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Technical Notes and Correspondence

Stability Analysis of Piecewise Discrete-Time ture [7]-[9]. The authors in [7] presented an approach to stabilization
Linear Systems of piecewise linear systems based on a global quadratic Lyapuov func-

tion. It was shown that the piecewise state feedback control law could

Gang Feng be obtained by solving a set of LMIs and a single nonconvex bilinear

matrix inequality. The authors in [8] and [9] presented a number of
) - ) ] ~results on stability analysis, controller desidh,.. analysis andH
_ Abstract—This note presents a stability analysis method for piecewise .,nrolier design for the piecewise linear systems based on a piece-
discrete-time linear systems based on a piecewise smooth Lyapunov func-

tion. It is shown that the stability of the system can be established if a piece- WiS€ Lyapunov function. However, only the piecewise linear system
wise Lyapunov function can be constructed and, moreover, the function can Without affine terms were discussed in these two papers. As itis known,
be obtained by solving a set of linear matrix inequalities (LMIs) thatis nu- many piecewise linear systems have nonzero affine terms for those re-

merically feasible with commercially available software. gions which do not contain the origin. Fox example, when a nonlinear
Index Terms—Discrete-time systems, linear matrix inequality (LMI), ~ System is linearized around a number of operating points in its state
piecewise linear systems, stability. space, then the affine terms appear when the operating point is not at

the origin. Therefore in this note, we propose a method for stability

analysis of the piecewise discrete-time linear systems with affine terms

by constructing a novel piecewise Lyapunov function. This function is
Piecewise linear systems have been a subject of research in the gysranteed to be decreasing when the state of the system jumps from

tems and control community for some time, see, for example, [1]-[14]ne region to another. It is shown that the piecewise Lyapunov function

In fact, the piecewise linear systems arise often in practical control sgsn be constructed by solving a set of LMIs. The work presented in this

tems when piecewise linear components are encountered. These aoote can be considered as an extension of the work for the piecewise

ponents include dead-zone, saturation, relays and hysteresis. In additinuous time systems in [2], [3] to their discrete-time counterparts

tion, many other classes of nonlinear systems can also be approximatethe extension of the work for the piecewise discrete-time systems

by the piecewise linear systems. Thus the piecewise linear systems gribhout affine terms in [8] and [9] to those with affine terms.

vide a powerful means of analysis and design for nonlinear control sys-The rest of the note is organized as follows. Section Il introduces the

tems. piecewise linear system model and a motivating example. Section IlI
A number of significant results have been obtained on analysis amesents a method for stability analysis of such systems and some nu-

controller design of such piecewise continuous time linear systemmerical examples. Finally, conclusions are given in Section IV.

during the last few years. For example, the authors in [1] studied a basic

issue, thatis, the well posedness of piecewise linear systems. Necessary II. PIECEWISE LINEAR SYSTEM MODEL

and sufficient conditions for bimodal systems to be well-posed have

been derived and the extension to the multimodal case has also been di

cussed. The authors in [2], [3] presented results on stability and optintf?;{lm

performance analysis for piecewise linear systems based on a piecewise

continuous Lyapunov function. It has been shown that lower bounds, e(t+1) =dwe(t) +ar, fore € S

as well as upper bounds, on the optimal control cost can be obtained 1=1,2,....m (2.1)

by semidefinite programming and the framework of piecewise linear

systems can be used to analyze smooth nonlinear systems with atslere{S:}ez. C R™ denotes a partition of the state space into a

trary accuracy. The authors in [4] discussed stability analysis and céwmber of closed polyhedral subspadess the index set of subspaces,

troller design of piecewise linear systems which may involve multipka(t) € R the system state variables},( a;) theIth local model of

equilibrium points based on a common quadratic Lyapunov functiéhe system and;, the offset term. For the definition of state trajectory

and a piecewise quadratic Lyapunov function. It has been shown tR&g solution to the piecewise linear system (2.1) please refer to [1]-[3]

stability and performance analysis can be cast as convex optimizatighdetails. Here we assume that given any initial conditioh) = o,

problems. A controller design method based on a common quadrdfig difference (2.1) has a solution for alt> 0. We also assume that

