 Unified non-cooperative network stability region

Let us now consider the NC communication system with queuing, where only direct

communication with the AP is allowed. We use gH∗

NCi to denote the maximum average
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supportable rate with power Ptot under channel state ~H, where the subindex NCi stands

for non-cooperation of user i. For the PSP cognitive network, gH∗

NCi is given as

gH∗

NCi = gH
NCi p1 pP

H p(I = 1), (148)

and for the SSP cognitive network

gH∗

NCi = gH
NCi p

S
H p(I = 1). (149)

The average maximum supportable long-term rate of a two-user non-cooperative network

is represented as

∑
H

πH

1

2
(C2

i (P
tot,H)∗+C3

i (P
tot,H)∗) = ∑

H

πHgH∗

NCi, (150)

where C2
i (P

tot,H)∗ = pP
H p(I = 1)C2

i (P
tot,H) and C3

i (P
tot,H)∗ = pS

H p(I = 1)C2
i (P

tot,H)

for the PSP and SSP cognitive networks, respectively. In order for the non-cooperative

system to be stable, λi must satisfy

λi ≤ lim
n→∞

1

n

n−1

∑
η=0

E
π
X{µi(η)∗} ≤ ∑

H

πHgH∗

NCi. (151)

For the PSP and SSP cognitive networks as well as for the CWN, the unified stability

region of the proposed two-user non-cooperative network, ΛNC, is plotted in Fig. 13,

where it can be compared to the corresponding stability region of the cooperative

communication network ΛC. The difference between ΛC and ΛNC is referred to as

"harvested capacity". It can be seen from the figure that the capacity region achieved by

the cooperative strategy is approximately 38% larger than the capacity region of the

non-cooperative network.

Let us now consider a two-user delay-limited non-cooperative communication

system where neither dropping the packets nor queuing is allowed. Let ΛNC1 denote the

stability region of the delay-limited non-cooperative system. Intuitively, the maximum

supportable rate of the delay-limited system is

λi ≤
1

2
min

{i,H∈H }
log2(1+ |hi0|

2Ptot), (152)

that is also illustrated in Fig. 13.
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4.6 Unified stability analysis

In this section, a unified stability analysis for both PSP and SSP cognitive networks as

well as for CWNs is presented.

We show that if the control actions need to be calculated for each state X like in

Section 4.4, the best network stabilizing policy minimizes the maximum queue length

over all the terminals. Finally, we show that our dynamic control policy stabilizes the

network.

4.6.1 The best network stabilizing policy

The best network stabilizing policy is usually considered to be the one that minimizes

the average queue length for each terminal. However, in our case, where the control

actions need to be calculated for each state X , the best network stabilizing policy is the

one that minimizes the maximum queue length over all terminals.

When the optimal control actions need to be calculated for each state X , like in

Section 4.4, we can minimize the complexity by minimizing the number of states for

which we need to calculate the action. Thus, the smaller the maximum queue length, the

better. Thus, the best network stabilizing policy minimizes

qmax = max{qmax
1 ,qmax

2 , ...,qmax
|I | }, (153)

where

qmax
i = lim supn→∞qi(n). (154)

Let nmax
i represent the index of the frame, when qi(n) = qmax

i . The maximum queue

length can be now given as

qmax
i = qi(n

max
i ) = qi(0)+

nmax
i −1

∑
η=0

ai(η)−µi(η)∗. (155)

Now, inserting (155) into the right hand side of (153), (153) can be rewritten as

max{q1(0)+
nmax

1 −1

∑
η=0

a1(n)−µ1(n)
∗, ...,q|I |(0)+

nmax
|I |

−1

∑
η=0

a|I |(n)−µ|I |(n)
∗}. (156)

The whole network can be defined to be stable, when qmax < ∞. Thus, when

analysing the network stability, it is sufficient to consider only the stability of qmax.
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4.6.2 The K-step Lyapunov drift for qmax

The maximum transmission rate out of a node is µout
max , max{i∈I ,H∈H ,UH

Ptot∈U H
Ptot}

µi(U
H
Ptot ,H). Such a value exists because µi(U

H
Ptot ,H) is bounded [14], [12]. Based on

~He given in Subsubection 4.2.1, µout
max is the same both for SSP/PSP cognitive networks

as well as for CWN.

Consider the unified K-step dynamics of qmax for both SSP/PSP cognitive networks

and for CWNs:

qmax(n0 +K) = qmax(n0)+
n0+K−1

∑
n=n0

max
i∈I

{ai(n)−µi(n)
∗}. (157)

Squaring both sides of (157), defining the Lyapunov function as L(qmax) = (qmax)2 and

taking the conditional expectation given qmax(n0), the K-step Lyapunov drift can now be

given as

E{L[qmax(n0 +K)]−L[qmax(n0)]|q
max(n0)} ≤ K2M−

2qmax(n0)E{
n0+K−1

∑
n=n0

max
i∈I

{µi(n)
∗−ai(n)}|q

max(n0)}, (158)

where

M , (amax)
2 +(µout

max)
2, (159)

amax < ∞ and n0 ∈ {0,1, ...,K −1}.

The inequality in (158) represents the K-step Lyapunov drift for any resource

allocation policy yielding transmission rate vector ~µ(n)∗ and it was first presented in

[20]. The intuition behind the drift is that when the queue length gets sufficiently large,

the right hand side of (158) gets negative, leading to negative feedback and stability [12],

[20].

4.6.3 Network stabilizing policy

In this subsection, we analyse the stability of the proposed dynamic control policy.

Theorem 3. Our dynamic transmission policy minimizes (153) and stabilizes the

network.

Proof. Specifically, our dynamic control policy π∗ is designed to maximize

1

K

n0+K−1

∑
n=n0

∑
i

E
{

µi(n)
∗−βmax{q1(n+1), ...,q|I |(n+1)}

}
. (160)
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Inserting qi(n+1) =qi(n0)+∑
n
η=n0

[ai(η)−µi(η)∗] into (160), we get

1

K

n0+K−1

∑
n=n0

∑
i

E

{
µi(n)

∗−βmax
{

q1(n0)+
n

∑
η=n0

[a1(η)−

µ1(η)∗], ...,q|I |(n0)+
n

∑
η=n0

[a|I |(η)−µ|I |(η)∗]
}}

. (161)

It is easy to see that our dynamic policy is designed to minimize (156). It is also easy to

see that since the dynamic policy allocates the resources so that ∑
n
η=n0

[ai(η)−µi(η)∗]

is minimized over all terminals, the dynamic policy is designed to maximize the right

hand side of (158). Thus, the long-term average maximum queue length is minimized

and, if the arrival rates are inside the network stability region, our dynamic policy

provides a stable network.

4.7 Performance evaluation

For illustration purposes and to validate our stability analysis in Sections 4.5 and

4.6, we evaluate the performance of the optimal dynamic policy π∗ with simulations.

The resulting power, delay and throughput curves of the cooperative policy in the

CWN are compared with the corresponding NC case, where only direct transmission

control option is allowed. Our cooperative policy is shown to achieve significant power

savings and delay improvements over the corresponding NC network. In addition, the

performance of the optimal cooperative policy is evaluated in the presence of uncertain

link availability and reliability both in cognitive and partial cognitive (PC) networks. It

is shown that by adapting to the changes in network conditions, our cooperative control

policy mitigates the effect of PSP and SSP CNs on each other. For simplicity, |I |= 2.

The channel process is generated according to a Markov chain and the channel state

transition matrix for the CWN is

T =




T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44



=




0.3 0.5 0.2 0

0.1 0.6 0.2 0.1

0.1 0.3 0.5 0.1

0 0.1 0.25 0.65



, (162)

where Tḣ,ḧ is the probability of transition from channel state ḣ to ḧ, and the corresponding

stationary probabilities p{~H = [|h10|
2, |h20|

2, |h12|
2, |h21|

2]} are given as p{~H = [10, 10,

500, 500]}= 0.1, p{~H = [10, 100, 500, 500]}= 0.4, p{~H = [100, 10, 500, 500]}= 0.3

and p{~H = [100, 100, 500, 500]}= 0.2.
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Fig. 14. Histogram of the cooperative control decisions of the dynamic control algorithm in

the CWN, when λ2 = 1.

N

control option (V i j)

If the channel is used within the SSP cognitive network, pS
H in (99) equals 0.9 or

0.7, and p{~H = [10, 10, 500, 500]}= 0.09, p{~H = [10, 100, 500, 500]}= 0.36, p{~H =

[100, 10, 500, 500]} = 0.27, p{~H = [100, 100, 500, 500]} = 0.18, p{~H = [0, 0, 500,

500]}= 0.1 or p{~H = [10, 10, 500, 500]}= 0.07, p{~H = [10, 100, 500, 500]}= 0.28,

p{~H = [100, 10, 500, 500]} = 0.21, p{~H = [100, 100, 500, 500]} = 0.14, p{~H = [0,

0, 500, 500]} = 0.3. For the given channel, the probability that I = 1 in (121) is

p(I = 1) = 0.95.

In the PC network, where the overall resources include both cognitive and conven-

tional links, we assume that the channel between the U2 and the AP is cognitive and

the channel between U1 and the AP is non-cognitive. The probability that the channel

between U2 and AP is available for communication is 0.9 or 0.7, and p{~H = [10, 10, 500,

500)}= 0.09, p{~H = [10, 100, 500, 500)}= 0.36, p{~H = [100, 10, 500, 500)}= 0.27,

p{~H = [100, 100, 500, 500]} = 0.18, p{~H = [100, 0, 500, 500]} = 0.05, p{~H = [10,

0, 500, 500]} = 0.05 or p{~H = [10, 10, 500, 500]} = 0.07, p{~H = [10, 100, 500,

500]}= 0.28, p{~H = [100, 10, 500, 500]}= 0.21, p{~H = [100, 100, 500, 500]}= 0.14,

p{~H = [100, 0, 500, 500]} = 0.15 , p{~H = [10, 0, 500, 500]} = 0.15. For the given

channel between U2 and AP, the probability that I = 1 in (??) is p(I = 1) = 0.95.

