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�0:3195, K2 = 0:6390, andK3 = 0:0435. From the relationship in
(19), we have

KP
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=

�1 �2�2 2
1
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�
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+ 1

T
�

1

T

0 �2T �T

K1
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=
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0:0048

:

Fig. 2 (right) shows the closed-loop poles that lie inside the circle of
radius� = 0:275. The roots are0:2500 � j0:1118 and0:2500 �
j0:0387.

To illustrate further, we select several sets of stabilizing PID param-
eters from the set obtained in Example 1 (i.e.,� = 1) and compare the
step responses between them. Fig. 3 shows that the maximally dead-
beat design produces nearly deadbeat response.

VI. M AXIMUM DELAY TOLERANCE DESIGN

In some control systems an important design parameter is the delay
tolerance of the loop, that is the maximum delay that can be inserted
into the loop without destabilizing it. In digital control a delay ofk
sampling instants is represented byz�k. We use this to determine the
maximum delay that a control-loop under PID control can be designed
to tolerate. This gives the limit of delay tolerance achievable for the
given plant under PID control.

Let the plant beG(z) = (N(z))=(D(z)). We consider the problem
of finding the maximum delayL� such that the plant can be stabilized
by a PID controller. In other words, finding the maximum values ofL�

such that the stabilizing PID gain set for the plant

z�LG(z) =
N(z)

zLD(z)
; for L = 0; 1; . . . ; L� (20)

is not empty. LetSi be the set of PID gains that stabilizes the plant
z�iG(z). Then, it is clear that

\
L
i=0Si stabilizesziG(z) for all i = 0; 1; . . . ; L: (21)

VII. CONCLUDING REMARKS

In this note, we have given a solution to the problem of stabilization
of a digital control system using PID controllers. The solution is com-
plete in the sense that a constructive yes or no answer to whether stabi-
lization is possible, is given and in case it is possible the entire set is de-
termined by solving sets of linear inequalies in two variables obtained
by gridding over the third variable. This approach is akin to the geo-
metric approach to synthesis and design advocated in [16]. These solu-
tion sets open up the possibility of improved and optimal design using
PID controllers. The questions of loop shaping, time domain response
shaping, and robust designs are important candidates for research.
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Stability Analysis of Swarms

Veysel Gazi and Kevin M. Passino

Abstract—In this note, we specify an “individual-based” contin-
uous-time model for swarm aggregation in -dimensional space and
study its stability properties. We show that the individuals (autonomous
agents or biological creatures) will form a cohesive swarm in a finite time.
Moreover, we obtain an explicit bound on the swarm size, which depends
only on the parameters of the swarm model.

Index Terms—Biological systems, multiagent systems, stability analysis,
swarms.

I. INTRODUCTION

For a long time, it has been observed that certain living beings tend
to perform swarming behavior. Examples of swarms include flocks of
birds, schools of fish, herds of animals, and colonies of bacteria. It is
known that such a cooperative behavior has certain advantages such
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as avoiding predators and increasing the chance of finding food but
it requires communications and coordinated decision making. Oper-
ational principles from such systems can be used in engineering for
developing distributed cooperative control, coordination, and learning
strategies for autonomous agent systems such as autonomous multi-
robot applications, unmanned undersea, land, or air vehicles. There
are, however, several key steps to exploit biological principles to de-
velop such highly automated systems. These include modeling, co-
ordination strategy specification, and analysis to show that group dy-
namics achieve group goals. In this article we develop a simple model
describing swarm aggregation and analyze its stability properties. We
show that the individuals will form a cohesive swarm in a finite time.
Moreover, we obtain a bound on the swarm size, which depends only
on the parameters of the swarm model.

Biologists have been working on understanding and modeling of
swarming behavior for a long time [1]–[4]. The general understanding
now is that the swarming behavior is a result of an interplay between
a long range attraction and a short range repulsion between the indi-
viduals. In [1], Breder suggested a simple model composed of a con-
stant attraction term and a repulsion term which is inversely propor-
tional to the square of the distance between two members, whereas in
[2] Warburton and Lazarus studied the affect on cohesion of a family
of attraction/repulsion functions. The articles in [3] and [4] provide
good background and review of the swarm modeling concepts and lit-
erature such as spatial and nonspatial models, individual-based versus
continuum models and so on. (See also [5] and references therein for
other related work).

