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Abstract—In this article we specify an -member “indi-
vidual-based” continuous time swarm model with individuals that
move in an -dimensional space according to an attractant/re-
pellent or a nutrient profile. The motion of each individual is
determined by three factors: i) attraction to the other individuals
on long distances; ii) repulsion from the other individuals on short
distances; and iii) attraction to the more favorable regions (or
repulsion from the unfavorable regions) of the attractant/repellent
profile. The emergent behavior of the swarm motion is the result
of a balance between inter-individual interactions and the simulta-
neous interactions of the swarm members with their environment.
We study the stability properties of the collective behavior of the
swarm for different profiles and provide conditions for collective
convergence to more favorable regions of the profile.

Index Terms—Aggregations, attraction, continuous time swarm,
gradient climbing, individual-based, inter-individual interactions,
multi-agent systems, -dimensional space, repulsion, stability
analysis, swarms.

I. INTRODUCTION

S
WARMING, or aggregations of organizms in groups, can
be found in nature in many organizms ranging from simple

bacteria to mammals. Such behavior can result from several dif-
ferent mechanisms. For example, individuals may respond di-
rectly to local physical cues such as concentration of nutrients
or distribution of some chemicals (which may be laid by other
individuals). This process is called chemotaxis and is used by
organizms such as bacteria or social insects (e.g., by ants in trail
following or by honey bees in cluster formation). As another
example, individuals may respond directly to other individuals
(rather than the cues they leave about their activities) as seen in
some higher organizms such as fish, birds, and herds of mam-
mals.

Evolution of swarming behavior is driven by the advantages
of such collective and coordinated behavior for avoiding
predators and increasing the chance of finding food. For
example, in [1], [2] Grünbaum explains how social foragers
as a group more successfully perform chemotaxis over noisy
gradients than individually. In other words, individuals do
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much better collectively compared to the case when they forage
on their own. Operational principles from such biological
systems can be used in engineering for developing distributed
cooperative control, coordination, and learning strategies
for autonomous multi-agent systems such as autonomous
multi-robot applications, unmanned undersea, land, or air
vehicles. The development of such highly automated systems is
likely to benefit from biological principles including modeling
of biological swarms, coordination strategy specification, and
analysis to show that group dynamics achieve group goals.
In this article we develop a simple model of swarming in
the presence of an attractant/repellent or a nutrient profile
and analyze its stability properties for different profiles. We
show collective convergence to more favorable regions of the
profile. The model that we develop here can be viewed as a
representation of cohesive social foraging of swarms.

Biologists have been working on understanding and modeling
of swarming behavior for a long time [3]–[9]. There are two fun-
damentally different approaches that they have been considering
for analysis of swarm dynamics. These are spatial and nonspa-

tial approaches. In the spatial approach the space (environment)
is either explicitly or implicitly present in the model and the
analysis. It can be divided into two distinct frameworks which
are individual-based (or Lagrangian) framework and continuum

(or Eulerian) framework [6]. In the individual-based models the
basic description is the motion equation of each (separate) in-
dividual and therefore it is a natural approach for modeling and
analysis of complex social interactions and aggregations. The
general understanding within this framework now is that the
swarming behavior is a result of an interplay between a long
range attraction and a short range repulsion between the individ-
uals. The work by Breder in [3], where he suggested a simple
model composed of a constant attraction term and a repulsion
term which is inversely proportional to the square of the dis-
tance between two members is one of the early works within
this framework. Similarly, in [4] Warburton and Lazarus also
considered an individual-based swarm model and studied the
effect on cohesion of a family of attraction/repulsion functions.

In the Eulerian framework the swarm dynamics are described
using a continuum model of the flux, namely concentration or
population density (i.e., a model in which each member of the
swarm is not considered as individual entity, but the swarm is
a continuum described by its density in one, two, or three di-
mensional space) described by partial differential equations of
the swarm density. The basic equation of the Eulerian models
is the advection-diffusion-reaction equation, where advection
and diffusion are the joint outcome of individual behavior and
environmental influences, and the reaction term is due to the
population dynamics. See, for example, [7] where the authors
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present a swarm model which is based on nonlocal interactions

of the swarm members. Their model consists of integro-differ-

ential advection-diffusion equations with convolution terms that

describe attraction and repulsion.

In the nonspatial approaches the population level swarming

dynamics are described in a nonspatial way in terms of fre-

quency distributions of groups of various size. It is assumed that

groups of various sizes split or merge into other groups based on

the inherent group dynamics, environmental conditions, and en-

counters of other groups. See, for example, [9] where the authors

present a general continuous model for animal group size distri-

bution (a nonspatial patch model). They consider a population

with fixed size that is divided into groups of various dynamic

sizes. The drawback of the nonspatial approaches is that they

need several “artificial” assumptions about fusion and fission of

groups of various sizes in order to describe and analyze the pop-

ulation dynamics.

Each of the above approaches has its advantages and dis-

advantages. A comparative study is presented by Durrett and

Levin in [8], where they compare four different approaches to

modeling the dynamics of spatially distributed systems by using

three different examples, each with different realistic biological

assumptions. They show that the solutions of all the models do

not always agree, and argue in favor of the discrete (individual

based) models that treat the space explicitly. In a recent study

in [10] Parrish and her colleagues survey similarities and dif-

ferences between different models of swarm aggregations and

present preliminary results of efforts to unify all the models

within a single framework. A good background and a review of

the swarm modeling concepts and literature such as spatial and

nonspatial models, individual-based versus continuum models

and so on can be found in [5] and [6]. See also [11] and [12]

and references therein for other related work. Other general ref-

erences are the books by Edelshtein–Keshet [13] and Murray

[14].

In parallel to the mathematical biologists there are a number

of physicists who have done important work on swarming be-

havior [15]–[20]. The general approach the physicists take is to

model each individual as a particle and study the collective be-

havior due to their interaction. Many of them assume that par-

ticles are moving with constant absolute velocity and at each

time step each one travels in the average direction of motion of

the particles in its neighborhood with some random perturba-

tion. They try to study the affect of the noise on the collective

behavior and to validate their models through extensive simula-

tions.

