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Stability Analysis of Power Systems with Inclusion

of Realistic-Modeling WAMS Delays
Muyang Liu, Student Member, IEEE, Ioannis Dassios, Georgios Tzounas, Federico Milano, Fellow, IEEE

Abstract— The paper studies the impact of realistic Wide-
Area Measurement System (WAMS) time-varying delays on the
dynamic behaviour of power systems. A detailed model of
WAMS delays including pseudo-periodic, stochastic and constant
components is presented. Then, the paper discusses numerical
methods to evaluate the small-signal stability as well as the time-
domain simulation of power systems with inclusion of such delays.
The small-signal stability analysis is shown to be able to capture
the dominant modes through the combination of a characteristic
matrix approximation and a Newton correction technique. A case
study based on the IEEE 14-bus system compares the accuracy of
the small-signal stability analysis with Monte-Carlo time-domain
simulations. Finally, the numerical efficiency of the proposed
technique is tested through a real-world dynamic model of the
all-island Irish system.

Index Terms— Time-varying delay, delay differential algebraic
equations (DDAEs), small-signal stability, wide-area measurement
system (WAMS).

NOTATION

a Scale factor of the Gamma distribution

A0 Conventional state matrix

Ai State matrix associated with the i-th delay

b Shape factor of the Gamma distribution

f Differential equations

g Algebraic equations

h(λ) Comparison distributed delay term of time-varying delay

I Identity matrix

p Data packet dropout rate

T Normal delivery period for each data packet

tk Arriving time of data packet xk

u Discrete variables

w Weight function of time-varying delay

x State variables

xk k-th data packet of state variable x
y Algebraic variables

α Real part of an eigenvalue

β Imaginary part of an eigenvalue

γ Adjusting coefficient of the guessed constant delay

Γ Random number following a Gamma distribution

∆(λ) Characteristic equation

δt Time at which the next data packet is expected

ǫ Convergence error
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ǫ̂ Tolerance for time domain integration algorithm

λ Eigenvalue

λ̂ Corrected eigenvalue

ν A non-trivial vector, eigenvector

νH Hermitian conjugate of eigenvector ν

τ Measurement delay

τ̄ Mean value of τ
τc Initial-guess delay for the Newton correction

τo Constant component of the WAMS delay model

τp Quasi-periodic component of the WAMS delay model

τ ′p Ideal periodic component of the WAMS delay model

τs Stochastic component of the WAMS delay model

I. INTRODUCTION

A. Motivation

A Wide-Area Measurement System (WAMS) consists of a

remote measurement device, e.g., a phasor measurement unit,

and a communication network that transmits the measurements

to a power system controller [1]. WAMSs inevitably introduce

delays into the control loop and are thus potential threats to

power system stability [2]. These delays are the result of a

series of processes along the data communication from the

measurement device to the grid, including long-distance data

delivery, data packet dropout, noise, communication network

congestion, etc. [3]. Due to stochastic effects and the com-

munication mechanism, WAMS delays are necessarily time-

variant. This paper proposes a detailed model of WAMS delays

and numerical techniques to estimate their impact on small-

signal stability and time-domain simulation of power systems.

B. Literature Review

In [2], [4]–[6], WAMS delays are regarded as constant for

simplicity. A constant delay model, however, is not able to

accurately define the impact of WAMS delays due to the

Quenching Phenomenon (QP) [7]–[9]. QP appears for time-

varying delays and consists in the change of the stability of a

delay system for different delay types, even though all delays

are within the same range and have the same mean value.

In [10]–[12], WAMS delays are modelled through stochastic

processes. Comparing with the constant delay model, the

stochastic model captures slightly better the effects of a

realistic WAMS delay. Nevertheless, the stochastic model is

still inaccurate as it fails to reflect the actual mechanism of

WAMS delays, which include a quasi-periodic behaviour and

data package dropouts. All these aspects are taken into account

in this paper.



Apart from the lack of a precise WAMS delay model, a

general technique to study the stability of power system with

inclusion of time-varying delays is also currently missing.

The most common approach is based on Lyapunov-Krasovskii

Functionals (LKFs) [3], [13]–[15]. The main limit of LKFs

is their numerical complexity – which prevents applications

to large-size real-world power systems – and the significant

conservativeness of the results [16].

Also frequency-domain approaches, including Integral

Quadratic Constraintss (IQCs) [17], [18] and eigenvalue-based

approach [19]–[22] have been developed. These approaches

are shown to be computationally effective and accurate for

large real-world power systems with inclusion of delays.

Among the frequency-domain approaches, the eigenvalue-

based method shows the lightest computational burden because

it does not require to solve the Linear Matrix Inequalitys

(LMIs) problem.

