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Stability Analysis of Piecewise Discrete-Time
Linear Systems

Gang Feng

Abstract—This note presents a stability analysis method for piecewise
discrete-time linear systems based on a piecewise smooth Lyapunov func-
tion. It is shown that the stability of the system can be established if a piece-
wise Lyapunov function can be constructed and, moreover, the function can
be obtained by solving a set of linear matrix inequalities (LMIs) that is nu-
merically feasible with commercially available software.

Index Terms—Discrete-time systems, linear matrix inequality (LMI),
piecewise linear systems, stability.

I. INTRODUCTION

Piecewise linear systems have been a subject of research in the sys-
tems and control community for some time, see, for example, [1]–[14].
In fact, the piecewise linear systems arise often in practical control sys-
tems when piecewise linear components are encountered. These com-
ponents include dead-zone, saturation, relays and hysteresis. In addi-
tion, many other classes of nonlinear systems can also be approximated
by the piecewise linear systems. Thus the piecewise linear systems pro-
vide a powerful means of analysis and design for nonlinear control sys-
tems.

A number of significant results have been obtained on analysis and
controller design of such piecewise continuous time linear systems
during the last few years. For example, the authors in [1] studied a basic
issue, that is, the well posedness of piecewise linear systems. Necessary
and sufficient conditions for bimodal systems to be well-posed have
been derived and the extension to the multimodal case has also been dis-
cussed. The authors in [2], [3] presented results on stability and optimal
performance analysis for piecewise linear systems based on a piecewise
continuous Lyapunov function. It has been shown that lower bounds,
as well as upper bounds, on the optimal control cost can be obtained
by semidefinite programming and the framework of piecewise linear
systems can be used to analyze smooth nonlinear systems with arbi-
trary accuracy. The authors in [4] discussed stability analysis and con-
troller design of piecewise linear systems which may involve multiple
equilibrium points based on a common quadratic Lyapunov function
and a piecewise quadratic Lyapunov function. It has been shown that
stability and performance analysis can be cast as convex optimization
problems. A controller design method based on a common quadratic
Lyapunov function and linear matrix inequalities (LMIs) has been pro-
posed. Similar work to those in [2]–[4] has also been reported in [5], [6]
where the piecewise Lyapunov function might be discontinuous across
the region boundaries.

More recently, there appeared a number of result on stability anal-
ysis and controller design of piecewise discrete-time systems using
global quadratic or piecewise Lyapunov functions in the open litera-
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ture [7]–[9]. The authors in [7] presented an approach to stabilization
of piecewise linear systems based on a global quadratic Lyapuov func-
tion. It was shown that the piecewise state feedback control law could
be obtained by solving a set of LMIs and a single nonconvex bilinear
matrix inequality. The authors in [8] and [9] presented a number of
results on stability analysis, controller design,H1 analysis andH1
controller design for the piecewise linear systems based on a piece-
wise Lyapunov function. However, only the piecewise linear system
without affine terms were discussed in these two papers. As it is known,
many piecewise linear systems have nonzero affine terms for those re-
gions which do not contain the origin. Fox example, when a nonlinear
system is linearized around a number of operating points in its state
space, then the affine terms appear when the operating point is not at
the origin. Therefore in this note, we propose a method for stability
analysis of the piecewise discrete-time linear systems with affine terms
by constructing a novel piecewise Lyapunov function. This function is
guaranteed to be decreasing when the state of the system jumps from
one region to another. It is shown that the piecewise Lyapunov function
can be constructed by solving a set of LMIs. The work presented in this
note can be considered as an extension of the work for the piecewise
continuous time systems in [2], [3] to their discrete-time counterparts
or the extension of the work for the piecewise discrete-time systems
without affine terms in [8] and [9] to those with affine terms.

The rest of the note is organized as follows. Section II introduces the
piecewise linear system model and a motivating example. Section III
presents a method for stability analysis of such systems and some nu-
merical examples. Finally, conclusions are given in Section IV.

