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Abstract—Coordinated swarm behavior in certain types of animals — .
can also occur in groups of autonomous vehicles. Swarm “cohesiveness” Decision making
is characterized as a stability property. Conditions for one-dimensional — -

- e - Driving device
asynchronous swarms to achieve collision-free convergence even in the
presence of sensing delays and asynchronism during movements are
provided. Each finite-size swarm member has proximity sensors and
neighbor position sensors that only provide delayed position information. Fig. 1. Single swarm member with a finite size 1-D case.
Such stability analysis is of fundamental importance if one wants to
understand the coordination mechanisms for “platoons” of autonomous
vehicles, where intermember communication channels are less than bility analysis of swarms is still an open problem but there have been

perfect and collisions must be avoided. several areas of relevant progress.etial. in [14] studied stability of
Index Terms—Asynchronism, communication delay, discrete-event sys- Synchronized distributed control of one-dimensional (1-D) and two-di-
tems, stability, swarms. mensional swarm structures. Interestingly, the model and stability anal-

ysis in [14] are quite similar to the model and proof of stability for
the load balancing problem in computer networks [15], [16]. Next, we
would note that there have been several investigations into the stability
A variety of organizms have the ability to cooperatively forage foof inter-vehicle distances in “platoons” in intelligent transportation sys-
food while trying to avoid predators and other risks. For instance, whéams (e.g., in [17], or of the “slinky effect” in [18] and [19], and traffic
a school of fish searches for prey, or if it encounters a predator, thew in [7]).
fish often make coordinated maneuvers as if the entire group were on&his note presents 1-D asynchronous swarm models by putting many
organizm [1]. Analogous behavior is seen in flocks of birds, herds single finite-size swarm members together and provide conditions
wildebeests, groups of ants, and swarms of social bacteria [2], [3]. Weder which swarms will keep their cohesiveness even in the presence
call this kind of aggregate motion “swarm behavior.” A high-level viewof sensing delays and asynchronism. Our desire to consider collision-
of a swarm suggests that the organizms are cooperating to achieve sfree cohesion for finite-size vehicles significantly complicates the
purposeful behavior and achieve some goal. Naturalists and biologistsalysis compared to the case where point-size vehicles are studied and
have studied such swarm behavior for decades. collisions are allowed (e.g., as in [13]). Our study uses a discrete-time
Recently, there has been a growing interest in biomimicry of ttdiscrete event dynamical system [15] approach and unlike the studies
mechanisms of foraging and swarming for use in engineering appdf platoon stability in intelligent transportation systems we avoid
cations since the resulting swarm intelligence can be applied in opletailed characteristics of low level “inner-loop control” and vehicle
mization [2], [3], robotics [4], [5], traffic patterns in intelligent trans-dynamics in favor of focusing on high level mechanisms underlying
portation systems [6], [7], and military applications [8]. For instanceyualitative swarm behavior when there are imperfect communications.
there has been a growing interest in groups (swarms) of flying vehicl®sarm stability for thel/ > 2 dimensional case has been studied in
[9]. It has been argued that a swarm of robots can accomplish soff@] and [21].
tasks that would be impossible for a single robot to achieve. Particular
research includes that of [5], who introduced the concept of cellular II. MODELING
robotic systems, and the related study in [10]. The behavior-based con- )
trol strategy put forward by Brooks [11] is quite well known and it has A 1-D swarmis asetol swarm members that moves along the real
been applied to collections of simple independent robots. Mataric [1'5]6’ Whe_re the model_of a §|ngle swarm membgr IS Sh_O_W” n Fig. 1.
describes experiments with a homogeneous population of robots acfilguMe it has a physical size (widtl) > 0 and its position is the

under different communication constraints. Suzuki and Yamashita [1Z1t€" Of the square. It has a “proximity sensor” for both sides with a

considered a number of two-dimensional problems of formation ofge%'?nsmg fa”ge > w, which means that or_me another swgrm member
metric patterns with distributed anonymous mobile swarm robots. eaches a distance offrom it, the sensoinstantaneouslyndicates

In this note, we are interested in mathematical modeling and analyZ]€ Position of the other member. However, if its neighbors are out of

of stability properties of swarms. We think of stability as characteriziniﬁ5 sensing range, the proximity sensor fpr the left neighbor will re-
(or, practically, some large negative number), and the one for

the cohesiveness of the swarm as it moves. Stability is a basic qdHM —>°

itative property of swarms since if it is not present, then it is mayd&€ "ght neighbor will ret#”_%' The proximity iensor ifs used tokhelllp
impossible for the swarm to achieve any other group objective. S%\fo'd swarm member collisions and ensures that our framework allows

for finite-size vehicles, not just points. It also has a “neighbor position
sensor,” which can sense positions of neighbors to its left and right if
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Fig. 2. 1-D asynchronous swarm, all members moving to be adjacent to the stationary edge member.