For many organizms, swarming often occurs during “social

foraging” and with the focus in this paper on studying the in-

teractions between inter-individual cohesion mechanisms cou-

pled with effects from the environment, particularly the attrac-

tant/repellent or nutrient profiles, there are other areas of rele-

vant study. First, note that foraging theory is described in [21].

The recently popular “ant colony optimization” is an optimiza-

tion method based on foraging in ant colonies and is discussed

in [22]. There, the focus is on biomimicry for the solution of

combinatorial optimization algorithms (e.g., shortest path algo-

rithms) and swarming as we study it here is not considered.

In [23] the author shows that chemotactic behavior of E. coli

coupled with evolutionary and “elimination/dispersal events”
provides for a nongradient distributed and parallel optimiza-

tion procedure that can be used for adaptive control and co-

operative control problems. Also, the author there used a sim-

ilar characterization of an “attractant-repellent profile” to ours,

and also studied swarm behavior as a distributed optimization

method. Member-member swarming mechanisms are different

from here, and are only considered from an optimization per-

spective. Stability analysis was not considered in [22], [23]. An-

other optimization method based on swarming behavior is the

particle swarm optimization method [24], [25]. Although still

there is no rigorous stability proof for its operation, it seems

that it is a very effective method in function minimization.

In recent years, engineering applications such as formation

control of multi-robot teams and autonomous air vehicles have

emerged and this has increased the interest of engineers in

swarms. Some examples include [26]–[28], where the authors

describe formation control strategies for autonomous air vehi-

cles and multiple autonomous land vehicle teams, respectively.

Similar work includes the study of asynchronous distributed

control and geometric pattern formation of multiple anonymous

(or identical) robots [29] and the study on cooperative control

and coordination of a group of holonomic mobile robots to

capture/enclose a target by making group formations [30].

Another related approach is the social potential fields method

for distributed control of groups of robots considered by Reif

and Wang in [31]. It is based on artificial force laws between

individual robots and robot groups, where the force laws are

inverse-power or spring force laws incorporating both attraction

and repulsion. It is an interesting and important work. However,

it does not contain stability proof of the approach.

Other work on formation control and coordination of multi-

agent (multi-robot) teams can be found in [32]–[36]. In [32] a

feedback linearization technique using only local information

for controller design to exponentially stabilize the relative dis-

tances of the robots in the formation is proposed. Similarly, in

[33], [34], the concept of control Lyapunov functions together

with formation constraints is used to develop a formation con-

trol strategy and prove stability of the formation (i.e., forma-

tion maintenance). The results in [35], on the other hand, are

based on using virtual leaders and artificial potentials for robot

interactions in a group of agents for maintenance of the group

geometry. By using the system kinetic energy and the artificial

potential energy as a Lyapunov function closed loop stability

is proved. Moreover, a dissipative term is employed in order to

achieve asymptotic stability of the formation. In [36], the results

in [35] are extended to the case in which the group is moving in

a sampled gradient field.

Important work on swarm stability is given by Beni and

coworkers in [37] and [38]. In [37] they consider a synchronous

distributed control method for discrete one and two dimen-

sional swarm structures and prove stability in the presence

of disturbances using Lyapunov methods. On the other hand,

[38] is, to best of our knowledge, one of the first stability

results for asynchronous methods (with no time delays). There

they consider a linear swarm model and provide sufficient

conditions for the asynchronous convergence of the swarm to a

synchronously achievable configuration.
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Swarm stability under total asynchronism (i.e., asynchronism

with time delays) was first considered in [39]–[41]. In [39] a one

dimensional discrete time totally asynchronous swarm model

is proposed and stability (swarm cohesion) is proved. The au-

thors prove asymptotic convergence under total asynchronism

conditions and finite time convergence under partial asynchro-

nism conditions (i.e., total asynchronism with a bound on the

maximum possible time delay). In [40], on the other hand, the

authors consider a mobile swarm model and prove that cohe-

sion will be preserved during motion under certain conditions,

expressed as bounds on the maximum possible time delay. In

[42] we obtained similar results to those in [39] for a swarm

with a different mathematical model for the inter-member in-

teractions and motions using some earlier results developed for

parallel and distributed computation in computer networks in

[43]. All of these stability investigations have been limited to

either one or two dimensional space. Note that in one dimen-

sion, the problem of swarming is very similar to the problem of

platooning of vehicles in automated highway systems, an area

that has been studied extensively (see, for example, [44]–[46]

and references therein).

Recently some results on the multidimensional case have

been also obtained. For example, the work in [47], [48] is

focusing on extending the work in [39]–[41] to the multidi-

mensional case by imposing special constraints on the “leader”
movements and by using a specific communication topology.

In [49], [50] we developed an “individual-based” continuous

time synchronous model for swarm aggregations in -dimen-

sional space. We showed that for the given model the individ-

uals will form a cohesive swarm in a finite time, and we ob-

tained an explicit bound on the swarm size. In [51] we extended

our results in [49], [50] to a more general class of attraction/re-

pulsion functions and allowed for unbounded repulsion for col-

lision avoidance. Note that in [49], [50], and [51] the motion of

the swarm members was based only on inter-individual interac-

tions and was not affected by the environment. In this article we

build on our earlier results in [49]–[51] by considering a swarm

which moves in an attractant/repellent profile (i.e., a profile of

nutrients or toxic substances) and show collective convergence

to (divergence from) more favorable (unfavorable) regions of

the profile. The inter-individual interactions and the interactions

with the environment in our model are based on artificial poten-

tial functions, a concept that has been used extensively for robot

navigation and control [52], [53]. Therefore, our model here can

be viewed as a type of a social potential fields model similar to

the one in [31] (where no rigorous stability was considered).

Therefore, the results here are an initial step for a rigorous sta-

bility analysis of a more general social potential fields model.

Another similar work to ours is the work in [30]. However, there

the work is limited to two dimensions and the stability analysis

is very limited. Another related article using potential functions

similar to ours is [35] and [36]. However, in [35] the model

does not incorporate environmental effects and in [36] mostly

quadratic gradient fields are considered. The results in this ar-

ticle were initially published in [54] and [55].

