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SUMMARY

Real-time dynamic substructuring is an experimental technique for testing the dynamic behaviour
of complex structures. It involves creating a hybrid model of the entire structure by combining an
experimental test piece — the substructure — with a numerical model describing the remainder of
the system.

In this paper we focus on the influence of delay in the system, which is generally due to the non-
instantaneous nature of the involved transfer systems (actuators). This naturally gives rise to a delay
differential equation (DDE) model of the substructured system. With the case of a substructured
system consisting of a single mass-spring oscillator we demonstrate how the DDE model can be used
to understand the influence of the response delay of the actuator. Specifically, we describe a number
of methods for identifying the critical delay time above which the system becomes unstable, which is
characterized by positive exponential growth.

It is a typical situation in dynamic substructuring that the response time of the actuators exceeds
the critical delay time. Therefore, additional (control) techniques need to be implemented in practice.
We demonstrate with an adaptive delay compensation technique that the substructured mass-spring
oscillator system can be stabilized successfully in an experiment. The approach of DDE modelling
allows us to determine the dependence of the critical delay on the parameters of the delay compensation
scheme. In this way it is possible to develop specific testing strategies that ensure stable operation
of the substructured system. Finally, we describe an over-compensation method that is particularly
suited to ensure stable testing of structures with very low damping. Copyright c© 2004 John Wiley
& Sons, Ltd.

key words: Substructuring; hybrid testing; delay differential equations; delay compensation.

1. INTRODUCTION

The hybrid numerical-experimental testing technique known as real-time dynamic

substructuring allows one to observe at full scale the behaviour of a critical element under
dynamic loading. The whole system under consideration — the emulated system — is split
up into an experimental test piece — the substructure — and a numerical model (or a class
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STABILITY ANALYSIS OF REAL-TIME SUBSTRUCTURING 1

of models) describing the remainder of the structure. The challenge is to ensure that the
substructure and the numerical model together behave in the same way as the emulated system.
An overview of substructuring and how it relates to the field of experimental laboratory testing
of structures can be found in Williams and Blakeborough [1]. So far the technique has been
developed successfully by using expanded time scales, known as pseudo-dynamic testing [2–8],
with the limitation that dynamic and hysteresis forces must be estimated. Implementing the
substructuring process in real-time eliminates the need for these estimations. This is why
real-time dynamics substructuring has been the subject of much recent research [9–15].

More specifically, to carry out a substructuring test the component of interest is identified
as the substructure and fixed into an experimental test system. To link the substructure to
the numerical model, a set of transfer systems (that act on the substructure) are controlled to
follow the appropriate output from the numerical model [16–21]. A transfer system is typically
a single (electric or hydraulic) actuator, but may also be a more complex test facility, such as a
shaking table. At the same time, the forces between the transfer systems and the substructure
are fed back as inputs to the numerical model. This entire process must take place in real-
time. The feedback forces are treated as an external influence (or forcing) on the numerically
modelled part of the system, which can then be described by a set of ordinary differential
equations (ODEs). The advantage of this approach is that it is simple and fast to integrate
the ODE numerically, such that real-time control can be achieved. Additionally, the dynamics
may be decoupled when the substructured system has more than one transfer system [20].

The focus of this paper is on the fundamental principles behind substructuring. Our aim is to
develop an understanding of the effect of delay errors that are always present in a substructured
system. Delays arise naturally, because it is not possible for any (controlled) transfer system
to react instantaneously to a change of state as prescribed by the numerical model. In fact,
there are a number of different delays which combine together to give the overall delay of
the transfer system, including data acquisition, computation, digital signal processing and the
actuator delay itself. In some situations the transfer system delay may be so small as to be
negligible, but the typical situation in substructuring is that this delay is large enough to have
a significant influence on the overall dynamics of the substructured system.

We present here a technique that allows one to consider the stability of a substructured
system dependant on the delay(s) and other relevant system parameters. To this end we
model the substructured system with delay differential equations (DDEs), which are derived
from the ODE model of the system by including explicitly the delay(s) due to the transfer
system(s). A DDE model is a system of differential equations that depend on the current
state of the system and on the state of the system some fixed time τ ago. (We restrict
from now on to the case of a single fixed delay τ , but it is also possible in this framework
to consider several delays.) As a general reference to the theory of DDEs see, for example,
Diekmann et al. [22] or Stépan [23]. The advantage of DDE modelling is that we can use
powerful analytical and numerical methods to determine the stability of the DDE model and,
hence, of the substructured system. Specifically, the loss of stability as a function of increasing
delay is typically observed in substructured systems by the onset of oscillations. Because this
corresponds in the DDE model to a pair of complex conjugate eigenvalues with zero real part,
it is possible to determine the critical delay time τc, above which the system is unstable.
Depending on the system under consideration, this can be done either by considering the
characteristic equation for the eigenvalues of the DDE [22, 23] or with the numerical tool
DDE-BIFTOOL [24] for the stability analysis of DDEs.
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2 M. I. WALLACE, J. SIEBER, S. A. NEILD, D. J. WAGG AND B. KRAUSKOPF

In this paper we demonstrate with the case study of a mass-spring-damper system
(introduced in Section 2) how DDE modelling can be used to realize the following general
approach to real-time dynamic substructuring. Given a substructured system, the first step
is to determine its critical delay τc with the stability analysis of the respective DDE model.
If the delay in the transfer system is less than this critical delay the substructured system is
stable. However, the typical situation is that the delay of the transfer system is larger than the
critical delay — the substructured system is unstable and it develops oscillations exponentially
increasing in amplitude. It is an important observation that the knowledge of τc and how it
depends on other system parameters can be used to deal with this instability. In a second step
one needs to devise a control scheme in such a way that the controlled system is stable and
reproduces the dynamics of the emulated system. Whatever the choice of the controller, the
controlled system is again modelled by a DDE, generally by modifying the DDE model of the
substructured system, which now contains additional parameters describing the controller. The
stability of this DDE model can be analysed efficiently for the dependence on the controller
parameters. This knowledge can then be used to help develop suitable control strategies.