Then, the decisions are outputted to its “driving device,” which prestead of information from its neighbor position sensdrs' (7;_; (#))

vides locomotion for it. Each swarm member tries to move to maiand/orz'™ (7, (t)) if their neighbors are inside the sensing range of

tain a comfortable distance to its neighbors. This will tend to make tfits proximity sensors. This information will be used for position up-

group move together in a cohesive “swarm.” dating until membei gets more recent information, for example, from
A 1-D swarm is formed by putting many of the above single swariits neighbor position sensor.

members together on the real line as shown in Fig. 2.£@t denote Next, we specify two assumptions to characterize asynchronism for

the position of swarm memberat timet. We _haver'(f € R,i = swarms [16]. ,
1,2,...,N,and if N > 2, we assume that' "' (0) — «*(0) > «, Assumption 1. (Total Asynchronismfissume the setsI”,
fori = 1,2,..., N — 1 initially so that there are no overlapping ini = 1,2,..., N, are infinite, and if for eacl, t;, € T* andt; — ~

finite-size swarm members. Let, ' (t)(x;;' (t)) denote membei's  ask — oo, thenlimy oo 7} (fx) = oo for j =i —1,i 4 1.
left-neighbor (right-neighbor) position mformauon sensed by its left- Assumption 2. (Partial Asynchronism)there exists a positive in-
looking (right-looking) proximity sensor at time From the previous tegerB (i.e., B € Z, whereZ™ represents the set of positive inte-

assumptions, we have gers) such that
a) for everyi andt > 0, € T, at least one Qf the elements of the
) = {IH (t), ifa'(t) — 2~ (1) < = X set{t,t + 1‘_.. Lt +3B -1} belongs tcﬂi L
p _oo, other\lee ) there holds — B _< 7; (t)( <tforalliandj =i—1,i+1,and
fori=2,3,...,N Q) all + > 0 belonging tol™.

), i ) — 2 (1) < = Notice that in Assumption 1, the delays- 7; (¢) in obtaining position
T information of neighbors of membéican become unbounded @-
creases. However, Assumption 2 guarantees that the delays (#)

i x
S ) = {

oo, otherwise

fori=1,2,...,N -1 ) in obtaining position information of neighbors of memkbés bounded
by B and each member moves at least once wifhitime indexes.
We assume that every swarm member kndwand there is a set of ~ Assume thatinitially each membgr = 1,2,..., N, does not have
timesT = {0,1,2,...} at which one or more swarm members updatknowledge of its neighbors’ positions. Each member remains stationary
their positions. Lef” C T, i = 1,2,..., N, be asetoftimes at which until it first obtains position information abobbthits neighbors. Then,
theith member’s position’ (), € 7", is updated. Notice that the ele-it will update its position according to this information.
ments of* should be viewed as the indexes of the sequence of physicalete’ (t) = '*' (t)—2'(t),i = 1,2,..., N —1 denote the distance

times at which updates take place, not the real times. These time lietween adjacent swarm members. Let the fungtief(t) — ) denote
dexes are nonnegative integers and can be mapped into physical tirttesattractive and repelling relationship between two swarm neighbors
TheT?, i =1,2,..., N, are independent of each other for differént with respect to the error betweer(t) and the comfortable dlstande
However, they may have intersections (i-e.,itcould beTHatT? # 0  We define twog functions laterg, (e*(t) — d) andg;(e'(t) — d), t

fori # j, so two or more swarm members may move simultaneouslygenote two different attractive and repelling relationships that WiII be
Here, our model assumes that swarm members sense their neighbouges to establish different swarm convergence properties. Assume that
sitions and update their positions only at time indexes 7% and at  for a scalar > 1, g.(e*(t) — d) is such that

all timest ¢ T, +'(t) is left unchanged. A variable’_, (¢) € T (re-

spectively,ri (1) € T)fori = 2,3,...,N (i = 1,2,...,N = 1)

is used to denote the time index of the real time where position in- % (ez(ff) - d) < Ja (el(t) - d) < (ez(t) - d) ,
formation about neighbor— 1(i 4+ 1) was obtained by memberat ' )

t € T' and it satisfied) < 7/ ,(t) < t (0 < 7/4(t) < t) for if (ez(t) - d) >0 (3)
t € T". Of course, while we model the times at which neighbor po- i ;

sition information is obtained as being the same times at which one ( (t) — ) = ( () — d)

or more swarm members decide where to move and actually move, it i (c‘i(t) _ d) -0 (4)
could be that theeal timeat which such neighbor position information

is obtained is earlier than the real time where swarm members moved. ( () — ) < ga ((ii('/t) _ d) <1 ( () — (1)

