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Stability Analysis of One-Dimensional
Asynchronous Swarms

Yang Liu, Kevin M. Passino, and Marios Polycarpou

Abstract—Coordinated swarm behavior in certain types of animals
can also occur in groups of autonomous vehicles. Swarm “cohesiveness”
is characterized as a stability property. Conditions for one-dimensional
asynchronous swarms to achieve collision-free convergence even in the
presence of sensing delays and asynchronism during movements are
provided. Each finite-size swarm member has proximity sensors and
neighbor position sensors that only provide delayed position information.
Such stability analysis is of fundamental importance if one wants to
understand the coordination mechanisms for “platoons” of autonomous
vehicles, where intermember communication channels are less than
perfect and collisions must be avoided.

Index Terms—Asynchronism, communication delay, discrete-event sys-
tems, stability, swarms.

I. INTRODUCTION

A variety of organizms have the ability to cooperatively forage for
food while trying to avoid predators and other risks. For instance, when
a school of fish searches for prey, or if it encounters a predator, the
fish often make coordinated maneuvers as if the entire group were one
organizm [1]. Analogous behavior is seen in flocks of birds, herds of
wildebeests, groups of ants, and swarms of social bacteria [2], [3]. We
call this kind of aggregate motion “swarm behavior.” A high-level view
of a swarm suggests that the organizms are cooperating to achieve some
purposeful behavior and achieve some goal. Naturalists and biologists
have studied such swarm behavior for decades.

Recently, there has been a growing interest in biomimicry of the
mechanisms of foraging and swarming for use in engineering appli-
cations since the resulting swarm intelligence can be applied in opti-
mization [2], [3], robotics [4], [5], traffic patterns in intelligent trans-
portation systems [6], [7], and military applications [8]. For instance,
there has been a growing interest in groups (swarms) of flying vehicles
[9]. It has been argued that a swarm of robots can accomplish some
tasks that would be impossible for a single robot to achieve. Particular
research includes that of [5], who introduced the concept of cellular
robotic systems, and the related study in [10]. The behavior-based con-
trol strategy put forward by Brooks [11] is quite well known and it has
been applied to collections of simple independent robots. Mataric [12]
describes experiments with a homogeneous population of robots acting
under different communication constraints. Suzuki and Yamashita [13]
considered a number of two-dimensional problems of formation of geo-
metric patterns with distributed anonymous mobile swarm robots.

In this note, we are interested in mathematical modeling and analysis
of stability properties of swarms. We think of stability as characterizing
the cohesiveness of the swarm as it moves. Stability is a basic qual-
itative property of swarms since if it is not present, then it is maybe
impossible for the swarm to achieve any other group objective. Sta-
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Fig. 1. Single swarm member with a finite sizew, 1-D case.

bility analysis of swarms is still an open problem but there have been
several areas of relevant progress. Jinet al. in [14] studied stability of
synchronized distributed control of one-dimensional (1-D) and two-di-
mensional swarm structures. Interestingly, the model and stability anal-
ysis in [14] are quite similar to the model and proof of stability for
the load balancing problem in computer networks [15], [16]. Next, we
would note that there have been several investigations into the stability
of inter-vehicle distances in “platoons” in intelligent transportation sys-
tems (e.g., in [17], or of the “slinky effect” in [18] and [19], and traffic
flow in [7]).

This note presents 1-D asynchronous swarm models by putting many
single finite-size swarm members together and provide conditions
under which swarms will keep their cohesiveness even in the presence
of sensing delays and asynchronism. Our desire to consider collision-
free cohesion for finite-size vehicles significantly complicates the
analysis compared to the case where point-size vehicles are studied and
collisions are allowed (e.g., as in [13]). Our study uses a discrete-time
discrete event dynamical system [15] approach and unlike the studies
of platoon stability in intelligent transportation systems we avoid
detailed characteristics of low level “inner-loop control” and vehicle
dynamics in favor of focusing on high level mechanisms underlying
qualitative swarm behavior when there are imperfect communications.
Swarm stability for theM � 2 dimensional case has been studied in
[20] and [21].

II. M ODELING

A 1-D swarm is a set ofN swarm members that moves along the real
line, where the model of a single swarm member is shown in Fig. 1.
Assume it has a physical size (width)w > 0 and its position is the
center of the square. It has a “proximity sensor” for both sides with a
sensing range" > w, which means that once another swarm member
reaches a distance of" from it, the sensorinstantaneouslyindicates
the position of the other member. However, if its neighbors are out of
its sensing range, the proximity sensor for the left neighbor will re-
turn�1 (or, practically, some large negative number), and the one for
the right neighbor will return1. The proximity sensor is used to help
avoid swarm member collisions and ensures that our framework allows
for finite-size vehicles, not just points. It also has a “neighbor position
sensor,” which can sense positions of neighbors to its left and right if
present. Assume that there is no restriction on how close a neighbor
must be for the neighbor position sensor to provide a sensed value.
The sensed position information may be subjected to random delays.
Swarm members like to be close to each other, but not too close. Sup-
posed > 0 is the desired “comfortable distance” between two adjacent
neighbors, andd > ". Each member senses the interneighbor distance
via both neighbor position and proximity sensors and makes decisions
for movements according to the difference between the sensed distance
and the comfortable distanced via its “decision-making” mechanism.
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Fig. 2. 1-D asynchronous swarm, all members moving to be adjacent to the stationary edge member.

