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ABSTRACT

Swarming, or aggregations of organisms in groups, can be found in nature in many

organisms ranging from simple bacteria to mammals. Such behavior can result from

several different mechanisms. For example, individuals may respond directly to local

physical cues such as concentration of nutrients or distribution of some chemicals

as seen in some bacteria and social insects, or they may respond directly to other

individuals as seen in fish, birds, and herds of mammals. In this dissertation, we

consider models for aggregating and social foraging swarms and perform rigorous

stability analysis of emerging collective behavior. Moreover, we consider formation

control of a general class of multi-agent systems in the framework of nonlinear output

regulation problem with application on formation control of mobile robots. First, an

individual-based continuous time model for swarm aggregation in an n-dimensional

space is identified and its stability properties are analyzed. The motion of each

individual is determined by two factors: (i) attraction to the other individuals on

long distances and (ii) repulsion from the other individuals on short distances. It is

shown that the individuals (autonomous agents or biological creatures) will form a

cohesive swarm in a finite time. Moreover, explicit bounds on the swarm size and

time of convergence are derived. Then, the results are generalized to a more general

class of attraction/repulsion functions and extended to handle formation stabilization

and uniform swarm density. After that, we consider social foraging swarms. We
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assume that the swarm is moving in an environment with an ”attractant/repellent”

profile (i.e., a profile of nutrients or toxic substances) which also affects the motion

of each individual by an attraction to the more favorable or nutrient rich regions

(or repulsion from the unfavorable or toxic regions) of the profile. The stability

properties of the collective behavior of the swarm for different profiles are studied and

conditions for collective convergence to more favorable regions are provided. Then,

we use the ideas for modeling and analyzing the behavior of honey bee clusters and

in-transit swarms, a phenomena seen during the reproduction of the bees. After

that, we consider one-dimensional asynchronous swarms with time delays. We prove

that, despite the asynchronism and time delays in the motion of the individuals,

the swarm will converge to a comfortable position with comfortable intermember

spacing. Finally, we consider formation control of a multi-agent system with general

nonlinear dynamics. It is assumed that the formation is required to follow a virtual

leader whose dynamics are generated by an autonomous neutrally stable system. We

develop a decentralized control strategy based on the nonlinear output regulation

(servomechanism) theory. We illustrate the procedure with application to formation

control of mobile robots.
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CHAPTER 1

INTRODUCTION

Swarming, or aggregations of organisms in groups, can be found in nature in many

organisms ranging from simple bacteria to mammals. Such behavior can result from

several different mechanisms. For example, individuals may respond directly to local

physical cues such as concentration of nutrients or distribution of some chemicals

(which may be laid by other individuals). This process is called chemotaxis and is

used by organisms such as bacteria or social insects (e.g., by ants in trail following or

by honey bees in cluster formation). As another example, individuals may respond

directly to other individuals (rather than the cues they leave about their activities)

as seen in some higher organisms such as fish, birds, and herds of mammals.

Evolution of swarming behavior is driven by the advantages of such collective

and coordinated behavior for avoiding predators and increasing the chance of finding

food. This is because more individuals implies more sensors for detecting a predator

or a food sources. Moreover, if a predator strikes, the probability of it catching any

particular individual in the swarm is lower than compared to the case when that

individual were alone. (Note that these are not the only advantages of swarming. For

other issues and evolutionary tradeoffs in swarming see [82].) For example, in [45,

46] Grünbaum explains how social foragers as a group more successfully perform
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chemotaxis over noisy gradients than individually. In other words, individuals do

much better collectively compared to the case when they forage on their own, implying

clear survival advantages due to the swarming behavior. Note that the evolutionary

process can be viewed as an algorithmic design process which designs organisms and

their behavior to be best (optimally) fit to their environment [27]. In other words,

the evolutionary process is an optimization process that engineers the organisms and

their behavior, and this process has been going on for millions of years. Therefore,

by studying biological systems one may discover general principles which govern the

operation of these systems, and which may be useful for developing similar engineering

applications. In particular, operational principles from biological swarms can be

used in engineering for developing distributed cooperative control, coordination, and

learning strategies for autonomous multi-agent systems such as autonomous multi-

robot applications, unmanned undersea, land, or air vehicles. The development of

such highly automated systems is likely to benefit from biological principles including

modeling of biological swarms, coordination strategy specification, and analysis to

show that group dynamics achieve group goals.

In this dissertation we consider continuous time n-dimensional models for both

swarm aggregations and social foraging and study the stability properties of the emer-

gent behavior. Stability is defined as cohesiveness of the swarm. Then, we apply the

ideas developed to modeling and stability analysis of honey bee clusters and in-transit

swarms, which serves as a biological example. After that, we consider swarm aggrega-

tions in discrete time. In particular, we consider a discrete time asynchronous swarm

model with time delays in one-dimensional space and study its stability properties

using techniques developed in the parallel and distribution computation literature.
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As a last topic in this dissertation we consider the formation control problem of a

multi-agent system and develop a control strategy using techniques from nonlinear

output regulation (servomechanism) literature.