The differencet — 77, (¢)(t — 7/ ,(t)) between current time and B

the timerf_l(t)(rerl(t)) can be viewed as a form of communication if (C‘i(t) — d) < 0. (5)

delay (of course the actual length of the delay depends on what real

times correspond to the indexgs_, (t), orr;ﬂ( )). Moreover, itis

|mportantto note that we assumetln;all(t) > 7,_1(t") (respectively, Equation (3) indicates an attractive relationshipei‘f(t) —d)>0.In
T (8) > Tl (#)if t > ' fort,#' € T". This ensures that membier addition, the low bound/3(e’(¢) — d) for g.(e'(t) — d) guarantees

will use the most recently obtained neighbor position information. Futhat swarm member’'s moving step cannot be infinitely small during

thermore, swarm membeéwill use the real-time neighbor position in- its movements to its desired position. The constrairie® (1) — d) <

formationaz’~' () and/orz'*" (¢) provided by its proximity sensors in- (¢*(t) — d) ensures that it will not “over-correct” for the interswarm
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member distance. Equation (4) indicates a comfortable relationship ifA mathematical model for the aforementioned swarm, assuming the
(e’(t) — d) = 0. Equation (5) indicates a repelling relationship ifleft-edge member is stationary, is given by
(e'(t) — d) < 0.

Assume that for some scalatsands, such thatp > 1, andy > 0, (1) =2 (t) vie T

gs(e’(t) — d) satisfies 22(t 4 1) = min {22(t) — 62(). 22 (1) — w}

1/, . , vteT?
3 (el(t) - d) <y (el(t) - d) < (61(t) - d) , o :

if (ef'(t) - d) > ©) NNt + 1) = min {:cN_l(t) — VT (), 2 () — ur}
9 (ei(t) - d) - (e"(t) - d) , vte TN

it =< (et =d) < 7 N+ =N - veerV
! ‘"—(6 (t) = ')—7’ ™ d(t+1)=a'(t) WVteT, i=12...,N (10
v % 1 T/
(e (t)—d)<gf (f (t)—d)</7j(e (t)—d), | |
. : whereo’ () is defined in (9), and:;' (¢) is defined in (2). Clearly,

if (62(1‘/) - d) < - (8) in the previous model, swarm membef = 2,3,..., N — 1, makes
decisions for its new position by comparing the right neighbor informa-
tion obtained from proximity sensors with the predicted position com-

These relationships are similar to thosedorexceptif—y < (c'(t)—  puted froms’ (), where ‘nin” is used to model the avoidance of colli-
d) < 1, the two swarm members can move to be at the comfortaldgyns with a right-neighbor via its right-looking proximity sensor when
interswarm member distance within one move. a swarm member moves to the right (notice that membearoves only

Assume in Fig. 2 that member 1 remains stationary and all othggcording tap” since it does not have a right neighbor). With this and
members calculate their “predicted update step size” by using thgie choice of initial conditions, we have
left neighbor information and compare this with the right neighbor
information obtained from their proximity sensors in order to make
movements without collisions at their update time indexes. At
t € T, the proximity sensors of membeérprovide its neighbors
informationz;; * (#) andx,' () according to (1) and (2) (note thatsince we bound the step size with— w)/2 and the proximity sensor
this information may include the real-time position information ofvith a sensing range is used for collision avoidance. Equation (11)
its neighbors if its neighbors are inside itsrange). At the same means that swarm members with a finite sizén the aforementioned
time, memberi also obtains the most recent information of its lefswarm model have no collisions during movements.
neighborz'~" ({_,(t)) via its neighbor position sensor. We assume Notice that we assume that member 1 remains stationary, and next
that membet, i = 2,3,..., N, calculates its “predicted update stepwe will show how to treat the case where member 1 is mobile. Assume
size” ¢’ (t) according to its left neighbor information at timiec T"  that the left-edge member (member 1) of the swarm in Fig. 2 moves to
by (9), as shown at the bottom of page. The update size is computid left as a edge leader (assume that it does not change directions). All
based on the function according to the sensed position of memtger other members will follow it to move to the left. By symmetry, the case
left neighbor, wherg can be eithey. or g5, depending on the type of where the right-edge member leads the mobile swarm to the right is
convergence properties we study. Theii” function (sgn(z) = 1if  the same. Assume a swarm member will consider itself to be an edge-
z > 0,sgn(z) = —1if z < 0) is used to model the moving direction,member if its neighbor position sensors only indicate the existence of
where “-" represents moving to the left and-" represents moving to one neighbor, and a middle member if its neighbor position sensors
the right. Membei uses the real-time information of its left neighborindicate the existence of both left and right neighbors. The edge leader
sensed by its proximity sensor in caserdft) — ;zf;,_l(t) < e, where s the left edge member if the swarm moves to the left and is the right
4”;71_1 (t) is from (1). Otherwise, it uses the informatimﬁ’l(ﬂ_l(t)) edge member if the swarm moves to the right.
from the neighbor position sensor. Notice that the update step sizd-or somey > 0, we assumed — ~, d + ] is a “comfortable dis-
is forced to be bounded bl — w)/2, wherezs > 0 is the sensing tance neighborhood” relative i6(¢) anda***(¢) (i.e., whens*+1 (¢) —
range of proximity sensors and is the size of swarm members.z'(t) € [d — +,d + ~], we say that they are in the comfortable dis-
With this step size choice, collisions between swarm neighbors wiince neighborhood), whee is the comfortable distance neighbor-
a physical sizev can be avoided by proximity sensors even if twdood size. Assume théit < = < d — v so that we do not consider
swarm members simultaneously move toward each other due to #iearm membei + 1 to be at a comfortable distance to membéfr
delayed information. Whegy is used, we assune— w > 27, where it is too close to it, where is the sensing range of swarm members’
n > 0 is a finite positive number so that swarm neighbors can move peoximity sensors.
be at the comfortable distandewithin one move when their distance Consider the two assumptions of asynchronism. Clearly only As-
is already insidej-neighborhood of the comfortable distance. sumption 2 (partial asynchronism) will result in cohesiveness for a