Parallel to the mathematical biologists, there are a number of physi-
cists who have done important work on swarming behavior [6]–[11].
The general approach the physicists take is to model each individual
as a particle and study the collective behavior due to their interaction.
Many of them assume that particles are moving with constant absolute
velocity and at each time step assume the average direction of motion
of the particles in its neighborhood with some random perturbation.
They try to study the affect of the noise on the collective behavior and
to validate their models through extensive simulations.

In recent years, engineering applications such as formation control
of multirobot teams and autonomous air vehicles have emerged and
this has increased the interest of engineers in swarms. For example, in
[12], the authors describe formation control strategies for autonomous
air vehicles, whereas [13]–[17] describe different approaches for for-
mation control of multiagent (multirobot) teams. In [13], a behavior
based formation control of multiple land robots integrated with the
other navigational goals of the robots is described, whereas the article
in [14] proposes a method that uses only local information. They use the
feedback linearization technique for controller design to exponentially
stabilize the relative distances of the robots in the formation. Similar
results are obtained also in [15] and [16], where the authors use forma-
tion constrains and control Lyapunov functions to develop the forma-
tion control strategy and prove stability of the formation (i.e., forma-
tion maintenance). The results in [17], on the other hand, are based on
using virtual leaders and artificial potentials for robot interactions in a
group of agents for maintenance of the group geometry. They use the
system kinetic energy and the artificial potential energy as a Lyapunov
function to prove closed loop stability and employ a dissipative term to
achieve asymptotic stability of the formation. Reference [18] describes
a systematic framework for studying feasibility of formations for both
undirected and directed type formations. In [19], Reif and Wang con-
sider distributed control approach of groups of robots, calledsocial po-
tential fieldsmethod, which is based on artificial force laws between
individual robots and robot groups. The force laws are inverse-power or
spring force laws incorporating both attraction and repulsion. Another
work on distributed formation control of robots is [20], where the au-

thors consider asynchronous distributed control and geometric pattern
formation of multipleanonymous (or identical) robots.

Important work on swarm stability is given by Beniet al. in [21] and
[22]. In [21], they consider a synchronous distributed control method
for discrete one and two dimensional swarm structures and prove sta-
bility in the presence of disturbances using Lyapunov methods. On the
other hand, [22] is, to best of our knowledge, one of the first stability
results for asynchronous methods (with no time delays). There, they
consider alinear swarm model and prove sufficient conditions for the
asynchronous convergence of the swarm to a synchronously achievable
configuration.

Swarm stability undertotal asynchronism(i.e., asynchronism with
time delays) was first considered in [23] and [24]. In [23] a one di-
mensional discrete time totally asynchronous swam model is proposed
and stability (swarm cohesion) is proved. The authors prove asymptotic
convergence under total asynchronism conditions and finite time con-
vergence underpartial asynchronismconditions (i.e., total asynchro-
nism with a bound on the maximum possible time delay). In [24], on
the other hand, the authors consider a mobile swarm model and prove
that cohesion will be preserved during motion under certain conditions,
expressed as bounds on the maximum possible time delay.

In [25], we obtained similar results to those in [23] for a swarm with a
different mathematical model for the intermember interactions and mo-
tions using some earlier results developed for parallel and distributed
computation in computer networks in [26].

All of these stability investigations have been limited to either one
or two-dimensional space. Note that in one dimension, the problem of
swarming is very similar to the problem ofplatooningof vehicles in
automated highway systems, an area that has been studied extensively
(see, for example, [27]–[29] and the references therein).

Recent work in [30] is focusing on extending the work in [23] and
[24] to the multidimensional case by imposing special constraints on
the topology of the “leader” movements and using specific communi-
cation topology.

The results in this note were first published in [31]. In [32], we
describe a class of attraction/repulsion functions that can be used for
swarm aggregations. In [33], on the other hand, we analyzed the sta-
bility of swarms moving in a profile of nutrients or toxic substances and
showed collective convergence of all the individuals to more favorable
regions of the nutrient profile.

Finally, note that it is possible to establish a connection between
analysis of swarms and analysis of multibody systems such as groups
of planets.