II. SWARM MODEL

We consider a swarm of individuals (members) in an -di-

mensional Euclidean space. We model the individuals as points

and ignore their dimensions. The position of individual is de-

scribed by . We assume synchronous motion and no

time delays, i.e., all the individuals move simultaneously and

know the exact relative position of all the other individuals. Let

represent the attractant/repellent profile or the

“ -profile” which can be a profile of nutrients or some attractant

or repellent substances (e.g., food/nutrients, pheromones laid by

other individual, or toxic chemicals). Assume that the areas that

are minimum points are “favorable” to the individuals in the

swarm. For example, assume that represents attractant

or nutrient rich, represents a neutral, and

represents a noxious environment at . (Note that can be a

combination of several attractant or repellent profiles.)

We consider the equation of motion of each individual de-

scribed by

(1)

where represents the function of mutual attraction and re-

pulsion between the individuals and is an odd function of the

form [51]

(2)

where represents (the magnitude of) the attrac-

tion term and it has a long range, whereas rep-

resents (the magnitude of) the repulsion term and it has a short

range, and is the Euclidean norm. As in [51] it is assumed

that and ,

where and are the artificial social potential functions

of the attraction and repulsion between the individuals, respec-

tively. The functions and are chosen such that on

large distances attraction dominates, on short distances repul-

sion dominates, and there is a unique constant distance where

attraction and repulsion balance. In other words, we assume that

there exists such that , and for we

have and for we have

. This is consistent with biological observations [3], [4],

where the inter-individual attraction/repulsion is based on an

interplay between attraction and repulsion forces with the at-

traction dominating on large distances, and the repulsion dom-

inating on short distances. The distance , on which the attrac-

tion and repulsion between two individuals balance is called the

equilibrium distance in the biological literature. However, we

will not use this term here in order to avoid any confusion with

the terminology in stability theory.

The term represents the motion of the individ-

uals toward regions with higher nutrient concentration and away

from regions with high concentration of toxic substances. Note

that the implicit assumption that the individuals know the gra-

dient of the profile at their position is not very restrictive since it

is known that some organisms such as bacteria are able to con-

struct local approximations to gradients [23].

We would like to emphasize that even though we get our in-

spiration from biological swarms, our model constitutes also es-

sentially a kinematic model for swarms of engineering multi-

agent systems. In the context of multi-agent (i.e., multi-robot)
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systems the profile constitutes an artificial potential func-

tion that models the environment containing obstacles or threats

to be avoided (analogous to toxic substances) and targets to be

moved toward (analogous to food). In systems with real agents

(with their specific dynamics) the trajectories generated by our

model can be used as reference trajectories for the agents to

follow or track.

Note also that, even though our model is a type of a kinematic

model, it can be viewed as an approximation of a model with

point mass swarm member dynamics for some organisms such

as bacteria. To see this consider the point mass model in which

the individuals move based on the Newton’s law .

This gives rise to the system of motion equations

where is the total force acting on individual . Now,

suppose there is a velocity damping term of the form in

, where . In other words, assume that we have

Now, note that for organisms such as bacteria we have very

small (i.e., we have ) and the viscosity of the environ-

ment for them is high. For this reason, we can take .

Substituting this in the above system of equations we obtain

which is exactly the same model that we consider in this article

with and

Note that the above controller is an energy minimization con-

troller of the form

where is the total artificial potential energy in the system and

is given by

Therefore, each of the individuals in the swarm moves such that

to minimize the total artificial potential energy in the system.

One drawback of the model here is that each individual

needs to know the relative position of all the other individuals.

In biological swarms, often each individual can see (or sense)

only the individuals in its neighborhood because the ranges

of their senses are limited. Therefore, in nature the attraction

or “desire to stick together” depends only on the individuals

that it can sense. Therefore, the final behavior of the swarms

described here may not be in “perfect harmony” with real

biological swarms. For example, in real swarms we may ob-

serve formation of several separate clusters or swarms instead

of a single swarm (as would be the case here). Moreover, in

real swarms if the swarm arrives in the vicinity of two close

valleys then swarm splitting may occur, whereas here it may

not necessarily do so. Nevertheless, the analysis here is a

first step toward developing a comprehensive and rigorous

stability theory for social foraging of swarms. Moreover, in

engineering applications the sensing limitations of the agents

can be overcome with technologies such as global positioning

system (GPS). Note also that with restrictions on the initial

relative positions of the swarm members it may be possible to

obtain local stability results for swarms in which the individuals

have limited sensing (and therefore attraction) range. However,

this will not be considered here. One can think of our swarm

as a (predefined) team (or a set) of agents (robots) which know

each others relative position and are required to gather around

targets and avoid obstacles or threats.

The objective here is to analyze the qualitative properties

of the collective behavior (motions in -space) of the individ-

uals. To this end we define the center of the swarm as

. Then, the motion of the center is given by

(3)

since we have

which follows from the fact that are odd functions of the

form of (2) and for all pairs .

The above equation implies that the center of the swarm moves

along the average of the gradient of the profile evaluated at the

current positions of the individuals. However, this does not nec-

essarily mean that it will converge to a minimum. Moreover, this

does not imply anything about the motions of the individuals. In

fact, the convergence properties of the swarm to minimum (or

critical) points of the profile depends on the properties of the

profile.

One issue to note here is that as in [23] it is possible to view

the foraging (and therefore social foraging) problem here as

a distributed optimization problem (in which each individual

is individually searching for the minimum) or optimal control

problem, where the objective is to find the “optimal” control

policy or search strategy that will maximize, for instance, the

energy intake per time spent foraging. Here, we are not con-

cerned with this problem. We specify the search strategy, which

is a distributed gradient search, and are concerned with stability

or convergence properties of the strategy. Still, however, it is an

optimization or distributed function minimization problem and

therefore, our results here have some relevance to the optimiza-

tion literature. Note that in nature there are many species with

a variety of foraging or search strategies; some of the previous

are most certainly not gradient-based and hence lie outside the

scope of this work.