This paper further develops the eigenvalue-based techniques

to solve the small-signal stability of power system by ex-

ploiting the theoretical results given in [7], [16], [23], where

it is proven that time-varying delays can be approximated

with summations of multiple constant delays in the linearized

characteristic equation.

C. Contributions

To the best of our knowledge, this is the first attempt to

propose a detailed model of realistic WAMS delays for power

system applications. The specific contributions of the paper

are the following:

• A realistic WAMS delay model that is able to take into

account all relevant issues introduced by the WAMS

communication system.

• A theorem that states the equivalence of the characteris-

tic equations of Delay Differential Algebraic Equations

(DDAEs) with fast time-varying delays and DDAEs with

distributed delays.

• A discussion on how to implement the WAMS delay model

in a Time Domain Integration (TDI) routine.

• A two-step numerical technique to evaluate the small-

signal stability of the power system with detailed WAMS

delay models. The first step utilizes the theorem above to

estimate an initial guess of the eigenvalues of the DDAE;

then a Newton correction method that takes into account

the Probability Density Function (PDF) of the realistic

WAMS delay improves the results.

D. Organization

The remainder of the paper is organized as follows. Section

II briefly recalls state-of-art techniques to evaluate the small-

signal stability of DDAEs and provides a general theorem to

define the characteristic equation of DDAEs with time-varying

delays. Section III provides a taxonomy of the components

of WAMS delays and defines their numerical models. Section

IV discusses the implementation of the WAMS delay model

in time-domain simulation and small-signal stability analysis.

Section V presents two case studies. The first one is based on

IEEE 14-bus system and discusses features and limitations of

the techniques described in Section IV. The second case study

discusses the computational efficiency of these techniques

when applied to a 1,479-bus dynamic model of the all-island

Irish system. Conclusions are drawn in Section VI.

II. SMALL-SIGNAL STABILITY ANALYSIS OF DDAES

A. DDAEs with constant delays

Power systems with inclusion of delays can be modeled as

a set of DDAE in index-1 Hessenberg form [19]:

ẋ(t) = f(x(t),y(t),x(t− τ),y(t− τ),u(t))

0 = g(x(t),y(t),x(t− τ),u(t)) , (1)

where u models event, e.g. line outage.

To study the small-signal stability of (1), we consider its

linearization at a given operating point [19]:

ẋ(t) = A0x(t) +

imax
∑

i=1

Ai(t− τi) , (2)

Each solution of (2) is x(t) = e−λtν. The eigenvalues are

numerically equal to the roots of the characteristic equation:

∆(λ)ν = det∆(λ) = 0 ,

∆(λ) = λI −A0 −

v
∑

i=1

Aie
−λτi , (3)

The solution of (3) can be approximated through an appro-

priate discretization [19], [24]. Reference [21] shows that the

Chebyshev discretization scheme provides the best threshold

between accuracy and computational burden and, hence, this

is the scheme utilized in the remainder of the paper.

B. DDAEs with inclusion of time-varying delays

Reference [7] provides a theorem to transform fast time-

varying periodic delays into distributed delays. By combining

the mathematical proof of [7] with the definition of distributed

delay given in [23], we deduce the following theorem.

Theorem 1: Consider the following linear system with time-

varying delays:

ẋ(t) = A0x(t) +

imax
∑

i=1

Aix(t− τi(t)) , (4)

where τi(t) : R+ → [τmin, τmax], 0 ≤ τmin < τmax. If the

delay τ(t) changes fast enough, the small-signal stability of

(4) is the same as the following comparison system:

ẋ(t) = A0x(t) +
v

∑

i=1

Ai

∫ τmax

τmin

wi(ξ)x(t− ξ)dξ , (5)

where wi(ξ) is the PDF of the specific delay τi(t) = ξ. The

characteristic matrix of the comparison system is:

∆(λ) = λI −A0 −
v

∑

i=1

Aih(λ) , (6)

where

h(λ) =

∫ τmax

τmin

e−λξw(ξ)dξ . (7)

2



The proof of this theorem is in VI-A.

It is important to note that, for slow variations of τi(t), the

comparison system (5) is only an approximation of (4). The

stability of (4) and (5) are the same only for sufficiently high

rate of change of τi(t). Since in physical systems the rate of

change of the delays is always bounded and one cannot decide

a priori where the threshold between slow and fast variations

for a given system lays, the fidelity of the comparison system

(5) can be inferred only through numerical simulations [7].

Reference [16] provides an alternative solution of (6) that

consists in transforming the distributed delay into the summa-

tion of multiple constant delays and compute the eigenvalues

through discretization. Although this approach can success-

fully solve the DDAEs with delays within specific finite range,

it cannot properly handle unbounded and uncertain delays.