II. M ODEL OF AN AGGREGATINGSWARM

Consider a swarm ofM individuals (members) in ann-dimensional
Euclidean space. We model the individuals as points and ignore their
dimensions. The position of memberi of the swarm is described by
xi
2

n. We assume synchronous motion and no time delays, i.e., all
the members move simultaneously and know the exact position of all
the other members. The motion dynamics evolve in continuous time.
The equation of motion that we consider for individuali is given by

_xi =

M

j=1;j 6=i

g(xi � x
j); i = 1; . . . ;M (1)

whereg(�) represents the function of attraction and repulsion between
the members. In other words, the direction and magnitude of motion of
each member is determined as a sum of the attraction and repulsion of
all the other members on this member. The attraction/repulsion func-
tion that we consider is

g(y) = �y a� b exp �
kyk2

c
(2)
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Fig. 1. Attraction/repulsion functiong(�).

wherea, b, andc are positive constants such thatb > a andkyk =
y>y. For they 2 1 case witha = 1, b = 20, andc = 0:2 this

function is shown in Fig. 1. In higher dimensions (i.e.,y 2 n), the
function is exactly the same as in one-dimensional case, except that it
acts on the line connecting the positions of the two members (i.e., the
line on which the vectory lies).

Note that the functiong(�) constitutes anartificial social potential
function, similar to the ones in [19] and [2], that governs the interindi-
vidual interactions. The parametera represents the attraction, whereas
the termb exp(�kyk2=c) represents the repulsion. Note that this func-
tion is attractive (i.e.,a dominates) for large distances and repulsive
(i.e.,b exp(�(kyk2=c)) dominates) for small distances, which is con-
sistent with interindividual attraction/repulsion in biological swarms.
Therefore, it constitutes a crude approximation of biological interac-
tions and also allows us to perform stability analysis. The main draw-
back withg(�) is that it is not unbounded for infinitesimally small ar-
guments (which may be needed to avoid collisions) and that it has an
infinite range (which is inconsistent with biology since no creature has
infinite sensing range). However, note that this article is the first step
toward stability analysis of swarms and these issues are topic of further
research. In fact, we consider those issues in [32], where we describe a
class of attraction/repulsion functions that lead to aggregation.

By equatingy(a�b exp(�(kyk2=c))) = 0, one can easily find that
g(y) switches sign at the set of points defined asY = fy = 0 or kyk =
� = c ln(b=a)g: The distance� is the distance at which the attraction
and repulsion balance. It is known that there exists such a distance in
biological swarms [2], [4].

In this note,cohesivenessof the swarm is the mainstability property
that we are concerned with. We define thesize of the swarmas the
radius of the hyperball within which the individuals converge.

Define thecenterof the swarm members as�x = (1=M) M

i=1
xi:

Note that because of the symmetry ofg(�) the center�x is stationary for
all t. In other words, sinceg(�) is symmetric with respect to the origin,
memberimoves toward every other memberj exactly the same amount
asj moves towardi. We express this more formally in the following
lemma.

Lemma 1: The center�x of the swarm described by the model in (1)
with an attraction/repulsion functiong(�) as given in (2) is stationary
for all t.

Proof: Let g1(xi�xj) = a�b exp(�(kxi�xjk2=c)) and note
that

_�x = �
1

M

M

i=1

M

j=1;j 6=i

(xi � xj)g1(x
i � xj) = 0:

Basically, this lemma says that, on average, the swarm described by
(1) with an attraction/repulsion function as given in (2) is not drifting.
Note, however, that although it states that the center of the swarm is
stationary, it does not say anything about the relative motions of the
members with respect to it. It may be the case that the members diverge
from the center while it stays stationary. Intuitively, however, we would
expect the members to move toward the center for the given swarm
model. In several of the results and discussions to follow we either
implicitly or explicitly will use the fact that�x is stationary.

III. A NALYSIS OF SWARM COHESION

Our first result is about a swarm member which does not have any
neighbors in its repulsion range. We call such a member afree agent.

Definition 1: A swarm memberi is called afree agentat timet if

xi(t)� xj(t) > �; 8j 2 S; j 6= i

whereS = f1; . . . ;Mg is the set of members of the swarm.
Note that since the distance from all the other members to a free

agent is greater than�, there will not be any repulsion force and the
total force on this member will be a combined effect of all the attrac-
tion imposed by all the other members. We will show that this force is
pointing toward the center�x of the swarm and, therefore, the member
is moving toward it. Before stating this result more rigorously, we de-
fine ei = xi � �x; for each individuali = 1; . . . ;M .