Then, the decisions are outputted to its “driving device,” which pro-
vides locomotion for it. Each swarm member tries to move to main-
tain a comfortable distance to its neighbors. This will tend to make the
group move together in a cohesive “swarm.”

A 1-D swarm is formed by putting many of the above single swarm
members together on the real line as shown in Fig. 2. Letxi(t) denote
the position of swarm memberi at timet. We havexi(t) 2 R, i =
1; 2; . . . ; N , and ifN � 2, we assume thatxi+1(0) � xi(0) > ",
for i = 1; 2; . . . ; N � 1 initially so that there are no overlapping in
finite-size swarm members. Letxi�1pl (t)(xi+1pr (t)) denote memberi’s
left-neighbor (right-neighbor) position information sensed by its left-
looking (right-looking) proximity sensor at timet. From the previous
assumptions, we have

xi�1pl (t) =
xi�1(t); if xi(t)� xi�1(t) � "

�1; otherwise
for i = 2; 3; . . . ; N (1)

xi+1pr (t) =
xi+1(t); if xi+1(t)� xi(t) � "

1; otherwise
for i = 1; 2; . . . ; N � 1: (2)

We assume that every swarm member knowsd, and there is a set of
timesT = f0; 1; 2; . . .g at which one or more swarm members update
their positions. LetT i � T; i = 1; 2; . . . ; N , be a set of times at which
theith member’s positionxi(t), t 2 T i, is updated. Notice that the ele-
ments ofT i should be viewed as the indexes of the sequence of physical
times at which updates take place, not the real times. These time in-
dexes are nonnegative integers and can be mapped into physical times.
TheT i; i = 1; 2; . . . ; N , are independent of each other for differenti.
However, they may have intersections (i.e., it could be thatT i\T j 6= ;
for i 6= j, so two or more swarm members may move simultaneously).
Here, our model assumes that swarm members sense their neighbor po-
sitions and update their positions only at time indexest 2 T i and at
all timest =2 T i, xi(t) is left unchanged. A variable� ii�1(t) 2 T (re-
spectively,� ii+1(t) 2 T ) for i = 2; 3; . . . ; N (i = 1; 2; . . . ; N � 1)
is used to denote the time index of the real time where position in-
formation about neighbori � 1(i + 1) was obtained by memberi at
t 2 T i and it satisfies0 � � ii�1(t) � t (0 � � ii+1(t) � t) for
t 2 T i. Of course, while we model the times at which neighbor po-
sition information is obtained as being the same times at which one
or more swarm members decide where to move and actually move, it
could be that thereal timeat which such neighbor position information
is obtained is earlier than the real time where swarm members moved.
The differencet � � ii�1(t)(t � � ii+1(t)) between current timet and
the time� ii�1(t)(�

i
i+1(t)) can be viewed as a form of communication

delay (of course the actual length of the delay depends on what real
times correspond to the indexest, � ii�1(t), or � ii+1(t)). Moreover, it is
important to note that we assume that� ii�1(t) � � ii�1(t

0) (respectively,
� ii+1(t) � � ii+1(t

0)) if t > t0 for t, t0 2 T i. This ensures that memberi
will use the most recently obtained neighbor position information. Fur-
thermore, swarm memberi will use the real-time neighbor position in-
formationxi�1(t) and/orxi+1(t) provided by its proximity sensors in-

stead of information from its neighbor position sensorsxi�1(� ii�1(t))
and/orxi+1(� ii+1(t)) if their neighbors are inside the sensing range of
its proximity sensors. This information will be used for position up-
dating until memberi gets more recent information, for example, from
its neighbor position sensor.

Next, we specify two assumptions to characterize asynchronism for
swarms [16].

Assumption 1. (Total Asynchronism):Assume the setsT i,
i = 1; 2; . . . ; N , are infinite, and if for eachk, tk 2 T i andtk ! 1
ask ! 1, thenlimk!1 � ij (tk) =1 for j = i� 1, i+ 1.

Assumption 2. (Partial Asynchronism):There exists a positive in-
tegerB (i.e.,B 2 Z+, whereZ+ represents the set of positive inte-
gers) such that

a) for everyi andt � 0, t 2 T , at least one of the elements of the
setft; t + 1; . . . ; t + B � 1g belongs toT i;

b) there holdst�B < � ij (t) � t for all i andj = i� 1, i+1, and
all t � 0 belonging toT i.

Notice that in Assumption 1, the delayst� � ij (t) in obtaining position
information of neighbors of memberi can become unbounded ast in-
creases. However, Assumption 2 guarantees that the delayst � � ij (t)
in obtaining position information of neighbors of memberi is bounded
byB and each member moves at least once withinB time indexes.