Therefore, to develop a more general approach, we consider

another eigenvalue computation technique, namely, the Newton

Correction, which is discussed in the following subsection.

C. Newton Correction

Newton correction is a technique to refine the solution of the

characteristic equation based on an appropriate initial guess,

namely the eigenvalues solved through a direct approach.

According to the symmetry of the eigenvalues, we only need

to correct the eigenvalues λ = α + jβ, β ≥ 0. The pseudo-

code below is developed based on [20] and provides an

implementation of the Newton correction specifically designed

for DDAEs. Algorithm 1: Newton Correction for DDAEs:

1) Initialize the eigenvalue to be corrected as λ0; the

characteristic equations of targeted DDAE as ∆(λ0); the

maximal iteration number kmax and the tolerance ǫ .

2) Compute r0 = ∆(λ0) and ṙ0 = dr
dλ |λ=λ0

.

3) Compute an approximate eigenpair (λ0,ν0) of the cor-

responding ∆(λ0).
4) For k = 1, 2, . . . , kmax, compute:

[

∆νk

∆λk

]

=

[

rk ṙkνk

νH
0 0

]

−1 [

−rkνk

1− νH
0 ν

]

,

νk+1 = νk +∆νk , and λk+1 = λk +∆λk .

5) Compute rk+1 and ṙk+1 .

6) If |λk+1| ≤ ǫ or ||rk+1||2 ≤ ǫ:
stop with λ̂ = λk+1 ,

otherwise: λ̂ = null .

Step (3) above is particularly critical for the convergence of

the Newton correction algorithm. There exist a few approaches

to compute an approximated the eigenvector/eigenvalue pair

(λ,ν). These include Gaussian Elimination and Singular Value

Decomposition (SVD) approach [25]. According to our tests,

the SVD provides the better tradeoff between computational

burden and accuracy. For this reason, all simulation results

shown in the paper are based on SVD.

III. MODELING OF WAMS DELAYS

This section describes the basic communication process

of WAMSs as discussed in [26]. The WAMS delay model is

deduced based on the elements that compose such a com-

munication process. Note that, while other communication

processes are possible, the elements that we consider for the

WAMS delay model, namely, constant, periodic and stochastic

components, are general and can be thus be utilized to define

the dealys of WAMS with architectures other than the one

considered in this paper.

Assume that the WAMS measures a given quantity x(t) of

the power system. The signal is first measured by an appropri-

ate device and digitalized. Then the signal is processed through

a data package concentrator, transmitted and finally processed

through a zero-order holder (ZOH). At last, the resulting signal,

say x(t−τ(t)) is passed through device/controller of the power

system [3]. This process is illustrated in Fig. 1.

Transmission

Data

Holder

Measurement

Device

WAMS Zero−orderData

Concentrator

Wide−area

Device/Controller

Power System

x(t)

x(t− τ(t))

xk

Fig. 1: WAMS elements and their interaction with the power system.

As shown in Fig. 1, the quantity collected by the measure-

ment device x(t) is concentrated and sent as digitalized data

packets xk. The data collection, concentration and processing

introduce a constant delay for each packet (see Section III-

B). These data packets are delivered to feed wide-area de-

vice/controller. A ZOH is implemented to avoid the potential

issues resulting from the loss of data packets. The delivery

of the discrete data packets leads to quasi-periodic delays,

as thoroughly discussed in Subsection III-A. Apart from the

two delays above, the network-induced issues, e.g., the data

passing through different media, may introduce additional

stochastic delays, which are also discussed in Section III-B.

A. Periodic Delay Modeling

Consider first the case of an ideal WAMS communication

network. For a given medium, the delivery period of each data

packet is almost the same. Then, the data packet delivery delay

of such an ideal communication network can be modelled as a

periodic function of time [3], as shown in Fig. 2.a. Consider a

data packet arriving at t = tk. The ZOH holds the data received

at tk before obtaining the next data packet; during this period,

the delivery delay τp becomes:

τp(t) = t− tk . (8)

Assuming that the next data packet successfully transmitted is

expected to arrive at tk+1, the delivery period is:

T = tk+1 − tk . (9)
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In real-world WAMS communication network, the data packet

can be affected by dropout and/or disorder. In this case,

the ZOH holds the latest state as the feedback signal to the

controllers of the power system, until the next data packet

arrives successfully. Thus, a realistic data delivery delay is

quasi-periodic. Figure 2.b shows the case for which one data

packet xk+1 is lost. The probability of occurrence of a data

packet dropout is called dropout rate, p.

xkxk−1 xk+1 xk+2 t

τ
′

p(t)

(a) Ideal delivery delay τ
′

p(t)

xk
xk−1 xk+1 xk+2 t

τp(t)

(b) Delivery delay τp(t) with packet dropout

Fig. 2: Time-varying delivery delay in WAMS communication net-
work.