Lemma 2: Assume that a memberi of the swarm described by the
model in (1) with an attraction/repulsion functiong(�) as given in (2) is
a free agent at timet and that its distance to the center�x of the swarm
is greater then�, i.e.,

ei(t) = xi(t)� �x > �:

Then, at timet, its motion is in a direction of decrease ofkei(t)k (i.e.,
toward the center�x).

Proof: From the definition of the center�x of the swarm, we have
M

j=1
xj = M �x. Subtracting from both sidesMxi we obtain

M

j=1

(xi � xj) = M(xi � �x) = Mei: (3)

Then, the motion of memberi can be represented as

_xi = �

M

j=1;j 6=i

(xi � xj) a+ b exp �
kxi � xjk2

c

= � aMei + b

M

j=1;j 6=i

exp �
kxi � xjk2

c
(xi � xj)

where on the first line we used the definition of functiong(�) in (2) and
addeda(xi � xi) = 0, and substituted the value of M

j=1
(xi � xj)

from (3) on the second.
Choosing the Lyapunov function candidate for memberi asVi =

(1=2)ei>ei and taking its derivative, we can show that_Vi is bounded
by

_Vi � �aMkeik2 +

M

j=1;j 6=i

b exp �
kxi � xjk2

c
kxi � xjkkeik: (4)

Since memberi is a free agent at timet (note that we dropped the
time indext throughout the proof for convenience), we havekxi �
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xjk > �,8j 6= i and note that for that range the functionexp(�(kxi�
xjk2=c))kxi � xjk is a decreasing function of the distance with the
maximum occurring atkxi � xjk = �. Using these facts, we have

_Vi ��ake
ik2�(M�1) akeik�b� exp �

�2

c
keik: (5)

For the second term to be negative semidefinite, we needkeik �
(b�=a) exp(�(�2=c)): Note, however, that(b=a) exp(�(�2=c)) = 1,
which implies that we needkeik � �, which, on the other hand, holds
by our hypothesis. Therefore, we have

_Vi � �akeik2 = �2aVi

which proves the assertion.
Remark: From the attraction/repulsion functiong(�) in (2) one can

see that one term ing(�) always gives attraction and the other repul-
sion and the resultant force is their sum. This leads to similar terms in
the derivative of the Lyapunov function in (4). If an individual is away
from all the other individuals, the second term in the Lyapunov func-
tion is negligibly small compared to the first term and it moves toward
the center. If it is close to the other individuals (i.e., in their repulsion
range), then the second term becomes significant.

Note that Lemma 2 does not imply thatxi will converge to�x for all i.
Intuitively, once a member gets to the vicinity of another member, then
the repulsive force will be in effect and the conditions of Lemma 2 will
not be satisfied anymore. However, it is important because it gives us
an idea of the tendency of the individuals to move toward the center
of the swarm. Therefore, it is normal to expect that the members will
(potentially) aggregate and form a cluster around�x. To prove this, we
need to analyze the motion of the members which are not necessarily
free agents and that is done in the next result.

Theorem 1: Consider the swarm described by the model in (1) with
an attraction/repulsion functiong(�) as given in (2). As time progresses,
all the members of the swarm will converge to a hyperball

B"(�x) = fx : kx� �xk � "g

where

" =
b

a

c

2
exp �

1

2
:

Moreover, the convergence will occur in finite time bounded by

�t = max
i2S

�
1

2a
ln

"2

2Vi(0)
:

Proof: Choose any swarm memberi. Let Vi = (1=2)ei>ei be
the corresponding Lyapunov function for which we have (see the proof
of Lemma 2)

_Vi � �aMkeik2 +

M

j=1;j 6=i

b exp �
kxi � xjk2

c
kxi � xjkkeik: (6)

Now, note that each of the functionsexp(�(kxi � xjk2=c))kxi �
xjk is a bounded function whose maximum occurs atkxi � xjk =
c=2 and is given by c=2 exp(�(1=2)). Substituting this in the

above equation we obtain that_Vi < 0 as long as

keik >
b(M � 1)

aM

c

2
exp �

1

2
:

Define " = (b=a) c=2 exp(�(1=2)) and note that
" > (b(M � 1)=aM) c=2 exp(�(1=2)). This implies
that as t ! 1, ei converges within the ball around�x
defined by (b(M � 1)=aM) c=2 exp(�(1=2)). Since
" > (b(M � 1)=aM) c=2 exp(�(1=2)) we haveei ! B".