ar“rl(t) - IT(f) > w, fori=1,2,....N -1 11)

min {}g (ng(f) — ;z,’;l_l(t) — d)} , (E;u') } sgn (.ri(t) — ‘L;l_l(f) — cl) ,

X if ' (t) — 2’7" (t) < 5
¢'(t) = o ‘ v o ©)
min {}g (a'(t) —a' =" (7l_1 () = d)]. —(a;'“) } sgn (z'(t) — 27" (r/_1(t)) — d),

otherwise
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mobile swarm since the delays in Assumption 1 (total asynchronismapdates its position only accordingtd(7¢(t)) and the update step is
which could be unbounded, will make swarm members lose track @fual tog(x>(t) — 2 (7£(t)) — d). From (14), we know the update step
their edge leader or their neighbors during movements, i.e., the dis-member 2 is always less than or equal to the error between the real
tance between swarm members could become unbounded just becdistance from member 2 to the edge leaderdfig, 2 (t) —z"' (t) - d).
swarm members use arbitrarily old sensed information. Hence, we wlence, the inter-member distance between members 1 and 2 is always
build our model based on Assumption 2 (partial asynchronism) whighneater than or equal tb Clearly, a similar result holds for all swarm

has a positive integeB. Note that we may viewB as amasynchronism members, so we have

measure ' ' l, . '
For convenience, assume that™ (0) — z'(0) = d, for e(t)zd Vel i=12,...,N-1L (15)
i = 1,2,...,N — 1 initially, i.e., at the beginning all the swarm

Equation (15) implies that all the mobile swarm members’ proximity
sensors will never sense their neighbors during movements. This also
implies that members will never have collisions in the above swarm,
even without proximity sensors. Thus, we can write the following
i+ D) =2 () —s(t) vieT'. model for the previous mobile swarm:

members are at a comfortable distance to their neighbors. Assume
edge leader moves with a ste@@) whent > 0, where0 < s(¢) < r,
i.e.,s(t) is bounded by a finite positive numberSo, we have

Member 2 remains stationary until it gets the leader’s new positionin-  z'(t+1)=z'(t)—s(t) Vte T
formation. Then, this member tries to follow the leader and update its ;24 1)=2%(¢)—¢ (22 () =2t (£ (1)) —d)
position according to the new position information since it wants to 5
be at the comfortable distance to the edge leader. Similarly, all other VteT
swarm members will begin to move and follow their moving neigh- L :
bors. They all try to be at the comfortable distance to their neighbors.  , N1 N1 Ne2 [ N_1
We think of the swarm as maintaining the cohesiveness if all the swarm” (t+1)=2""(t)~yg (T ()~ (TN*Q (f‘)) _d)
members are in the comfortable distance neighborhood to their neigh- vte TN!
bors during the moving process. Notice that the leader's moving ste N N N N-1(_N
boundr ca?] be used agffmeasure of Hasta cohesive asynchrongus PN =0 (r (t)—= (T‘V‘l (f)) _d>
swarm moves. vteTV

Next, we will show that in the above mobile swarm, when swarm mi(f_i_l):mi(t) Vi ¢ Ti7 i=1.2.....N. (16)
members only update their positions according toglfienction, they o
will never have collisions even without proximity sensors. Accordingly, Remark 1: Notice that for a 1-DV-member collision-free mobile
we define the predicted update step siz¢f) of swarm membei ac-  swarm pushed by an edge leader, where membér the edge leader

cording to its left neighbor information for this case as moving to the left with a step(¢) whent > 0,0 < s(t) < r, and
e i i1 2 fori—2 N 0 < r < £ — w, all other members move according to the position of
(=g (T () —x (Ti—l(f)) - ) , fori=2,3,.... N. their right neighbor except that they may use position information of