According to Fig. 2.b and (8), during the period that the ZOH

holds in a specific status, the following condition is always

satisfied:
dτp
dt

= 1 . (10)

Then, assuming the data packet dropout rate p ∈ [0, 1), the

probability of a successful delivery is 1 − p. A specific data

packet, after a successful delivery, has the following PDF

function:

wp(τp) = (1− p)pn , τp ∈ [nT, (n+ 1)T ] , n ∈ Z . (11)

The mean value of the delivery delay according to (11) is:

τ̄p =
T

2
+ pT + p2

3T

2
+ · · ·+ pn

(n+ 1)T

2
. (12)

Multiplying p on the each side of (12) leads to:

pτ̄p = p
T

2
+ p2T + · · ·+ pn

nT

2
+ pn+1 (n+ 1)T

2
. (13)

Then, the τ̄p can be deduced through (12)-(13):

(1− p)τ̄p =
T

2
+ p

T

2
+ · · ·+ pn

T

2
− pn+1 (n+ 1)T

2

= lim
n→∞

[
T (1− pn)

2(1− p)
− pn+1 (n+ 1)T

2
]

=
T

2(1− p)
. (14)

Finally, we have:

τ̄p =
T

2(1− p)2
. (15)

B. Constant and Stochastic Delay Modeling

During the WAMS communication, the data collected from

the measurement unit needs to be processed and exchanged

through different devices [3]. In [2], it is suggested that

these steps introduce a constant delay of about 75 ms for

each data packet. Recent technological advances, e.g., syn-

chronized measurement technology and real-time congestion

management [27], allows reducing such a delay. Although the

communication delay is fixed for each data packet, it may

be slightly different for different data packets. Moreover, the

network-induced issues also introduces uncertain delay during

the delivery of each data packet.

Based on these considerations, apart from the quasi-periodic

delay, we consider other two components in the WAMS delay

model. The first is a constant delay τo, which is the minimal

inevitable constant delay for each data packet. The second one

is a stochastic delay jitter τs, which varies for each data packet.

According to the research on the existing physical delay [28]–

[30], we assume that τs follows a Gamma distribution. For a

given packet, with the i-th dropout, one has

τs,i(t) = Gamma(a, b, t) , (16)

Then, to account for the accumulation of the stochastic delay

due to the data packet dropout, (16) is revised as:

τs(t) =

∞
∑

i=0

piτs,i(t) =
Gamma(a, b, t)

1− p

= Gamma(
a

1− p
, b, t) . (17)

Then, according to Section II-B, the comparison system is:

τs(t) =

∫

∞

0

ξb−1e−ξ/â

âbΓ(b)
x(t− ξ)dξ , (18)

where â = a
1−p . Finally, the expected mean value of the

Gamma distributed delay is

τ̄s = âb . (19)

IV. NUMERICAL IMPLEMENTATION

This section discusses the assumptions and the numerical

steps required for the time domain simulation (Subsection IV-

A) and small-signal stability analysis (Subsection IV-B) of

power systems with WAMS delays.

A. Time-Domain Integration

A standard integration scheme, namely, the Implicit Trape-

zoidal Scheme (ITM), is utilized for the integration of the

DDAEs modeling the power system [31]. The inclusion of

constant delays in a ITM is relatively straightforward [32].

Embedding time-variant delays, however, requires special care

to avoid numerical issues and guarantee accurate solutions.

With this aim, we make the following assumptions:
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• The occurrence of the data packet dropout is independent

from the status of the last packet.

• The stochastic delay is still considered even if the data

packet drops.

• The WAMS delay is represented as:

τ(t) = τp(t) + τo + τs(t) . (20)

• At the initial time of the time-domain simulation, say t0,

a new data packet is delivered.

The following algorithm details the step required to generate

the WAMS delay τ(t) during a time domain integration.

Algorithm 2: Time-varying WAMS delay implementation in

a TDI routine:

Initialization:

Dropout rate: p = n
m , n,m ∈ Z and n < m;

Time at which the next data packet is expected to arrive:

δt, note that δt ∈ (−∞, 0], where t = 0 is the simulation

starting time;

Initial accumulated delay due to packet dropout: τdrop := 0;

Upper bound of stochastic delay: τmax
s ;

Tolerance to avoid numerical issues: ǫ̂;
Delay parameters: T , a, b, τo and initial τs.

For each time ti of the time domain integration:

1) Compute τ ′p := mod(ti, T ) .

2) Decide whether a data packet has arrived:

Evaluate δt > T − ǫ̂ and τ ′p > T/2.