For a Poisson distributed process, the second moment of arrivals in each frame is

finite [12]. Thus, the arrivals are bounded in their second moments every time slot and
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Fig. 15. Average service rates for the optimal policy in the CWN as a function of λ1 for both

cooperative and NC systems, when λ2 = 1.

E{[ai(n)]
2} ≤ a2

max according to a Poisson distributed process. The average arrival rate

of user 2 (U2) is fixed to 1 packet/frame. The average arrival rate of user 1 (U1), λ1, gets

values inside the network stability region, i.e., λ1 varies between 1 to 6 packets/frame.

The discount factor in (133) is α =0.7 and the Lagrangian multiplier in (132) is defined

as β = [0.5,0.5]. The long-term average power, delay, and throughput are calculated

over N = 20000 frames.

Fig. 14 illustrates the histogram of the cooperative control decisions of the optimal

dynamic policy in the CWN, when λ1 varies from 1 to 6. On the horizontal axis,

the control options are represented as: 0 corresponds to a case where no packets are

transmitted, 1 corresponds to V i j = 0 (U2 helps U1 in slot 3), 2 corresponds to V i j = 1

(U1 helps U2 in slot 3), 3 corresponds to V i j = 2 (U1 transmits in both slot 1 and slot 3),

and 4 corresponds to V i j = 3 (U2 transmits both in slot 2 and slot 3). It can be seen in

the figure, that the number of V i j = 0 and V i j = 2 actions increases, and the number

of V i j = 1 and V i j = 3 actions decreases, as λ1 increases. This is because U2 starts to

help U1 with the increase of λ1 since it is more beneficial (in terms of stability and

throughput) for the system to choose more V i j = 0 and V i j = 2 actions as the queue

length of U1 grows.

In Fig. 15, the long-term average service rates of the optimal control algorithm in the

CWN for both cooperative and NC systems are plotted as a function of λ1, when λ2

was fixed to 1 packet/frame. It can be seen from the figure that the average service rate
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Fig. 16. Average delay for the optimal policy in the CWN as a function of λ1 for both cooper-

ative and NC systems, when λ2 = 1.
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Fig. 17. Average powers for the optimal policy in the CWN as a function of λ1 for both

cooperative and NC systems, when λ2 = 1.

equals λi for both cooperative and NC systems. This supports the stability analysis in

Section 5.7, since λ1 = 6 and λ1 = 4.5 are on the boundaries of the stability regions of

the cooperative and NC networks illustrated in Fig. 13.

The long-term average delays of the optimal control policy in the CWN for both

cooperative and NC systems are plotted as a function of λ1 in Fig. 30. The arrival rate
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Fig. 18. Average delays of the optimal cooperative policy in the CWN as a function of λ1 for

different values of β , when λ2 = 3.

of U2 was fixed to 1 packet/frame. Due to the low λ2, the curves (U2 CWN NC) and

(U2 CWN) have values close to zero. It can also be seen that the help U2 provides to

U1 does not have affect on the delay of U2. However, it can be seen that cooperative

communication provides significant reduction in the delay of U1 compared with the NC

system. Due to the very different user demands, U2 can help U1 in the cooperative

communication network so that the delay of U2 stays low. In addition, the results in Fig.

30 support the stability analysis in Section 5.7, since the average delays in Fig. 30 are

bounded on the boundaries of the stability regions of the cooperative communication

and NC communication networks.

Fig. 31 illustrates the long-term average powers of the dynamic control algorithm

in the CWN versus λ1, when λ2 = 1. It can be seen that the power of U1 required

for cooperative communication is significantly smaller than the power of U1 used for

NC communication. However, due to the help U2 provides to U1 in the cooperative

communication system, U2 requires more power in the cooperative case than in the

NC case. The difference between these two curves represents the power that U2 use

for helping U1 in the cooperative network. Nevertheless, one should notice that the

increase in the power of U2 in the cooperative communication network is still lower

than the power savings of U1 which results in overall power savings in the cooperative

communication system. Without any loss in throughput or the delay of U2 in the
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cooperative communication network, U2 can utilize some of its power to cooperate with

U1, since λ2 is low. As mentioned before, it becomes more likely to choose action VX =

2 than action VX = 0 when λ1 is high. That is why U1 CWN curve crosses U2 CWN

curve as λ1 gets high.

In Fig. 18, the long-term average delays of U1 and U2 are plotted as a function of

λ1 for different values of β in the CWN, when λ2 = 3. Larger values of β correspond

to placing more importance on queue lengths increasing the probability to choose an

action that keep the delays of both users low. That is why the delay of U1 decreases as

the value of β increases at high λ1 values. The procedure to calculate the optimal β is

omitted due to the page limit and computational complexity of the problem. 4

In addition, the performance of the cooperative policy in the PC network is compared

with the performance of the cooperative policy in the CWN by simulations, when

the arrival rate of U1 varies between 1 to 6 packets per frame and λ2 = 1. The

probabilities that the channel between U2 and AP in the PC network is not available

for communication are set to 10% and 30%. The simulation results show, that for the

cooperative algorithm in the PC network the long-term average service rates equal to the

long-term average arrival rates for all users. As the maximum supportable arrival rate of

U1 in the presence of both 10% and 30% link uncertainty is 5.5 packets/frame, our

dynamic policy provides very good performance even in the presence of link uncertainty

between U2 and the AP. However, we omit the figure due to the lack of space.

The long-term average delays of U1 and U2 for the cooperative policy are plotted

as a function of λ1 for both PC network and CWN in Fig. 19, when λ2 = 1. In the

PC network, the probability that the channel between U2 and AP is not available for

communication is 10% or 30%. It can be seen, that by adapting to changes in network

conditions, our optimal policy mitigates the effect of link uncertainty providing delays

only slightly longer or equal to the delays of the CWN. This is due to the fact that even

if the channel between U2 and the AP is not available for communication, it is possible

to use the channel between U1 and AP instead. The use of the channel between U1

and AP instead of the one between U2 and the AP results into slightly higher power

4Remark: It can be shown by simulations that the average delay is monotone non-increasing in β . Thus, in

principle, it is possible to implement an iterative algorithm to compute β that keeps the delay under certain

bound. Start with an arbitrary choice of β such that β > 0 and compute the optimal transmission policy and

the long-term average delays for every combination of λ1 and λ2 inside the stability region (see Fig. 13). If the

average delay of one or both users is higher (lower) than the given bound for any combination of the arrival

rates, decrease (increase) the value of β and recompute. Repeat until the desired value for the delay is reached.

The monotonicity property guarantees the convergence of this iteration.
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Fig. 19. Average delays for the optimal cooperative policy as a function of λ1 for both CWN

and PC network, when λ2 = 1.
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Fig. 20. Average powers for the optimal cooperative policy as a function of λ1 for both CWN

and PC network, when λ2 = 1.

consumption in the PC network than in the CWN as can be seen in Fig. 21. Due to the

uncertain link in the PC network, the delay of U2 is slightly longer in the PC network

than in the CWC, as can be seen in Fig. 19.

In Fig. 20, the long-term average powers of the cooperative control policy are plotted

as a function of λ1 for PC network and CWN. It can be seen from the figure that the

transmission powers of U2 for PC network are lower than the transmission power of U2
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Fig. 21. Average sum powers for the optimal cooperative policy as a function of λ1 for both

CWN and PC network, when λ2 = 1.

for CWN. This is because there are less V
i j
X = 0 and V

i j
X = 3 actions in the PC network

than in the CWN, due to the uncertain link availability between U2 and the AP. However,

in order to keep delay of both users as short as possible, it is possible to use the channel

between U1 and the AP when the channel between U2 and the AP is not available for

communication. Thus, an increase in the number of V
i j
X = 1 and V

i j
X = 2 actions increases

the power usage of U1 in the PC network, as can be seen in Fig. 20.

Finally, the performance of the cooperative policy in the SSP cognitive network is

compared with the performance of the cooperative policy in the CWN by simulations.

The SSP cognitive network stability region is illustrated in Fig. 13, where the long-

term maximum supportable arrival rates in SSP cognitive network are pS
H p(I = 1)6 =

0.9× 0.95× 6 = 5.13 packets/frame and 0.7× 0.95× 6 = 3.99 packets/frame. The

simulation results support the stability analysis in Section 5.7, since the arrival rates

are equal to the service rates even on the boundary of the stability region of the SSP

cognitive network. We omit the figure due to lack of space.

In Fig. 22, the average long-term delays for the cooperative policy are plotted as a

function of λ1 for both CWN and SSP cognitive network (CN). The probabilities that the

channels are not available for communication in the SSP cognitive network are pS
0 = 0.1.

and pS
0 = 0.3. It can be seen in Fig. 22, that our dynamic control policy provides bound

on long-term average delays when arrival rates are inside the stability region of SSP

cognitive network. Furthermore, the uncertain link availability in SSP cognitive network
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Fig. 22. Average powers for the cooperative policy as a function of λ1 for CWN and SSP

cognitive network, when λ2 = 1.

results in only slightly higher power consumption in the SSP cognitive network than in

the CWN as illustrated in Fig. 23.

4.8 Chapter summary

In this chapter, we have considered a unified model of cooperative communication

network with uncertain channels and queuing for both PSP and SSP cognitive networks as

well as for CWNs. For this model, we have created a unified optimization problem, where

the goal was to map from the current queue states and channel gains to opportunistic

cooperative control decisions that maximize the long-term average throughput of the

system while maintaining queue stability. Dynamic programming methods and VIA are

used to solve the unified dynamic optimization problem, and to generate an optimal

control policy that maximizes the long-term average throughput.