Note that the collective behavior in (3) has a kind of aver-

aging (filtering or smoothing) effect. This may be important if
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the -profile is a noisy function (or there is a measurement error

or noise in the system as discussed in [1], [2]). In other words, if

the -profile were a “noisy function” and the individuals were

moving individually (without inter-individual attraction/repul-

sion), then they could get stuck at a local minima, whereas if

they swarm, since they are moving collectively, the other indi-

viduals will “pull” them out of such local minima. This in turn

will lead to the fact that the individuals will perform better col-

lectively (i.e., due to swarming) as seen in some biological ex-

amples [1], [2].

In this article we will consider attraction/repulsion functions

which are continuous and have linear attraction, i.e.,

for some and all , and bounded re-

pulsion, i.e., for some and

all . The continuity assumption is needed in order to

guarantee the existence and uniqueness of the solutions of the

system. This assumption leads to the fact that vanishes at the

origin and brings a concern about collisions between the indi-

viduals. However, by setting the magnitude of the repulsion high

enough it is possible to avoid collisions at the expense of get-

ting a larger swarm size. Another possibility is to choose

such that as as

will be discussed later. One function that satisfies the previous

conditions is [49]

In the following sections, we will first perform cohesion anal-

ysis for the swarm under conditions satisfied by several profiles

following which we will analyze the behavior of the swarm for

several different profiles.

III. COHESION ANALYSIS

Before proceeding with analysis of the swarm behavior for

different profiles in this section we will analyze the cohesiveness

of the swarm under some general conditions satisfied by several

profiles. To this end, we define the distance between the position

of individual and the center of the swarm as .

The ultimate bound on the magnitude of will quantify the size

of the swarm. Note that

where is such that the boundedness assumption is satis-

fied. Defining a Lyapunov function as

, and since we obtain

(4)

Now, if we can show that there is a constant such that for

all we have , then we will guarantee that in

that region is decreasing and eventually will

be achieved. With this in mind we have two assumptions about

the profile. Note that these two assumptions do not have to be

satisfied simultaneously.

Assumption 1: There exists a constant such that

for all .

Assumption 2: There exists a constant such that

for all and .

Note that Assumption 1 requires only that the gradient of

the profile to be bounded and is a very reasonable assumption

that is satisfied with almost any realistic profile (e.g., plane and

Gaussian profiles). In contrast, Assumption 2 is a more restric-

tive assumption. It requires the gradient of the profile at to

have a “large enough” component along so that the effect of

the profile does not prevent swarm cohesion. Therefore, it may

be satisfied only by few profiles (e.g., a quadratic profile). With

this in mind we state the following result.

Lemma 1: Consider the swarm described by the model in (1)

with as given in (2) with linear attraction (i.e.,

for some and all ) and bounded

repulsion, (i.e., for some

and all ). Then, as we have ,

where

and

• if Assumption 1 is satisfied, then

• if Assumption 2 is satisfied, then

Proof:

Case 1) From the equation we obtain

which implies that as long as we have

. Above to obtain the last inequality we used
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the fact that and the

inequality

which follows from Assumption 1.

Case 2) Similarly using Assumption 2 one can show that

satisfies

Therefore, we conclude that as long as we

have .

This result is important because it proves the cohesiveness

of the swarm and provides a bound on the swarm size, defined

as the radius of the hyperball centered at and containing

all the individuals. Therefore, in order to analyze the collective

behavior of the swarm we need to consider the motion of the

center.

In species that engage in social foraging it has been observed

that the individuals in swarms desire to be close (but not too

close) to other individuals. In the mean time, they want to find

more food. The balance between these desires determines the

size of the swarm (herd, flock or school). Our model captures

this by having an inter-individual attraction/repulsion term and

also a term due to the environment (or the nutrient profile) af-

fecting their motion. In the results above, the resulting swarm

sizes depend on the inter-individual attraction/repulsion param-

eters ( and ) and the parameters of the nutrient profile (

and ). Moreover, the dependence on these parameters makes

intuitive sense. Larger attraction (larger ) leads to a smaller

swarm size, larger repulsion (larger ) leads to a larger swarm

size, larger (fast changing landscape) leads to a larger swarm.

These concepts are present in foraging theory in biology and

model the balance of the desire of the individuals to “stick to-

gether” with the desire to “get more food” that was created by

evolutionary forces. Note that for Assumption 2 to be satisfied

we have the condition . The threshold

is the point at which the inter-individual attraction is not any-

more guaranteed to “hold the swarm together” since it might

be counterbalanced by the repulsion from the profile. In other

words, beyond that threshold the repulsion from the center of

the profile (i.e., toxic substances) is so intense that the “desire

to keep away from the center of the profile” may dominate (or be

more plausible than) the “desire to stick together.” Therefore, if

this condition is not satisfied we cannot anymore guarantee co-

hesiveness of the swarm, i.e., it can happen that the swarm mem-

bers move arbitrary far from each other. This helps to quantify

the inherent balance between the sometimes conflicting desires

for swarm cohesiveness and for following cues from the envi-

ronment to find food. Such behavior can be seen in, for example,

fish schools when a predator attacks the school. In that case the

fish move very fast in all directions away from the predator [56].

Note that the desire of the individuals to “stick together”
depends on the inter-individual attraction parameter and the

number of individuals . This is consistent with some biolog-

ical swarms, where it has been observed that individuals are at-

tracted more to larger (or more crowded) swarms (even though

that attraction may not be linearly proportional to the number of

individuals). In nature the values of the parameters governing

the swarm motion have been tuned for millions of years by the

evolutionary process.

One issue to note here is that as gets large both and

approach constant values. This implies that for a large the

individuals will form a cohesive swarm of a constant size inde-

pendent of the number of the individuals and the characteristics

of the profile. Unfortunately, this is not biologically very real-

istic.

The above result is an asymptotic result, i.e.,

as . However, from stability theory we know

that for any , will enter in a finite time.

In other words, it can be shown that the swarm of any size a

little larger than will be formed in a finite time.

In the following sections, we will analyze the behavior of

the swarm on different profiles. In particular, we will consider

plane, quadratic, Gaussian, and multimodal Gaussian profiles.