If True go to next step, else go to Return step.

3) Assign δt := δt− ti .

4) Generate a new random value τs of the Gamma distri-

bution.

5) If τs > τmax
s then τs := τmax

s .

6) Decide whether the data packet has arrived successfully:

Generate a random integer q, uniformely distributed in

the interval [1,m].
If q ≤ n: the data packet has arrived, then τdrop := 0 ;

else: the data packet has been lost, then τdrop := τdrop+
T and τp := τ ′p + τdrop .

7) Return: τ := τp + τs + τo.

Each new integration time ti is defined based on the

integration time step, say ∆t, as ti = ti−1 + ∆t. ∆t ≪ T
must hold. Even for small ∆t, however, the calculation of

τ ′p may be numerically imprecise close to zero. In step (2),

therefore, we choose to capture the moment that is infinitely

close to the time when τ ′p = δt = T .

Figure 3 illustrates the time evolution of a typical WAMS

delay and its components. Note that the plots in Fig. 3 are

not obtained off-line but show the actual results of the time-

domain simulation based on the IEEE 14-bus system that is

discussed in Subsection V-A.

B. Small-Signal Stability Analysis

The proposed small-signal stability analysis of the power

system with inclusion of delay includes two major steps:

(i) evaluation of an initial guess for the eigenvalues; and

(ii) Newton correction based on the comparison system. For

simplicity, in this section, we only discuss the implementation

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time [s]

0.00

0.05

0.10

0.15

0.20

τ
p
(t
)
[s
]

(a) Delivery delay

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time [s]

0.00

0.02

0.04

0.06

0.08

τ
s
(t
)
[s
]

(b) Gamma distributed delay

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Time [s]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

τ
(t
)
[s
]

(c) WAMS delay

Fig. 3: Time evolution of a typical WAMS delay and its components.
Parameters are: δt = 0 T = 50 ms, τo = 50 ms, τmax

s = 100 ms,
a = 0.01, b = 2, p = n/m = 3/10, and ǫ̂ = 10

−6.

of the single delay case. In the case study, however, both single

and multiple delay cases are considered.

First step: Choose a constant delay τc to replace the

actual WAMS delay and solve the small-signal stability analysis

through Chebyshev discretization (Section II-A). The constant

delay τc is:

τc = τo + γ(τ̄p + τ̄s) (21)

γ can only be found through numerical tests. Based on several

simulations, we found that γ ∈ [0.5, 2.0].
Second step: Set the eigenvalues obtained in the first step as

the initial guesses; then solve the Newton correction (Section

II-C) based on the comparison system with inclusion of the

5



WAMS delay. According to the previous sections, we can

deduce the following characteristic equation of the system in

the form of (6):

det(λI −A0 −A1hp(λ)hs(λ)e
−λτo) = 0 , (22)

where hp(λ) and hs(λ) are functions that adjust the charac-

teristic equation to take into account the distribution of the

quasi-periodic and stochastic components of the WAMS delay.

For hp(λ), one has:

hp(λ) =

∫

∞

0

wp(ξ)e
−λξdξ . (23)

Then, substituting (11) into (23):

hp(λ) =

∫ T

0

(1− p)e−λξdξ +

∫ 2T

T

(1− p)pe−λξdξ

+ · · ·+

∫ (n+1)T

nT

(1− p)pne−λξdξ + . . .

=
1− p

λ

∞
∑

n=0

pne−λξ|
(n+1)T
nT

=
1− p

λ
[1 + (p− 1)

∞
∑

n=1

pn−1e−nλT ]

=
1− p

λ
[1 + (p− 1) lim

n→∞

e−λT (1− (pe−λT )n)

1− pe−λT
]

=
1− p

λ
[1 + (p− 1)

e−λT

1− pe−λT
] . (24)

Similarly, according to (18), for hs(λ), one has:

hs(λ) =

∫

∞

0

ξb−1e−ξ/â

âbΓ(b)
e−λξdξ

=
1

âbΓ(b)
(
b− 1

ξ
−

1

â
− λ)−1ξb−1e−(1/â+λ)ξ|∞0

= (1 + âλ)−b = (1 +
a

1− p
λ)−b . (25)

The deduction of (25) is given in the Appendix.

V. CASE STUDIES

In this section, we consider two systems. The IEEE 14-bus

system is utilized to discuss the accuracy and reliability of

both the time-domain simulation and the small-signal stability

analysis proposed in the previous sections. With this aim,

we solve a sensitivity analysis for a single-delay case. The

second case study is a real-world dynamic model of the Irish

system, which serves to illustrate the computational burden of

the proposed small-signal stability analysis.