Lyapunov function and linear matrix inequalities (LMIs) has been pravhen the state of the system transits from the regipto S; at the

posed. Similar work to those in [2][4] has also been reported in [5], [§[n€ ¢, the dynamics of the system is governed by the dynamics of the

where the piecewise Lyapunov function might be discontinuous acrd@gal model ofS; at that time. For future use, we also define a{3et

the region boundaries. that represents all possible transitions from one region to another, that
More recently, there appeared a number of result on stability an-

ysis and controller design of piecewise discrete-time systems using

global quadratic or piecewise Lyapunov functions in the open litera- Q= {l,j]=(t) € Si.a(t+1) € 5;,5 #1}.

. INTRODUCTION

consider autonomous piecewise discrete-time linear systems of the

Remark 2.1: Itis noted that the system models defined in (2.1) are in
Manuscript received May 31, 2001; revised October 31, 2001. Recommenda@taffinesystems instead of linear systems. They include an additional
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(e-mail: megfeng@cityu.edu.hk). origin andL; = L\L, C L the set of indexes for the subspaces that
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For convenient notation, we introduce guarantee the stability of the piecewise linear system. For example, if
a piecewise Lyapunov function defined by
i— |:A[ a1:| — |:;z¢:| 2.2)
- 0 1 - 1] ' V(z) = T P, x €5 (3.2)

Then using this notation, the system model (2.1) can be expressed\ggh
T(t+1) = 4z(t), «(t) € S (2.3) Al PA -P <0, €L (3.2)

Itis well known that for the aforementioned piecewise discrete-tinie also decreasing when the state transits across boundaries, then the
system witha; = 0,1 € L, it is possible to show its stability using system (2.1) withy; = 0,7 € L, can be guaranteed to be stable in the
a globally quadratic Lyapunov functidii(z) = «* Pz if a common sense of Lyapunov.
positive—definite matrix” can be found. A computational approach to As shown in [2], in order to reduce the conservatism of (3.2), the
finding such a matriXP can be cast as a set of LMIs as in the followingso-called S-procedure [15] can be used. It is noted that the following

lemma. matricesE’s can be constructed for each cell since they are polyhedra
Lemma 2.1: If there exists a symmetric positive—definite matfx such that:
such that _
Ez >0 (3.3)
A/ PA —P<0,1€L (2.4)

whereE; = [E; e withe; = 0forl € Lo. It should be noted

then the state trajectory of the system (2.1) with= 0, € L tends that the above vector inequality means that each entry of the vector is

to the origin exponentially. nonnegative. Then, when = 0,1 € L, and (3.2) can be replaced by
Itis noted that the condition (2.4) is a set of LMIs in matfthat can

be easily solved by commercially available software such as Matlab.

It is also noticed that the conditi(?n (24)isa suffi(;ient condition an\?é/hereU, is a matrix with nonnegative entries.

many stable systems may not satisfy such a condition. In order to verifyrpe, e are ready to present the following main result of this note.

that no common matri¥’ to (2.4) exists, it is useful to consider the  a4rem 3.1: Consider the piecewise linear system (2.1). If there
following dual problem [2]: if there exist positive—definite matrides  oyist symmetric matriceB,, ! € Lo, P, 1 € Ly, U, Wi and@Q; such

Al PA —P+EUE <0, 1€l (3.4)