Assume that initially each memberi, i = 1; 2; . . . ; N , does not have
knowledge of its neighbors’ positions. Each member remains stationary
until it first obtains position information aboutbothits neighbors. Then,
it will update its position according to this information.

Letei(t) = xi+1(t)�xi(t), i = 1; 2; . . . ; N�1 denote the distance
between adjacent swarm members. Let the functiong(ei(t)�d)denote
the attractive and repelling relationship between two swarm neighbors
with respect to the error betweenei(t) and the comfortable distanced.
We define twog functions later,ga(ei(t)� d) andgf (ei(t)� d), to
denote two different attractive and repelling relationships that will be
used to establish different swarm convergence properties. Assume that
for a scalar� > 1, ga(ei(t)� d) is such that

1

�
ei(t)� d <ga ei(t)� d < ei(t)� d ;

if ei(t)� d > 0 (3)

ga ei(t)� d = ei(t)� d = 0;

if ei(t)� d = 0 (4)

ei(t)� d <ga ei(t)� d <
1

�
ei(t)� d ;

if ei(t)� d < 0: (5)

Equation (3) indicates an attractive relationship if(ei(t)� d) > 0. In
addition, the low bound1=�(ei(t)� d) for ga(ei(t)� d) guarantees
that swarm member’s moving step cannot be infinitely small during
its movements to its desired position. The constraintga(e

i(t)� d) <
(ei(t) � d) ensures that it will not “over-correct” for the interswarm
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member distance. Equation (4) indicates a comfortable relationship if
(ei(t) � d) = 0. Equation (5) indicates a repelling relationship if
(ei(t)� d) < 0.

Assume that for some scalars� and�, such that� > 1, and� > 0,
gf(e

i(t)� d) satisfies

1

�
ei(t)� d <gf ei(t)� d < ei(t)� d ;

if ei(t)� d > � (6)

gf ei(t)� d = ei(t)� d ;

if � � � ei(t)� d � � (7)

ei(t)� d <gf ei(t)� d <
1

�
ei(t)� d ;

if ei(t)� d < ��: (8)

These relationships are similar to those forga except if�� < (ei(t)�
d) < �, the two swarm members can move to be at the comfortable
interswarm member distance within one move.

Assume in Fig. 2 that member 1 remains stationary and all other
members calculate their “predicted update step size” by using their
left neighbor information and compare this with the right neighbor
information obtained from their proximity sensors in order to make
movements without collisions at their update time indexes. At
t 2 T i, the proximity sensors of memberi provide its neighbors
informationxi�1pl (t) andxi+1pr (t) according to (1) and (2) (note that
this information may include the real-time position information of
its neighbors if its neighbors are inside its"-range). At the same
time, memberi also obtains the most recent information of its left
neighborxi�1(� ii�1(t)) via its neighbor position sensor. We assume
that memberi, i = 2; 3; . . . ; N , calculates its “predicted update step
size” �i(t) according to its left neighbor information at timet 2 T i

by (9), as shown at the bottom of page. The update size is computed
based on theg function according to the sensed position of memberi’s
left neighbor, whereg can be eitherga or gf , depending on the type of
convergence properties we study. The “sgn” function (sgn(z) = 1 if
z � 0, sgn(z) = �1 if z < 0) is used to model the moving direction,
where “�” represents moving to the left and “+” represents moving to
the right. Memberi uses the real-time information of its left neighbor
sensed by its proximity sensor in case ofxi(t)� xi�1pl (t) � ", where
xi�1pl (t) is from (1). Otherwise, it uses the informationxi�1(� ii�1(t))
from the neighbor position sensor. Notice that the update step size
is forced to be bounded by(" � w)=2, where" > 0 is the sensing
range of proximity sensors andw is the size of swarm members.
With this step size choice, collisions between swarm neighbors with
a physical sizew can be avoided by proximity sensors even if two
swarm members simultaneously move toward each other due to the
delayed information. Whengf is used, we assume"�w > 2�, where
� > 0 is a finite positive number so that swarm neighbors can move to
be at the comfortable distanced within one move when their distance
is already inside�-neighborhood of the comfortable distance.

A mathematical model for the aforementioned swarm, assuming the
left-edge member is stationary, is given by

x1(t+ 1) =x1(t) 8t 2 T 1

x2(t+ 1) = min x2(t)� �2(t); x3pr(t)� w

8t 2 T 2

... =
...

xN�1(t+ 1) = min xN�1(t)� �N�1(t); xNpr(t)� w

8t 2 TN�1

xN (t+ 1) =xN (t)� �N(t) 8t 2 TN

xi(t+ 1) =xi(t) 8t =2 T i; i = 1; 2; . . . ; N (10)

where�i(t) is defined in (9), andxi+1pr (t) is defined in (2). Clearly,
in the previous model, swarm memberi, i = 2; 3; . . . ; N � 1, makes
decisions for its new position by comparing the right neighbor informa-
tion obtained from proximity sensors with the predicted position com-
puted from�i(t), where “min” is used to model the avoidance of colli-
sions with a right-neighbor via its right-looking proximity sensor when
a swarm member moves to the right (notice that memberN moves only
according to�N since it does not have a right neighbor). With this and
the choice of initial conditions, we have

xi+1(t)� xi(t) > w; for i = 1; 2; . . . ; N � 1 (11)

since we bound the step size with("�w)=2 and the proximity sensor
with a sensing range" is used for collision avoidance. Equation (11)
means that swarm members with a finite sizew in the aforementioned
swarm model have no collisions during movements.