All simulations are obtained using the Python-based soft-

ware tool DOME [33]. The DOME version utilized here is

based on Fedora Linux 25, Python 3.6.2, CVXOPT 1.1.9, KLU

1.3.8, and MAGMA 2.2.0. The hardware consists of two 20-

core 2.2 GHz Intel Xeon CPUs, which are utilized for matrix

factorization and Monte-Carlo time-domain simulations; and

one NVIDIA Tesla K80 GPU, which is utilized for the small-

signal stability analysis.

A. IEEE 14-bus system

This subsection investigates the feasibility and sensitivity

with respect to WAMS delay parameters of the numerical

approach discussed above based on IEEE 14-bus system, with

a WAMS-based Power System Stabilizer (PSS) connected at

generator 1 and 20% load increase. All parameters of the grid

can be found in [31] and all parameters of the PSS are the

same as in [16], except for the gain of the PSS that is taken

as Kw = 3.0.

The rightmost post-contingency eigenvalues of IEEE 14-bus

system following the line 2-4 outage is −0.1366 ± j0.0121
if including a non-delayed PSS and 0.0352± j8.8251 without

PSS. Intuitively, the system can be unstable for a delayed PSS,

as the effect of the PSS is null if the delay is large enough.

Assuming that the WAMS-based PSS introduces a delay with

same parameters as that of the delay τ(t) shown in Fig. 3,

we investigate first the sensitivity of the system stability with

respect to the data packet dropout rate p.

Four delay models with same mean value are considered:

• M1 Realistic delay model: τ(t) = τp(t) + τo + τs(t);
• M2 Quasi-periodic time-varying model: τ̂p(t) = τp(t) +

τ̄s + τo;

• M3 Gamma distributed stochastic time-varying model:

τ̂s(t) = τ̄p + τs(t) + τo;

• M4 Constant delay model: τ̄ = τ̄p + τ̄s + τo.

The results of the small-signal stability anlaysis are shown in

Table I. The eigenvalues shown in the table are the rightmost

ones for the post-contingency operating point, the contingency

being line 2-4 outage. The percentages shown in the rightmost

column are the probability that a time-domain simulation

(TDS) considering realistic delay model τ(t) (M1) is stable.

100 time-domain simulations per each value of p are solved.

According to Table I, for a fast-varying WAMS delay,

the small-signal stability analysis of the comparison system

indicates that the original system remains stable after the

occurrence of the line outage only for small values of the

dropout probability p. As p increases, the system becomes

unstable. These results confirm the well-known conclusion that

a fragile WAMS communication network can jeopardize the

stability of the whole power system.

The different results obtained considering different delay

models, namely τ(t), τ̂p(t), τ̂s(t) and τ̄ are typical effect

of the quenching phenomenon. The WAMS delay model τ(t)
and τ̂p(t) can effectively predict the small-signal stability of

the system with inclusion of realistic-modeling measurement

delays, while τ̂s(t) and τ̄ are less reliable. This indicates that

the dominant effect of the delay on the system stability is

caused by the quasi-periodic component. This conclusion is

in accordance with the discussion in Section III.

The dropout rate sensitivity test above proves the accuracy

of the small-signal stability analysis approach with a fast-

varying delay. However, according to the hypothesis of com-

parison system (see the discussion of Theorem 1), as the data-

delivery period T increases, the accuracy of the comparison

system has to decrease.

Table II shows the sensitivity of the IEEE 14-bus system

stability with respect to the period T , for a given dropout value,
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TABLE I: Sensitivity of the data packet dropout rate p for the IEEE 14-bus system with WAMS-based PSS, T = 50 ms.

Parameter Small-Signal Stability Analysis % of stable TDI tests

p τ(t) τ̂p(t) τ̂s(t) τ̄ τ(t)

10% −0.02571± j8.863470 −0.02630± j8.863889 0.05227± j8.818914 −0.13645± j0.013156 100%

20% −0.02100± j8.867552 −0.02167± j8.868155 0.05178± j8.817714 −0.07423± j10.461538 100%

30% −0.01456± j8.871650 −0.01530± j8.872521 0.05093± j8.816039 0.09067± j10.349429 100%

40% −0.00580± j8.875183 −0.00660± j8.876413 0.04928± j8.813644 0.29547± j10.178284 100%

50% 0.00583± j8.876983 0.00513± j8.878795 0.04576± j8.810326 0.53497± j9.908095 95%

60% 0.02030± j8.874997 0.02003± j8.877614 0.03754± j8.807040 0.76520± j9.469742 43%

70% 0.03590± j8.866353 0.03684± j8.869917 0.02030± j8.814373 0.80451± j8.762563 5%

80% 0.04732± j8.848858 0.05122± j8.852571 0.04887± j8.836270 0.20383± j10.083820 2%

90% 0.04409± j8.827572 0.05144± j8.824285 0.01770± j8.827534 0.33595± j8.469411 1%

TABLE II: Sensitivity of the data delivery period T for the IEEE 14-bus system with WAMS-based PSS, p = 20% .