I € L such that thatU;, W; and@,; have nonnegative entries and the following LMIs
Z (A;[“R“Lh _ Rz) >0 (2.5) are satisfied:
ter 0<P —E/UE, 1€eL, (35)
then the inequalities in (2.4) do not admit a common positive—definite A} PLA, — P, + E/ W,E, <0, 1€ Lo (3.6)
SO'A”"O”P- din 2 for th _ _ ol 0<P - E'UE, el (37)
s argued in or the continuous-time case, we present the fol- .75 « o 7 -
lowing example to demonstrate that the Lemma 1 is conservative in 41’ DA =P+ EI’ Wik <0, 1 6 Ly (3.8)
the sense that a piecewise discrete-time linear system is stable, but it 41 PjAr — P+ E; Qi Ei <0, 1,j € 2N Lo (3.9)
does not satisfy (2.4). Al PjA - P+ E'QuE <0, LjeQnL, (3.10)
Example 2.1: Consider a piecewise discrete-time linear system A'PA — P+ Bl QuE <0, 1LjeQieLl,jeL
) Avze(t) ifx < 3.11
x(t—l—l):{ 12(t) l.fm_() o o ’ (3.11)
Aga(t) ifa1 >0 A PiAI-P+E QuyE <0, 1,jeQle Lo, je L
where (3.12)
1 05 0 1 0.4 0.01 where we define’; = [Lixn  Onx1 1T P;[Inxn Opxi]forj € Lo
A =|-03 08 0 Ay =|-01 08 0 |. in(3.11) andP = [Inxn Ouxi]  Pi[Inxn Onxi],forl € Lo in
0 0 04 0 0 0.5 (3.12), then the origin of the piecewise linear system is exponentially

] ) ) ) stable, that isy(¢) tends to the origin exponentially for every trajectory
By solving the dual problem stated in (2.5), one can easily verify thaf ihe state space.

there exists no positive—definite matrix solutiéhto (2.4). However, Proof: Consider the following Lyapunov function candidate
the simulation results indicate that the system is stable. V(t):

As an alternative to a globally quadratic Lyapunov function, recently,
piecewise Lyapunov functions have been developed for stability test for ,rTﬂm, x €S, €Ly
the piecewise continuous linear systems [2]. Motivated by the work in Vi(t)= P (3.13)
[2], we will construct a piecewise Lyapunov function which is guaran- {1} P {1} » wE€SLTE L

teed to be decreasing when the state of the system stays in a region, or

transits from one region to another in the next section. The similar iddS °Pvious from (3.13) that there exists a constarit 0 such that
has also been independently developed in [8] and [9]. for € Si, 1 € Lo

V(t) < Alle)l? (3.14)
I1l. PIECEWISE QUADRATIC STABILITY

As argued in [2], it is not necessary to require a globally vali&nd forz € 5,1 € Lt

common positive—definite matrix’ for a piecewise linear system i 9 5 |lz|? (1 +¢) 5
since the dynamics described Hy is only valid within the cellS;. Vi) <y (llell” +1) < v (ll=l” + - = - [zl
Consequently, a piecewise Lyapunov function might be sufficient to (3.15)
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wherec := min,es, e, ||2]|* > 0 sincex # 0 fora € S;,1 € L. Caseb)x(t — 1) € Si, «(t) € S;,1,5 € Q, 1 € Ly andj € Lo. It
Combining (3.14) and (3.15) leads to that there exists a constant follows from (3.11) that there exists a constant 0 such
0 such that that
V() < Al Al PjA;— P+ Ef Qi E/ + pI <0.

Moreover, (3.5) and (3.7) imply, respectively, that there exists a con- Then we have

stanta: > 0 such that AV() =V (1) = V(t - 1)

a||ar||2 SwT (Pl - E,f[U/El> z < ' Pz :w(t)Tle'(t) —Z(t - 1)TPII'(t -1)
=(Ajz(t — 1)+ a,l)l P]' (A[.’E(t - 1) =+ (11)
—z(t-1)" Pzt -1)
for x € ;. Thatis =e(t—1)" 4T 0]"P[T 0]Aa(t—1)
—z2(t—-1)"Pz(t—-1)

allel|? <allz|? < 77 (Pl - E,TU,E,) 7 < 3T Pz

2 oy D

allz]|” < V(t). (3.16) —5(t — 1) [411 PA - Pl] 2t —1)
Thus, from (3.15) and (3.16), we have <zt-1T (—pI - E,TQUE,) F(t-1)

. . — T —

allell < V() < Bllal*. (3.17) <#(t—1) (-pD3(t - 1)
< = plle(t =)

Then we consider the difference of the Lyapunov function candidate. _ "
Along trajectories of the system, there exist six possible cases. It should whereP; = [Loxn  Onxi] .Pj [Tnxn  Onxi ]'-
be noted that we have made the following assumption. That is, the dy£ase 6)x(t — 1) € Sy, «(t) € 5;,1,j € Q,1 € Lo andj € L. It
namics of the system is governed by the dynamics of the local model follows from (3.12) that there exists a constant 0 such
of S; when the state of the system transits from the regioto S; at that

the timet. This assumption is useful for the proofs of Case 3)-Case 6).