To illustrate this general approach we introduce in Section 2 the example of a substructured
single mass-spring oscillator that we use throughout. We identify the origin of the delay in terms
of the transfer system and show how it appears in the feedback force from the substructure.
In this example, the emulated system is modelled by a linear DDE to create the substructured
system. Nevertheless, this simple example already allows us to demonstrate the complex nature
and effect of delay errors that are present in a substructured system. As the first step, we
determine in Section 3 the critical delay τc of the system. Because the system is linear and
quite simple, it is possible to perform an analytical as well as a numerical stability analysis.
In Section 3.1 we explain how a perturbation analysis of the characteristic equation can be
used (under the assumption of small delay) to compute an approximate expression of the
critical time delay τc. For the simple mechanical system at hand it is even possible to compute
explicit expressions for τc by computing the purely imaginary complex roots directly from the
characteristic equation. We then demonstrate in Section 3.2 how the stability regions can be
computed efficiently with the mathematical tool DDE-BIFTOOL. Because this software does
not require any special property of the equation, the section demonstrates how one can find
τc in a general situation of more complex and nonlinear DDEs. In Section 3.3 we demonstrate
with numerical simulation what the stability boundary given by τc means in terms of the
behaviour of the substructured system.

The overall result of Section 3 is that the substructured system will be unstable if
the delay of the transfer system is indeed larger than the critical delay τc. Therefore,
we consider and analyse in Section 4 a specific experimental implementation, where the
substructure is connected to a servo-mechanical actuator and the overall system is stabilized
by a delay compensation technique. Delay compensation is a well known issue for real-time
substructuring; a number of single step forward prediction approaches have already been
presented by Horiuchi et al. [9] and Darby et al. [12] along with other compensation techniques,
such as Horiuchi and Konno [25] which have shown to improve accuracy. The technique used
in this paper constitutes a more generic approach to delay compensation. It was presented
by Wallace et al. [20] and is discussed in Section 4.1 in relation to the DDE analysis. Our
experiment serves as an authenticating case study of the DDE modelling approach to real-time
dynamic substructure testing that is proposed in this paper. We use further numerical stability
analysis with DDE-BIFTOOL to identify the important trade-off between increased accuracy
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of the numerical model and overall stability. In Section 4.2 we present the experimental
results of the substructure test. Finally, in Section 4.3 we use information gained from the
DDE modelling to propose a method of over-compensation that can be used to help attain a
successful real-time dynamic substructure test for a dynamical system with very low damping.
Concluding remarks can be found in Section 5.

2. THE SUBSTRUCTURED SYSTEM

We consider the example of a single mass-spring oscillator system, shown in Figure 1,with
one excitation point for the emulated system. This well known linear system will allow
us to demonstrate the fundamental problems associated with the occurrence of delay in a
substructuring algorithm. The general equation of motion for the system can be written as,

Mz̈∗ + Dż∗ + Kz∗ = Sr(t), (1)

where, M, D and K are the mass, damping and stiffness scalars, respectively, and Sr(t) is the
support excitation. The state of the system is represented by z∗, where (.)∗ is used to indicate
that these dynamics are based on the ‘complete’ dynamics of the emulated system and not
those of the numerical model of the substructuring algorithm. In this sense, Equation (1) is
a good test case; note that for more complex or nonlinear systems it is generally not possible
to calculate the emulated dynamics in this way. In this paper Equation (1) is used to assess
the performance of the substructuring algorithm and highlight the effect of the delays in the
system.

In order to create a substructured model of the system shown in Figure 1, the spring ks

is isolated and taken to be the substructure. The remainder of the structure, the excitation
wall and the mass-spring-damper unit, is modelled numerically. This decoupling results in the
substructured system shown schematically in Figure 2.

Figure 3 shows a generalised block diagram representing the substructuring algorithm for
this single mass, single actuator system. An external wall excitation r is calculated/read from a
file and, along with the force measurement F fed back from the substructure in the outer loop,
is used to calculate the reference displacement z for the current time step in the numerical
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Figure 1. Schematic representation of the single mass-spring oscillator
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Figure 2. Schematic representation of a substructured system with one transfer system

model. The demand signal is fed into the transfer system, which consists of a actuator and an
inner loop linear P controller. The inner loop controls the actuator state x (an experimental
measurement rather than a numerical estimation) to track the desired interface displacement
z. The substructure reacts according to this applied displacement and the resulting force F
is measured for the following time step. This process is then iterated within hard real-time
constraints (a sample rate of 1kHz was used for the experimental testing in Section 4).