IV. MOTION ALONG A PLANE ATTRACTANT/REPELLENT

PROFILE

In this section we assume that the profile is described by a

plane equation of the form

(5)

where and . One can see that the gradient of

the profile is given by

and Assumption 1 holds with . However, note also

that

for all , implying that the last term in (4) vanishes. Therefore,

for this profile the bound on the swarm size is given by

Note also that for this case we have

which implies that the center of the swarm will be moving with

the constant velocity vector (and eventually will diverge

toward infinity where the minimum of the profile occurs).

The motions in this section can be viewed as a model of a for-

aging herd that moves in a constant direction (while keeping its

cohesiveness) with a constant speed such as the one considered

in [57]. Another view of the system in this section could be as a

model of a multi-agent system in which the autonomous agents

move in a formation with a constant speed. In fact, transforming

the system to coordinates we obtain
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which is exactly the model of an aggregating swarm considered

in [49]. Therefore, all the results obtained in [49] apply for .

In particular, we have as . In other words, the

swarm converges to a constant configuration or a formation (i.e.,

constant relative positions) that moves with a constant speed in

the direction of . The only drawback is that for the given

swarm model we cannot a priori specify the formation to be es-

tablished. However, note that it is possible to modify the swarm

model such that the inter-individual attraction/repulsion func-

tions is pair dependent, i.e., there is a different for a

different pair . Then, by appropriate choice of each

one can achieve any desired formation.

V. QUADRATIC ATTRACTANT/REPELLENT PROFILES

In this section, we will consider a quadratic profile given by

(6)

where , , and . Note that this profile has

a global extremum (either a minimum or a maximum depending

on the sign of ) at . Its gradient at a point is

given by

Assume that . Then, with few manipulations one

can show that for this profile Assumption 2 holds with strict

equality. Therefore, the result of Lemma 1 holds with the bound

Now, let us analyze the motion of the center . Substituting

the gradient in the equation of motion of given in (3) we obtain

Defining the distance between the center and the extremum

point as , we have

which implies that as we have if and

that if and . Therefore, we have

the following result.

Lemma 2: Consider the swarm described by the model in

(1) with as given in (2). Assume that the -profile of the

environment is given by (6). As we have

• if , then (i.e., the center of the swarm

converges to the global minimum of the profile);

• if and , then (i.e., the center

of the swarm diverges from the global maximum of the

profile).

Note that this result holds for any (i.e., we do not need

the assumption ). Note also that for the case with

for any finite (no matter how small) it can be

shown that is satisfied in a finite time. In

other words, enters any neighborhood of in a finite

time. In contrast, for the case with and

for any (no matter how large) it can be shown that

is satisfied in a finite time, implying that

exits any bounded -neighborhood of in a finite time.

If and , on the other hand, then

for all . In other words, for this case the swarm will be either

“trapped” around the maximum point because of the inter-indi-

vidual attraction (i.e., desire of the individuals to be close to each

other) or will disperse in all directions if the inter-individual at-

traction is not strong enough (i.e., ). Note, however,

that even if they disperse, the center will not move and stay at

. Such a dispersal behavior can be seen in fish schools when

attacked by a predator [56]. In other words, for the fish the effect

of the presence of a predator can be modeled by a large intensity

repellent profile.

Here, we did not consider the case. This is because if

then the profile is uniform everywhere and

for all . Therefore, the existence of the profile does not

affect the motion of the individuals and stability analysis is re-

duced to the one described in [49], where nondrifting aggre-

gating swarms were considered and it was shown that the swarm

will cluster around the stationary center .

Combining the results of Lemmas 1 and 2 together with the

above observations gives us the following result.

Theorem 1: Consider the swarm described by the model in

(1) with inter-individual attraction/repulsion function as

given in (2) with linear attraction and bounded repulsion. As-

sume that the -profile of the environment is given by (6) and

that . Then, the following hold

• if , then for any all individuals

, will enter in a finite time;

• if and , then for any all

individuals , will exit in a finite

time.

This result is important because it gives finite time conver-

gence (divergence) of all the individuals to nutrient rich (from

toxic) regions of the profile.

Now, assume that instead of the profile in (6) we have a profile

which is a sum of quadratic functions. In other words, assume

that the profile is given by

where , and for all , and .

Its gradient at a point is given by

Defining

and

we obtain



546 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

which is exactly the same as above. The point is the point of

the unique extremum of the combined profile function. There-

fore, the above results will directly transfer without any modifi-

cation. This also is true because it can be shown that

where is a constant.

Quadratic profiles are rather simple profiles and the results

in this section are intuitively expected. However, note also that

more complicated profiles can be locally modeled (or approx-

imated) as quadratic in regions near extremum points. In the

following sections, we will consider profiles which are not nec-

essarily quadratic or even convex. Moreover, later we will allow

the profile to have multiple extremum points.

VI. GAUSSIAN ATTRACTANT/REPELLENT PROFILES

In this section, we consider profiles that are described by a

Gaussian-type of equation

(7)

where , , , and . Note that this

profile also has the unique extremum (either a global minimum

or a global maximum depending on the sign of ) at .

Its gradient is given by

Calculating the time derivative of the center of the swarm by

using (3) one can obtain

Compared to the quadratic case, here we cannot write as

a function of . This is basically because of the

nonlinearity of the gradient of the profile. However, intuitively

we would expect that we still should be able to get some results

similar to the ones in the preceding section. To this end we note

that Assumption 1 is satisfied with

Therefore, Lemma 1 holds and we know that as all the

individuals will converge to (and stay within) the

neighborhood of the (mobile) center .

Now, we have to analyze the motion of in order to determine

the overall behavior of the swarm.

Lemma 3: Consider the swarm described by the model in (1)

with inter-individual attraction/repulsion function as given

in (2). Assume that the -profile of the environment is given by

(7). Then, as we have

• if , then

;

• if and (here we assume that

for all pairs of individuals , ,

, and therefore ), then .