Since memberi was an arbitrary member, the result holds for all
the members. To prove the finite-time convergence, note that for
keik � ", we have

_Vi � �akeik2 = �2aVi:

Therefore, the solution ofVi satisfies

Vi(t) � Vi(0)e
�2at

for which it can be shown that crosses thekeik = " boundary in a time
bounded by

ti � �
1

2a
ln

"2

2Vi(0)

and this proves the theorem.
This result is important not only because it proves the cohesiveness

of the swarm, but also it provides an explicit bound on the size of the
swarm. Note that the bound"makes intuitive sense. To see this note that
increasing parametera (i.e., increasing attraction) decreases the size of
the bound". In contrast, increasing parameterb (i.e., increasing repul-
sion magnitude) or parameterc (increasing repulsion range) increases"
and these are intuitively expected results. For theg(�) function given in
Fig. 1 with parametersa = 1, b = 20, andc = 0:2, we have" � 3:8.

Remark: Note that the bound on the swarm size(b(M �
1)=(aM)) c=2 exp(�(1=2)) depends onM . Therefore, for swarms
with a small number of members the bound will differ significantly
for different values ofM . However, in biological swarms the number
of the membersM can be very large and asM ! 1 we have
(b(M � 1)=(aM)) c=2 exp(�(1=2)) ! ". In other words," is
the maximum possible bound on the swarm size independent of the
number of the individuals in the swarm.

Remark: In view of the aforementioned remark, for large values
of M the size of the cohesive swarm is relatively independent of the
number of the members (individuals). In other words, it is almost con-
stant independent of the number of the members. This implies that as
the number of the members increases the density of the swarm will also
increase. This is inconsistent with some biological examples and is due
to the particular attraction/repulsion functiong(�) that we chose.

Remark: Note that even the bound (b(M � 1)=
(aM)) c=2 exp((�1=2)) is very conservative, because in the
aforementioned proof, we used(xi � xj)>ei � kxi � xjkkeik and
also assumed that the functionsexp(�(kxi � xjk2)=c)kxi� xjk are
at their peak values for alli andj and these both areneverthe case.
Therefore, the actual size of the swarm is, in general, much smaller
than".

Note also that even though the results here were developed for the
attraction repulsion fungtiong(�) in (2), they can be extended and gen-
eralized to aclassof attraction repulsion functions as was done in [32].

IV. A NALYSIS OF SWARM MEMBER BEHAVIOR IN A COHESIVESWARM

Theorem 1 shows only the region where the swarm members will
converge and provides a bound on the size of the swarm. It does not,
however, say anything about whether the swarm members will stop
their motion or will start an oscillatory motion within the region and
this issue needs to be investigated further. To this end, we first define
the statex of the system as the vector of the positions of the swarm
membersx = [x1>; . . . ; xM>]>. Let the invariant set of equilibrium
points be


e = fx : _x = 0g:

We will prove that ast ! 1 the statex(t) converges to
e, i.e.,
the configuration of the swarm members converges to a constant
arrangement.
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Theorem 2: Consider the swarm described by the model in (1) with
an attraction/repulsion functiong(�) as given in (2). Ast ! 1 we
havex(t) ! 
e.

Proof: We choose the Lyapunov function

J(x)=
1

2

M�1

i=1

M

j=i+1

akxi�x
jk2 + bc exp �

kxi � xjk2

c

which is an artificial potential function. Then, one can show that the
gradient ofJ(x) with respect to eachxi is given byrx J(x) = � _xi.
Now, taking the time derivative of the Lyapunov function along the
motion of the system we obtain

_J(x) = [rxJ(x)]
> _x =

M

i=1

[rx J(x)]> _xi

=

M

i=1

� _xi
>

_xi = �

M

i=1

_xi
2

� 0

for all t. Then, using the LaSalle’s Invariance Principle we conclude
that ast ! 1 the statex converges to the largest invariant subset of
the set defined as


 = x : _J(x) = 0 = fx : _x = 0g = 
e:

Since each point in
e is an equilibrium,
e is an invariant set and this
proves the result.