Notice that we assume that member 1 remains stationary, and next
we will show how to treat the case where member 1 is mobile. Assume
that the left-edge member (member 1) of the swarm in Fig. 2 moves to
the left as a edge leader (assume that it does not change directions). All
other members will follow it to move to the left. By symmetry, the case
where the right-edge member leads the mobile swarm to the right is
the same. Assume a swarm member will consider itself to be an edge-
member if its neighbor position sensors only indicate the existence of
one neighbor, and a middle member if its neighbor position sensors
indicate the existence of both left and right neighbors. The edge leader
is the left edge member if the swarm moves to the left and is the right
edge member if the swarm moves to the right.

For some > 0, we assume [d � , d + ] is a “comfortable dis-
tance neighborhood” relative toxi(t)andxi+1(t) (i.e., whenxi+1(t)�
xi(t) 2 [d � ; d + ], we say that they are in the comfortable dis-
tance neighborhood), where2 is the comfortable distance neighbor-
hood size. Assume that0 < " < d �  so that we do not consider
swarm memberi + 1 to be at a comfortable distance to memberi if
it is too close to it, where" is the sensing range of swarm members’
proximity sensors.

Consider the two assumptions of asynchronism. Clearly only As-
sumption 2 (partial asynchronism) will result in cohesiveness for a

�i(t) =

min g xi(t)� xi�1pl (t)� d ; ("�w)
2

sgn xi(t)� xi�1pl (t)� d ;

if xi(t)� xi�1pl (t) � ";

min g xi(t)� xi�1 � ii�1(t) � d ; ("�w)
2

sgn xi(t)� xi�1 � ii�1(t) � d ;

otherwise:

(9)
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mobile swarm since the delays in Assumption 1 (total asynchronism),
which could be unbounded, will make swarm members lose track of
their edge leader or their neighbors during movements, i.e., the dis-
tance between swarm members could become unbounded just because
swarm members use arbitrarily old sensed information. Hence, we will
build our model based on Assumption 2 (partial asynchronism) which
has a positive integerB. Note that we may viewB as anasynchronism
measure.

For convenience, assume thatxi+1(0) � xi(0) = d, for
i = 1; 2; . . . ; N � 1 initially, i.e., at the beginning all the swarm
members are at a comfortable distance to their neighbors. Assume the
edge leader moves with a steps(t) whent � 0, where0 < s(t) � r,
i.e.,s(t) is bounded by a finite positive numberr. So, we have

x1(t+ 1) = x1(t)� s(t) 8t 2 T 1:

Member 2 remains stationary until it gets the leader’s new position in-
formation. Then, this member tries to follow the leader and update its
position according to the new position information since it wants to
be at the comfortable distance to the edge leader. Similarly, all other
swarm members will begin to move and follow their moving neigh-
bors. They all try to be at the comfortable distance to their neighbors.
We think of the swarm as maintaining the cohesiveness if all the swarm
members are in the comfortable distance neighborhood to their neigh-
bors during the moving process. Notice that the leader’s moving step
boundr can be used as a measure of howfasta cohesive asynchronous
swarm moves.

Next, we will show that in the above mobile swarm, when swarm
members only update their positions according to theg function, they
will never have collisions even without proximity sensors. Accordingly,
we define the predicted update step size�i(t) of swarm memberi ac-
cording to its left neighbor information for this case as

�i(t) = g xi(t)� xi�1 � ii�1(t) � d ; for i = 2; 3; . . . ; N:

Here, “g” can be eitherga or gf , and it denotes the attractive and re-
pelling relationship between two swarm neighbors. Moreover, we will
introduce another such function later and analyze the swarm cohesive-
ness properties that it achieves.

At the beginning whent = 0, ei(0) = xi+1(0) � xi(0) = d, for
i = 1; 2; . . . ; N � 1. Whent � 0, t 2 T 1, the edge leader begins to
move and we then havee1(t) = x2(t) � x1(t) > d. Member 2, the
edge leader’s right neighbor, remains stationary until it gets the leader’s
new position informationx1(�21 (t)). From Assumption 2, we know

t�B < � 21 (t) � t (12)

and we havex1(�21 (t)) � x1(t). So

x2(t)� x1 � 21 (t) � d � x2(t)� x1(t)� d: (13)

According to the definition ofg (i.e., bothga andgf ) and (13), we have

g x2(t)� x1 � 21 (t) � d �x2(t)� x1 � 21 (t) � d

�x2(t)� x1(t)� d: (14)