Parameter Small-Signal Stability Analysis % of stable TDI tests

T [ms] τ(t) τ̂p(t) τ̂s(t) τ̄ τ(t)

10 −0.13650± j0.012863 −0.13655± j0.012598 −0.13651± j0.012862 −0.13649± j0.012945 100%

30 −0.00732± j8.850850 −0.00783± j8.851217 −0.00239± j9.193280 −0.13646± j0.013108 100%

50 −0.02100± j8.867552 −0.02167± j8.868155 0.05178± j8.817714 −0.07423± j10.461538 100%

70 −0.03321± j8.893056 −0.03401± j8.894025 0.05062± j8.815531 0.09154± j10.348788 100%

90 −0.03799± j8.919839 −0.03880± j8.921193 0.04918± j8.813519 0.23454± j10.233620 98%

110 −0.03585± j8.945412 −0.03658± j8.947123 0.04747± j8.811719 0.35650± j10.118319 19%

130 −0.01671± j8.986618 −0.01703± j8.988843 0.05307± j8.821853 0.45966± j10.004321 3%

150 0.00442± j9.006973 0.00447± j9.009390 0.05300± j8.821488 0.54616± j9.892624 0%

namely, p = 20%. The results show that, for this system, the

small-signal stability analysis becomes inaccurate for delays

with relatively large period T , i.e., T > 90 ms. In this case,

the time-domain simulation is thus the most reliable tool to

evaluate the system stability for large values of T .

B. All-island Irish Power System with multiple delays

This subsection aims at investigating the computational

burden of the numerical techniques proposed in the paper.

With this aim, we consider a real-world model of the all-island

Irish grid. The grid consists of 1,479 buses, 1,851 transmission

lines, 245 loads, 22 conventional synchronous power plants

with AVRs and turbine governors, 6 PSSs and 176 wind power

plants. The topology and the steady-state operation data of

the grid are provided by the Irish TSO, EirGrid. Dynamics

data, however, are defined based on the technology of the

generators and do not represent any actual operating condition.

The topology of the Irish power system is shown in Figure 4.

We assume that the 6 PSSs are WAMS-based, each of them

introduces a delay with same parameters as that shown in Fig.

3. The contingency consists in the outage of the synchronous

power plant connected to bus 1378. The time step of TDI is

0.001 s. We consider two scenarios: the system with realistic

low PSS gains and with high PSS gains. Both scenarios are

stable if WAMS no delays are considered.

1) Scenario I: Low PSS Gains: In this scenario, the com-

putational time required to calculate the initial guess of the

eigenvalues is 115.8 s. Then completing the Newton correction

applied to the 43 eigenvalues with ℜ(λ) ≥ −0.3 requires

1, 309 s.

Fig. 4: All-island Irish power system map (available at:
www.eirgridgroup.com).

After the completion of the Newton iteration, the

20 rightmost eigenvalues have real parts in the range

[−0.074038,−0.221988]. As these dominant eigenvalues have

negative real parts, the post-contingency grid is expected to
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be stable. This conclusion is confirmed with 100 time-domain

simulations, all of which are stable after the occurrence of the

contingency. The computational time of each 50 s time-domain

simulation ranges from 120 to 124 s. For illustration, Figure

5 shows the dynamic variation of the frequency of the Center

of Inertia (COI) for one of the 100 time domain simulations.

0.0 10.0 20.0 30.0 40.0 50.0

Time [s]

0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

1.0

ω
C
O
I
[p
u
]

Fig. 5: Transient behaviour of the frequency of the COI for the all-
island Irish grid with low PSS gains following a power plant outage.

According to simulation results, the all-island Irish system

with low PSS gains is always stable and WAMS delays have

no relevant impact on system stability.

2) Scenario II: High PSS Gains: In order to further in-

vestigate the impacts of different delay models, we increase

the gains of the PSSs. This increases the damping of elec-

tromechanical oscillations but also increases the sensitivity to

measurement delays. In this scenario, the computational time

required to calculate the initial guess of the eigenvalues is

251.5 s. Then, completing the Newton correction applied to

the 42 eigenvalues with ℜ(λ) ≥ −0.3 requires 1, 406 s. The

100 time domain simulations for Irish system with inclusion

of WAMS delay requires about 190 s

The five rightmost eigenvalues/eigenvalue pairs of the all-

island Irish system for three different case: without measure-

ment delay, with constant delay τ̄ and with realistic-modelling

delay τ(t) of PSS signal are shown in Table III. Figure 6

shows a typical TDI results. According to the results of the

small-signal stability analysis shown in Table III, after the

contingency, the system remains stable without any measure-

ment delay, while it becomes unstable if either constant or

time-varying delay is introduced. This conclusion is verified

through TDI, which shows that the constant delays included

in the input signals of the PSSs give birth to a small limit-

cycle while the time-varying measurement delays lead to larger

frequency oscillations.