Proof: To start with, let . Then, its

derivative along the motion of the swarm is given by

where we used the fact that .

a) Case 1: :: Bounding from above we obtain

where . The above inequality

implies that as long as , i.e., the min-

imum point is outside the swarm boundary, then the

center of the swarm will be moving toward it. There-

fore, as we will asymptotically have

, i.e., will be within the swarm.

b) Case 2: :: With analysis similar to the case 1 above

it can be shown that

which implies that we have . In other words, if

, then will increase. From Lemma 1

we have that is decreasing. Therefore, since by hy-

pothesis we have that holds.

Now, given any large but fixed and

we have
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implying that

from which using (a corollary to) the Chetaev Theorem

[58] we conclude that will exit the -neighborhood

of .

Note that the result in Lemma 3 makes intuitive sense. If we

have a hole (i.e., a minimum) it guarantees that the individuals

will “gather” around it (as expected). If we have a hill (i.e., a

maximum) and all the individuals are located on one side of

the hill, it guarantees that the individuals diverge from it (as ex-

pected). If there is a hill, but the individuals are spread around

it, then we cannot conclude neither convergence nor divergence.

This is because it can happen that the swarm may move to one

side and diverge or the inter-individual attraction forces can

be counterbalanced by the inter-individual repulsion combined

with the repulsion from the hill so that the swarm does not move

away from the hill.

The above result (in Lemma 3) together with the result in

Lemma 1 allow us to state the following.

Theorem 2: Consider the swarm described by the model in

(1) with inter-individual attraction/repulsion function as

given in (2) with linear attraction and bounded repulsion. As-

sume that the -profile of the environment is given by (7). Then,

as we have

• if , then all individuals , will enter

(and stay within) ;

• if and , then all individuals

, will exit for any fixed .

For the case Lemma 1 states that the swarm will have

a maximum size of , i.e., for all ,

and Lemma 3 states that the swarm center will converge to the

and therefore to the neighborhood of , i.e.,

. Combining these two bounds we obtain the in

the first case in Theorem 2.

Theorem 2 is a parallel of Theorem 1. However, here we have

a weaker result since for the case we cannot guarantee

that . Moreover, the region around in which the

individuals converge is larger compared to the region in

Theorem 1 .

The drawback of this and the previous case is that both have

a single extremum (which is either a minimum or a maximum)

and the profile is relatively “uniform.” In the next section, we

will consider a profile for which this is not necessarily the case.

VII. MULTIMODAL GAUSSIAN ATTRACTANT/REPELLENT

PROFILES

Now, we will consider a profile which is a combination of

Gaussian profiles. In other words, we will consider the profiles

given by

(8)

where , , for all , and

. Note that since the ’s can be positive or negative

there can be both hills and valleys leading to a “more irregular”
profile. In [23], where social foraging was considered as an opti-

mization process, a profile of this type was considered and con-

vergence to minima of the profile was shown in simulation.

The gradient of the profile at a point is given by

Note that for this profile Assumption 1 is satisfied with

Therefore, from Lemma 1 we have

as the bound on the swarm size. In other words, as we

will have , where is as given above.

Using the profile gradient equation we can write the equation

of motion of the swarm center as

As one can see, it is not obvious from this equation how the

center will move. Therefore, for this type of profile it is not

easy to prove convergence of the individuals to a minimum of

the profile for the general case. However, under some conditions

it is possible to prove convergence to the vicinity of a particular

(if is the center of a valley) or divergence from the neigh-

borhood of a particular (if is the center of a hill).

Lemma 4: Consider the swarm described by the model in

(1) with as given in (2). Assume that the -profile of the

environment is given by (8). Moreover, assume that for some ,

, we have

for some and for all , and that for all

, we have

for some , , and for all .

(This means that the swarm is near and far from other ,

.) Moreover, assume that

is satisfied for some . Then, for as

we will have

• if , then ;
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• if and ,

then , where

.

Proof: Let be the Lyapunov function.

Case 1) : Taking the derivative of along the mo-

tion of the swarm one can show that

which implies that we have as long as

, and from Lemma 1 we

know that as we have .

Case 2) : Similar to above, for this case it can be

shown that

which implies that if ,

then we have . In other words, will

increase. From Lemma 1 we have that is de-

creasing. Therefore, since by hypothesis

we have that holds

at . Now, consider the boundary

. It can be shown that on the boundary

we have

from which once again using (a corollary to) the

Chetaev Theorem we conclude that will exit

the -neighborhood of .

Now, as in the preceding section we can combine this result

(i.e., Lemma 4) together with Lemma 1 to obtain the following

theorem.

Theorem 3: Consider the swarm described by the model in

(1) with inter-individual attraction/repulsion function as

given in (2) with linear attraction and bounded repulsion. As-

sume that the -profile of the environment is given by (8). As-

sume that the conditions of Lemma 4 hold. Then, as all

individuals will

• enter the hyperball , where

, if ;

• leave the -neighborhood of , if .

The only drawback of the above result is that we need

in order for the result to make sense. This implies that we need

which sometimes may not be easy to satisfy. However, one issue

to note is that is a very conservative bound. In reality,

the actual size of the swarm is typically much smaller than

the bound. Therefore, effectively, can be replaced with

and it may be easier to satisfy the above con-

dition.

VIII. TIGHTER BOUNDS, UNBOUNDED REPULSION, AND

COLLISION AVOIDANCE

The bounds on the swarm size obtained in Lemma 1 are

rather conservative. In this section, we will show that for at

least some of the cases it is possible to obtain a tighter bound

on the root-mean-square of the distances of the individuals to

their center. Moreover, we will allow for unbounded repulsion

functions which could be used to guarantee collision avoidance

or, in other words, will prevent two individuals to occupy the

same space (an issue that was overlooked before).

The repulsion functions that we consider are assumed to sat-

isfy [51]

i) as , we have

(hence unbounded repulsion);

ii) , for some .

Note that provided that for all pairs ,

, condition i) above will guarantee that for

all pairs , and for all . Condition ii), on the other

hand, brings some restrictions on the growth of the repulsion and

will be useful in the Lyapunov analysis.

Now, consider the Lyapunov function

where are the terms quantifying cohesion and are given by

and represents the distance to a minimum

of the profile and is

• for a plane profile;

• for quadratic and Gaussian profiles;

• for some for the multi-

modal Gaussian profile.