At the beginning, member 2’s proximity sensor cannot sense its neigh-
bors since at this timee1(t) is greater than or equal tod. So, member 2

updates its position only according tox1(�21 (t)) and the update step is
equal tog(x2(t)�x1(�21 (t))�d). From (14), we know the update step
of member 2 is always less than or equal to the error between the real
distance from member 2 to the edge leader andd (i.e,x2(t)�x1(t)�d).
Hence, the inter-member distance between members 1 and 2 is always
greater than or equal tod. Clearly, a similar result holds for all swarm
members, so we have

ei(t) � d 8t 2 T i; i = 1; 2; . . . ; N � 1: (15)

Equation (15) implies that all the mobile swarm members’ proximity
sensors will never sense their neighbors during movements. This also
implies that members will never have collisions in the above swarm,
even without proximity sensors. Thus, we can write the following
model for the previous mobile swarm:

x1(t+1)=x1(t)�s(t) 8t 2 T 1

x2(t+1)=x2(t)�g x2(t)�x1 � 21 (t) �d

8t 2 T 2

... =
...

xN�1(t+1)=xN�1(t)�g xN�1(t)�xN�2 �N�1N�2 (t) �d

8t 2 TN�1

xN (t+1)=xN (t)�g xN (t)�xN�1 �NN�1(t) �d

8t 2 TN

xi(t+1)=xi(t) 8t =2 T i; i = 1; 2; . . . ; N: (16)

Remark 1: Notice that for a 1-DN -member collision-free mobile
swarm pushed by an edge leader, where memberN is the edge leader
moving to the left with a steps(t) whent � 0, 0 < s(t) � r, and
0 < r < "� w, all other members move according to the position of
their right neighbor except that they may use position information of
their left neighbor for avoiding collisions, Assumption 2 (partial asyn-
chronism) holds, andxi+1(0) � xi(0) = d, for i = 1; 2; . . . ; N � 1
initially, a mathematical model of the above swarm is given by

x1(t+ 1) =x1(t) + �1(t) 8t 2 T 1

x2(t+ 1) = max x1pl(t) + w; x2(t) + �2(t)

8t 2 T 2

... =
...

xN�1(t+ 1) = max xN�2pl (t) + w; xN�1(t) + �N�1(t)

8t 2 TN�1

xN (t+ 1) = max xN�1pl (t) + w; xN (t)� s(t)

8t 2 TN

xi(t+ 1) =xi(t) 8t =2 T i; i = 1; 2; . . . ; N (17)

where the predicted update step size�i(t) of swarm memberi ac-
cording to its right neighbor information is defined as (18) as shown at
the bottom of page, andxi�1pl (t) andxi+1pr (t) are defined in (1) and (2).
Notice that here we bound the step size by"�w instead of("�w)=2
since all swarm members only move to the left.

�i(t) =

min g xi+1pr (t)� xi(t)� d ; "� w sgn xi+1pr (t)� xi(t)� d ;

if xi+1pr (t)� xi(t) � "

min g xi+1 � ii+1(t) � xi(t)� d ; "� w sgn xi+1 � ii+1(t) � xi(t)� d ;

otherwise

(18)
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III. CONVERGENCEANALYSIS OF 1-D ASYNCHRONOUSSWARMS

In this section, we will study stability properties of 1-D asyn-
chronous swarms on the basis of mathematical models we built
earlier and provide conditions under which the swarm will obtain
and keep the cohesiveness even in the presence of sensing delays and
asynchronism. First we will consider stationary edge-member asyn-
chronousN -member swarms, and then we will investigateN -member
asynchronous mobile swarms following, or pushed by an edge leader.

A. Convergence Analysis of Stationary Edge-Member Asynchronous
Swarms

Here, we will provide conditions under which the swarm in Fig. 2
will converge to be adjacent to a stationary left-edge member. By sym-
metry, the case for convergence to a stationary right-edge member is
the same. We begin with the two-member case, then consider the gen-
eralN -member case where the proofs will depend on theN = 2 case.

Suppose there is a 1-D two-member swarm, which has memberi
andi� 1. Assume at the beginning we havexi(0)� xi�1(0) > " and
memberi� 1 remains stationary so that proximity sensors of member
i will never sense memberi� 1. Therefore, we define the update step
size�i(t) of memberi in such a two-member swarm as follows:

�i(t) = g xi(t)� xi�1 � ii�1(t) � d (19)

where the step size only depends on theg function.
Lemma 1: For anN = 2 totally asynchronous swarm modeled by

xi�1(t+ 1) =xi�1(t) 8t 2 T

xi(t+ 1) =xi(t)� �i(t) 8t 2 T i

xi(t+ 1) =xi(t) 8t =2 T i (20)

wherexi�1(t) = xi�1c , xi�1c is a constant,xi(0) � xi�1(0) > ",
and�i(t) is defined in (19) withg = ga, it is the case that for any,
0 <  < d� ", there exists a timet0 such thatxi(t0) 2 [xi�1c + d�
; xi�1c + d+ ] and alsolimt!1 xi(t) = xi�1c + d.