Case l)x € S;,1 € Lo. It follows from (3.6) that there exists a
constanfp > 0 such that Then we have

AITP]'/-L . ElTQx]'E + pI < 0.

Af' PA - P+ Ef WE + pI <0. AV =V(t) = V(t—-1)

=z(t) Pjz(t) — a(t — 1) P(t — 1)

[ Aw(t—=1) T = Ajx(t — 1)

[ e
—a(t=1)"Pa(t—1)

Then we have

AV(H) =V () = V(t - 1)
=a(t=1)" [A] P = P a(t = 1)

_ A 01" S (4 0],
<w(t—1)" (—p[ - E,TW,E;) a(t—1) =z(t—1)" { 0’ 1} P { 01 1} T(t—1)
< = pllet = 1) —a(t=1)" Pa(t = 1)

=zt - 1)"A P Azt —1) — 2t — 1) Pa(t — 1)

Case 2)x € 5;,1 € L,. Similar to the Case 1), one can easily show —(t — 1)11 [ﬁfﬁjﬁl _ P/] Ht-1)

by using (3.8) that
<a(t=1)" (=pI = Bl QuE) (t - 1)
<w(t—1)"(=pDa(t - 1)
Case 3)x(t — 1) € S;, x(t) € S;1,7 € QN Lo. It follows from < —plla(t — 1)
(3.9) that there exists a constant- 0 such that

AV(t) < —plla(t — D)I* < —plla(t — 1)

Wherel:)l :[Ian Onxl]T PI[Ian Onxl]-

A P;A — P+ E Qi;E + pI < 0. Summarizing the previous cases leads to
Then we have AV (t) < —pll=|*. (3.18)
AV(#) =V(t) = V(= 1) Therefore, the desired result follows directly from (3.17)

oo and (3.18), based on the standard Lyapunov theoly.V
=2(t—1) [‘41 Pidi - PI] a(t—1) The aformentioned conditions are LMIs in the variablesP;, U;,
X T Ty ) Wi, and@;;. A solution to those inequalities ensufié$t) defined in
Sa(t=1) (_pl - B Q“El) ot=1) (3.13) to be a Lyapunov function for the system. Thse LMl in (3.5) or
< —pllzt = D). (3.7) for each region guarantees that the function is positive and the
LMI in (3.6) or (3.8) guarantees that the function decreases along all
Case4)x(t — 1) € S, x(t) € S;,1,5 € QN L,. Similar to the system trajectories in each region. The LMIs (3.9)—(3.12) guarantee
Case 3), one can easily show by using (3.10) that that the function is decreasing when the state transits from one region
to another. The terms involving,, £;, U;, W, and@),; are related to
AV < —pllz(t — DII® < —pllzt — D% the S-procedure to reduce the conservatism of those inequalities.
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Fig. 1. Trajectory of Example 3.2 from initial conditior{0) = [3 0]7. Fig. 2. Trajectories of Example 3.3 from four initial conditions.