« n S ) . : their left neighbor for avoiding collisions, Assumption 2 (partial asyn-
Here, ‘¢” can be eithery, or g, and it denotes the attractive and re- ) ; ; . .
v Yo O 91 fronism) holds, andt'(0) — 2°(0) = d,fori = 1,2,....N — 1

pelling relationship between two swarm neighbors. Moreover, we wil itiall th tical model of the ab o b
introduce another such function later and analyze the swarm cohesf(g!a!ly, @ mathematical model of the above swarm IS given by

ness properties that it achieves. , ' P41 =2t St + e T

At the beginning wher = 0, ¢'(0) = z'7'(0) — 2°(0) = d, for J’Q( +1) = )+? *) VQG Y
i=1,2,...,N —1.Whent > 0,t € T', the edge leader begins to @ (t+1) = max {zy(t) +w, 2" (t) + 67 (1) }
move and we then have (t) = z(t) — ' () > d. Member 2, the Yt e T?

edge leader’s right neighbor, remains stationary until it gets the leader’s
new position information: ({ (¢)). From Assumption 2, we know . , . ,
7Nt + 1) = max {ar;\fz(t) +w, 2™ Nt + <b‘~71(t)}

t—-B<ri(t)<t (12) ;
L y vie TN !
and we have:'(i'(t)) 2 «(t). So 2N (t +1) = max {:v;\;*l(t) +w, 2™ (t) - s(t)}
22 (t) — &t (Tf(f)) —d< :L'Z(t) - :vl(t) —d. (13) vt e TN
According to the definition of (i.e., bothy, andg ) and (13), we have dt+1)=a'(t) VET, i=12,....,N (17)
g (@2t =2 (rP(1) —d) <2®(t) =2 (71 (1) —d where the predicted update step siZét) of swarm membei ac-
<22(t) — ' (1) — d. (14) cording to its right neighbor information is defined as (18) as shown at

the bottom of page, and,; ' (t) andz},}" (¢) are defined in (1) and (2).
At the beginning, member 2's proximity sensor cannot sense its neigtetice that here we bound the step sizecby w instead of(c — w) /2
bors since at this time' (¢) is greater than or equal th So, member 2 since all swarm members only move to the left.

min {|g (zpt" (1) — 2 (¢) - d)} e —w}sgn (apft(t) —2'(t) —d),
if ;z:ﬁl (f) - ;z:i(t) <z ' . ' ‘

min { g (.r”rl (Til+l(f)) — 2t (t) — d)| ,E— 'u,v} sgn (,r”rl (Tf_,_l(t)) — 2t (t) — (I) ,
otherwise

o' () = (18)
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Ill. CONVERGENCEANALYSIS OF 1-D ASYNCHRONOUSSWARMS Proof: We will use a mathematical induction method, where our
In this section, we will study stability properties of 1-D asyn induction hypothesrs will be that of N swarm members asymptoti-

chronous swarms on the basis of mathematical models we b&«’f}”yconvergetob( (0),2 (0)+d, 2 (0)+2d,..., 2 (0)+(k—1)d)
and from this we will show that + 1 of ¥V members converge.
earlier and provide conditions under which the swarm will obtaift First, fork — 1, whichis the left-edge member, it converges 60
and keep the cohesiveness even in the presence of sensing delaysIn ang it rem Tn V: tII nl v, Next ng t sh wl th tvivgn th 3nd
asynchronism. First we will consider stationary edge-member aS\f nee It remains stationary. ive € must sho at given the Induc-
. o - ion hypothesis, the first + 1 members in theV -member swarm will
chronousV-member swarms, and then we will investigatemember

X
asynchronous mobile swarms following, or pushed by an edge Ieao% ymptitir(:gl)lﬁc]?g/erge to the positions’ (0), = (0) + d, = (0) +

A. Convergence Analysis of Stationary Edge-Member Asynchronous According to our induction hypothesis we know that thers exists a
Swarms timet* such that swarm membeérfori = 2.3, ..., k, will stay in the
range between'(0) + (i — 1)d — v anda"' (0 )+ (z —1)d+~, where
Here, we will provide conditions under which the swarm in Fig. 3 « o < 4 — =. Assumes;(t) = a*(t) — («*(0) + (i — 1)d) for
will converge to be adjacent to a stationary left-edge member. By sym= 2 3 ... %, which represents membés distance to its desired
metry, the case for convergence to a stationary right-edge membepdsition, wheres; (t) € [—~, 7] for ¢ > ¢*.
the same. We begin with the two-member case, then consider the genrnerefore, aftet > t*, we have B
eral N-member case where the proofs will depend onthe: 2 case.
Suppose there is a 1-D two-member swarm, WhICh has meinbef (f + 1) = ' (0) + (i — 1)d + &i(t), ‘
andi — 1. Assume at the beginning we havg0) — =*~'(0) > < and Vie T, fori =2,3,...,k
member — 1 remains stationary so that proximity sensors of member
i will never sense member— 1. Therefore, we define the update stegor the firstk members in the swarm except the stationary member 1
. i . . and from membek + 1 to memberV, we have
size¢" (t) of memberi in such a two-member swarm as follows:
2Tt + 1) = min { ML) — o (), ffz (t) — w}