II. PIECEWISELINEAR SYSTEM MODEL

Consider autonomous piecewise discrete-time linear systems of the
form

x(t+ 1) =Alx(t) + al; for x 2 Sl

l =1; 2; . . . ;m (2.1)

wherefSlgl2L � Rn denotes a partition of the state space into a
number of closed polyhedral subspaces,L is the index set of subspaces,
x(t) 2 Rn the system state variables, (Al; al) the lth local model of
the system andal the offset term. For the definition of state trajectory
and solution to the piecewise linear system (2.1) please refer to [1]–[3]
for details. Here we assume that given any initial conditionx(0) = x0,
the difference (2.1) has a solution for allt > 0. We also assume that
when the state of the system transits from the regionSl to Sj at the
time t, the dynamics of the system is governed by the dynamics of the
local model ofSl at that time. For future use, we also define a set

that represents all possible transitions from one region to another, that
is


 := fl; jjx(t) 2 Sl; x(t+ 1) 2 Sj ; j 6= lg :

Remark 2.1: It is noted that the system models defined in (2.1) are in
factaffinesystems instead of linear systems. They include an additional
affine or offset term. In this note, the notation of linear systems has been
abusedto represent the affine systems.

DefineL0 � L as the set of indexes for subspaces that contain the
origin andL1 = LnL0 � L the set of indexes for the subspaces that
do not contain the origin. It is assumed thatal = 0 for all l 2 L0.
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For convenient notation, we introduce

�Al =
Al al

0 1
�x =

x

1
: (2.2)

Then using this notation, the system model (2.1) can be expressed as

�x(t+ 1) = �Al�x(t); x(t) 2 Sl (2.3)

It is well known that for the aforementioned piecewise discrete-time
system withal = 0, l 2 L, it is possible to show its stability using
a globally quadratic Lyapunov functionV (x) = xTPx if a common
positive–definite matrixP can be found. A computational approach to
finding such a matrixP can be cast as a set of LMIs as in the following
lemma.

Lemma 2.1: If there exists a symmetric positive–definite matrixP
such that

A
T
l PAl � P < 0; l 2 L (2.4)

then the state trajectory of the system (2.1) withal = 0, l 2 L tends
to the origin exponentially.

It is noted that the condition (2.4) is a set of LMIs in matrixP that can
be easily solved by commercially available software such as Matlab.
It is also noticed that the condition (2.4) is a sufficient condition and
many stable systems may not satisfy such a condition. In order to verify
that no common matrixP to (2.4) exists, it is useful to consider the
following dual problem [2]: if there exist positive–definite matricesRl,
l 2 L such that

l2L

A
T
l RlAl �Rl > 0 (2.5)

then the inequalities in (2.4) do not admit a common positive–definite
solutionP .

As argued in [2] for the continuous-time case, we present the fol-
lowing example to demonstrate that the Lemma 1 is conservative in
the sense that a piecewise discrete-time linear system is stable, but it
does not satisfy (2.4).

Example 2.1: Consider a piecewise discrete-time linear system

x(t+ 1) =
A1x(t) if x1 � 0

A2x(t) if x1 > 0

where

A1 =

1 0:5 0

�0:3 0:8 0

0 0 0:4

A2 =

1 0:4 0:01

�0:1 0:8 0

0 0 0:5

:

By solving the dual problem stated in (2.5), one can easily verify that
there exists no positive–definite matrix solutionP to (2.4). However,
the simulation results indicate that the system is stable.

As an alternative to a globally quadratic Lyapunov function, recently,
piecewise Lyapunov functions have been developed for stability test for
the piecewise continuous linear systems [2]. Motivated by the work in
[2], we will construct a piecewise Lyapunov function which is guaran-
teed to be decreasing when the state of the system stays in a region, or
transits from one region to another in the next section. The similar idea
has also been independently developed in [8] and [9].