In order to compare the potential performances of cooperative and non-cooperative

communication systems to each other, we have characterized the unified capacity regions

of the different networks for both PSP and SSP cognitive networks and for CWNs.

The capacity region of the cooperative system was found to be 40% larger than that of

the corresponding non-cooperative system. In addition, the concept of InTeNet was

proposed to provide a performance upper bound for different networks.
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Fig. 23. Average delays for the cooperative policy as a function of λ1 for CWN and SSP

cognitive network, when λ2 = 1.

We have presented a unified stability analysis for both PSP and SSP cognitive

networks as well as for CWNs. Finally, we showed that our dynamic policy minimizes

the average maximum queue length over all terminals and stabilizes the network.

Simulation results were provided to compare the performance of our dynamic

cooperative policy to the performance of the corresponding non-cooperative case and to

validate the theoretical analysis of this chapter. The results showed that by adapting to

changes in network conditions, dynamic cooperative policy can mitigate the impact of

PSP and SSP cognitive networks on each other.

The contributions of this chapter can be summarized as follows:

– A comprehensive unified cooperative network model for both PSP and SSP CNs as

well as for CWN was developed.

– The model decoupled performance analysis of PSP and SSP CNs

– Two new cooperative control policies were introduced.

– We illustrated the unified stability regions for different networks.

– We showed that our optimal control policy minimizes the maximum queue length and

stabilizes the network.
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5 Dynamic reconfigurable wireless internet

topology control and stability

In this chapter, a new paradigm in wireless network access is presented and analyzed.

We consider an advanced wireless technology in which each terminal in an ad hoc or

multi-hop cellular network can be turned into an AP any time it is connected to Internet.

This leads to a dynamically changing topology, since the number and location of these

APs can vary in time. With a slight modification of the existing technology a personal

computer connected to Internet can serve as an AP, and nowadays even smart phones

are designed to have such features [105]. Such technology creates a possibility that a

number of potential APs can be activated to create a backhaul network and to serve a

set of wireless terminals in their vicinity in an optimal way in accordance with some

optimization criteria.

The goal is to control the network topology and the resource allocation in order

to maximize the network performance with the minimum power consumption and to

stabilize the network. The joint selection of the number of active APs and the optimal

connections between the APs and the terminals in a wireless network is formulated

as a dynamic optimization problem. We reformulate the dynamic problem into a

MDP and use VIA to get an optimal dynamic control policy that adapts to the changes

in network conditions and solves the problem. However, as the proposed optimal

control policy assumes complete knowledge of the full system state information, we

identify the computational complexity of the problem, and use approximate dynamic

programming methods [16] and one step VIA to provide close to optimal and sub-

optimal control policies that make the implementation more feasible with controllable

loss in performance.

We then illustrate the network stability region and the stability regions of the optimal,

close to optimal and sub-optimal policies. By comparing the stability regions of the

proposed policies to each other, we can evaluate the performances of the optimal, close

to optimal and sub-optimal policies.

In addition, the K-step Lyapunov drift are used to analyse the stability and the

performance of the optimal control policy. We show that, if the arrival rates are inside

the network stability region, our optimal control policy stabilizes the network.
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Finally, the simulation results are provided in order to support the theoretical analysis

of this chapter and to compare the performance of the optimal, close to optimal and

sub-optimal policies to each other.

This chapter is organized as follows. In Section 5.1 the motivation behind this

research and the related work is presented. Additional background on methods used in

this work is presented in Section 5.2. Section 5.3 describes the system model and in

Section 5.4 we formulate the optimization problem. In Section 5.5, we reformulate

the dynamic problem as a MDP, and use VIA to calculate the optimal control policy.

Approximate dynamic programming methods and one step VIA are used to provide

suboptimal solutions in Section 5.6. The network stability region is illustrated in Section

5.7 and in Section 5.8 we compare the performance and the complexity of different

algorithms to each other. In Section 5.9, we analyse the stability and the performance of

the proposed dynamic control policy. The simulations are conducted to validate the

theoretical analysis of the work in this chapter and presented in Section 5.10. Finally,

some concluding remarks are offered in Section 5.11.

5.1 Motivation and related work

In this section, the motivation behind the research and the related work on this area are

presented.

5.1.1 Motivation

Due to the fast development of portable devices equipped with advanced technology

and diversified services of fixed Internet, it is desirable that mobile terminals inside

the ad hoc or multihop cellular network are able to connect directly to the external

networks such as Internet. In addition, as more and more advanced devices become

mobile, the ability to change the point of attachment to the Internet without the need to

terminate any ongoing communications will be a necessity. Such a technology has been

introduced as a potential way to overcome the resource restrictions on mobile computing

[52] allowing mobile users to achieve a wide variety of mobile services at low cost [59].

In this chapter, a novel approach for integrating an ad hoc or multi-hop cellular

network and the Internet is presented, where a set of wireless terminals (personal

computers or smart phones) in an ad hoc network can be turned into access points (APs)

on demand and any time when connected to the Internet. Thus, the APs can be even
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mobile. This provides substantial advantages enabling adaptation to wide range of traffic

demand variations without any change in network infrastructure still offering direct

access to the diversified services of Internet. Our approach reduces network design costs,

since adding additional gateways is expensive in terms of hardware and labor required

to install and determine the optimal configuration of the APs, which depends on the

instantaneous distribution of the traffic. When the spatial traffic distribution changes,

some parts of the pre-installed network infrastructure may become idle, that reduces the

efficiency of the pre-investment into the network. In our solution, the network can grow

and shrinks according to the changes in the spatial distribution of the traffic.

5.1.2 Related work

There are several issues that need to be taken into account when the integration of an ad

hoc or multi-hop cellular network and Internet is considered. As a terminal in an ad hoc

or multi-hop cellular network can freely move around, the highly dynamic topologies of

such networks makes the integration procedure challenging. Since APs to Internet act as

gateways between ad hoc terminals and the fixed Internet, they are likely to have heavy

traffic. Therefore it is likely that these APs become bottleneck nodes if no attention is

paid to enhance the availability and optimal selection of the APs.

A number of strategies to support the connectivity between ad hoc network and

Internet have been proposed so far. A review of such strategies has been presented in

[106]. If there are several reachable APs for a mobile terminal at some point of time,

the most suitable AP can be selected according to a certain metric, e.g. strength of the

received signal, number of hops between the terminal and the AP, shortest Euclidean

distance [107], AP load [108], residual capacity [109], fairness [110] or combinations

of some these criteria [107], [111]. A number of AP selection strategies have been

proposed so far [106], [112], [113], [114], [115], [116]. Most of them are based on

simple hop count approach [117], [118], where a mobile terminal chooses the AP that is

closest in terms of number of physical hops. The advantages of using the shortest path

selection strategy is its simplicity, low price and rapid convergence. However, if all

terminals select the nearest AP, this AP can become a bottleneck. As a solution, Huang

et al. [113] proposed Minimum Load Index (MLI) approach that was used to select the

optimum AP based on the load of the AP. Although the MLI approach was designed to

take into account the balance between the APs’ loads, it does not consider loads along

the path between the mobile host and the AP. In addition, creating the accurate estimate
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of current load at the AP might be challenging due to the rapid fluctuations of the traffic.

As a solution, the work in [119] improves the load based selection scheme by proposing

an AP selection strategy based on Running Variance Metric (RVM) [115] and Relative

Network Load (RNL). In [115], an AP with the least congested path to the terminal is

chosen as an optimal AP based on the variance of the time that elapses between the

receptions of two successive advertisement messages. A different approach for the AP

selection problem was proposed in [116], where the Internet AP selection problem was

formulated as a mixed integer linear program and the results were compared to the

performance of the minimum hop count and load based schemes. It was shown that by

formulating the AP selection problem as a linear program, significant performance

improvement can be achieved compared to the conventional methods based on load, hop

count and proactive routing protocols. The downside of this approach is its impracticality

in real world mobile ad hoc networks. Each of the selection strategies proposed so far

has their own weaknesses and benefits, thus motivating further research on the selection

schemes of Internet APs using different algorithms based on some other metrics.

While some of the previous works use additional pre-installed APs [116], [120],

[121], [122], others use mobile APs or the combination of the two. However, so far

we have not seen any approach where the number and the location of APs can vary in

time. As our dynamic optimization approach makes it possible to choose the optimal

topology adaptively from the set of potential APs that the terminal can reach through

the wireless links, dynamic programming is expected to lead to a stable network and

better performance than the conventional AP selection methods. Since the conventional

algorithms fail to adapt to the changing network conditions, they are not able to fully

harvest the available capacity in the network.

5.2 Background

In this section, additional background on methods used in this chapter are presented.

5.2.1 Preclustering

To meet the increasing demand for high data rate services and to increase the energy

efficiency of wireless handsets, wireless mobile operators are moving toward smaller

cell/femto cell structures. However, these structures are pre-installed, expensive and not

adaptive to the changes in the traffic distribution.
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So as to benefit the small cell structure in practice, there is a need to mitigate the

interference between collocated femtocells [123], [124], [125]. The frequency reuse

factor used to mitigate the interference in macro cellular network can be useful to

mitigate interference also in small cell networks. However, the reuse solutions proposed

for macro cellular networks might be impractical in small cell networks. In this case,

a careful attention should be paid to minimizing the number of used frequencies in

the network while at the same time providing sufficient transmission quality for all

terminals in the network. It was shown in [108] that the optimal solution for a joint AP

selection and channel assignment problem in cellular networks in terms of minimizing

the number of orthogonal channels for given load and reuse factor provides gain in

blocking probability compared to other solutions. In [126], clustering is shown to

significantly decrease the power consumption in wireless local area network (WLAN).