The dynamics of the numerical model is governed by

mz̈ + c(ż − ṙ) + k(z − r) = F, (2)

where the feedback force F is the substructure response of F = −ksx (see Figure 2) and is
treated as an external disturbance in the numerical model in order to simplify integration.
As the transfer system has its own dynamics, it cannot react instantaneously to the change
of state of the numerical model and thus introduces an inevitable time delay. This means
that x(t) = z(t − τ) for some positive τ (here we ignore the additional effects of any physical
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Figure 3. Block diagram for the substructuring algorithm. The inner loop is for actuator feedback
control and the outer loop for the substructuring force feedback.

disturbances on the transfer system).

The delay τ introduces a systematic synchronisation error z(t) − x(t) = z(t) − z(t − τ)
into the substructuring algorithm. Wallace et al. [20] have conjectured that, in general, the
substructured system z(t) approximates the emulated system z∗(t) if this synchronisation error
is small, that is, z → z∗ if x → z. Therefore, it is natural that the synchronisation error is
a crucial measure for the accuracy of the substructuring experiment and, in fact, is the only
explicit measurement of accuracy available for complex systems. We call the substructured
system unstable if the synchronisation error grows exponentially in time and we call it stable

if the synchronisation error remains bounded. As a result, when the synchronisation error is
non-zero, the force is described by the delayed state z of the numerical model,

F = −ksz(t − τ). (3)

The overall substructured system is then governed by equation (2) with (3), which constitutes
a delay differential equation (DDE) that can be written as

mz̈ + cż + kz + ksz(t − τ) = cṙ + kr . (4)

3. STABILITY OF THE SUBSTRUCTURED SYSTEM

In this section we perform a detailed study of the substructured system Equation (4) in
order to determine the critical delay τc above which the system is unstable. In Section 3.1
we present a complete explicit stability analysis by considering the characteristic equation
of Equation (4). This is possible only for simple linear systems (like the single-mass system
presented in this paper). We therefore demonstrate in Section 3.2 a numerical approach with
the package DDE-BIFTOOL [24]. This numerical analysis is an essential tool when one studies
complex or nonlinear substructured systems; it is used in Section 4.1 where we consider a delay
compensation scheme.
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3.1. Explicit Stability Analysis

From Equation (4) we obtain for zero external wall excitation r and with x(t) = z(t − τ) the
complimentary equation

mz̈ + cż + kz + ksx = 0. (5)

It can be expressed with non-dimensionalized parameters in the form

d2z

dt̂2
+ 2ζ

dz

dt̂
+ z + px = 0, (6)

where

ωn =

√

k

m
, t̂ = ωnt, τ̂ = ωnτ , p =

ks

k
, ζ =

c

2
√

mk
.

(The values of these parameters are given in Section 4.2.)
The introduction of a delay term into a linear ordinary differential equation (ODE) has two

effects. First, it changes the spectrum of the ODE by a perturbation of order τ . Second, it
introduces infinitely many new modes. If the delay is small, the new modes are all strongly
damped and the perturbation of the ODE spectrum can be expanded in the small parameter
τ . This perturbation analysis is often easier to perform analytically than the search for all
complex roots of the typically transcendental characteristic equation of the full DDE. For the
parameters used in the experiments presented in Section 4.2 the assumption that τ is small is
valid. Thus, we pursue both approaches and compare the perturbation analysis with the full
root analysis of the characteristic equation of (6).

It is standard practice to search for solutions of the form z = Aeλτ̂ . This leads to the
characteristic equation for the system

λ2 + 2ζλ + 1 + pe−λτ̂ = 0. (7)

The complex roots λi of Equation (7) are the system eigenvalues, the sign of their real parts
determines the stability of the system. The majority of large structures are lightly damped
thus ζ is small. We may assume that τ̂ is small and expand e−λτ̂ to first order as 1−λτ̂ . Using
this approximation, Equation (7) becomes

λ2 + λ(2ζ − pτ̂) + (1 + p) = 0. (8)

Solving for λ gives the roots

λ1,2 = −1

2
(2ζ − pτ̂) ± 1

2

√

(2ζ − pτ̂)2 − 4(1 + p), (9)

which govern the dominant eigenvalues for the DDE system given by Equation (4) when τ ≪ 1.
When τ = 0, Equation (9) reduces to the eigenvalue equation for a standard underdamped
spring-mass-damper system, for which the eigenvalues are complex and stable for positive
values of m, c, p. Additionally, we note that ζ, ωn and τ are positive quantities. Thus,
because τ̂ is small, we can make the assumption that the eigenvalues remain complex, i.e.
4(1+p) > (2ζ−pτ̂)2. Therefore, the real parts of the eigenvalues from Equation (9) determine
the overall stability, such that the system is stable only if pτ̂ < 2ζ. Converted back to the
original parameters this means that the system is stable if the delay τ is less than the critical
value

τc =
2ζ

pωn

=
c

ks

. (10)
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STABILITY ANALYSIS OF REAL-TIME SUBSTRUCTURING 7

This expression highlights that for lightly damped, stiff structures τc will be small and
consequently the control algorithm must work harder to maintain stability. As the response
delay, τ , increases past τc the real parts of the eigenvalues become positive and result in the
transition of a pair of complex conjugate eigenvalues from the left to the right hand plane. This
transition is called a Hopf bifurcation; it entails the creation of (small) oscillations. Indeed a
Hopf bifurcation is a well know phenomenon in the context of DDEs [23,26–28].

A previous analysis of the effect of time delay in substructuring [9] used an energy analysis
of periodic orbits to equate the time delay to a form of negative damping. Equation (9) clearly
demonstrates how this negative damping manifests itself. In fact, the equivalent negative
damping term can be expressed as cneg = −ksτ , with instability occurring at the point of
sign change for the damping of the overall system.