III. PIECEWISEQUADRATIC STABILITY

As argued in [2], it is not necessary to require a globally valid
common positive–definite matrixP for a piecewise linear system
since the dynamics described byAl is only valid within the cellSl.
Consequently, a piecewise Lyapunov function might be sufficient to

guarantee the stability of the piecewise linear system. For example, if
a piecewise Lyapunov function defined by

V (x) = x
T
Plx; x 2 Sl (3.1)

with

A
T
l PlAl � Pl < 0; l 2 L (3.2)

is also decreasing when the state transits across boundaries, then the
system (2.1) withal = 0, l 2 L, can be guaranteed to be stable in the
sense of Lyapunov.

As shown in [2], in order to reduce the conservatism of (3.2), the
so-called S-procedure [15] can be used. It is noted that the following
matrices�E ’s can be constructed for each cell since they are polyhedra
such that:

�El�x � 0 (3.3)

where �El = [El el ] with el = 0 for l 2 L0. It should be noted
that the above vector inequality means that each entry of the vector is
nonnegative. Then, whenal = 0, l 2 L, and (3.2) can be replaced by

A
T
l PlAl � Pl + E

T
l UlEl < 0; l 2 L (3.4)

whereUl is a matrix with nonnegative entries.
Then we are ready to present the following main result of this note.
Theorem 3.1: Consider the piecewise linear system (2.1). If there

exist symmetric matricesPl, l 2 L0, �Pl, l 2 L1, Ul, Wl andQlj such
thatUl, Wl andQlj have nonnegative entries and the following LMIs
are satisfied:

0 <Pl � E
T
l UlEl; l 2 L0 (3.5)

A
T
l PlAl � Pl + E

T
l WlEl <0; l 2 L0 (3.6)

0 < �Pl � �ET
l Ul

�El; l 2 L1 (3.7)
�AT
l
�Pl �Al � �Pl + �ET

l Wl
�El <0; l 2 L1 (3.8)

A
T
l PjAl � Pl + E

T
l QljEl <0; l; j 2 
 \ L0 (3.9)

�AT
l
�Pj �Al � �Pl + �ET

l Qlj
�El <0; l; j 2 
 \ L1 (3.10)

�AT
l
�Pj �Al � �Pl + �ET

l Qlj
�El <0; l; j 2 
; l 2 L1; j 2 L0

(3.11)
�AT
l
�Pj �Al � �Pl + �ET

l Qlj
�El <0; l; j 2 
; l 2 L0; j 2 L1

(3.12)

where we define�Pj = [ In�n 0n�1 ]
TPj [ In�n 0n�1 ] for j 2 L0

in (3.11) and�Pl = [ In�n 0n�1 ]
TPl[ In�n 0n�1 ], for l 2 L0 in

(3.12), then the origin of the piecewise linear system is exponentially
stable, that is,x(t) tends to the origin exponentially for every trajectory
in the state space.

Proof: Consider the following Lyapunov function candidate
V (t):

V (t) =

xTPlx; x 2 Sl; l 2 L0

x

1

T

�Pl
x

1
; x 2 Sl; l 2 L1

(3.13)

It is obvious from (3.13) that there exists a constant
 > 0 such that
for x 2 Sl, l 2 L0

V (t) � 
kxk2 (3.14)

and forx 2 Sl, l 2 L1

V (t) � 
 kxk2 + 1 � 
 kxk2 +
kxk2

c
=


(1 + c)

c
kxk2

(3.15)
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wherec := minx2S ;l2L kxk2 > 0 sincex 6= 0 for x 2 Sl, l 2 L1.
Combining (3.14) and (3.15) leads to that there exists a constant� >

0 such that

V (t) � �kxk2:

Moreover, (3.5) and (3.7) imply, respectively, that there exists a con-
stant� > 0 such that

�kxk2 �xT Pl � E
T
l UlEl x � x

T
Plx

�kxk2 ��k�xk2 � �xT �Pl � �ET
l Ul

�El �x � �xT �Pl�x

for x 2 Sl. That is

�kxk2 � V (t): (3.16)

Thus, from (3.15) and (3.16), we have

�kxk2 � V (t) � �kxk2: (3.17)

Then we consider the difference of the Lyapunov function candidate.
Along trajectories of the system, there exist six possible cases. It should
be noted that we have made the following assumption. That is, the dy-
namics of the system is governed by the dynamics of the local model
of Sl when the state of the system transits from the regionSl to Sj at
the timet. This assumption is useful for the proofs of Case 3)–Case 6).