Remark: The proof of the aforementioned theorem shows the
distributed aspect of the swarming behavior. In fact, it shows that the
swarm members are performingdistributed optimization(function
minimization) of a common function (the Lyapunov or cost function)
using adistributed gradient method. In other words, each member
computes its part of the gradient of the global function at its position
(i.e., computes the gradient with respect to its motion variables) and
moves along the negative direction of that gradient. The global func-
tion in this case is a function of the distances between the members.

Remark: Another view on the distributed nature of the approach can
be as follows. Define

Ji(x) =
1

2

M

j=1;j 6=i

a x
i � x

j
2

+ bc exp
xi � xj

2

c
:

Then, note that

_xi = �rx Ji(x) = �rx J(x):

This can be interpreted as each memberi performing an optimization
of its local cost functionJi(x), which results in minimizing of the com-
bined cost function

J(x) =
1

2

M

i=1

Ji(x)

to obtain the overall behavior of the swarm.
Remark: Note that in any of the above analysis we did not use the

dimension of the state spacen. Therefore, the results obtained hold for
any dimensionn.

Remark: The results here are global. This is a consequence of the
definition of the attraction/repulsion functiong(�) in (2) over the entire
domain.

REFERENCES

[1] C. M. Breder, “Equations descriptive of fish schools and other animal
aggregations,”Ecology, vol. 35, no. 3, pp. 361–370, 1954.

[2] K. Warburton and J. Lazarus, “Tendency-distance models of social cohe-
sion in animal groups,”J. Theoret. Biolo., vol. 150, pp. 473–488, 1991.

[3] A. Okubo, “Dynamical aspects of animal grouping: swarms, schools,
flocks, and herds,”Adv. Biophys., vol. 22, pp. 1–94, 1986.

[4] D. Grünbaum and A. Okubo, “Modeling social animal aggregations,” in
Frontiers in Theoretical Biology. New York: Springer-Verlag, 1994,
vol. 100, Lecture Notes in Biomathematics, pp. 296–325.

[5] J. K. Parrish and W. M. Hamner, Eds.,Animal Groups in Three Dimen-
sions. Cambridge, U.K.: Cambridge Univ. Press, 1997.

[6] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel
type of phase transition in a system of self-driven particles,”Phys. Rev.
Lett., vol. 675, no. 6, pp. 1226–1229, Aug. 1995.

[7] A. Czirok, E. Ben-Jacob, I. Cohen, and T. Vicsek, “Formation of com-
plex bacterial colonies via self-generated vortices,”Phys. Rev. E, vol.
54, no. 2, pp. 1791–1801, Aug. 1996.

[8] A. Czirok, H. E. Stanley, and T. Vicsek, “Spontaneously ordered motion
of self-propelled partciles,”J. Phys. A: Math., Nucl., General, vol. 30,
pp. 1375–1385, 1997.

[9] A. Czirok and T. Vicsek, “Collective behavior of interacting self-pro-
pelled particles,”Phys. A, vol. 281, pp. 17–29, 2000.

[10] N. Shimoyama, K. Sugawa, T. Mizuguchi, Y. Hayakawa, and M. Sano,
“Collective motion in a system of motile elements,”Phys. Rev. Lett., vol.
76, no. 20, pp. 3870–3873, May 1996.

[11] H. Levine and W.-J. Rappel, “Self-organization in systems of self-pro-
pelled particles,”Phys. Rev. E, vol. 63, no. 1, pp. 017 101-1–017 101-4,
Jan. 2001.

[12] F. Giulietti, L. Pollini, and M. Innocenti, “Autonomous forma-
tion flight,” IEEE Control Syst. Mag., vol. 20, pp. 34–44, Dec.
2000.

[13] T. Balch and R. C. Arkin, “Behavior-based formation control for multi-
robot teams,”IEEE Trans. Robot Automat., vol. 14, pp. 926–939, Dec.
1998.

[14] J. P. Desai, J. Ostrowski, and V. Kumar, “Controlling formations of mul-
tiple mobile robots,” inProc. IEEE Int. Conf. Robotics Automation,
Leuven, Belgium, May 1998, pp. 2864–2869.

[15] M. Egerstedt and X. Hu, “Formation constrained multi-agent control,”
IEEE Trans. Robot. Automat., vol. 17, pp. 947–951, Dec. 2001.

[16] P. Ögren, M. Egerstedt, and X. Hu, “A control Lyapunov function ap-
proach to multi-agent coordination,” inProc. Conf. Decision Control,
Orlando, FL, December 2001, pp. 1150–1155.