VI. CONCLUSION

The paper proposes a detailed delay model that is able to

emulate the physical behaviour of WAMS. This model allows

tracking the sensitivity of the WAMS communication issues on

the power system stability, e.g., the data packet dropout and

data delivery period. Based on the proposed model, the paper

defines both time-domain and frequency-domain techniques to

evaluate the impact of WAMS delays on power system stability.

These techniques are shown to be efficient and accurate for

0 10 20 30 40 50
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0.9997

0.9998

0.9999

1.0000
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1.0002
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O
I
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]

No delay

τ̄

τ (t)

Fig. 6: Transient behavior of the frequency of the COI for the all-
island Irish grid with high PSS gains following a power plant outage.

the fast-varying WAMS delays. However, both the theoretical

discussion and the case study identify the limitations of

the frequency-domain analysis when dealing with slow time-

varying WAMS delays. The time-domain analysis is thus the

only reliable tool for these cases. Future work will focus on

improving the accuracy of the frequency-domain analysis for

slow time-varying delays.

APPENDIX

A. Proof of Theorem 1

Proof: Let L{x(t)} = X(s) be the Laplace transform of

x(t). Then, if the delays τi(t), i = 1, . . . , imax change fast

enough, s.t. we can assume a specific delay τi(t) = ξ, by

applying the Laplace transform into (2), we have

L{ẋ(t)} = A0L{x(t)}+
v

∑

i=1

AiL{x(t− ξ)} .

By using L{ẋ(t)} = sX(s)−x0, where x0 = c is the initial

condition of (2) that, if not given, is equal to a constant vector

c; and L{x(t − ξ)} = e−sξX(s) for t ≥ ξ and 0 for t < ξ;

the above expression takes the form

sX(s)− x0 = A0X(s) +

v
∑

i=1

Aie
−sξX(s) ,

or, equivalently,

(sX(s)−A0 −

v
∑

i=1

Aie
−sξ)X(s) = cI , (26)

and consequently

λX(s)−A0 −

v
∑

i=1

Aie
−λξ (27)

is the characteristic polynomial. If we apply the Laplace

transform into (5), we get

L{ẋ(t)} = A0L{x(t)}+
v

∑

i=1

AiL
{

∫ τmax

τmin

wi(ξ)x(t−ξ)dξ
}

,

whereby using into the above expression

L
{

∫ τmax

τmin

wi(ξ)x(t− ξ)dξ
}

= L{wi(t)}X(s),
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TABLE III: Rightmost eigenvalues of the all-island Irish system with high PSS gains and different delay models.

Delay model 1 2 3 4 5

No delay −0.0958 −0.1229 −0.1315± j0.3865 −0.1403 −0.1408

τ̄ 0.5403± j9.3230 −0.0958 −0.1229 −0.1315± j0.3865 −0.1403

τ(t) 1.5949± j11.1040 −0.0958 −0.1229 −0.1408 −0.1423

and the definition of the Laplace transform of the PDF wi(t)
of the specific delay ξ:

L{wi(t)} = E[e−sξ] = e−sξ,

we obtain (26), and consequently (27). �

B. Gamma Distributed Delay

This appendix provides the steps that lead to the deduction

of (25) for the Gamma distributed delay. As a starting point,

recall that well-known property that states that any PDF f(ξ)
must satisfy the condition [34]:

∫

∞

0

f(ξ)dξ = 1 . (28)

For the PDF of a Gamma distributed function fg(ξ), we

have:

∫

∞

0

fg(ξ, a, b)dξ =

∫

∞

0

ξb−1e−ξ/â

âbΓ(b)
dξ

=
1

abΓ(b)
(
b− 1

ξ
−

1

a
)−1ξb−1e−ξ/a|∞0 .

(29)

Assume:

U(a, b) = (
b− 1

ξ
−

1

a
)−1ξb−1e−ξ/a|∞0 . (30)

According to (28) and (29), we can expect:

U(a, b) = abΓ(b) . (31)

Comparing (25) with (30), the hs(λ) can be rewritten as:

hs(λ) =
1

âbΓ(b)
U(at, b) , (32)

where at =
â

1+âλ . Thus, the right-hand side of (25) is:

hs(λ) =
atΓ(b)

âbΓ(b)
= (1 + âλ)−b . (33)
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