Remark 3.1: The set can be determined by the reachability analPot exista common positive—definite mat#for the system. The ma-
ysis [10]. If it is possible for the transitions happen between all regiori§ices characterizing the regions are given by
thenQ2 = L?, which is defined as a set éf, j|I,j € L, j # I}. 11 11

In the case ofi; = 0 for all! € L, we then have the following E =—FEs = {_ } , By = —E4 = {_ } i
corollary. -1 -1 11

Corollary 3.1: Con5|d_erthe PIECEWISE Iln_ear system (2.1) W'thtf By solving the LMIs in Theorem 3.1 or Corollary 3.1, we find the fol-
0foralll € L. If there exist symmetric matricdg, ! € L, symmetric lowing matrices:
matricesl;, Wi and@;; such thaf’;, W; andQ;; have nonnegative

entries and the following LMIs are satisfied: P =P = 0.9344  0.0809
0.0809 0.2793
0<P - ELUE, 1€lL, P, =P, = {0.2614 0.1257}
(3.19) - 0.1257 0.9674
AP A — P+ EFWIE <0, lel (3.20) anlczi thus |On§ ga(r:I ver!;y that _the sy_ste(rjr_l is expo_nenlt_ially stable. "
o . xample 3.3: Consider a piecewise discrete-time linear system wit
Al PjA - P+ E/QiE <0, 1.jeQNL (B21) L6 terms
then'the origin of the piec_e\_/vise linear _system is expongntially_stable, 2(t+1) = Az(t) +
that is,z(t) tends to the origin exponentially for every trajectory in the
state space. _ _ o o with region partition shown in Fig. 2. The system matrices are given by
Example 3.1: Reconsider the piecewise discrete-time linear system 0.9 —01 0
in Example 2.1. Using Theorem 3.1 or Corollary 3.1, and noticing the Ay = { DR } a1 = { ) }
region characterizing matrices 0.1 1 —0.02
N = [ 17002
-1 0 0 1 0 0 2T T 0.02 0.9
Ety=10 00 E,=10 0 0 09 -0.1 0
0 0 0 000 ‘44:[0.1 1 } ”4:{0.02}'

Similar to the previous examples, the simulation results in Fig. 2 in-
dicate that the system is stable though there exists no globally quadratic

we can find the solutions to the LMIs

91.67 33.51 0.33 Lyapunov function. The matrices characterizing the regions are given
P = 3351 170.20 0.80 by

0.33  0.80 43.19 _ -1 0 0 0 0

88.45 47.14 101 Er= {—1 0 —1} B = {—1 0}

Py =|47.14 169.92 1.94 0 0] - [10 -1
101 1.94 46.16 E3:{1 o} E”‘:L 0 0}'

Using the Theorem 3.1 withh = {1, 2;2,3;3,2;4,3}, we can find

and thus verify that the system is exponentially stable. . i
the following solutions to those LMls:

Example 3.2: Consider a piecewise discrete-time linear system

[ 4.00 0.64 —0.677

w(t+1) = Ape(t) P, =10°| 0.64 3.47 0.57
| —0.67 0.57 2.75 ]

with region partition shown in Fig. 1. The system matrices are given by s { 1.83 _0_40}
P, =P;=10 ,
1 0.01 1 005 i ~0-40 138 ]

A=A = {_0'05 0.99} A=Ay = {_0'01 0'99} . . 4.18 0.62 0.71

P, =10" | 0.62 349 —0.57

The trajectory of a simulation result with initial conditiar{0) = 0.7 =0.57 263 |

[3 0]% in Fig. 1 indicates that the system is stable though there dogsd, thus, one can verify that the system is exponentially stable.
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In this note, a new method is developed to test stability of piecewise
discrete-time linear systems based on a piecewise Lyapunov function.
Itis shown that the stability can be determined by solving a set of LMIs.
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IV. CONCLUSION A Note on the Relation Between Weak Derivatives and
Perturbation Realization

Bernd Heidergott and Xi-Ren Cao

The approach can be extended to performance analysis of such systems
as in [2] and [3] for their continuous counterparts. Abstract—This note studies the relationship between two important ap-

proaches in perturbation analysis (PA)—perturbation realization (PR) and
ACKNOWLEDGMENT weak derivatives (WDs). Specifically, we study the relation between PR and
WDs for estimating the gradient of stationary performance measures of a

The author would like to thank the Associate Editor and the rénite state-space Markov chain. Will show that the WDs expression for the

viewers for a number of constructive comments based on which tH#&
note has been greatly improved.
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