The second approach to determining the stability boundaries of Equation (6) is to search
for points in the parameter space where the characteristic Equation (7) has purely imaginary
solutions, that is, just undergoes a Hopf bifurcation. This analysis is valid not just for small
τ but for any value of τ ; see Gilsinn et al. [27] and Larger and Goedgebuer et al. [28] for
similar approaches. Specifically, the stability boundaries are found in the parameter space by
searching for solutions of the form z = Aejωt = Aejω̂t̂ where ω̂ = ω

ωn

is a positive real number
(0 cannot be a characteristic root in this case). We insert ω̂ into the characteristic equation to
obtain

−ω̂2 + 2ζω̂j + 1 + pe−jω̂τ̂ = 0. (11)

Splitting Equation (11) into real and imaginary parts gives a system of two real equations:

0 = 1 − ω̂2 + p cos(ω̂τ̂) for the real part, (12)

0 = 2ζω̂ − p sin(ω̂τ̂) for the imaginary part. (13)

We use the Equations (12) and (13) to express the parameters as functions of ω̂. In this way, we
can identify all points in the parameter space where the DDE has purely imaginary eigenvalues
and, thus, changes stability (at a Hopf bifurcation). Dividing Equation (12) by (13) we get

cot(ω̂τ̂) =
ω̂2 − 1

2ζω̂
. (14)

The cot function is periodic, therefore

τ̂ =
1

ω̂
arccot

(

ω̂2 − 1

2ζω̂

)

+
nπ

ω̂
, (15)

where n is an integer, is satisfied on the stability boundary. If arccot is to be taken between 0
and π then n has to be non-negative since τ̂ is positive. Squaring and adding the Equations
(12) and (13) and rearranging for p, taking into account that p must be positive, we get

p =
√

(ω̂2 − 1)2 + 4ζ2ω̂2. (16)

Figure 4(a1) shows the curves for n = 0 to n = 7 (up to the limit of τ̂ = 30) of the infinite
solution set for the critical parameter pairs (τ̂ , p) in the (τ̂ , p)-plane with ζ fixed at 0.1066
(see Section 4.2 for parameter values). These curves are parameterized by ω̂ running from
0 to +∞ using the Equations (15) and (16). Along these curves the system has a pair of
purely imaginary eigenvalues and, hence, gains one additional unstable mode. Along the line
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Figure 4. Nondimensionalized complex root solutions of the DDE analysis for variable response delay.

τ̂ = 0 the system is stable. Consequently, always the lowest parts of the curves define the
stability boundary; the grey area is the region of stability. For comparison we have inserted
into Figure 4(a1) as a dashed curve the stability boundary (10) obtained from the perturbation
analysis. As stated earlier, it can be seen that the approximation only holds for small values
of the delay. Figure 4(a2) shows an enlargement of the region where the ratio of the spring
constants has a value of p = 1 for which the experimental testing is performed in Section 4.2.
The perturbation analysis (10) is shown to be a slight underestimation of the critical delay as
the higher order terms are not included in the approximation. The nondimensionalized critical
value τ̂c from the perturbation analysis (10) can be read from Figure 4(a2) as τ̂c = 0.2132
from which the critical time delay can be computed as τc = 6.67 ms. Comparing this to the
value obtained for the complex root solution we see τ̂c = 0.2165 which give a critical value of
τc = 6.77ms.

To obtain the critical delay τ̂c and ζ for fixed p as parametric curves in the (τ̂ , ζ)-plane we
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STABILITY ANALYSIS OF REAL-TIME SUBSTRUCTURING 9

rearrange Equation (12) for τ̂ and (16) for ζ, thus expressing the critical τ̂ and ζ as functions
of ω̂ and p (taking into account that τ̂ and ζ must be positive):

τ̂ =
1

ω̂
arccos

(

ω̂2 − 1

p

)

+
2nπ

ω̂
, (17)

ζ =
1

2ω̂

√

p2 − (ω̂2 − 1)2, (18)

where ω̂ runs from 0 to
√

1 + p, and n is any non-negative integer if arccos takes values between
0 and π. Figure 4(b1) shows the stability region (grey) and the critical values of τ̂ and ζ for
fixed p = 1 using the curves defined parametrically by (17) and (18). The primary curve with
τ̂ for n = 0 is always the stability boundary in the (τ̂ , ζ)-plane. Again, we have inserted into
Figure 4(b1) as a dashed curve the approximate stability boundary given by (10) that was
obtained from the perturbation analysis. This curve is only accurate for systems which are
lightly damped with a maximum of approximately 15% damping for this structure, which can
be seen from the enlargement of the experimental region in Figure 4(b2).

Figures 4(a1) and 4(b1) also highlight that there are ‘stable’ parameter regions. These are
regions where the system is stable regardless of the delay τ̂ . We can compute the boundaries
of these regions by rearranging (16) for ω̂,

ω̂2 = 1 − 2ζ2 ±
√

(1 − 2ζ2)2 + p2 − 1. (19)

The right-hand-side of Equation (19) is never real if p < pmin = 2ζ
√

1 − ζ2 = 0.212
(discriminant negative), giving rise to the stable region in Figure 4(a1). Moreover, the right-
hand-side cannot be positive if p ≤ 1 and ζ >

√
2/2 = 0.7071, which accounts for the stable

region in Figure 4(b1) for the specific case ks = k (p = 1).
We note that the vast majority of structures, especially in the civil engineering field, are

lightly damped such that operating in the region of stability for all τ̂ would be extremely
unlikely. However, when substructuring mechanical components, such as individual damper
units, other parts of the stable region are likely to be accessible.