The proof is omitted due to the space limitation. The basic idea is to
define a Lyapunov-like function

Vi(t) = xi(t)� xi�1c + d 8t 2 T i

and show that fort 2 T i, Vi(t) will asymptotically tend to zero via a
case analysis using the definition ofga and Assumption 1.

Corollary 1: For a two-member swarm in Lemma 1, if memberi�
1, instead of remaining stationary atxi�1c , monotonically approaches
the positionxi�1c ast ! 1 (i.e.,xi�1c � xi�1(t+ 1) < xi�1(t) or
xi�1(t) < xi�1(t+1) � xi�1c , 8t 2 T i�1), andjxi�1(0)�xi�1c j <
, where0 <  < d� ", the conclusion of Lemma 1 still holds.

The proof is omitted due to the space limitation. A case study will
easily lead to the conclusion.

Lemma 2: For anN = 2 partially asynchronous swarm modeled
by (20) but withg = gf , wherexi�1(t) = xi�1c , xi�1c is a constant,
andxi(0) � xi�1(0)+ ", for any�, 0 < � < d� ", swarm memberi
will converge to the position of(xi�1c + d) in some finite time, that is
bounded byB[�=�(jxi(0)� xi�1c � dj � �) + 2].

The proof is omitted due to the space limitation. It is similar to the
proof of Lemma 1 and the bound is obtained using the definition ofgf
and choosing = �.

Theorem 1. (Total Asynchronism, Asymptotic Convergence):For an
N -member swarm which is modeled by (10) withg = ga,N > 1, As-
sumption 1 (total asynchronism) holds, andxi+1(0)� xi(0) > ", i =
1; 2; . . . ; N � 1, the swarm members’ positions(x1; x2; . . . ; xN ) will
asymptotically converge to (x1(0),x1(0)+d,x1(0)+2d; . . . ; x1(0)+
(N�1)d), wherex1(0) is the initial position of the stationary left-edge
member.

Proof: We will use a mathematical induction method, where our
induction hypothesis will be thatk of N swarm members asymptoti-
cally converge to (x1(0),x1(0)+d,x1(0)+2d; . . . ; x1(0)+(k�1)d)
and from this we will show thatk + 1 of N members converge.

First, fork = 1, which is the left-edge member, it converges tox1(0)
since it remains stationary. Next we must show that given the induc-
tion hypothesis, the firstk+ 1 members in theN -member swarm will
asymptotically converge to the positions (x1(0), x1(0) + d, x1(0) +
2d; . . . ; x1(0) + kd).

According to our induction hypothesis we know that there exists a
time t� such that swarm memberi, for i = 2; 3; . . . ; k, will stay in the
range betweenx1(0)+ (i� 1)d�  andx1(0)+ (i� 1)d+ , where
0 <  < d � ". Assume�i(t) = xi(t) � (x1(0) + (i � 1)d) for
i = 2; 3; . . . ; k, which represents memberi’s distance to its desired
position, where�i(t) 2 [�; ] for t � t�.

Therefore, aftert � t�, we have

xi(t+ 1) = x1(0) + (i� 1)d+ �i(t);

8t 2 T i; for i = 2; 3; . . . ; k

for the firstk members in the swarm except the stationary member 1
and from memberk + 1 to memberN , we have

xk+1(t+ 1) = min xk+1(t)� �k+1(t); xk+2pr (t)� w

... =
...

xN�1(t+ 1) = min xN�1(t)� �N�1(t); xNpr(t)� w

8t 2 TN�1

xN (t+ 1) = xN (t)� �N(t) 8t 2 TN (21)

whereg in �i(t) is ga.
Now, considering memberk+ 1’s movements aftert � t�, we will

do a case analysis.
Case 1: If for somet 2 T k+1, t � t�, memberk + 1’s proximity

sensor senses memberk, i.e.,

xkpl(t) = xk(t) = x1(0) + (k � 1)d+ �k(t)

from (9), memberk + 1 will move away from memberk according to

xk+1(t+ 1) =

min xk+1(t)�min ga xk+1(t)

� x1(0) + (k � 1)d+ �k(t) � d

("� w)

2

� sgn xk+1(t)� x1(0) + (k � 1)d+ �k(t) � d

xk+2pr (t)� w 8t 2 T k+1: (22)

Case 2: If memberk + 1’s proximity sensor cannot sense member
k, it will update its position by

xk+1(t+ 1) =

min xk+1(t)

�min ga xk+1(t)� xk �k+1k (t) � d ;
("� w)

2

�sgn xk+1(t)� xk �k+1k (t) � d ; xk+2pr (t)� w

8t 2 T k+1: (23)

Case 2a: If memberk+1 moves toward to memberk, due to its out-
dated informationxk(�k+1k (t)) about memberk, such that after some
time its proximity sensor senses memberk, then it will be the same as
Case 1.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 10, OCTOBER 2003 1853

Case 2b: If memberk+1 moves according to (23), but its proximity
sensor never senses memberk, then according to Assumption 1, given
time t�, there exists a timetc > t� such that�k+1k (t) � t�, 8k and
t � tc. So aftert � tc, memberk + 1 knows memberk is at the
positionx1(0) + (k � 1)d+ �k(t). It will move according to (22).