o't =g (e = (Fi () — d) (19)
where the step size only depends on gHenction. L=
Lemma 1: For anN = 2 totally asynchronous swarm modeled by~ ;N~"(+ 4 1) = min { 1-) ), () — w }
2N+ 1) I:vifl(t) vieT vte TN!
e (t+1)=a'(t)-o'(t) Vel N+ 1) =Nt -V vteTV (21)
2 (t+1)=2'(t) VigT (20) whereg in ¢ (t) is g.
where.ﬁ L) = #4071, ¢t is a constanty’ (0) — 27 1(0) > Now, considering membér+ 1's movements after > +*, we will
andg’ (t) is defined in (19) withy = g., it is the case that for any do a case analysis.
0 < v < d — ¢, there exists a timé such thate' (t') € [+.7" +d — Case 1If for somet € T+, ¢ > ¢*, memberk + 1's proximity
o :vfl + d + ~] and alsdim; ... « (t) = ‘LL yd. sensor senses memberi.e.,
The proof is omitted due to the space limitation. The basic idea is to xﬁ,(t) _ wk(t) = 21 (0) + (k= 1)d + 6:(1)

define a Lyapunov-like function
from (9), membef + 1 will move away from membek according to

v (1) — (,r;—‘ —|—d)‘ vieT

Tt 41) =

and show that for €T,V (_t)_\rvill asymptotically tand to zero via a min {L,thrl('t) — min { . (karl(t)
case analysis using the definition @f and Assumption 1. )

Corollary 1: For a two-member swarm in Lemma 1, if member — (2" (0) + (k= 1)d + 6, (t)) — d)i
1, instead of remaining stationary at ', monotonically approaches (s —w)
the positionz. " ast — oo (i.e.,xl " < 2 "' (t+1) < 27 (t) or 2
2N < 2T 1) < 2l l,weTr b, and|z 71 (0) — 27 < f 1 |
~, where0 < ~ < d — &, the conclusion of Lemma 1 still holds. s sen (l (1) = (#(0) + (k= D)d + &n(t)) — d)

The proof is omitted due to the space limitation. A case study will Iﬁ:rz(t) _ w} vt e THH. 22)

easily lead to the conclusion.

Lemma 2: For anN = 2 partially asynchronous swarm modeled Case 2 If memberk + 1's proximity sensor cannot sense member
by (20) but withg = ¢, wherez'~'(t) = z.~*, .7! is a constant, k, it will update its position by
andz*(0) > 2'7(0) + ¢, for anyn, 0 < n < d— <, swarm member

k41
will converge to the posrtion qf:L‘ ' 4 d) in some finite time, that is ) =
bounded byB[3 /(| (0) — 2! — d| — 1) + 2. mm{ (1)
The proof is omitted due to the space limitation. It is similar to the (e — w)
proof of Lemma 1 and the bound is obtained using the definitiary of — min { Ja ( Pt — ( ;f“(t)) - d)‘ T }

and choosingy = 1. vy .
Theorem 1. (Total Asynchronism, Asymptotic ConvergenEey.an sgn ( H(t) - (Tk+l(f)) - d) ntpfz(f) - 'w}
N-member swarm which is modeled by (10) witk= g., N > 1, As-

k+1
sumption 1 (total asynchronism) holds, aﬁd‘l(()) z'(()) >e,i= veeT . (23)
1,2,..., N — 1, the swarm members’ positiofs, 2> N) will Case 2alf memberk 4+ 1 moves toward to membér, due to its out-
asymptoticallyconvergeta((0) 21 (0)+d, rl(O)—i—Qd ....... ' (0)4+ dated information:* (7} (¢)) about membet, such that after some

(N —1)d), wherec'(0) is the initial position of the stationary left-edgetime its proximity sensor senses membethen it will be the same as
member. Case 1.
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Case 2blf memberk 4+ 1 moves according to (23), but its proximity due to the total asynchronism. It is similar for membet 3, k& + 4,
sensor never senses membethen according to Assumption 1, givenand so on. In that case, it will repeat the aforementioned process. As
time t*, there exists a timé&" > ¢* such thaﬁf“(t) > t*,Vk and we know membelk + 2’s distance to the positiof:' (0) + kd) is
t > t°. So aftert > ¢, memberk + 1 knows membe¥: is at the finite, and there are only a finite number of members in the swarm, and
positionz' (0) + (k — 1)d + 6x(¢). It will move according to (22).  swarm member’s movements cannot be infinitely small if the distance