In order to simplify the optimization of large networks, we introduce the preclustering

technique to segmentize the network into smaller subnetworks. Different from the

fractional frequency reuse solutions proposed for macrocells, in our case, the location

and the size of the clusters can also vary in time. By adapting to the changes in network

conditions, the preclustering technique can jointly maximize the network performance

and minimize the number of used frequencies in the network. This makes the use of

frequency reuse factor practical also in small cell networks.

5.3 System model and assumptions

The dynamic network architecture (DNA) considered in this chapter is illustrated in Fig.

24. The network consists of L potential APs and N terminals. Let L denote the set of

potential APs in the network and N represents the set of terminals in the network. Let

Un (n = {1, 2 ,..., N}) denote the nth terminal and APl (l = {1, 2 ,..., L}) denotes the

lth AP. Time is divided into slots t, and M(t) out of L potential APs are chosen to be

active in each time slot. Thus, we have M(t) ∈ {0,1, ...,L}. An AP is said to be active,

if a terminal can use the given channel to connect to Internet via the AP. Let M (t)

(M (t)⊂ L ) represent the set of active APs in slot t, m ∈ M (t) and APm represents mth

active AP. If M(t) = 0, M (t) = {}.

At the beginning of each slot t, fixed size packets (each of length b bits) arrive to

each terminal Un. The arrival processes an(t) are stationary and ergodic with average
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Fig. 24. System model, Dynamic Network Architecture (DNA)

rates λn packets/slot. Thus,

lim
t→∞

1

t

t−1

∑
τ=0

E{an(τ)}= λn, ∀ n ∈ N (163)

with probability 1 [10]. We assume that the arrivals an(t) are bounded in their second

moments every time slot, so that E{[an(t)]
2} ≤ a2

max. Let~λ= [λ1, ...,λN ] denote the

vector of average arrival rates λn.

Let T represent the set of all possible network topologies, i.e., the set of all different

connections between the terminals and the active APs. In addition, let T (t) ∈ T denote

a specific network topology of (Un,APm)-connections in slot t. Let ϑnm(t) denote a

binary variable in time slot t given as

ϑnm(t) =

{
1; If terminal n is connected to APm.

0; Otherwise.

We assume that each terminal Un cannot be connected to more than one active AP at a

time. Thus, ∑m∈M (t) ϑnm(t)≤ 1 for each terminal Un.

Each time slot t can be further divided into △(t) subslots t̂ for scheduling on a

TDMA principle. Subslot t̂ = {1, ...,△(t)} and △(t) ∈ {1, ...,N}. One should note that

the terminals connected to different APs transmit at different subslots △(t) according to

the TDMA. However, the terminals connected to the same AP transmit simultaneously

in one time slot if N = 2 or at least in 2 subslots if N > 2, as illustrated in Fig. 25.

Let µnm(t) denote the service rate between terminal Un and an active access point

APm in slot t and qn(t) represents the backlog of terminal Un in slot t. The queuing

dynamics are given as

qn(t +1) = qn(t)+an(t)− ∑
m∈M (t)

rnm(t), (164)

106



Fig. 25. Feasible time slot allocations and (Un,APm)-connections for a system with 2 terminals

and 2 APs in time slot t, when M(t)≥ 1.

where rnm(t)= ϑnm(t)µnm(t). Let~r(t)= [∑m∈M (t) r1m(t), ∑m∈M (t) r2m(t), · · · , ∑m∈M (t)

rNm(t)] and ~Q(t) = [q1(t),q2(t), · · · ,qN(t)] represent the vectors of service rates and

queue lengths at the terminals in slot t, respectively. In addition, let yn(t) = qn(t)+an(t)

and~Y (t) = [y1(t), ...,y|I |(t)] denote the vector of yn(t)s.

A block fading model for the channel is assumed so that the channel gains remain

fixed during a slot and change from slot to slot according to a Markov chain 5. We use

~Hn(t) = [|hn1(t)|
2, |hn2(t)|

2, · · · , |hnL(t)|
2] ∈ Hn to denote the vector of channel gains

between terminal Un and access point APl , and H(t) represents N ×L channel gain

matrix in slot t. The channel process H(t) is stationary and ergodic and takes values on

a finite state space H . Let πH represent the steady state probabilities for the channel

states H.

Let Pn(t) represent the power consumption of terminal Un in time slot t, and Pmax is

the maximum power available at each terminal in time slot t. We use ~P(t) = [P1(t), · · · ,

PN(t)] to denote the vector of power consumption levels at terminals.

Given Pn(t) and Hn(t), the service rate µnm(t), i.e., the number of packets transmitted

from terminal Un to an active access point APm should satisfy the following constraint

µnm(t)≤Cnm(t) (165)

5The finite state block fading Markov chain has been widely used to model the channel in the literature, e.g.

[12], [15], [20]. The model has been used to mathematically characterize Rayleigh fading channel in [86] and

[87]. Using block fading model for the channel, we can dynamically generate artificial channel states that are

analytically tractable and can provide closed-form results. The assumption that the channels hold their states

during a slot is an approximation, which is valid for systems, whose slots are short in comparison to the

channel variation. In practice, channels may vary continuously.
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where

Cnm(t)≤
1

△(t)b
log(1+

|hnm(t)|
2Pn(t)

N0 +∑i∈I ,i 6=n,z 6=m |hiz(t)|2Pi(t)
). (166)

It is also assumed that we cannot transmit more packets than there are in the queue. In

(166), m ∈ M (t), N0 denote additive white Gaussian noise with zero mean and variance

σ2, I is the subset of terminals simultaneously transmitting to their own access points

APz (z 6= m,z ∈ M (t)) and ∑i∈I ,i 6=n,z 6=m|hiz|
2(t)Pi(t) represents overall interference

generated by other terminals i simultaneously talking to its own access point APz. For

simplicity, the service rates are restricted to integer multiples of packet lengths.

Only terminals connected to different APs can transmit simultaneously. The

terminals connected to same AP transmit at different subslots t̂ on the TDMA principle.

As an example, all the feasible time slot allocations and (Un,APm)-connections for a

system with 2 terminals and 2 APs are illustrated in Fig. 25, where M(t)≥ 1, N = L = 2,

m ∈ M (t), z ∈ M (t), m 6= z and m = z = {1,2}. The grey shaded areas illustrate the

parts of the time slot that are used for transmission from U1 and/or U2 to their APs. In

Fig. 25 a), U1 and U2 are connected to the same AP (APm) and transmit in different

subslots t̂. In Fig. 25 b), both terminals transmit to different APs (U1 transmits to

APm and U2 transmits to APz ). The terminals can then use the entire time slot t for

transmission. In Figs. 25 c) and 25 d), U1 and U2 can use the entire time slot as only one

terminal is active in that slot.

5.4 Problem formulation

The goal of this work is to allocate to all N users M(t) out of L (M(t) ≤ L) APs in an

optimal way in order to maximize a joint utility of the long-term average throughput of

the terminals and to minimize the total power usage in the overall system while keeping

the queues stable.

Let X(t) = {L,N,~Y (t),H(t)} represent the state of the system in slot t with countable

state space X . In addition, we use WX (t) = {M (t), r(t), ∆(t), T (t)} to denote the

control input, i.e., the action, in state X(t). The control input WX (t) takes values in

a general state space WX , which represents all feasible control options in state X(t).

At the beginning of each slot, the network controller decides upon the value of WX (t)

depending on the current X(t). Starting from state X , we use π = {WX (0),WX (1), ...}

to denote a policy, i.e., sequence of actions, that in time slot t generates an action

WX (t) ∈ WX depending upon the entire history of previously chosen state-action pairs
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for τ = 0,1,2, ..., t −1. Let Π denote the state space of all policies π ∈ Π. One should

note that Π is the state space of all possible combinations of the sequences of actions

{WX (1),WX (2), ...}, where each action WX (t) = {M (t), ~r(t), ∆(t), T (t)} ∈ WX and

M (t) ∈ L , µnm(t) ∈ {0,1, ...,min{yn(t),Cnm(t)}}, △(t) ∈ {1, ...,N} and T (t) ∈ T .

The goal of this work is to map from the current X(t) to an optimal sequence of

WX (t) = {M (t),~r(t), ∆(t), T (t)}, i.e., policy, that solves the following optimization

problem:

maximize
π∈Π

lim
t→∞

1

t

t−1

∑
τ=0

E
π
X

{
∑

n∈N

yn(τ) ∑
m∈M (τ)

rnm(τ)−ρM(τ)
}

subject to lim
t→∞

1

t

t−1

∑
τ=0

E
π
X{Pn(τ)} ≤ Pmax ∀ n ∈ N . (167)

In (167), ρ represents weight that describes the relative importance of the cost of using

M(τ) out of L active APs over the sum throughput. The objective in (167) encourages

to allocate the largest link capacity to the terminals with the longest queues while

minimizing the number of active APs in the network.

5.5 Optimal control algorithm

The control problem given in (167) is a constrained dynamic optimization problem.

One way to solve it is to convert it into an unconstrained problem [41], [42], [92]. The

unconstrained problem is a standard Markov Decision Process (MDP) and we define the

optimal policy for this MDP using the Value iteration algorithm (VIA) [15], [95], [94].

When calculating the optimal policy, it is assumed that centralized control is possible so

that the network controller has access to the full knowledge of X(t).