According to our induction hypothesis, we already know

lim
t!1

�i(t) = 0; for i = 2; 3; . . . k

So, if memberk+2 does not prevent its movements [i.e.,xk+1(t+1)
is never equal toxk+2pr (t)� w in (22)], as�k(t) goes to zero, member
k + 1 will move to its desired position as�k(t) by

xk+1(t+ 1) =xk+1(t)

�min ga xk+1(t)� x1(0) + (k � 1)d

+�k(t))� d)j ;
("� w)

2

� sgn xk+1(t)� x1(0) + (k � 1)d+ �k(t)

�d) 8t 2 T k+1: (24)

If jga(xk+1(t)� (x1(0)+ (k� 1)d+ �k(t))� d)j is always less than
("� w)=2 in (24), memberk + 1 will move by

xk+1(t+1) =xk+1(t)

�ga xk+1(t)� x1(0)+(k�1)d+�k(t) �d

8t 2 T k+1

so that it will asymptotically converge to(x1(0) + (k � 1)d+ d) =
(x1(0) + kd) by Corollary 1. Ifjga(xk+1(t)� (x1(0) + (k � 1)d+
�k(t))� d)j is larger than("� w)=2 memberk + 1 will move to the
direction wherejxk+1(t)� (x1(0)+ (k� 1)d+ �k(t))� dj becomes
smaller with a step("�w)=2. Therefore, there exists some timets that
aftert > ts, jga(xk+1(t)�(x1(0)+(k�1)d+�k(t))�d)j is always
less than("� w)=2 so that it will be the same as before.

If memberk + 1’s proximity sensor finds memberk + 2 nearby at
time tp 2 T k+1, we have

xk+1(tp + 1) = xk+2(tp)� w:

Note that at the same time memberk + 2 also gets memberk + 1’s
current position via its proximity sensor since their current adjacent
distance isw. There exists a timetu � tp+1, tu 2 T k+2 that member
k + 2 will update its position according to

xk+2(t+ 1) =min xk+2(t)

�min ga xk+2(t)� xk+2(tp)� w

�d)j ;
("� w)

2

� sgn xk+2(t)� xk+2(tp)� w � d

xk+3pr (t)� w 8t 2 T k+2; t � tu:

Memberk+ 2’s temporary destination is the position of(xk+2(tp)�
w + d). Similarly, from (21) memberk + 3 could prevent member
k+2’s further moving, and memberk+4 could prevent memberk+3,
etc. In the end, memberN could prevent memberN � 1. However,
memberN is free to move to the right.

Since we assume the setsT i are infinite, and each swarm member
moves infinitely often, we can easily use another induction method to
show that in the previous cases after some time, memberN could move
away from memberN �1, and memberN �1 could move away from
memberN�2, etc. So, after memberk+2 moves away from member
k+1, memberk+1 will continue moving to the position(x1(0)+kd).
However, memberk+2 may prevent memberk+1 again aftert > tu

due to the total asynchronism. It is similar for memberk + 3, k + 4,
and so on. In that case, it will repeat the aforementioned process. As
we know memberk + 2’s distance to the position(x1(0) + kd) is
finite, and there are only a finite number of members in the swarm, and
swarm member’s movements cannot be infinitely small if the distance
to its desired position is not infinitely small via the definition ofga. So
there exists a timetnp > tp such that memberk + 2 will have moved
beyond the position(x1(0) + kd). After t > tnp, memberk + 2 will
never prevent memberk+1 again. From Corollary 1 and our induction
hypothesis, memberk+1 will asymptotically converge to the position
(x1(0) + kd). This ends the induction step. Q:E:D:

Theorem 2. (Partial Asynchronism, Finite Time Convergence):For
anN -member swarm which is modeled by (10) withg = gf , N > 1,
Assumption 2 (partial asynchronism) holds, andxi+1(0)�xi(0) > ",
i = 1; 2; . . . ; N � 1, for any�; 0 < � < (" � w)=2, the swarm
members’ positions(x1; x2; . . . ; xN)will converge to (x1(0),x1(0)+
d, x1(0) + 2d; . . . ; x1(0) + (N � 1)d) in some finite time, that is
bounded by

B2N�2
�

�
max
i

xi(0)� x1(0)� (i� 1)d � � + 2 (25)

for i = 2; 3; . . . ; N , wherex1(0) is the initial position of the stationary
left-edge member.

Proof: The proof is similar to Theorem 1 except that the swarm
is partially asynchronous. So, we will use Assumption 2 and Lemma
2 to deduce memberk + 1 will arrive at the position(x1(0) + kd) in
some finite time.