Case 1)x 2 Sl, l 2 L0. It follows from (3.6) that there exists a
constant� > 0 such that

A
T
l PlAl � Pl + E

T
l WlEl + �I < 0:

Then we have

�V (t) =V (t)� V (t� 1)

=x(t� 1)T A
T
l PlAl � Pl x(t� 1)

�x(t� 1)T ��I �E
T
l WlEl x(t� 1)

�� �kx(t� 1)k2:

Case 2)x 2 Sl, l 2 L1. Similar to the Case 1), one can easily show
by using (3.8) that

�V (t) � �� k�x(t� 1)k2 � ��kx(t� 1)k2:

Case 3)x(t � 1) 2 Sl, x(t) 2 Sjl, j 2 
 \ L0. It follows from
(3.9) that there exists a constant� > 0 such that

A
T
l PjAl � Pl + E

T
l QljEl + �I < 0:

Then we have

�V (t) =V (t)� V (t� 1)

=x(t� 1)T A
T
l PjAl � Pl x(t� 1)

�x(t� 1)T ��I � E
T
l QljEl x(t� 1)

�� �kx(t� 1)k2:

Case 4)x(t � 1) 2 Sl, x(t) 2 Sj , l, j 2 
 \ L1. Similar to the
Case 3), one can easily show by using (3.10) that

�V (t) � �� k�x(t� 1)k2 � ��kx(t� 1)k2:

Case 5)x(t� 1) 2 Sl, x(t) 2 Sj , l, j 2 
, l 2 L1 andj 2 L0. It
follows from (3.11) that there exists a constant� > 0 such
that

�AT
l
�Pj �Al � �Pl + �ET

l Qlj
�El + �I < 0:

Then we have

�V (t) =V (t)� V (t� 1)

=x(t)TPjx(t)� �x(t� 1)T �Pl�x(t� 1)

= (Alx(t� 1) + al)
T
Pj (Alx(t� 1) + al)

� �x(t� 1)T �Pl�x(t� 1)

=�x(t� 1)T �Al[ I 0 ]TPj [ I 0 ] �Al�x(t� 1)

� �x(t� 1)T �Pl�x(t� 1)

=�x(t� 1)T �AT
l
�Pj �Al � �Pl �x(t� 1)

��x(t� 1)T ��I � �ET
l Qlj

�El �x(t� 1)

��x(t� 1)T (��I)�x(t� 1)

�� �kx(t� 1)k2

where �Pj = [ In�n 0n�1 ]
T
Pj [ In�n 0n�1 ].

Case 6)x(t� 1) 2 Sl, x(t) 2 Sj , l, j 2 
, l 2 L0 andj 2 L1. It
follows from (3.12) that there exists a constant� > 0 such
that

�AT
l
�Pj �Al � �Pl + �ET

l Qlj
�El + �I < 0:

Then we have

�V (t) =V (t)� V (t� 1)

=�x(t)T �Pj �x(t)� x(t� 1)TPlx(t� 1)

=
Alx(t� 1)

1

T

�Pj
Alx(t� 1)

1

� x(t� 1)TPlx(t � 1)

=�x(t� 1)T
Al 0

0 1

T

�Pj
Al 0

0 1
�x(t� 1)

� x(t� 1)TPlx(t � 1)

=�x(t� 1)T �AT
l
�Pj �Al�x(t� 1)� �x(t� 1)T �Pl�x(t� 1)

=�x(t� 1)T �AT
l
�Pj �Al � �Pl �x(t� 1)

��x(t� 1)T ��I � �ET
l Qlj

�El �x(t� 1)

��x(t� 1)T (��I)�x(t� 1)

�� �kx(t� 1)k2

where �Pl = [ In�n 0n�1 ]
T
Pl [ In�n 0n�1 ].