1.1 Literature Overview

There are two fundamentally different approaches that researchers have been con-

sidering for analysis of swarm dynamics. These are spatial and nonspatial approaches.

In the spatial approach the space (environment) is either explicitly or implicitly

present in the model and the analysis. It can be divided into two distinct frameworks

which are individual-based (or Lagrangian) framework and continuum (or Eulerian)

framework [47]. In the individual-based models the basic description is the motion

equation of each (separate) individual and therefore it is a natural approach for mod-

eling and analysis of complex social interactions and aggregations. For example, a

typical equation of motion considered for each individual within this framework is

Newton’s motion equation

miai = F i,

where mi is the mass of the individual, ai is its acceleration, and F i is the total acting

force on the individual. The general understanding within this framework now is that

the swarming behavior is a result of an interplay between a long range attraction and

a short range repulsion between the individuals. For example, in fish attraction is

based on vision and has a long range, whereas repulsion is based on pressure to the

side (the lateral line) of the fish and has a short range (see for example [84] for detailed

description as well as experimental results).
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In the Eulerian framework, on the other hand, the swarm dynamics are described

using a continuum model of the flux, namely concentration or population density (i.e.,

a model in which each member of the swarm is not considered as individual entity, but

the swarm is a continuum described by its density in one, two, or three dimensional

space) described by partial differential equations of the swarm density. The basic

equation of the Euclidean models is an advection-diffusion-reaction equation of the

form

∂ρ

∂t
=

∂

∂x

(

D(ρ)
∂ρ

∂x

)

− ∂

∂x
(V (ρ)ρ) +B(ρ),

where the advection term ∂
∂x

(V (ρ)ρ) and the diffusion term ∂
∂x

(

D(ρ) ∂ρ

∂x

)

are the joint

outcome of individual behavior and environmental influences, and the reaction term

B(ρ) is due to the population dynamics.

In the nonspatial approaches the population level swarming dynamics are de-

scribed in a non-spatial way in terms of frequency distributions of groups of various

size. They assume that groups of various sizes split or merge into other groups based

on the inherent group dynamics, environmental conditions, and encounters with other

groups. The drawback of the nonspatial approaches is that they need several “ar-

tificial” assumptions about fusion and fission of groups of various sizes in order to

describe and analyze the population dynamics.

1.1.1 The Biological Literature

Biologists have been working on understanding and modeling of swarming behav-

ior for a long time. See for example [9] and references therein (some of which date back

to 1920’s). The work by Breder [9] is one of the early efforts to “apply mathematical

equations” to the grouping behavior in fish. He suggested a simple model composed
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of attraction and repulsion components. He chose a constant attraction term and a

repulsion term which is inversely proportional to the square of the distance between

two members (or groups of members). His inspiration was from the Coulomb’s law

of electrostatic charges. He applied his model to four different species and compared

the outcome with data from real fish schools. Using this method he determined the

model parameters for the four different species he considered.

In [114] Warburton and Lazarus studied the affect on cohesion of a family of

attraction/repulsion functions. They showed that all their models led to cohesion

in simulations with different intermember distance. Among their models the con-

vex attraction/repulsion function in which the maximum attraction is equal to the

maximum repulsion was found best for cohesion. Analyzing the statistical properties

of data they found that the group elongation (or shape) was positively correlated

to the intermember (or interindividual) distance. Moreover, they showed that there

is an equilibrium interindividual distance, where attraction balances repulsion, kept

by members in a group and that the equilibrium distance decreases in large groups.

Furthermore, in their model each member needed to monitor its distance to only few

of its neighbors to prevent fragmentation of the group.

The article in [47] provides a good background and review of the swarm modeling

concepts and literature such as spatial and nonspatial models, individual-based versus

continuum models and so on. There the authors review the theoretical approaches

for modeling animal aggregations caused by social interactions and describe both

the Hamiltonian and the Eulerian frameworks in detail. This article is in a sense

a complementary article to an earlier article in [80] that concentrated on dynamical

aspects of animal aggregations.
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In [30] Durrett and Levin compared four different approaches to modeling the

dynamics of spatially distributed systems, which are mean field approaches (in which

every individual is assumed to have equal probability of interacting with every other

individual), patch models (that group discrete individuals into patches without addi-

tional spatial structure), reaction-diffusion equations (in which infinitesimal individ-

uals are distributed in space, and interacting particle systems (in which individuals

are discrete and the space is treated explicitly). They applied these four approaches

to three different examples of species interactions in spatially distributed populations

and compared the results. Each example had different realistic biological assumptions.

They showed that the solutions of all the models did not always agree, and argued in

favor of the discrete (individual based) models that treat the space explicitly.

In [48] the authors present a general continuous model for animal group size

distribution (a nonspatial patch model). They consider a population with fixed size

that is divided into groups of various dynamic sizes. They relate the group size

distribution to the density-dependent rates of fusion and fission, that can be estimated

from data and are related to the behavior of the individuals and the dynamics of the

groups. For some of their prototype cases they find that the stationary distribution

has a peak value (i.e., a most frequent group size), which emerges from the dynamics.