Taking the derivative of we obtain
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Fig. 1. Response for a plane profile.

Consider the third term on the right hand side (denoted with

below). With few manipulations it can be shown that we have

Now, consider the second term on the right hand side of the

above equation (denoted with below). After some manipu-

lations it can be shown that we have

Substituting the values of and in the equation and after

some cancellations we have

Then, from condition ii) above we have

Now, note that the third term on the right hand side of the above

equation (which we denote with below) depends on the (gra-

dient of the) profile and can be both negative and positive. For

different profiles we have

• plane:

• quadratic:

• Gaussian:
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Fig. 2. Response for a quadratic profile.

• multimodal Gaussian:

for some .

Consider the cases in which we have for the quadratic

and Gaussian profiles, and for the multimodal Gaussian

profile (i.e., the attractant profile cases). Then, the last term in

the equation is nonpositive for the first three profiles, namely

the plane, quadratic and the gaussian profiles. For the multi-

modal Gaussian profile after some tedious but straightforward

manipulation it is guaranteed to be nonpositive provided that the

condition

(9)

is satisfied for all . Note that this condition is very similar to

the condition in Lemma 4. Then, for these cases we can deduce

that as we will have

In other words, for the root-mean-square of the distances of the

individuals to the center we have

which is smaller than the bounds found in Lemma 1. Therefore,

we have proved the following result.

Lemma 5: Consider the swarm described by the model in (1)

with an attraction/repulsion function as given in (2) with

linear attraction and (possibly unbounded) repulsion satisfying

, for some . Assume

that the -profile is one of the following.

• A plane profile in (5).

• A quadratic profile in (6) with .

• A Gaussian profile in (7) with .

• A multimodal Gaussian profile in (8) with the condition

in (9) satisfied for some k with and for all .
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Fig. 3. Response for a Gaussian profile.

Then, as we will have

One issue to note here is that the above result holds for all

repulsion functions satisfying condition ii) above. Therefore, it

holds also for the bounded repulsion functions considered ear-

lier. The advantage of having unbounded repulsion functions is

that they guarantee the avoidance of collision, as mentioned be-

fore.

Note also that if we had kept the negative third term in the

derivative of the Lyapunov equation above, then the condition

obtained for the negative definiteness of would suggest a

bound on the distance of the center to the minimum (or

in the multimodal Gaussian case). However, this bound is

not necessarily small. Nevertheless, all the results for different

profiles obtained in the preceding sections still hold (with ap-

propriate modifications on the bounds on the swarm size) even

with the new unbounded repulsion functions.

Finally, note that for the cases excluded in the theorem we

cannot guarantee the same bounds. However, it is possible to

derive bounds (which may be slightly larger) for these cases

too. For example, one can show that for the Gaussian case with

we will have

IX. ANALYSIS OF INDIVIDUAL BEHAVIOR IN A

COHESIVE SWARM

The results in the previous sections specify whether the

swarm will diverge or converge, and if it converges they specify

in which regions of the profile it will converge, together with

bounds on the swarm size. The results above do not provide

information about the ultimate behavior of the individuals. In

other words, they do not specify whether the individuals will

eventually stop moving or will end up in oscillatory motions

within the specified regions. In this section, we will investigate

the ultimate behavior of the individuals. In particular, we will

analyze the ultimate behavior of the individuals in a quadratic

profile with , a Gaussian profile with , and in

a multimodal Gaussian profile with the conditions of Lemma

4 for the case satisfied. To this end, first, we define

the state of the system as the vector of the positions of the

swarm members . Let the invariant set

of equilibrium points be

We will prove that for the above mentioned cases as the

state converges to , i.e., eventually all the individuals

stop moving.

Theorem 4: Consider the swarm described by the model in

(1) with an attraction/repulsion function as given in (2) with
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Fig. 4. Multimodal Gaussian profile.

linear attraction and bounded repulsion. Assume that the -pro-

file is one of the following.

• A quadratic profile in (6) with .

• A Gaussian profile in (7) with .

• A multimodal Gaussian profile in (8) with conditions of

Lemma 4 for the case satisfied.

Then, as we have the state .

Proof: Choose the generalized Lyapunov function

as the total artificial potential energy in the system. In other

words, choose as

whose gradient at is

and its time derivative is given by

for all . Now, note that for all the cases in the hypothesis

of the theorem, we have bounded from below and the set

is compact and positively invariant with respect to the motions

of the system. Then, we can apply the LaSalle’s Invariance Prin-

ciple from which we conclude that as the state con-

verges to the largest invariant subset of the set defined

as

Since each point in is an equilibrium, is an invariant set

and this proves the result.

One issue to note here is that for the cases excluded in the

above theorem, i.e., for the plane profile, quadratic profile with

, Gaussian profile with , and the multimodal

Gaussian profile for case or not necessarily satisfying

the conditions of Lemma 4, the set may not be compact.

Therefore, we cannot apply the LaSalle’s Invariance Principle.

Moreover, since they are (possibly) diverging, intuitively we do

not expect them to stop their motion. Furthermore, note that for

the plane profile we have . In other words, there is no

equilibrium for the swarm moving in a plane profile.



GAZI AND PASSINO: STABILITY ANALYSIS 553

Fig. 5. Response for a multimodal Gaussian profile (initial positions close to a minimum).

X. SIMULATION EXAMPLES

In this section, we will provide some simulation examples

to illustrate the theory developed in the preceding sections.

We chose an dimensional space for ease of

visualization of the results and used the region [0, 30]

[0, 30] in the space. In all the simulations performed

below we used individuals. As parameters of the

attraction/repulsion function in (2) we used ,

, and for most of the simulations and

for some of them. We performed simulations for all

the profiles discussed in this article.

The first result shown in Fig. 1 is for a plane profile with

for the plots on the left and

for those on the right. One easily can see that in both of the

cases, as expected, the swarm moves along the negative gradient

exiting the simulation region toward unboundedness. Note

that initially for the case some of the individ-

uals move in a direction opposite to the negative gradient. This

is because the inter-individual attraction is much stronger than

the intensity of the profile. In contrast, for the

case, the intensity of the profile is high enough to dominate the

inter-individual attraction. This, of course, does not mean that

the swarm will not aggregate. As they move they will eventually

aggregate as was shown in the preceding sections. We also show

the plots of the swarm centers. Note that the motion of the cen-

ters is similar for both of the cases as expected from the analysis

in the preceding sections.