5.5.1 Formulation as a Markov Decision Process

The set of feasible actions WX in each state X = {L,N,~Y ,H} is the set of all actions

{M ,~r, ∆, T} that satisfy the power and the queue constraints as we cannot transmit

more packets than there are in the queue. After taking an action WX , the following state

is given as Z. . We now let p(Z|X ,WX ) denote the transition probability from state X to

state Z with action WX .
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For a policy π ∈ Π, we define the reward D and the power cost K by

D = lim
t→∞

1

t

t−1

∑
τ=0

E
π
X

{
∑

n∈N

yn(τ) ∑
m∈M (τ)

rnm(τ)−ρM(τ)
}

(168)

E = lim
t→∞

1

t

t−1

∑
τ=0

E
π
X{P(τ)} (169)

Given the constraint in (167), let ΠE denote the set of all admissible control policies

π ∈ Π which satisfy the constraint E ≤ Pmax for each terminal. Then, (167) can be

restated as a constrained optimization problem (CP) [15]:

maximize D subject to π ∈ ΠE . (170)

The problem given in (170) can be converted into a family of unconstrained

optimization problems (UP) through a Lagrangian relaxation [93]. For every βn ≥ 0, we

define a corresponding Lagrangian function for any policy π ∈ Π as,

Jπ
β (X) = lim

t→∞

1

t

t−1

∑
τ=0

E
π
X

{
∑

n∈N

yn(τ) ∑
m∈M (τ)

rnm(τ)−βnPn(τ)−ρM(τ)
}

(171)

The Lagrangian multiplier βn indicates the relative importance of power consumption

over the average service rate, i.e., larger value of βn corresponds to placing more

importance on saving the transmission power at terminal Un. We now define the

unconstrained optimization problem as

maximize Jπ
β (X) subject to π ∈ Π. (172)

An optimal policy for unconstrained problem is also optimal for the original constrained

control problem when β = [β1, ...,βN ] is appropriately chosen [15], [93].

The problem given in (172) is a standard MDP with maximum average reward

criterion. For each initial state X , we define the corresponding discounted MDP with

value function

Jα(X) = max
π∈Π

∞

∑
t=0

E
π
X

{
α t ∑

n∈N

yn(t) ∑
m∈M (t)

rnm(t)−βnPn(t)−ρM(t)

}
(173)

where the discount factor α ∈ (0,1), and a reward from taking an action WX (t) in state

X(t) is defined as

R[WX (t),X(t)] = ∑
n∈N

∑
m∈M (t)

yn(t)rnm(t)−βnPn(t)−ρM(t). (174)
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Jα(X) is defined as the optimal total expected discounted utility for discount factor α

[94].

For notational simplicity, we suppress the subscript α . The solution to (173), i.e., the

optimal value functions J⋆(X) for each initial state X and the corresponding discount

optimal policy π⋆ ∈ Π, can be solved with the following value iteration algorithm (VIA)

[95]:

Jl+1(X) = max
WX∈WX

{R(WX ,X)+α ∑
Z∈Z

p(Z|X ,WX )J
l(Z)}, (175)

In (175) Z is the set of feasible states that follow state X by taking an action WX , and l

denotes the iteration index. The optimal control policy, π⋆, can then be calculated by

defining the optimal action WX ∈ WX in each state X as

arg max
WX∈WX

{
R(WX ,X)+α ∑

Z∈Z

p(Z|X ,WX )J
⋆(Z)

}
. (176)

Dynamic control algorithms has been used in several publications such as [9],

[12], [15], [95], and the optimal control policy can in principle be calculated using the

exact dynamic programming methods as described above. However, as our optimal

control policy assumes complete knowledge of the available active APs, channel

state information (CSI) and queue state information (QSI), the cost of implementing

exact dynamic programming increases, when the number of states grows. Thus, the

optimization process will be effective only for relatively small L, M and N. We simplify

the signal processing by assuming that a large ad hoc or multi-hop cellular network

can be segmented into small clusters and use frequency reuse factor to eliminate

the intercluster interference, as described in Subsubsection 5.2.1. Thus, the above

performance optimization can be done separately for each subnetwork. In this work, we

assume a priori clustering and leave out any further details regarding this issue.

5.6 Approximate solutions

Dynamic optimization problems can in principle be solved using exact dynamic pro-

gramming [95]. However, exact dynamic programming approach has been found to be

intractable for many problems in practice, due to the so-called "curse of dimension-

ality". Separable dynamic optimization problems [127] can be efficiently solved by

obtaining additive separable approximations of the optimal value function. Due to

the computational complexity of the large network control problems using the exact
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dynamic programming methods, approximate dynamic programming [127] can be used

to provide less complex close to optimal and sub-optimal policies. In this section, we

simplify the close to optimal policy presented in [15] and use approximate dynamic

programming tools to derive two new suboptimal approximate policies to solve (167).

5.6.1 Close to Optimal Policy

In [15], the authors approximated the optimal value functions by decomposing the right

hand side of (175) into additive terms each one being a function of only one user’s

variable and then applying one step VIA to obtain a close to optimal solution for an

optimal dynamic optimization problem.

Let xn(t) = {L,N,yn(t),H(t)} represent the state at terminal Un in slot t with

countable state space Xn. We use wx
n = {Mn(t),∆n(t),∑m∈Mn(t) rnm(t),Tn(t)} to rep-

resent an action at terminal Un in state xn(t). The action wx
n(t) takes values on a state

space W x
n , where Mn(t) ∈ L , Tn(t) ∈ T , µnm(t) ∈ {0,1, ..., min{yn(t),Cnm(t)}} and

∆n(t) ∈ {1, ...,N}. We use πn to denote the sequence of actions at terminal Un, and let

Πn be the state space of all such policies.

In order to decompose (175), we assume that the simultaneous transmissions see the

maximum possible interference, i.e. all simultaneously transmitting terminals in time

slot t transmit to different APs with the highest power possible Pmax [15]. The problem

in (173) can now be decomposed terminal-wise as

maximize
πn∈Πn

E
πn
xn

{
∞

∑
t=0

α t ∑
m∈Mn(t)

yn(t)rnm(t)−βnPn(t)−ρ
Mn(t)

N

}
, (177)

where rnm(t) = ϑnm(t)µnm(t) and µnm(t) are obtained by replacing ∆(t) by ∆n(t) and

Pi(t) by Pmax in (166). Note that ∑i∈I ,i6=n,z 6=k |hiz(t)|
2Pmax is the total interference

caused by the simultaneous transmissions of other terminals each transmitting at

maximum allowable power Pmax to different APs.

The additive decomposed value function approximations J⋆n (xn) can now be calcu-

lated from

Jl+1
n (xn) = max

wx
n∈W x

n

{Rn(w
x
n,xn)+α ∑

zn∈Zn

p(zn|xn,w
x
n)J

l
n(zn)}, (178)

where

Rn[w
x
n(t),xn(t)] = [ ∑

m∈M (t)

yn(t)rnm(t)−βnPn(t)]−ρ
Mn(t)

N
, (179)
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Fig. 26. All the possible time slot allocations and (Un,APm)-connections of suboptimal policy

1 for a system with 2 terminals and 2 APs in time slot t, when M(t)≥ 1, m = z = {1,2} and m 6= z.

i) j)

and Zn is the set of feasible states that can follow state xn by taking an action wx
n. The

transition probability from state xn to state zn with action wx
n is p(zn|xn,w

x
n).

We replace Jl in (175) with the additive decomposed approximations given by

(178) for each terminal Un, and carry out one step VIA to calculate the close to optimal

approximated value function Ĵ⋆. For each state X ∈ X , the close to optimal actions WX

for the close to optimal policy are then given by

arg max
WX∈WX

{D(WX ,X)+α ∑
Z∈Z

p(Z|X ,WX )Ĵ
⋆(Z)}. (180)

It can be seen that the above close to optimal policy first presented in [15] simplifies

the dynamic optimization problem, by calculating the value functions distributedly for

each terminal Un. However, just like in the optimal case, the close to optimal actions
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for each state X ∈ X are calculated centralized using the full state space information

from (180). Thus, the close to optimal policy is still computationally very complex,

when X is large. It is clear, that in order to significantly decrease the computational

complexity of the dynamic optimization problem in (167), it is necessary to decrease

the total number of states for which we need to calculate the action. Next, we further

simplify the close to optimal solution by deriving two new suboptimal approximate

policies to solve (167).

5.6.2 Suboptimal Policy 1

In this subsection, we propose a new sub-optimal control policy 1, where the approx-

imated value functions J⋆n (zn) are first solved distributedly from (178). We then use

VIA to calculate the sub-optimal policy 1 terminal-wise by defining the best action

wx
n = {Mn,∑m∈Mn

rnm,∆n,Pn,Tn} for each state xn = {L,N,yn,H} ∈ Xn from

arg max
wx

n∈W x
n

{Dn(w
x
n,xn)+α ∑

zn∈Zn

p(zn|xn,w
x
n)Jn(zn)}. (181)

We can now check the actions wx
n for each terminal Un and get the specific network

topology T for each state X = {L,N,~Y ,H} ∈ X , where ~Y = [y1, · · · ,yN ]. Let W X
n =

{wx
1, · · · ,w

x
N} denote the sequence of actions given by (181) in state X ∈ X . The

maximum service rate between terminal Un and an active access point APm is now

obtained by replacing ∆ by ∆n in (166). Thus, suboptimal policy 1 requires full CSI but

no QSI of other terminals in the network.