3.2. Numerical Stability Analysis

If we study more complex DDEs than Equation (6) it may become impossible to find stability
regions as shown in the Figures 4(a1) and 4(b1) by the analytical calculations shown in
Section 3.1. Even the perturbation analysis may become difficult or unrealistic. We can
therefore move to a numerical approach to finding the stability regions when the substructured
system is complex or nonlinear. In this section, we use a mathematical tool called DDE-
BIFTOOL to demonstrate how this numerical analysis may be applied.

DDE-BIFTOOL [24] is a collection of Matlab routines for numerical bifurcation analysis of
systems of DDEs with multiple fixed, discrete delays; it is freely available for scientific purposes
[24]. The package can be used to compute branches of steady state solutions (equilibria) and
Hopf bifurcations. Given an equilibrium, it approximates the right-most, stability determining
roots of the characteristic equation. This stability information is then followed, or continued,
when system parameters are changed. DDE-BIFTOOL detects when roots of the characteristic
equation cross the imaginary axis, which corresponds to a change of stability of the equilibrium.
In this way, a Hopf bifurcation is detected as two complex conjugate roots with zero real part.
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10 M. I. WALLACE, J. SIEBER, S. A. NEILD, D. J. WAGG AND B. KRAUSKOPF

It is then possible to continue this condition for the Hopf bifurcation point in two parameters,
which gives a stability boundary in the parameter space. We remark that DDE-BIFTOOL is
also able to compute branches of periodic solutions itself. Such a computation can be started
from a Hopf bifurcation point or from numerical data of a periodic solution.

We used DDE-BIFTOOL to find the critical delay τc where the first Hopf bifurcations take
place that destabilizes the substructured system. Figure 5(a) shows the real parts of the roots
of the characteristic equation for the substructured system as the delay τ is increased. The
system is stable when all roots are in the left half plane, that is, none of the curves are above
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Figure 5. (a) Real eigenvalue components of the characteristic equation with enlargement of the critical
region (b). Hopf bifurcation diagram showing the stability region for, (c) variable substructure spring

stiffness, and (d) variable system damping.
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STABILITY ANALYSIS OF REAL-TIME SUBSTRUCTURING 11

zero. The first Hopf bifurcation takes place when the dominant branch crosses the dashed
line where ℜ(λ) = 0. As can be observed from the enlarged view in Figure 5(b), stability is
maintained until the response delay reaches the critical value of τc = 6.77ms. This agrees with
the value found in the explicit stability analysis in Section 3.1.

The zero roots, that is the Hopf bifurcation, can be followed to see the effect of varying
the structural parameters on the stability of the substructured system in terms of the critical
delay. Figure 5(c) shows the stability boundary given by τc when the spring stiffness is varied.
Indeed the boundary obtained with DDE-BIFTOOL agrees with that in Figure 4(a1), which
can be seen as validation of the continuation approach. For the response time of the actuator
of the experiments presented in Section 4.2 we are dealing with a small delay, so that the first
Hopf curve in Figure 5(c) is the relevant stability boundary. Note that the minimal value of
the curve is observed at ks = 477 such that p = 0.212. Furthermore, τc → ∞ as p → 1.

Figure 5(d) shows the stability region, bounded by τc, for changing system damping of
the numerical model. Again, we see a validation of the result found from the characteristic
equation, shown in Figure 4(b1), namely an agreement with the dominant eigenvalue branch.
As the damping coefficient increases to c = 99.5 we see that the stability boundary (i.e. τc)
reaches an asymptote corresponding to a system damping of ζ = 0.7071.

The results in this section agree with the explicit stability analysis in Section 3.1. This clearly
demonstrates that the numerical stability analysis with DDE-BIFTOOL is a straightforward
and reliable tool, with the added advantage that it works also for more complex and nonlinear
systems.

3.3. Simulation of the Substructured System

To demonstrate how the delay induced instability analysed in Section 3.1 manifests itself in
an experiment, we now produce time domain and frequency response diagrams in simulation.
The simulation allows us to idealize the dynamics of the transfer system as a pure constant
time delay. This approach isolates the delay induced error caused by the instability from other
parasitic effects, such as static friction, backlash and noise. This allows us to observe some of
the characteristic features of the substructured system in isolation. It also gives us full control
over the structural parameters and the size of the delay. In the simulations Equation (4)
with the parameter values given in Section 4.2 are integrated by a fourth-order Runge-Kutta
algorithm with a step size of 1ms.

Figure 6(a) shows a simulated substructure test where the response delay is τ = 7ms, which
is just larger than the critical delay of τc = 6.77ms. When τ < τc the numerical model error is
small and bounded. However, when this critical value of τc = 6.77ms is exceeded then the error
is unbounded and grows exponentially — the overall system damping is effectively negative [9].
This situation is shown in Figure 6(b), ignoring the additional transient effects at the start of
the simulation. Since the response delay is only just larger than τc in this instance, the growth
coefficient is very small. We can observe the growth coefficient from Figure 5 by reading off
the magnitude of the eigenvalue at the specific delay, in this case ℜ(λ) = 0.105 at τ = 0.007s.