The next result is for the quadratic profile as shown in Fig. 2.

We chose a profile with extremum at and mag-

nitude . The two plots on the left of the figure show

the paths of the individuals and the center of the swarm for the

case , whereas those on the right are for the

case. Once more, we observe that the results support the analysis

of preceding sections. Note also that the center of the swarm

converges to the minimum of the profile for the case

and diverges from the maximum for the case.

Results of a similar nature were obtained also for the

Gaussian profile as shown in Fig. 3. Once more we chose

as the extremum of the profile. The other

parameters of the profile were chosen to be and

. Note that for the case, even though in

theory we could not prove that , in simulations we

observe that this is apparently the case. This was happening

systematically in all the simulations that we performed.

In the simulation examples for the multimodal Gaussian

profile we used the profile shown in Fig. 4, which has several

minima and maxima. The global minimum is located at

with a magnitude of 4 and a spread of 10. The plot in Fig. 5

shows two example runs with initial member positions nearby

a local minimum and show convergence of the entire swarm

to that minimum. The attraction parameter was chosen to be
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Fig. 6. Response for a multimodal Gaussian profile (a = 0:1).

for this case. Fig. 6, on the other hand, illustrates

the case in which we increased the attraction parameter to

. You can see that the attraction is so strong that the

individuals climb gradients to form a cohesive swarm. For this

and similar cases, the manner in which the overall swarm will

behave (where it will move) depends on the initial position

of the center of the swarm. For these two runs the center

happened to be located on regions which caused the swarm to

diverge. For some other simulation runs (not presented here)

with different initial conditions the entire swarm converges

to either a local or global minima. Fig. 7 shows two runs for

which we decreased the attraction parameter again to

and initialized the swarm member positions all over the region.

For both of the simulations you can see that the swarm fails

to form a cohesive cluster since the initial positions of the

individuals are such that they move to a nearby local minima

and the attraction is not strong enough to “pull them out”
of these valleys. This causes formation of several groups or

clusters of individuals at different locations of the space. For

these reasons, the center of the swarm does not converge

to any minimum. Note, however, that this is expected since

for this case the conditions of Theorem 3 are not satisfied.

Nevertheless, the result of Lemma 1 still holds. The only issue

is that is large and contains all the region within which all

the individuals eventually remain. Finally, note also that during

their motion to the groups, the individuals try to avoid climbing

gradients and this results in motions resembling the motion of

individuals in real biological swarms.

XI. CONCLUSION

In this article, we developed a simple model of swarming

in the presence of an attractant/repellent profile and analyzed

its stability properties for different profiles. Our model can be

viewed as a model for stable social foraging of swarms in a pro-

file of nutrients. We showed collective convergence to more fa-

vorable regions of the profile (i.e., the regions with higher con-

centration of nutrients) and diverge from unfavorable regions

(i.e., the regions with higher concentration of toxic substances).

The bounds on the swarm size and the distance of the swarm

center from the minimum points of the profile illustrate the basic

concepts in foraging theory of balance between the desire to

stay with the swarm and the desire to find more food. Note that

the model that we presented here directly addresses the problem

of coordination of agents and interactions with the environment

based on simple potentials. Therefore, even though we get our

inspiration from biology, we believe that our work is a contribu-

tion to the multi-agent coordination literature. In fact, note that

in some applications, such as undersea explorations by a group

of robots, the agents may need to follow the gradient of some

substance [36], which is the problem considered here, and the

results of this article are directly applicable.
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Fig. 7. Response for a multimodal Gaussian profile (a = 0:01).

Our model is essentially a kinematic model illustrating and

providing proof for multi-agent aggregation. It can serve as a

starting point for engineers who need to design a multi-agent

system that posesses such characteristics. For example, the tra-

jectories generated by our model can be used as reference tra-

jectories for robots (or other agents) to follow/track if there is a

need for a group of robots to perform aggregating behavior in

an environment containing targets and threats/obstacles. For this

case, the threats (to be avoided) are analogous to the toxic sub-

stances and the targets (to be moved toward) are analogous to

food. Then, the problem of the system designer is reduced to de-

veloping a controller to guarantee trajectory following given the

specific (actual) robot dynamics. For this reason, our results in

this article serve as a “proof of concept” for such operation—an

aggregating behavior of agents moving in an environment with

targets and obstacles. Note also that the swarm model discussed

here can be viewed as performing distributed optimization using

a distributed gradient method.

As pointed out in [23] foraging has important relations

to control and automation. Foraging strategies in biological

creatures have been “designed” and “tested” by evolution for

millions of years. By studying, understanding, and modeling

such behavior we may be able to gain ideas for developing

distributed coordination and control strategies for cooperative

team behavior of multi-agent robotic systems such as un-

manned undersea, land or air vehicles. For example, there is a

growing interest in the development of distributed coordination

and control strategies for uninhabited autonomous air vehicles

(UAAVs) [23] moving on a landscape where there are mobile

threats/targets each with “target priority” and “thread severity.”
Such a problem can clearly be viewed as a foraging problem

(although not of the type discussed in this article), and the ideas

from social foraging of biological creatures can be helpful for

solving it. In the light of this, the results in this article can be

viewed as an initial step toward developing a comprehensive

theory for stable social foraging of swarms as well as transfer-

ring the ideas from social foraging to the control literature.

Possible future extensions of the work here could be exten-

sion to the case of time-varying attractant/repellent profiles.

In engineering context this will correspond to a dynamically

changing environment or environment containing moving

targets or threats (a very relevant and important problem).

Another possible extension is to consider swarm members (or

agents) which have limited sensing range and analyze stability

(cohesion) under these conditions. For such a model it may

be possible to prove (under some conditions) local stability

(cohesion) results. The emergent behavior of such a model will

(probably) be biologically more realistic.
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