Summarizing the previous cases leads to

�V (t) � ��kxk2: (3.18)

Therefore, the desired result follows directly from (3.17)
and (3.18), based on the standard Lyapunov theory.rr

The aformentioned conditions are LMIs in the variablesPl, �Pl, Ul,
Wl, andQlj . A solution to those inequalities ensuresV (t) defined in
(3.13) to be a Lyapunov function for the system. The LMI in (3.5) or
(3.7) for each region guarantees that the function is positive and the
LMI in (3.6) or (3.8) guarantees that the function decreases along all
system trajectories in each region. The LMIs (3.9)–(3.12) guarantee
that the function is decreasing when the state transits from one region
to another. The terms involvingEl, �El, Ul, Wl andQlj are related to
the S-procedure to reduce the conservatism of those inequalities.
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Fig. 1. Trajectory of Example 3.2 from initial conditionx(0) = [ 3 0 ] .

Remark 3.1: The set
 can be determined by the reachability anal-
ysis [10]. If it is possible for the transitions happen between all regions,
then
 = L2, which is defined as a set offl; jjl; j 2 L; j 6= lg.

In the case ofal � 0 for all l 2 L, we then have the following
corollary.

Corollary 3.1: Consider the piecewise linear system (2.1) withal �
0 for all l 2 L. If there exist symmetric matricesPl, l 2 L, symmetric
matricesUl, Wl andQlj such thatUl, Wl andQlj have nonnegative
entries and the following LMIs are satisfied:

0 <Pl �E
T
l UlEl; l 2 L;

(3.19)

A
T
l PlAl � Pl +E

T
l WlEl <0; l 2 L (3.20)

A
T
l PjAl � Pl + E

T
l QljEl <0; l; j 2 
 \ L (3.21)

then the origin of the piecewise linear system is exponentially stable,
that is,x(t) tends to the origin exponentially for every trajectory in the
state space.

Example 3.1: Reconsider the piecewise discrete-time linear system
in Example 2.1. Using Theorem 3.1 or Corollary 3.1, and noticing the
region characterizing matrices

E1 =

�1 0 0

0 0 0

0 0 0

E2 =

1 0 0

0 0 0

0 0 0

we can find the solutions to the LMIs

P1 =

91:67 33:51 0:33

33:51 170:20 0:80

0:33 0:80 43:19

P2 =

88:45 47:14 1:01

47:14 169:92 1:94

1:01 1:94 46:16

and thus verify that the system is exponentially stable.
Example 3.2: Consider a piecewise discrete-time linear system

x(t+ 1) = Alx(t)

with region partition shown in Fig. 1. The system matrices are given by

A1 = A3 =
1 0:01

�0:05 0:99
A2 = A4 =

1 0:05

�0:01 0:99
:

The trajectory of a simulation result with initial conditionx(0) =
[ 3 0 ]T in Fig. 1 indicates that the system is stable though there does

Fig. 2. Trajectories of Example 3.3 from four initial conditions.

not exist a common positive–definite matrixP for the system. The ma-
trices characterizing the regions are given by

E1 = �E3 =
�1 1

�1 �1
; E2 = �E4 =

�1 1

1 1
:

By solving the LMIs in Theorem 3.1 or Corollary 3.1, we find the fol-
lowing matrices:

P1 =P3 =
0:9344 0:0809

0:0809 0:2793

P2 =P4 =
0:2614 0:1257

0:1257 0:9674

and thus one can verify that the system is exponentially stable.
Example 3.3: Consider a piecewise discrete-time linear system with

affine terms

x(t+ 1) = Alx(t) + al

with region partition shown in Fig. 2. The system matrices are given by

A1 =
0:9 �0:1

0:1 1
a1 =

0

�0:02

A2 =A3 =
1 �0:02

0:02 0:9

A4 =
0:9 �0:1

0:1 1
; a4 =

0

0:02
:

Similar to the previous examples, the simulation results in Fig. 2 in-
dicate that the system is stable though there exists no globally quadratic
Lyapunov function. The matrices characterizing the regions are given
by

�E1 =
�1 0 0

�1 0 �1
E2 =

0 0

�1 0

E3 =
0 0

1 0
�E4 =

1 0 �1

1 0 0
:

Using the Theorem 3.1 with
 = f1; 2; 2; 3; 3; 2; 4; 3g, we can find
the following solutions to those LMIs:

P1 =106
4:00 0:64 �0:67

0:64 3:47 0:57

�0:67 0:57 2:75

P2 =P3 = 106
1:83 �0:40

�0:40 1:38
;

P4 =106
4:18 0:62 0:71

0:62 3:49 �0:57

0:71 �0:57 2:63

and, thus, one can verify that the system is exponentially stable.
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IV. CONCLUSION

In this note, a new method is developed to test stability of piecewise
discrete-time linear systems based on a piecewise Lyapunov function.
It is shown that the stability can be determined by solving a set of LMIs.
The approach can be extended to performance analysis of such systems
as in [2] and [3] for their continuous counterparts.
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A Note on the Relation Between Weak Derivatives and
Perturbation Realization

Bernd Heidergott and Xi-Ren Cao

Abstract—This note studies the relationship between two important ap-
proaches in perturbation analysis (PA)—perturbation realization (PR) and
weak derivatives (WDs). Specifically, we study the relation between PR and
WDs for estimating the gradient of stationary performance measures of a
finite state-space Markov chain. Will show that the WDs expression for the
gradient of a stationary performance measure can be interpreted as the ex-
pected PR factor where the expectation is carried out with respect to a dis-
tribution that is given through the weak derivative of the transition kernel
of the Markov chain. Moreover, we present unbiased gradient estimators.

Index Terms—Markov chains, perturbation analysis (PA), weak deriva-
tives (WDs).

I. INTRODUCTION

Today,perturbation analysis(PA) is the most widely accepted gra-
dient estimation technique; see [5]–[7] for details. In this note, we work
in particular with the interpretation of PA viaperturbation realization
(PR) factors, see [1]. The aim of our analysis is to establish a connec-
tion between PR and the concept ofweak derivatives(WDs), see [8].
Whereas PA is a sample-path based approach, WDs are a measure the-
oretic approach to gradient estimation.

WDs translate the analysis of the gradient into a particular splitting
of the sample path into two subpaths and observing these subpaths until
they couple, that is, until the perturbation dies out. The basic principle
for PA with PR is as follows. A small change in parameters induces a
sequence of changes (either small perturbations in timing, or big jumps
in states) in a sample path; the effect of such a change on a performance
in a long term can be measured by the PR factors, which can be esti-
mated on a single sample path. Thus, the performance gradient can be
obtained by the expectation (in some sense depending on the problem)
of the realization factor.

In this note, we study the gradient of stationary performance mea-
sures of (discrete time) finite state-space Markov chains via WDs and
PR. Our analysis will show that the WDs expression for the gradient of
a stationary performance measure of finite state Markov chain can be
interpreted as the expected PR factor where the expectation is carried
out with respect to a distribution that is given through the weak deriva-
tive of the transition probability matrix of the Markov chain.

The note is organized as follows. Section II provides a short introduc-
tion to PR and WDs. In Section III, we illustrate the relation between
the PA via PR and the weak derivative estimator for the stationary per-
formance of a finite state-space Markov chain. In Section IV, we show
the application of realization factors to the weak derivative of the tran-
sition matrix. In Section V, we deduce unbiased estimators from the
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