Since the suboptimal actions wx
n are calculated separately for each terminal Un,

terminals do not have any information of the connections of other terminals in the

network, e.g. terminal Un cannot not know if other terminals are connected to the

same/different APs in the network. Then, △n and Tn are only assumptions made by

terminal Un in state xn that might not be true, as other terminals might assume different

△n and Tn. Thus, the set of all possible time slot allocations and (Un,APm)-connections

is different from that in Fig. 25. When terminals do not have any information of the

actions of other terminals in the network it is possible that one or more terminals

transmit simultaneously to the same AP and the transmissions fail. As an example,

let us consider all combinations of (△1,△2) and (T1,T2) of suboptimal policy 1 for a

system with 2 terminals and 2 APs in time slot t illustrated in Fig. 26, when M(t)≥ 1,

m = z = {1,2} and m 6= z. In Figs. 26 a) and 26 b) △1 = 1 and △2 = 2, i.e., U1 assumes

that U2 transmits to different AP in time slot t and U2 assumes that U1 transmits to
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same AP. Thus, terminal 1 uses the entire time slot t and terminal 2 uses only half of

the time slot t (shown as shaded grey areas in Figs. 26 a) and 26 b)). In Fig. 26 b)

both terminals are successfully transmitting to different APs. However, in Fig. 26 a),

U1 and U2 transmit simultaneously to same APm for half time slot. Thus, the whole

transmission of U2 and half of the transmission of U1 fail. In Figs. 26 c) and 26 d)

△1 = 2 and △2 = 2 and both U1 and U2 assume that other terminal is connected to

same AP in time slot t. Both terminals then use only half of the time slot t, but the

transmissions are successful and do not interfere. In Figs. 26 e) and 26 f) △1 = 1 and

△2 = 1, and both terminals assume that the other terminal is connected to a different AP

in time slot t. Then, both terminals use the entire time slot for transmission, but in Fig.

26 e) both terminals transmit simultaneously to the same APm and the transmission fail.

In Figs. 26 g) and 26 h) △1 = 2 and △2 = 1, and terminal 1 assumes that terminal 2

transmits to the same AP in time slot t and terminal 2 assumes that terminal 1 transmits

to different AP in time slot t. However, due to the simultaneous transmission in Fig. 26

g), the whole transmission of U1 and half of the transmission of U2 fail. In Figs. 26 i),

26 j), 26 k) and 26 l), U1/U2 assumes that the other terminal transmits to different/same

AP, when it happens that another terminal is not connected to any AP.

The proposed suboptimal policy 1 significantly reduces the computational complexity

of the problem. However, the downside of the policy is the fact that since the terminals

do not have any knowledge of the actions of other terminals, collisions might happen.

5.6.3 Suboptimal policy 2

In this section, we eliminate the possibility for collision from suboptimal policy 1, and

propose another simplified scheme called suboptimal policy 2. Like in Section 5.5,

dynamic optimization methods are used to calculate the value functions and the best

actions, but decrease the state space by calculating the best actions only for a terminal

with the longest queue and then use these results to approximate the actions of other

terminals in the network.

By noting that the optimal control policy is designed to give priority to a terminal

with the longest queue, we define ynmax(t) = maxn∈N {yn(t)} as the maximum backlog

in time slot t over all users. In addition, let nmax denote the index of the terminal with

the longest queue and Unmax(t) represents the terminal with the longest queue in slot t.

Let xnmax(t) = {L,N,ynmax(t),H(t)} represent the system state in slot t with count-

able state space Xnmax . One should note that Unmax(t) has full knowledge of N, L
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and CSI but Unmax(t) has only its own queue length information ynmax(t). The ac-

tion at terminal Unmax(t) in state xnmax(t) is given as wx
nmax

(t) = {Mnmax(t), ∆nmax(t),

∑m∈Mnmax (t)
rnmaxm(t), Tnmax(t)}. The action wx

nmax
(t) takes values on a state space

W x
nmax

, where Mnmax(t) ∈ L , Tnmax(t) ∈ T , ∑m∈M (t) rnmaxm(t) ∈ {0,1, ...,ynmax(t)} and

∆nmax(t) ∈ {1, ...,N}. We use πnmax = {wx
nmax

(0), wx
nmax

(1), ...} to denote the sequence

of actions, and let Πnmax be the state space of all such policies.

Given ∑m∈Mnmax (t)
rnmaxm(t), the service rates of other terminals Un,n∈N ,n 6= nmax,

are approximated as

∑
m∈Mnmax (t)

rnm(t) = min
{

Cnm(t),ynm(t),
yn(t)

ynmax(t)
∑

m∈Mnmax (t)

rnmaxm(t)
}
, (182)

where vnm(t) = 0, if the channel gain between terminal Un (n 6= nmax) and the access

point APm is smaller than a predetermined threshold ν . Now the maximum number of

packets that can be transmitted from other terminals Un (n ∈ N,n 6= nmax) are smaller

than or equal to ∑m∈Mnmax (t)
rnmaxm(t), i.e., ∑m∈Mnmax (t)

rnm(t)≤ ∑m∈Mnmax (t)
rnmaxm(t),

where n ∈ N and n 6= nmax.

We can separate (175) by noting that all terminals simultaneously transmitting to

different APs has the maximum power of Pn[hnm(t),rnmaxm(t)], and the problem in (173)

can now be written terminal-wise as

maximize
πnmax∈Πnmax

E
πnmax
xnmax

{
∞

∑
t=0

α t ∑
m∈Mnmax (t)

ynmax(t)rnmaxm(t)−

βnPnmaxm(t)−w
Mnmax(t)

N

}
, (183)

where rnmaxm(t) = ϑnmaxm(t)µnmaxm(t) and

µnmaxm(t)≤
1

b∆nmax(t)
log

(
1+

|hnmaxm(t)|
2Pnmax(t)

N0 +∑i∈I ,i 6=nmax,z 6=m |hiz(t)|2Pi[hiz(t),rnmaxm(t)]

)
. (184)

Note that ∑i∈I ,i6=nmax,z 6=m |hiz(t)|
2Pi[hiz(t),rnmaxm(t)] is the total interference caused by

the simultaneous transmissions of other terminals each using power Pi[hnm(t), rnmaxm(t)]
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when transmitting its data to different APs. Thus, we always have

log

(
1+

|hnmaxm(t)|
2Pnmax(t)

N0 +∑i∈I ,i 6=nmax,z 6=m |hiz(t)|2Pi[hiz(t),rnmaxm(t)]

)

≤ log(1+
|hnmaxm(t)|

2Pnmax(t)

N0 +∑i∈I ,i 6=nmax,z 6=m |hiz(t)|2Pi(t)
). (185)

The value functions for each xnmax ∈ Xnmax can now be calculated from

Jl+1
nmax

(xnmax) = max
wx

nmax
∈W x

max

{Rnmax(w
x
nmax

,xnmax)+

α ∑
znmax∈Znmax

p(znmax |xnmax ,w
x
nmax

)Jl
nmax

(znmax)}, (186)

where

Rnmax [w
x
nmax

(t),xnmax(t)] = [ ∑
m∈Mnmax (t)

ynmax(t)rnmaxm(t)−

βnPnmax(t)]−w
Mnmax(t)

N
, (187)

and Znmax is the set of feasible states that can follow state xnmax by taking an action

wx
nmax

in state xnmax . The transition probability from state xnmax to state znmax with action

wx
nmax

is p(znmax |xnmax ,w
x
nmax

).

The sequence of actions at terminal Unmax can then be calculated by defining the best

action wx
nmax

∈ W x
nmax

in each state xnmax as

arg max
wx

nmax
∈W x

nmax

{
Dnmax(w

x
nmax

,xnmax)+

α ∑
znmax∈Znmax

p(znmax |xnmax ,w
x
nmax

)J⋆nmax
(znmax)

}
. (188)

Based on πnmax given by (188), the action in state X ∈ X can be now given as

W X
nmax

= {Mnmax ,∆nmax ,~rmax,Tnmax}, where ~rmax is the vector of service rates given

by (182) and (188).

In order to compare the performance of the proposed policies, we first introduce

the network stability region in Section 5.7. We then compare the performance and the

complexity of different policies to each other in Section 5.8.

5.7 Achievable rates

The network stability region includes all input rates λn that the network can stably

support, considering all possible resource allocation policies that we can have for the
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network. In this section, we characterize the fundamental throughput limitations and

establish the stability region of the proposed DNA. It is important to note that stability

region is unique for each network and it should be distinguished from the stability region

of a specific resource allocation policy that is a subset of the network stability region

[12]. The terms network capacity region and network stability region might be used

interchangeably in the text.

5.7.1 Network Stability Region

Let WH denote the set of all possible resource allocation options in channel state H, and

WH ∈ WH represents a control action in H. In addition, we use ~G = [g1, g2, · · · , gN ] to

denote the vector of average long-term supportable service rates at the terminals. Due to

the time varying system state conditions, ~G must be averaged over all possible channel

states. Moreover, ~G is not fixed and depends on transmission policy for choosing WH .

Thus, instead of describing the network with a single ~G, the network is described as a

following set of supportable service rates

Γ = ∑
H∈H

πHConv{~r(WH ,H)|WH ∈ WH}, (189)

where addition and scalar multiplication of sets is used, Conv{ϒH} represents convex hull

of the set ϒH that is defined as the set of all convex combinations p1b1+ p2b2+ ...+ p jb j

of elements b j ∈ ϒH and p js are probabilities summing to 1. Specifically, the throughput

region Γ can be viewed as a set of all long-term average service rates ~G that the network

can be configured to support on the wireless links connecting the terminals and the APs.

The network stability region is then given as the set of all arrival rate vectors~λ for

which there exists a transmission policy that satisfies

~λ ≤ lim
t→∞

1

t

t−1

∑
τ=1

E{~r(τ)} ≤ ∑
H∈H

πH
~GH (190)

for some ~G ∈ Γ where ~G = ∑H∈H πH
~GH for some set of average transmission rates ~GH

in channel state H. The arrival rate vector~λ is in the region Λ if there exists a long-term

average rate vector ~G ∈ Γ such that there exists a transmission policy which supports the

arrival rates~λ .

Due to the computational complexity of the network stability region in (189), Γ is

calculated for a system with 2 terminals and 2 APs for the channel conditions given in

Section 5.10, and illustrated in Fig. 27.
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Fig. 27. Network stability region and the stability regions of the different control policies.
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5.8 Performance and complexity comparison

In this section, we illustrate the performance of the optimal, close to optimal and

sub-optimal policies and compare the performance of the different policies to each other.

5.8.1 Complexity

It is easy to see that the complexity of a dynamic control policy highly depends on the

state space size, since the best/optimal action is calculated for each possible state in the

state space.