According to our induction hypothesis, we already know to its desired position is not infinitely small via the definitiongf So

lim 8 (4) = e . there exists a tim&'? > t¥ such that membér + 2 will have moved
im 6;(t) =0, fori=2,3,...k . ] o o
t—o0 beyond the positiofiz' (0) + kd). After ¢ > ¢™?, memberk + 2 will
So, if membelk + 2 does not prevent its movements [iée]ffrl (t+1) never prevent membér+ 1 again. From Corollary 1 and our induction
is never equal t@“r’(f) — w in (22)], aséx (1) goes to zero, member hypothesis, membér+ 1 will asymptotically converge to the position
% + 1 will move to its desired position a%.(t) by (z'(0) + kd). This ends the induction step. Q.E.D.
k+1(f 1) = k+1(f) Theorem 2. (Partial Asynchronism, Finite Time Convergendejr
o an N-member swarm which is modeled by (10) with= gy, N > 1,
_ min { e ( ) — (21(0) 4 (k— 1)d Assumption 2 (partial asynchronism) holds, ard’' (0) — 27 (0) > =,

(= — w) i =1,2,....,N -1, fOI: anyn, 0 < 75 < (e — w)/2, the swarm
+6,(1)) — d)], 3 } members’ positiongzt, 2, ..., «™) will converge to ¢1(0), 2 (0) +
d, z'(0) + 2d,...,2'(0) + (N — 1)d) in some finite time, that is
. sgn ( L) = (21(0) + (k — 1)d + 6(1)) bounded by
—d) vt e TFH (24) B2V 2 |:E (maX ( 2'(0) — 2" (0) — (i — l)dr) - 7)) + 2:| (25)
If |go ("1 (8) = (21(0) + (k= 1)d + 6,(t)) — d)| is always less than L
(¢ — w)/2 in (24), membel + 1 will move by fori =2,3,...,] 7, wherex' (0) is the initial position of the stationary
’“*1(t—|—1) "“(t) Ieft—e;lge member. S
roof: The proof is similar to Theorem 1 except that the swarm
— ga (warl(t)_ (4.1(0)—1—(11’:—1)d+6k(t))—d> is partially asynchronous. So, we will use Assumption 2 and Lemma
1 2 to deduce membér 4+ 1 will arrive at the positior(=' (0) + kd) in
vtel some finite time.
so that it will asymptotically converge @' (0) + (k — 1)d + d) = Next, we will try to bound the amount of converging time for a

(41(0) + kd) by Corollary 1. If|ga («* T (t) — (' (0) + (k — 1)d + V-member swarm. From Lemma 2, for a two-member swarm the

bx(t)) — d)| is larger than(e — w)/2 memberk + 1 will move to the tlmel needed to achieve convergence is bounded /(| (0) —
direction wherdz+" (t) — (' (0) + (k — 1)d + 8, (t)) — d| becomes x. ~ —d| —n) + 2]. Similarly for aN-member swarm, if blqcka(_jes _
smaller with a stege — w)/2. Therefore, there exists some tiighat NE€VEr occur among swarm members the total converging time is
aftert > #°, [ga (2571 (1) = (21 (0) 4 (k — 1)d + 84 (£)) — )| is always bounded byBN [5/77(max, (|*(0) — 2" (0) — (i — 1)d|) — ) + 2],

less thar(s — w)/2 so that it will be the same as before. fori = 2.3, On the other hand, if all middle swarm

If memberk -+ 1's proximity sensor finds membér-+ 2 nearby at members are blocked by their neighbors in every step and cannot
time# € T+ we have move until the blockades are released, there /dre- 2 members

. preventing member 2V — 3 members preventing member 3, and
k1 p — kT2 ; ;
T+ 1) = 2" () — w. so on, until only one member prevent membeér— 1 As we know
Note that at the same time membes- 2 also gets member + 1's (N —=2) + (N =3) + (N —4) +--- + 1 < 272, Moreover, we

current position via its proximity sensor since their current adjaceh'ﬂow each middle swarm member s distance to its desired position
distance isv. There exists atimg* > ¢* +1,¢* € T*2 that member |°(0) — 2'(0) — (i — 1)d| is finite and each of their moving steps is at

% + 2 will update its position according to least larger than /3. Therefore, the maximum number of total update
i e time steps i2” 23 /n(max; (]2*(0) — 21(0) — (i — 1)d|)—n)+2].
7 (t+1) =min { (t) Then we can bound the total converging time by (25) in this worst
. ka2 btz .p case because the maximum update time intervBl.is Q.E.D.
—mun { Ga ( (t) = (” (t ) Note that some proof details of Theorems 1 and 2 are omitted due to
)| (= —w) } the space limitation. Interested readers can refer to [22].
’ 2
e (;p’““ ) — (ar’“+2(tp) i u) _ d) B. Converger?ce Analysis of-Asynchronous M?blle Swarms |
Next, we will study cohesiveness of a mobile swarm following an
wl’;#(t) — w} vt e T2 ¢ >t edge leader. First, we will study the case of usingghéunction (as-
, sumingy = ), and then show that all members in &nmember mo-
Memberk + 2's temporary destination is the position@f“**(#”) —  pjle swarm will be in a comfortable distance neighborhood from their