Next, we will try to bound the amount of converging time for a
N -member swarm. From Lemma 2, for a two-member swarm the
time needed to achieve convergence is bounded byB[�=�(jxi(0) �
xi�1c � dj � �) + 2]. Similarly for aN -member swarm, if blockades
never occur among swarm members, the total converging time is
bounded byBN [�=�(maxi (jx

i(0)� x1(0)� (i� 1)dj)� �) + 2],
for i = 2; 3; . . . ; N . On the other hand, if all middle swarm
members are blocked by their neighbors in every step and cannot
move until the blockades are released, there areN � 2 members
preventing member 2,N � 3 members preventing member 3, and
so on, until only one member prevent memberN � 1. As we know
(N � 2) + (N � 3) + (N � 4) + � � � + 1 < 2N�2. Moreover, we
know each middle swarm member’s distance to its desired position
jxi(0)�x1(0)� (i�1)dj is finite and each of their moving steps is at
least larger than�=�. Therefore, the maximum number of total update
time steps is2N�2[�=�(maxi (jx

i(0)� x1(0)� (i� 1)dj)��)+2].
Then we can bound the total converging time by (25) in this worst
case because the maximum update time interval isB. Q:E:D:

Note that some proof details of Theorems 1 and 2 are omitted due to
the space limitation. Interested readers can refer to [22].

B. Convergence Analysis of Asynchronous Mobile Swarms

Next, we will study cohesiveness of a mobile swarm following an
edge leader. First, we will study the case of using thegf function (as-
suming = �), and then show that all members in anN -member mo-
bile swarm will be in a comfortable distance neighborhood from their
neighbors during movements if there are constraints on the leader’s
moving step bound, the partial asynchronism measure, and the comfort-
able distance neighborhood size. While we only consider a left-edge
member leading a swarm to the left, by symmetry, the case where the
right-edge member leads the mobile swarm to the right is the same
(only the model is different).

Theorem 3: For anN -member asynchronous mobile swarm mod-
eled by (16), whereg is gf , N > 1, Assumption 2 (partial asynchro-
nism) holds, andxi+1(0)� xi(0) = d, i = 1; 2; . . . ; N � 1, if

0 < r �


NB � 1
(26)
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for a given, all the swarm members will be in the comfortable distance
neighborhood[d; d+ ] of their neighbors during the moving process,
wherer is the upper bound of the edge leader’s moving steps(t),B 2

Z+ is the partial asynchronism measure and (choose = �) is the
comfortable distance neighborhood size.

The proof is omitted due to the space limitation. Interested readers
are welcome to contact the authors to get it or refer to [23].

Remark 2: Note the following about (26).

• For a givenB and, it provides bound on how fast aN -member
swarm can move and still maintain the type of cohesiveness char-
acterized by. For example, increases in swarm size, commu-
nication delays, or swarm cohesiveness (smaller) require de-
creases in the rate of movement of the leader.

• For a givenr andB, it provides the size of the neighborhood that
will be maintained and hence specifies a degree of cohesiveness
of aN -member swarm.

• For a givenr and , it provides constraints on how to design
a communication system (i.e., what is needed forB) for a
N -member swarm between swarm members and indicates how
often they must update their positions.

Remark 3: From Theorems 1 and 2, we can see that if the edge
leader stops moving (i.e.,s(t) = 0, t � t1 for somet1 2 T 1), all
otherN � 1 members will converge to be adjacent to the edge leader
with a comfortable distanced.

Remark 4: If a differentgb function is defined and used in Theorem
3, which does not require a swarm member to move to be adjacent to
its neighbor in one step if it gets very close to it but guarantee that the
following members are in theb-neighborhood of desired comfortable
distance of their leading neighbors after each update step (the definition
of gb function is omitted due to the space limitation), with all other
same conditions, and if

0 < r �
 � b

NB � 1
(27)

we can get the same conclusion as in Theorem 3.
Next, we provide different conditions under which anN -member

asynchronous mobile swarm pushed by an edge leader can maintain co-
hesiveness during movements using the model in (17). While we only
consider a right-edge member pushing a swarm to the left, by sym-
metry, the case where the left-edge member pushes the mobile swarm
to the right is the same.

Theorem 4: For anN -member asynchronous mobile swarm mod-
eled by (17), whereg is gf , N > 1, Assumption 2 (partial asyn-
chronism) holds,0 <  < d � ", andxi+1(0) � xi(0) = d, i =
1; 2; . . . ; N � 1, if

0 < r �


NB � 1
(28)

for a given, all the swarm members will be in the comfortable distance
neighborhood[d� ; d] of their neighbors during the moving process,
wherer is the upper bound of the edge leader’s moving steps(t),B 2

Z+ is the partial asynchronism measure, (choose = �, and0 <

� < "�w) is the comfortable distance neighborhood size, and" is the
sensing range of proximity sensors.

The proof is omitted due to the space limitation. It is similar to the
proof of Theorem 3.

Remark 5: If gb function described in Remark 5 is used in Theorem
4 with all other same conditions, and if

0 < r �
 � b

NB � 1
(29)

we can get the same conclusion as in Theorem 4.

IV. CONCLUSION

We have provided results for a 1-D swarm showing how to achieve
cohesion and collision avoidance even with delays, asynchronism, and
finite body sizes. In the future we are going to consider sensor dynamics
and noise, vehicle dynamics, network topology impacts, and the higher
dimensional case. Some progress on the last two topics is given in [20],
[21], and [24].
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