[17] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial potentials and
coordinated control of groups,” inProc. Conf. Decision Control, Or-
lando, FL, Dec. 2001, pp. 2968–2973.

[18] P. Tabuada, G. J. Pappas, and P. Lima, “Feasable formations of multi-
agent systems,” inProc. Amer. Control Conf., Arlington, VA, June 2001,
pp. 56–61.

[19] J. H. Reif and H. Wang, “Social potential fields: A distributed behav-
ioral control for autonomous robots,”Robot. Auton. Syst., vol. 27, pp.
171–194, 1999.

[20] I. Suzuki and M. Yamashita, “Distributed anonymous mobile robots:
Formation of geometric patterns,”SIAM J. Comput., vol. 28, no. 4, pp.
1347–1363, 1999.

[21] K. Jin, P. Liang, and G. Beni, “Stability of synchronized distributed con-
trol of discrete swarm structures,” inProc. IEEE Int. Conf. Robotics Au-
tomation, San Diego, CA, May 1994, pp. 1033–1038.

[22] G. Beni and P. Liang, “Pattern reconfiguration in swarms—convergence
of a distributed asynchronous and bounded iterative algorithm,”IEEE
Trans. Robot. Automat., vol. 12, pp. 485–490, June 1996.

[23] Y. Liu, K. M. Passino, and M. Polycarpou, “Stability analysis of one-
dimensional asynchronous swarms,” inProc. American Control Conf.,
Arlington, VA, June 2001, pp. 716–721.

[24] , “Stability analysis of one-dimensional asynchronous mobile
swarms,” inProc. Conf. Decision Control, Orlando, FL, Dec. 2001, pp.
1077–1082.

[25] V. Gazi and K. M. Passino, “Stability of a one-dimensional discrete-time
asynchronous swarm,” inProc. Joint IEEE Int. Symp. Intelligent Con-
trol/IEEE Conf. Control Applications, Mexico City, Mexico, Sept. 2001,
pp. 19–24.

[26] D. P.Dimitri P. Bertsekas and J. N.John N. Tsitsiklis,Parallel and
Distributed Computation: Numerical Methods. Belmont, MA: Athena
Scientific, 1997.

[27] J. Bender and R. Fenton, “On the flow capacity of automated highways,”
Transport. Sci., vol. 4, pp. 52–63, Feb. 1970.

[28] D. Swaroop, J. K. Hedrick, C. C. Chien, and P. Ioannou, “A comparison
of spacing and headway control laws for automatically controlled vehi-
cles,”Veh. Syst. Dyna., vol. 23, pp. 597–625, 1994.

[29] S. Darbha and K. R. Rajagopal, “Intelligent cruise control systems and
traffic flow stability,” Transport. Res. C, vol. 7, pp. 329–352, 1999.

[30] Y. Liu, K. M. Passino, and M. M. Polycarpou, “Stability analysis of
m-dimensional asynchronous swarms with a fixed communication
topology,” in Proc. Amer. Control Conf., Anchorage, AK, May 2002,
pp. 1278–1283.

[31] V. Gazi and K. M. Passino, “Stability analysis of swarms,” inProc.
American Control Conf., Anchorage, AK, May 2002, pp. 1813–1818.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 4, APRIL 2003 697

[32] , “A class of attraction/repulsion functions for stable swarm aggre-
gations,” inProc. Conf. Decision Contr., Las Vegas, NV, Dec. 2002, pp.
2842–2847.

[33] , “Stability analysis of social foraging swarms: Combined effects of
attractant/repellent profiles,” inProc. Conf. Decision Contr., Las Vegas,
NV, Dec. 2002, pp. 2848–2853.

Delay-Dependent/Delay-Independent Stability of Linear
Systems With Multiple Time-Varying Delays

Bugong Xu and Yun-Hui Liu

Abstract—Delay-dependent/delay-independent uniform asymptotic sta-
bility and uniform stability criteria for linear systems with multiple time-
varying delays are established respectively in this note. The results are de-
rived based on a new-type stability theorem for retarded dynamical systems
and a new analysis technique for estimating the derivative of a Lyapunov
function along the solution of a system at certain specific instants. Four
remarks together with an illustrative example are given to compare the ob-
tained results with and to show their superiority to those in the literature.

Index Terms—Linear systems, Lyapunov methods, stability, time delay.