w + d). Similarly, from (21) membek + 3 could prevent member neighbors during movements if there are constraints on the leader's

k+-2's further moving, and membér+-4 could preventmembér+3,  moving step bound, the partial asynchronism measure, and the comfort-

etc. In the end, membe¥ could prevent membeN — 1. However, aple distance neighborhood size. While we only consider a left-edge

memberX is free to move to the right. member leading a swarm to the left, by symmetry, the case where the
Since we assume the séft$ are infinite, and each swarm membetight-edge member leads the mobile swarm to the right is the same

moves infinitely often, we can easily use another induction method ¢énly the model is different).

show thatin the preViOUS cases after some time, mekeould move Theorem 3: For an/N-member asynchronous mobile swarm mod-

away frommembeN —1, and membef — 1 could move away from eled by (16), wherg is g;, N > 1, Assumption 2 (partial asynchro-
memberV — 2, etc. So, after membér+ 2 moves away from member nism) holds, and:* "' (0) — 2°(0) = d,i = 1,2,...,N — 1, if

k+1, memberk + 1 will continue moving to the positiofi:* (0) +kd).
However, membek + 2 may prevent membér+ 1 again aftet > ¢ 0<r< w57 (26)
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for a giverry, all the swarm members will be in the comfortable distance
neighborhoodd, d + ~] of their neighbors during the moving process,
wherer is the upper bound of the edge leader’s moving step B €
Z™ is the partial asynchronism measure anthoosey = ) is the
comfortable distance neighborhood size.

The proof is omitted due to the space limitation. Interested read
are welcome to contact the authors to get it or refer to [23].

Remark 2: Note the following about (26).

» For a givenB andv, it provides bound on how fast/&-member
swarm can move and still maintain the type of cohesiveness char-
acterized byy. For example, increases in swarm size, commu- (1]
nication delays, or swarm cohesiveness (smajflerequire de- 2]
creases in the rate of movement of the leader.

» Foragiven andB, it provides the size of the neighborhood that [3]
will be maintained and hence specifies a degree of cohesiveness
of a N-member swarm. [4]

» For a givenr and~, it provides constraints on how to design
a communication system (i.e., what is needed Ry for a (5]
N-member swarm between swarm members and indicates how
often they must update their positions. [6]

Remark 3: From Theorems 1 and 2, we can see that if the edge
leader stops moving (i.es(t) = 0, > t' for somet' € T"), all
other N — 1 members will converge to be adjacent to the edge leader
with a comfortable distanceé.

Remark 4: If a differentg, function is defined and used in Theorem [g]
3, which does not require a swarm member to move to be adjacent to
its neighbor in one step if it gets very close to it but guarantee that thel®]
following members are in th-neighborhood of desired comfortable
distance of their leading neighbors after each update step (the definiticmO]
of g, function is omitted due to the space limitation), with all other
same conditions, and if

[7

y=b

a=° (11]
NB -1

0<r<

(27)
. . [12]
we can get the same conclusion as in Theorem 3.

Next, we provide different conditions under which Arrmember
asynchronous mobile swarm pushed by an edge leader can maintain ¢&3]
hesiveness during movements using the model in (17). While we only
consider a right-edge member pushing a swarm to the left, by sy 14]
metry, the case where the left-edge member pushes the mobile swarm
to the right is the same.

Theorem 4: For an/N-member asynchronous mobile swarm mod- [15]
eled by (17), wherey is g5, N > 1, Assumption 2 (partial asyn-
chronism) holds() < ~+ < d — =, andz'T1(0) — 2'(0) = d, i =
1,2,...,N —1,if

[16]
(17]

(28)
(18]

for a giverry, all the swarm members will be in the comfortable distance 19
neighborhoodd — ~, d] of their neighbors during the moving process,
wherer is the upper bound of the edge leader’'s moving step, B €
Z* is the partial asynchronism measuse(choosey = %, and0 <
n < £ —w) is the comfortable distance neighborhood size,aisthe
sensing range of proximity sensors.

The proof is omitted due to the space limitation. It is similar to the
proof of Theorem 3.

Remark 5: If g;, function described in Remark 5 is used in Theorem[22]
4 with all other same conditions, and if

[20]

[21]

(23]
y=b

<7
O0<r<yp—1

(29)

(24]
we can get the same conclusion as in Theorem 4.
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IV. CONCLUSION

We have provided results for a 1-D swarm showing how to achieve
cohesion and collision avoidance even with delays, asynchronism, and
finite body sizes. In the future we are going to consider sensor dynamics
and noise, vehicle dynamics, network topology impacts, and the higher
Hifhensional case. Some progress on the last two topics is given in [20],
[21], and [24].
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