Additionally, we observe that the frequency at which instability occurs is constant and
independent of the excitation frequency. Figure 7 shows the magnitude of the numerical model
response over the experimental range of frequencies for an increasing simulated response delay
τ for a test duration of 5 seconds. The excitation frequency in this example is 3Hz at constant
amplitude. Instability occurs at a frequency of approximately 7.1Hz and grows as expected
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Figure 6. Simulation of numerical model accuracy caused by a transfer system delay of τ = 7ms in
the substructuring algorithm (where, τc = 6.77ms).

with the exponential coefficients matching those of Figure 5 for varying τ . We can approximate
the instability frequency, ωI , from Equation (9) using the perturbation analysis at the point
of instability, pτ̂ = 2ζ, such that

λi = j
√

1 + p (20)

Removing the non-dimensionalization,

ωI = λiωn =

√

k + ks

m
, (21)

which for this experimental setup ωI = 7.198Hz. We can find a more accurate value for this
frequency from the complex root solutions at n = 0. From Equation (19) for the case where
p = 1 and at the point of instability,

ωI = ωn

√

(2 − 4ζ2)2 = 7.116Hz. (22)
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Figure 7. Exponential growth of instability (independent of the 3Hz excitation frequency).

4. EXPERIMENTAL SUBSTRUCTURE TESTING WITH DELAY COMPENSATION

As discussed in Section 2, when performing substructure tests with an experimental
substructure, the response delay τ is a function of the real actuator dynamics and introduces
the systematic synchronisation error z(t) − x(t) into the substructuring algorithm. Typically,
the delay τ is greater than the critical delay value τc for lightly damped systems, thus
destabilizing the experiment as demonstrated in Section 3.3. Therefore, we must employ a
control strategy to ensure the stability of the substructuring algorithm. A common strategy
in real-time substructuring is delay compensation by extrapolation [9, 12]. In this section we
show how a delay compensation scheme can be used for successful experimental stabilization
of the substructured mass-spring system.

4.1. Delay compensation

The technique used in this paper is the Adaptive Forward Prediction (AFP) algorithm,
presented by Wallace et al. [20]. The AFP algorithm is a generic approach to delay
compensation as it allows non-integer multiples of the previous time step to be predicted.
Furthermore, it adapts to changing plant conditions through self-tuning. Delay compensation
is based on the idea of feeding a forward prediction z′ of the state z of the numerical model
into the transfer system. The AFP algorithm uses the prediction

z(t)′ = (PN,n,∆[z])(t + ρ) (23)
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where PN,n,∆[z] is the least squares fitting N th-order polynomial through the n time-point
pairs (t, z(t)), (t − ∆, z(t − ∆)),. . . , (t − (n − 1)∆, z(t − (n − 1)∆)). The time difference ∆ is
the sampling time step (1 ms if the sampling rate is 1 kHz) and ρ is the amount of forward
prediction, which we do not know prior to experimentation. Thus, the quantity ρ is used to
compensate for the delay τ generated by the control of the transfer system. The full AFP
algorithm allows ρ to start from a set initial condition and includes an adaptive compensation
for the amplitude inaccuracy and is described in detail in Wallace et al. [20].

A fundamental difficulty for substructuring is that it is only safe to start an experimental
test from a region of stability, otherwise the unstable exponentially growth may make the test
impossible if the controller cannot adapt quickly enough; see Section 4.3. Hence, it is a major
concern for the performance of the AFP algorithm to find the interval of permissible ρ where
the substructured system with delay compensation (23) is stable. Here, we demonstrate the
stability restrictions imposed on the AFP algorithm by the DDE system of Equation (2) with
(3). When we apply the delay compensation of the AFP algorithm, Equation (3) for the feed
back force of the substructure changes to

F = −ks(PN,n,∆[z])(t + ρ − τ). (24)

System (2) with (24) is a DDE that depends on the values of z at the times t − τ ,. . . ,
t − τ − (n − 1)∆ in history. Thus, it contains n different delays which makes a complete
analysis, as demonstrated in Section 3.1, impossible. However, DDE-BIFTOOL enables us to
compute the interval of permissible ρ for the system parameters. For two pairs of algorithm
parameters Figure 8 shows how the real part of the dominant eigenvalues of the DDE (2)
with (24) varies with ρ. Figure 8(a) represents the stability of the AFP algorithm for a fitting
polynomial PN,n,∆ of order N = 2 for n = 10 previous values of z and Figure 8(c) corresponds
to a polynomial of order N = 4 fitted to n = 16 previous values. Both prediction schemes are
compared to the exact prediction (grey line) using

F = −ksz(t + ρ − τ) (25)

for ρ within the interval from −20ms to 45ms. If the real part of the eigenvalue is positive,
the DDE (2) with (24) is unstable. The vertical dashed lines highlight the parameter values
ρ = 0 (short dashes, no forward prediction, all curves coincide here) and ρ = 9.4ms (forward
prediction equals the actual delay in the system, ρ = τ). Figure 8 also shows the location of
the dominant eigenvalue of system (2) with (24) for frequency vs. growth rate for the same
algorithm parameter pairs, N = 2, n = 10 (Figure 8(b)), and N = 4, n = 16 (Figure 8(d))
and how it varies with ρ. The curves are traversed from top to bottom when changing ρ from
−20 ms to 45ms. The dashed circles point out the position of the dominant eigenvalues at
ρ = 0 (short dashes) and ρ = τ (long dashes). The grey curve shows how the corresponding
eigenvalue of system (2) with the exact prediction (25) varies with ρ. We note that (2) with
(25) has infinitely many eigenvalues close to +∞, which are not approximated by the forward
prediction for ρ > τ .