I. INTRODUCTION

Recently, new-type stability theorems for retarded dynamical sys-
tems have been established by Xu [1]. A new analysis technique has
also been proposed in [1] for estimating the derivative of a Lyapunov
function along the solution of a system at certain specific instants. In
this note, the delay-dependent/delay-independent stability for the fol-
lowing linear system with multiple time-varying delays:

_x(t) =A0x(t) +
k2J

Akx (t� �k(t))

+
k2J

Akx (t� �k(t))

t � t0 2 R;

xt (�) =x(t0 + �) = �(�) t0 + � = Et

Et =

m

k=1

ft� �k(t) j t� �k(t) � t0;

t � t0g [ ft0g

(1)

is studied based on the new-type stability theorem for retarded dynam-
ical systems presented in the Appendix [1], where� 2 Cn, x 2 Rn,
Ak 2 Rn�n for k = 0; 1; . . . ;m are constant matrices,�k(t) �
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�kM � � for k 2 J1 and�k(t) � � < 1 for k 2 J2 with known
constant�kM > 0 and unknown constant� <1 are the time-varying
delays,J1 andJ2 denote two sets satisfyingJ1[J2 = f1; 2; . . . ;mg,
m1 = c(J1)andm2 = c(J2)denote the cardinalities of the setsJ1 and
J2, respectively. After some preliminaries in Section II, the delay-de-
pendent/delay-independent uniform asymptotic stability and uniform
stability criteria for (1) are derived, respectively, in Section III based
on Xu’s stability theorem and technique in the Appendix [1]. Four re-
marks together with one illustrative example are given to compare the
obtained results with and to show their superiority to those in the liter-
ature. The conclusion is given in Section IV.

Notation: R = (�1;1); R+ = [0;1); Rn denotes the real
vector space of dimensionn; Rn�n denotes the real matrix space of
dimensionn�n;Cn denotes the Banach space of continuous functions
mapping[��; 0] intoRn, where� > 0; AT denotes the transpose of
A; A > 0 (or <0) denotes a positive–definite (or negative–definite)
matrix;A � B means thatA�B � 0 is negative semidefinite;yt(�) 2
Rn denotesy(t+ �) 2 Rn for t 2 R and� 2 R so thaty(t) = yt(0);
k � k denotes the Euclidean norm inRn; k�kr = sup�����0 k�(�)k
with �(�) 2 Rn for given� 2 Cn; andjzj denotes the absolute value
of z 2 R; and finally,In is then � n identity matrix.

II. PRELIMINARIES

The following preliminaries are needed in the next section.
Lemma 1: Let P > 0 2 Rn�n andD 2 Rn�n be constant ma-

trices,x, y 2 Rn and� > 0. Then

2xTPDy �
1

�
xTPDP�1DTPx+ �yTPy (2)

and the equality holds if and only ifDTPx = �Py.
Proof: Note that(DTPx��Py)TP�1(DTPx��Py) � 0 for

any� > 0 and anyx, y 2 Rn and(DTPx � �Py)TP�1(DTPx �
�Py) = 0 if and only if DTPx � �Py. We obtain the result
immediately. Q.E.D.

Lemma 2: Let P > 0 2 Rn�n andD 2 Rn�n be constant ma-
trices, and letX(K) = fx 2 RnjxTPx = Kg with aK > 0. Then,
for any givenx 2 X(K) satisfyingxTPDP�1DTPx > 0, there ex-
ists a positive�M > 0 such that

max
y Py=K

f2xTPDyg �
1

�M
xTPDP�1DTPx

+ �Mx
TPx (3)

and

1

�M
xTPDP�1DTPx+ �Mx

TPx

�
1

�
xTPDP�1DTPx+ �xTPx (4)

for any� > 0.
Proof: Note thatxTPDP�1DTPx > 0 andx 2 X(K) so

that there must exist a positive such that�M > 0 such that�2MK =
xTPDP�1DTPxholds. Then, (3) is an immediate result of Lemma
1. Furthermore, from the right-hand side of (4), let

f(�) =
�2M
�

+ �: (5)

Then, note that (df(�))=(d�) = �(�2M=�
2) + 1 and

(d2f(�))=(d�2) = (2�2M=�
3) > 0 for any� > 0. Therefore, we have

2�M � f(�) =
�2M
�

+ � (6)
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