We first define the sizes of X , Xn and Xnmax . Let |X |, |Xn| and |Xnmax | denote

the number states in X , Xn and Xnmax , respectively. In addition, let |H | denote the

number of channel states in state space H . For arrival rates inside the stability region,

yn(y) gets values between 0 and ymax so that

limsup
t→∞

yn(t)≤ ymax (191)

for each terminal Un. For arrival rates outside Γ, yn(t)→ ∞. Then,

|X |= N(ymax +1)|H | (192)

and

|Xn|= |Xnmax |= (ymax +1)|H |. (193)
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Both the value functions and the actions of the optimal control policy are calculated

for |X | states from (175) and (176), respectively. For close to optimal policy, the

approximated value functions in (178) are calculated separately for |Xn| states, but the

actions are calculated for |X | states from (180). The value functions and the actions for

sub-optimal policy 1 are calculated for |Xn| states from (178) and (181), respectively.

For sub-optimal policy 2, the value functions and the actions are calculated for |Xnmax |

states from (186) and (188), respectively.

Sub-optimal policies are considerably less complex than close to optimal and

optimal policies. The fact that the sub-optimal policies do not require full QSI decreases

significantly the computational complexity of the problem. In addition, in order to

further decrease the complexity of the proposed policies, parameters N and L can be

reduced by using the preclustering as described in Section 5.2.1.

5.8.2 Performance

We compare the performance of the proposed policies by comparing their stability

regions to each other. In Section 5.9, we prove that our optimal policy achieves every

point on the network stability region. Thus, the network stability region Γ illustrated

in Fig. 27 represents the stability region of the optimal control policy. In addition,

we approximate the stability regions of the sub-optimal policies by simulations. Let

Γ1 and Γ2 represent the stability regions of sub-optimal policies 1 and 2, respectively.

By comparing Γ and Γ2 in Fig. 27, it can be seen that sub-optimal policy 2 not only

simplifies the computational complexity of the problem but also provides performance

comparable to the performance of the optimal control policy. However, for sub-optimal

policy 1, terminals do not have any knowledge of the actions of other terminals and

collisions might happen. That is why Γ1 is smaller than Γ2. One should also note

that sub-optimal policy 1 assumes that other terminals in the network transmit with

maximum available power and sub-optimal policy 2 assumes that other terminals in the

network transmit at rate equal to ∑m∈Mnmax (t)
rnm(t). Thus, the difference between Γ1,

Γ2 and Γ when either λ1 or λ2 is small is significantly larger than the difference between

Γ1, Γ2 and Γ for larger values of λ1 and λ2.
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5.9 Stability analysis

In this section, we analyse the stability and the performance of the proposed optimal

dynamic control policy using the K-step Lyapunov drift. Our optimal policy is shown to

stabilize the network.

5.9.1 K-step Lyapunov Drift

Consider the K-step dynamics for unfinished work at terminal Un:

qn(t0 +( ĵ+1)K) = qn(t0 + ĵK)+
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

an(τ)−
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

∑
m∈M (τ)

rnm(τ), (194)

where t0 ∈ {0,1, ...,K} and ĵ ∈ {0,1, ..., Ĵ−1}. We can write (194) as

qn(t0 +( ĵ+1)K) = yn(t0 + ĵK)+
t0+( ĵ+1)K

∑
τ=t0+ ĵK+1

an(τ)−
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

∑
m∈M (τ)

rnm(τ), (195)

where yn(t0 + ĵK) = qn(t0 + ĵK)+an(t0 + ĵK). Adding an(t0 +( ĵ+1)K) on the both

sides of (195), we get

yn(t0 +( ĵ+1)K) = yn(t0 + ĵK)+
t0+( ĵ+1)K

∑
τ=t0+ ĵK+1

an(τ)−
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

∑
m∈M (τ)

rnm(τ), (196)

where yn(t0 +( ĵ+1)K) = qn(t0 +( ĵ+1)K)+an(t0 +( ĵ+1)K). Inserting yn = yn(t0 +

ĵK), ∑m∈M rnm = 1
K ∑

t0+( ĵ+1)K−1

τ=t0+ ĵK
∑m∈M (τ) rnm(τ), an =

1
K ∑

t0+( ĵ+1)K

τ=t0+ ĵK+1
an(τ) into (196),

squaring both sides of (196), defining the Lyapunov function as L(y) = y2
n and taking

conditional expectation, (196) can be written as

E{L[y(t0 +( ĵ+1)K)]−L[y(t0 + ĵK)]|yn(t0 + ĵK)}= (197)

K2V −2yn(t0 + ĵK)
[
E{

t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

∑
m∈M (τ)

rnm(τ)|yn(t0 + ĵK)}−

E{
t0+( ĵ+1)K

∑
τ=t0+ ĵK+1

an(τ)|yn(t0 + ĵK)}
]
,

where

V , (µout
max)

2 +(amax)
2, (198)
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and µout
max is the maximum transmission rate out of a given terminal Un given as

µout
max , max

{n∈N ,H∈H ,WH∈WH}
µnm(WH ,H). (199)

Since µnm(WH ,H) is bounded, µout
max exists [12], [10].

The inequality in (197) was first presented in [20], and it represents the K-step

Lyapunov drift for any resource allocation policy that we can have for the network.

5.9.2 Network Stabilizing Policy

In this subsection, we analyse the stability and the performance of our optimal dynamic

control policy. We show that, if the arrival rates are inside the network stability region,

our dynamic transmission policy stabilizes the network.

Specifically, our dynamic policy is designed to maximize

lim
t→∞

1

t

t−1

∑
τ=0

∑
n∈N

E{yn(τ) ∑
m∈M (τ)

rnm(τ)−βn pn(τ)−ρM(τ)}. (200)

In addition, by summing

yn(t0 + ĵK)E{
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

∑
m∈M (τ)

rnm(τ)|yn(t0 + ĵK)} (201)

on the right hand side of (197) over t0 ∈ {0,1, ...,K}, (201) can be rewritten as

yn(t0 + ĵK)E{
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

∑
m∈M (τ)

rnm(τ)|yn(t0 + ĵK)}= (202)

K−1

∑
t0=0

yn(t0 + ĵK)E{
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK

∑
m∈M (τ)

rnm(τ)|yn(t0 + ĵK)}=

K−1

∑
t0=0

yn(t0 + ĵK)
[
E{ ∑

m∈M (τ)

rnm(t0 + ĵK)|yn(t0 + ĵK)}+

E{
t0+( ĵ+1)K−1

∑
τ=t0+ ĵK+1

∑
m∈M (τ)

rnm(τ)|yn(t0 + ĵK)}
]

It now is now easy to see that the dynamic policy maximizes the right hand side of (197).

Thus, if the arrival rates are inside the network stability region, dynamic policy stabilizes

the network and minimizes the bound for average queue length over all terminals.

122



2 3 4 5 6 7
1

1.02

1.04

1.06

1.08

1.1

1.12

λ
1

A
v
e
ra

g
e
 n

u
m

b
e
r 

fo
 a

c
ti
v
e
 a

c
c
e
s
s
 p

o
in

ts

 

 

COP

OP

Fig. 28. Average number of active APs for optimal and close to optimal policies versus λ1,

when λ2 = 2.

5.10 Performance evaluation

For illustration purposes, we evaluate the performance of the optimal, close to optimal

and suboptimal transmission policies with simulations. Although the suboptimal

schemes can be calculated and the network stability has been proven theoretically for

any size of the network, due to the computational complexity of the optimal and close

to optimal solutions for large networks, we introduce preclustering of the network

and segmentize the network into smaller subnetworks, where N = L = 2. Since the

interference between the subnetworks is eliminated using the given frequency reuse

factor, the optimization can be performed separately for each subnetwork. The resulting

power, delay and throughput curves of the optimal control policy are compared to the

performance of other solutions. The results can be used to validate our stability analysis

presented in Sections 5.7 and 5.9.

The channel process is generated according to a Markov chain and the stationary

probabilities p{H = (h11,h12;h21,h22)} of the 16 x 16 channel state transition matrix

are given as p{H = (0.1, 0.1; 0.1, 0.1)} = 0.025, p{H = (0.1, 0.1; 0.1, 1)} = 0.1,

p{H = (0.1, 0.1; 1, 0.1)} = 0.075, p{H = (0.1, 0.1; 1, 1)} = 0.05, p{H = (0.1, 1;

0.1, 0.1)} = 0.025, p{H = (0.1, 1; 0.1, 1)} = 0.1, p{H = (0.1, 1; 1, 0.1)} = 0.075,

p{H = (0.1, 1; 1, 1)} = 0.05, p{H = (1, 0.1; 0.1, 0.1)} = 0.025, p{H = (1, 0.1; 0.1,
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Fig. 29. Average service rates of optimal, close to optimal and suboptimal policies versus

λ1, when λ2 = 2.

1)} = 0.1, p{H = (1, 0.1; 1, 0.1)} = 0.075, p{H = (1, 0.1; 1, 1)} = 0.05, p{H = (1,

1; 0.1, 0.1)} = 0.025, p{H = (1, 1; 0.1, 1)} = 0.1, p{H = (1, 1; 1, 0.1)} = 0.075,

p{H = (1, 1; 1, 1)}= 0.05.

For a Poisson process, the second moment of arrivals in each frame is finite [12].

Thus, each terminal is assumed to receive packets according to a Poisson process at

an average rate of λn. The average input rate of terminal 2 (U2) is fixed to λ2 = 2

packets/slot. The maximum transmission power is Pmax = 2dB. The average input rate

of terminal 1 (U1), λ1, gets values inside the network stability region illustrated in Fig.

27. The discount factor in (173) is α =0.9 and Lagrangian multiplier in (171) is given

as β = [0.6,0.6]. The long-term average power, delay, and throughput of each terminal

were calculated over T0 = 50000 frames.