These computations give conclusively show how the stability of the substructured system
(2) with delay compensation (24) depends on ρ and the dynamical accuracy due the delay
compensation. If the forward prediction could match z(t − τ + ρ) perfectly (grey line), all ρ
greater than τ − τc = 2.63ms would result in a stable system. This observation corroborates
the idea of thinking of the delay as negative damping [9]. We point out that this idea may be
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Figure 8. Eigenvalues for two delay compensation schemes with formula (23) compared to the forward
prediction using the exact value z(t − τ + ρ) (grey line). Dominant eigenvalue is highlighted in bold.

misleading for a multi-mode system (as studied in [20]) because the delay can act as positive
damping on the secondary modes of the system.

The polynomial forward prediction gives, in general, only a finite interval of stability
for ρ. For low order schemes the interval of permissible ρ is large. Stability ranges from
ρ ≈ τ − τc = 2.63ms to ρmax ≈ 41ms for N = 2, n = 10 (as in Figure 8(a)). Thus, for
low N the AFP algorithm can start with an initial guess for ρ that is substantially larger than
the delay τ . Increasing the order N of the fitting polynomial improves the accuracy of the
prediction but, in general, shrinks the range of forward prediction ρ that is permissible for
stability. For example, Figure 8(c) shows that the maximal permissible ρ is at ρmax ≈ 15ms
for N = 4, n = 16. Near ρmax another eigenvalue of system (2) with (24) becomes dominant
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and unstable. Figure 8(b) and (d) shows the dominant eigenvalue only for ρ up to ρmax (thus,
both curves stop early on their low end). Additionally, we note that the permissible order of
N is limited by the noise fed back from the load transducer as well as ρmax > τ − τc.

4.2. Experimental Results

To implement real-time substructuring experimentally we used a dSpace DS1104 R&D
Controller Board running on hardware architecture of MPC8240 (PowerPC 603e core) at 250
MHz with 32 MB synchronous DRAM. This is fully integrated into the block diagram-based
modelling tool MATLABTM/SimulinkTMwhich is used to build the substructured model. The
dSpace companion software ControlDesk is used for online analysis, providing soft real-time
access to the hard real-time application. The structural system parameters were found through
system identification to be spring stiffness k = ks = 2250N/m and damping ratio c = 15Ns/m.
The constant mass of 2.2kg is connected via three parallel shafts that constrains its motion to
one degree of freedom. The transfer system is a UBA (timing belt and ball screw configuration)
linear Servomech actuator. Figure 9 shows the Experimental rig setup of the substructured
system. It is noted that a damping of ζ ≈ 10% is relatively high for most large structures, but
this reduces the sensitivity of the system to the response delay thus allowing us to highlight
the characteristics of the DDE modelling approach to substructuring.

Figure 10 shows the experimental results for a wall excitation of 3Hz and constant delay
compensation of ρ = 9.4ms with polynomial fitting of N = 4 and n = 16. It can be seen
from Figure 10(a) that the numerical model dynamics z closely replicate those of the emulated
system z∗, losing accuracy mainly at direction change for the actuator. Note that the transfer
system dynamics are not shown on this plot but are represented by a synchronisation subspace
plot [29] in Figure 10(b). Perfect synchronisation is represented by a straight diagonal line. A
constant delay turns this straight line into an ellipse, as can be seen from the limit of stability

Figure 9. Experimental rig setup of substructured system.
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Figure 10. Experimental real-time substructure test with wall excitation of 3Hz with delay
compensation of 9.4ms. Limit of stability is shown in (b) by the z vs z(t − τc) loop.

shown in grey representing z vs. z(t − τc). We can see from the subspace plot that there is
generally a high level of synchronisation, well below the stable limit, apart from when the
actuators change direction. Here we observe a region of loss in accuracy as the control signal
must reach a certain level to overcome the static friction of the actuator mechanics before
the piston will move. In fact, the algorithm verges into the unstable region at both limits.
However, despite this, once the static friction is overcome, synchronisation is quickly regained.
This shows that the instability shown by a substructured system (or this type of DDE) may
not be not catastrophic. For instability to grow cumulatively, the synchronisation must remain
in the unstable region for a longer period of time, that is a number of successive time steps.
Therefore, if the control algorithm can recover more quickly than the exponential growth, given
by the real part of the eigenvalue at the actual delay observed from Figure 5, then the system
will be able to recover regardless of the disturbance to the synchronisation. We note that the
lower the damping in the system, the smaller the critical limit of stability and, therefore, the
higher ℜ(λ) will be for a given response delay. Thus, the harder the controller must work to
achieve the same results for a given delay.

The transition to instability can be seen from Figure 11 for the experimental system. It
is qualitatively similar to the simulated result shown in Figure 6 and occurs at a forward
prediction of ρ = 2.6ms. The actual response delay of the transfer system is approximately
τ = 9.4ms for this excitation condition, giving an experimental limiting value of τc ≈ 6.8ms.
The frequency at which instability is observed is shown in Figure 12; it again corroborates the
results of Section 3.3 that ωI ≈ 7.1Hz.

In addition to the delay error, the experimental tests were effected by approximately 5−7%
of noise on the feedback force signal, making it difficult to precisely determine the above values
of τc and ωI , unlike for the numerical simulations. This is a general issue for all experimental
systems, nevertheless, the agreement with the DDE modelling remains excellent.
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Figure 11. Transition to instability as the delay compensation is reduced on the experimental system,
Forward Prediction ρ ≈ 2.6ms.