In Fig. 28, the average number of active APs for optimal (OP) and close to optimal

(COP) control policy is plotted as a function of λ1. It can be seen in the figure that the

long-term average number of active APs for the optimal and close to optimal policies

decreases as λ1 increases. It can also be seen that the average number of active APs

is quite close to 1 even for low λ1. When λ1 increases, the interference U1 causes to

U2 in the simultaneous transmission increases. That is why the probability to choose

TDMA together with just one AP instead of interference and 2 APs increases, when λ1

increases. In addition, due to the fixed low arrival rate of U2 and Gilbert-Elliot channel
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Fig. 30. Average delays of optimal, close to optimal and suboptimal policies versus λ1, when

λ2 = 2.

model, it is also quite likely that U1 uses the whole time slot t and transmits alone to

its AP. Especially, when the channel of U1 is good and the channel of U2 is bad, it is

likely to choose just one active AP due to the interference U1 would cause to U2 in the

simultaneous transmission.

In Fig. 29, the long-term average service rates of U1 and U2 for optimal, close to

optimal and sub-optimal policies are plotted as a function of λ1. Let SO1 and SO2 denote

the suboptimal policy 1 and 2, respectively. The results indicate that the performance of

the close to optimal policy is very close to the performance of the optimal one. Thus,

simplifying the optimization by calculating the value functions separately for each

terminal does not have much effect to the performance of a dynamic policy. It can also

be seen, that average service rates of the optimal and sub-optimal policies equal λn. This

supports the stability analysis in Section 5.7, since (λ2 = 2, λ1 = 7) is on the boundary

of the network stability region illustrated in Fig. 27. In terms of stability, the maximum

supportable arrival rates of the optimal and close to optimal policies are considerably

higher than the maximum supportable arrival rate of the sub-optimal policies. Since the

resource allocation actions are done separately for each terminal Un, collisions might

happen and the sup-optimal policies cannot support the arrival rates as high as optimal

and close to optimal control policies. It can also be seen that the sub-optimal policy 1 is
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when λ2 = 2.

not stable for arrival rates higher than 3.5, since the average arrival rate is higher than

the average service rate when λ1 > 3.5.

In Fig. 30, the long-term average delays of U1 and U2 for all three policies are

plotted as a function of λ1. The average delay of the close to optimal policy is very close

to the average delay of the optimal control policy. However, the average delay of the

sub-optimal control policy is significantly longer than the average delays of the optimal

and close to optimal policies. This is because the sub-optimal policies do not have full

QSI at the terminals.

The long-term average powers of U1 and U2 for all polices are plotted as a function

of λ1 in Fig. 31. The average power of the close to optimal policy is very close to the

average power of the optimal control policy. Since the sub-optimal actions are chosen

separately for each terminal, the long-term average power of the sub-optimal policies

increases rapidly with λ1. It can also be seen in Fig. 31 that the average power of the

sub-optimal policy 1 saturates at λ1 = 4, where the average transmission power of U1

equals Pmax.

5.11 Chapter summary

In this chapter, a new paradigm in wireless network access was presented and analyzed.

We considered an advanced wireless technology, where each terminal in an ad hoc or
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multi-hop cellular network can work as an AP any time when connected to the Internet.

The considered network consisted of L potential APs and a set of N terminals. Dynamic

programming tools and VIA are used to derive an optimal control policy.By adapting to

the changes in network conditions our policy allocates M out of L APs to terminals in an

optimal way and stabilizes the network. Since the optimization protocol is effective

only for relative small values of N and L, we introduced the preclustering technique

to segmentize the network into smaller subnetworks with relatively small number of

candidate APs and user terminals. The interference between these subnetworks was

eliminated by using a given frequency reuse factor. In addition, since the optimal control

policy requires full knowledge of CSI and QSI, approximate dynamic programming was

used to provide two new suboptimal policies, that do not require information on queue

lengths. The suboptimal policies were shown to significantly decrease the computational

complexity of the problem with controllable loss in performance.

In addition, the K-step Lyapunov drift was used to analyse the stability and the

performance of the optimal control policy. We proved the stability of our optimal

control policy and showed that the performance of our optimal policy is better than the

performance of any other existing network stabilizing strategy.

Finally, the simulation results are provided to support the theoretical analysis of the

work presented in this chapter.

The contributions of this chapter can be summarized as follows:

– A novel approach for integrating ad hoc or multihop cellular network and Internet

was introduced. This approach enabled a self-organized extension/ shrinking of the

network topology and offered maximum capacity in the network nodes with maximum

temporal/spatial traffic intensity. The network self-configuration dynamically followed

the changes in the temporal distribution of the traffic without additional investments

into the network infrastructure.

– A new topology control policy was introduced that a) Minimized the impact of the

new established route to the already existing connections in wireless network. b)

Calculated the necessary rerouting for all sessions if needed. c) Minimized the overall

power consumption in the network, and d) controlled the stability of the network.

– Approximate dynamic programming was used to provide two new sub-optimal control

policies.

– We illustrated network stability region and the stability regions of the different control

policies.
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– We showed that our optimal control policy provides a stable network.
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6 Conclusions and future work

In this chapter we first summarize the most important contributions and results presented

in this thesis. Then we point out some future research directions in this field.

In this thesis, a number of new paradigms in wireless networks with queues and

time varying channels were presented. The contributions included solutions for optimal

and sub-optimal dynamic resource allocation, topology control and network stability

analysis. We provided unified system models, unified control problems, unified network

stability regions and unified stability analysis for both SSP and PSP cognitive networks

as well as for CWN. Novel approaches to the optimization and stability analysis of

dynamic control policies in wireless networks were also presented in this thesis.

The first chapter considered the motivation behind this research and summarized the

previous work on the network stability analysis.

In Chapter 2, we explained the concept of network stability and presented the tools

used to analyse the stability of time varying queueing networks.

A unified optimization framework for resource control in computing cloud for both

SSP and PSP cognitive networks as well as for CWNs was considered in Chapter 3.

As the control problem was to dynamically adjust resources according to changes in

channel and workload fluctuations, we formulated the problem into a MDP and used

VIA to provide the optimal solution. The resulting dynamic control policy was designed

to maximize the long-term average throughput and to minimize the energy cost of the

overall system.

In addition, a new unified stability regions and stability analysis for both SSP and

PSP cognitive networks and for CWNs were also proposed in Chapter 3. We analysed

the K-step Lyapunov drift and proved that contrary to what was proposed in [10], [12],

the frame based policy in [12] does not provide performance better than the stationary

randomized policy and that the frame based policy does not minimize the bound for the

average queue length. We showed that our dynamic control policy stabilizes network

and provides performance better than the randomized stationary policy proposed in [12].

The numerical results in Chapter 3 were used to illustrate the performance of the

dynamic control policy for cognitive wireless networks, PC networks as well as for

CWNs. It was show that by adapting to the changes in network conditions, our dynamic

policy mitigates the effect of PSP and SSP cognitive networks on each other. The
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simulation results were also used to support the stability analysis presented in this

chapter.

In Chapter 4, we addressed a unified cooperative network control problem for SSP

and PSP cognitive networks and for CWNs. The goal was to dynamically adapt to the

changes in network conditions in order to maximize the long-term average throughput

and to minimize the delay. Dynamic programming methods were used to provide a

new unified cooperative control policy, that solves the problem for both SSP and PSP

cognitive networks and for CWN.

In order to compare the potential performances of the cooperative and non-

cooperative communication systems to each other, we illustrated unified cooperative and

non-cooperative network stability regions for both SSP and PSP cognitive networks

as well as for CWNs. In addition, the concept of InTeNet was proposed in Chapter 4,

which provides the maximum capacity in the network.

The K-step Lyapunov drift was used to analyse the performance and the stability of

the proposed control policy also in Chapter 4. We showed that when the control actions

need to be calculated for each possible network state, the best network stabilizing policy

minimizes the maximum queue length over all the terminals. Since in Chapter 4 our

optimal control policy is designed to minimize the long-term average maximum queue

length over all the terminals, the proposed policy stabilizes the network and provides

performance better than other similar dynamic policies.

The simulation results in Chapter 4 were used to support the analytical analysis

of this chapter and to compare the performances of cooperative and non-cooperative

control policies to each other.

In Chapter 5 a new paradigm in wireless network access was presented and analysed.

We considered a dynamic network topology where a certain class of wireless terminals

can be turned into and AP any time, when connected to Internet. The goal was to control

the network resources and the topology in a way that stabilizes the network, maximizes

the long-term average throughput and minimizes the average power consumption at each

terminal. Dynamic programming methods and VIA were used to provide an optimal

topology control policy that was shown to stabilize the network to minimize the bound

for the average queue length.

As the optimal control policy requires full CSI and QSI, we identified the computa-

tional complexity of the problem, and used approximate dynamic programming tools to

provide two new suboptimal policies. In addition, in order to compare the performances
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of the proposed control policies to each other, we illustrated the network stability region,

and the stability regions of the optimal and suboptimal policies in Chapter 5.

The numerical results in Chapter 5 were provided to support our stability analysis

and to compare the performances of optimal and sub-optimal control policies to each

other.

The comprehensive work, analysis and results presented in this thesis open a number

of new research directions for future wireless networks. The optimal dynamic control

policy can be used as a performance benchmark and to lay foundation for future solutions

of different simplified dynamic network stabilizing resource allocation schemes for

wireless networks.

The network stability analysis in this thesis will provide additional background for

future research directions on this field. As the queuing bound is valid only when the

average arrival rates are strictly inside the network stability region, as a future work, it

would be interesting consider also a case, where the entire channel capacity could be

exploited. In addition, new network stabilizing algorithms that effectively utilize the full

channel capacity should be provided in order to minimize the network delay.
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