4.3. An over compensation method

Section 4.1 discusses the permissable range of forward prediction ρ that generates a stable
substructuring algorithm. We can use this information to our advantage: If we think of delay
as adding negative damping in our system, then over compensating (predicting too far forward
in time) will have the opposite effect of increasing the damping. If we control to a shifted
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Figure 12. Frequency spectrum for the unstable experimental substructured response.
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synchronisation origin, such that we now take τ = −0.5ms as having zero synchronisation
error, for example, this will have the effect of over-damping the dynamic response of the
numerical model. Firstly, this makes the numerical model slower to react to sudden state
changes, i.e. high frequency noise fed back from the substructure and, secondly, will mean that
there is greater margin before the critical delay limit is reached.

However, there is a more fundamental reason why it is significant to be able to operate
the substructuring algorithm in an over-compensated region as stated in Section 4.1. When
starting a substructuring test when τ > τc, we can either initiate the test using a numerical
estimation of the force (i.e. zero time delay) and switch over to the measured force when the
control algorithm has achieved a high level of synchronisation, or ideally, just start from the
measured force itself. As can be seen from Figure 8, if we start the test from zero compensation
in this example, then the actual response delay of τ = 9.4ms is greater than the critical delay
of τc = 6.77ms meaning that the test will be initiated in an unstable region. However, this
may not necessarily lead to a catastrophic instability if the controller can respond faster than
the unstable growth. It is preferable to start the test with the optimum level of compensation,
but when we do not have a good understanding of the substructure characteristics, or of the
transfer system(s) we are using, it could be very difficult to estimate this value. Therefore, if
the delay τ is not known and expected to be larger than the critical delay of the substructured
system, the AFP algorithm should start with a low order N to give a large range of stable
forward prediction ρ and to over compensate the initial guess, as this will give the largest stable
region as shown by Figure 8. Once the adaption algorithm is close to convergence, we then
increase the prediction order N to improve the accuracy of the substructuring experiment. The
permissible order N is limited because the maximal stable ρ shrinks below τ for increasing N .
This can be seen from Figure 13, where panel (a) shows the over compensation method, (b)
the zero initial conditions method and (c) the case of no delay compensation.

It is noteworthy that, although the zero initial conditions method managed to regain stability
after approximately 0.6 seconds, the damping is relatively high for the example discussed in this
paper (≈ 10%). When this value is reduced the stability becomes increasingly more difficult to
attain. For example, if the substructured system had a damping of 3%, which is more typical
for large structures, then the critical limit of stability is reduced to τc = 1.3ms. Sampling
at 1kHz, as used in this example, a stable substructuring algorithm would be unattainable
when initiating the test in this way. The over-compensation method is advantageous as the
substructuring algorithm is always stable, under the maximum limit, and, therefore, has
a correspondingly high numerical model accuracy throughout. A very high level of over-
compensation would simply over damp the numerical model response until the optimum level
had been reached adaptively. This is unlike the zero compensation method for which we see
the expected exponential growth of the instability frequency. Additionally, if we remain in an
over-compensated state by shifting the synchronisation origin as stated earlier, the margin
to the critical stability value is extended, reducing the demands on the controller and, thus,
increases the likelihood of a successful substructuring experiment, even for structures with
very low damping.
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Figure 13. Experimental numerical model accuracy for differing control methodologies: (a) over
compensation, (b) zero initial conditions, (c) no delay compensation. Controller adaption parameters:

α = 75, β = 5, γ = 2, N = 4, n = 16.

5. CONCLUSION

In this paper we have discussed the hybrid numerical-experimental technique of real-time
dynamic substructuring. We proposed the new approach of representing the substructured
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system as a delay differential equation (DDE) model. This allowed us to use well established
techniques to determine the critical delay beyond which the substructured system is unstable.
We used a well-known simple, linear example of a single mass-spring oscillator system to
highlight the complex nature that delays play in the dynamical accuracy and stability of the
substructuring algorithm. Specifically, we performed a perturbation analysis and calculated
the exact complex roots of the characteristic equation of the DDE model. Furthermore, we
demonstrated the simplicity of numerical stability analysis with the tool DDE-BIFTOOL.

In real-time dynamic substructuring, the delays arise through the control of the transfer
systems, which is typically beyond the critical delay. Therefore, a strategy must be implemented
to stabilize the substructured system, which leads to a new, more complicated DDE model.
We demonstrated with the example of a delay compensation scheme how the stability of
the overall DDE model can be analysed. This allowed us to evaluate and implement this
delay compensation scheme, which was validated by experimental measurements. Finally, with
further numerical analysis with DDE-BIFTOOL we proposed an over compensation method for
substructuring that has a number of distinct benefits. Noise fed back from experimental load
transducers is smoothed and we extend the margin to the critical limit of stability. Furthermore,
by over-compensating at the start of the test we can initiate the test in a stable region of the
substructuring algorithm. All these factors become increasingly important as the damping of
the structure is reduced or the stiffness is increased.

The theoretical and experimental case study presented in this paper demonstrates the overall
effectiveness of the DDE modelling approach. In future work this approach will be used
in more complex substructuring scenarios. The overall goal is to realize real-time dynamic
substructuring of realistic engineering components, such as cables of suspension bridges and
sloshing tanks for high-rise buildings, as well as in mechanical systems, such as damper units
for helicopter rotors.
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