They determine when such a peak emerges and show the existence and uniqueness of

the stationary distribution. Stability of the stationary distribution is discussed and

some progress on analysis is shown but not completed.

The article in [49] investigates the dynamic behavior of migrating herds by means

of two dimensional discrete stochastic (or individual based) models. They use individ-

ual based approach to relate the collective behavior to individual decisions. In their
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model the motion of each individual is a combined result of both density-independent

and density-dependent decisions. They use a hierarchical decision scheme with short-

range repulsion and long-range attraction. They analyze the dynamics of herds with

members with both homogeneous and heterogeneous speeds. They explore the im-

portance of a neutral zone (seen in some animals) where no attraction or repulsion is

used.

Other work on model development for biological swarms by mathematical biol-

ogists include [44, 75, 71]. The work by Grindrod in [44] is an effort to generate

a model for (spatial) aggregation and clustering of species and consider its stability

(i.e., its ability to preserve the swarm density). He considered both single-species

and multi-species communities and analyzed the effect of inter and intra community

relations. His approach is important because the motion of the species in the model

that he provided depends on the local density of the individuals and does not use

intermediate attractants or repellents such as chemotactic materials. He assumed

that every individual reacts directly to other individuals in its locality and moves to

increase its likelihood for survival.

In [75] Mogilner and Edelstein-Keshet present a swarm model which is based

on non-local interactions of the swarm members. Their model consists of integro-

differential advection-diffusion equations with a convolution terms that describe at-

traction and repulsion. They show that if the density dependent repulsion is of higher

order than the attraction, then their swarm model is realistic (i.e., it has constant

interior density and sharp edges as observed in biological examples). They com-

pare their model with some local models and argue that their model more accurately

represents swarm behavior.
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While [44, 75] consider a continuum (in space) model of a swarm, the article in [71]

describes a spatially discrete model. The authors show that their model can describe

the swarming behavior, i.e., the aggregation of individuals in dense populations.

Finally, the book by Parrish and Hamner [83] is a good reference on animal group-

ing (see also the references therein for other related work). Other general references

are the books by Edelshtein-Keshet [31] and Murray [78]. Note also that for many

organisms, swarming often occurs during social foraging and foraging theory is de-

scribed in [102].

1.1.2 The Physics Literature

In parallel to the mathematical biologists there are a number of physicists who

have done important work on swarming behavior. The general approach the physicists

take is to model each individual as a particle, which they usually call a self-driven or

self-propelled particle, and study the collective behavior due to their interaction. In

particular, they analyze either the dynamic model of the density function or perform

simulations based on a model for each individual particle (i.e., a distributed or Hamil-

tonian approach). Some articles consider the Newton’s equation of motion. However,

this is not the only type of model they consider. For example, many researchers

consider a discrete time model that assumes that particles are moving with constant

absolute velocity and at each time step each one travels in the average direction of

motion of the particles in its neighborhood with some random perturbation. In other

words, they consider a model of the form [110]

xi(k + 1) = xi(k) + vi(k)∆t,

θi(k + 1) =
1

1 +N i(k)



θi(k) +
∑

j∈Si(k)

θj(k)



 + ξi(k),
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where xi(k) is the position of individual i at time instant k, θi(k) is its orientation,

Si(k) is the set of neighbors of individual i at time k and contains N i(k) individuals.

The velocity of the swarm members is of constant magnitude ‖vi(k)‖ = v0 and ∆t

represents the time interval between two instants (k+1) and k. The external variable

ξi(k) is assumed to be a random variable with uniform distribution in the interval

[−η

2
, η

2
]. Using such a model they try to study the affect of the noise on the collective

behavior and to validate their models through extensive simulations.

In [87] Rauch et al. explored a simplified set of swarm models, which were driven

by the collective motion of social insects such as ants. In their model the swarm

members move in an energy field that models the nutrient or chemotactic profile in

biology. They show that some interesting phenomena such as formation of stable

lines of traffic flow emerge.

In [107] Toner and Tu proposed a nonequilibrium continuum model for collective

motion of large groups of biological organisms and later in [108] they develop a quan-

titative continuum theory of flocking. They show that their model predicts (models

or represents) the existence of an ordered phase of flocks, in which all members of

even an arbitrarily large flocks move together.

In [18] a simple self-driven lattice-gas model for collective biological motion is in-

troduced. The authors show the existence of transition from individual random walks

to collective migration. Similarly, Vicsek et al. introduce a simple simulation model

for system of self-driven particles in [110]. They assume that particles are moving

with constant absolute velocity and at each time step assume the average direction of

motion of the particles in its neighborhood with some random perturbation (i.e., they

consider the above mentioned model). They show that high noise (and/or low particle
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density) leads to a no transport phase, where the average velocity is zero, whereas

in low noise (and/or high particle density) the swarm is moving in a particular di-

rection (that may depend on the initial conditions). They call this transition from

a stationary state to a mobile state kinetic phase transition. Similarly, in [20] they

present experimental results and mathematical model for forming bacterial colonies

and collective motion of bacteria. The model is a simple self-propelled particle model

that tries to capture the effect of nutrient diffusion, reproduction, extracellular slime

deposition, chemoregulation, and inhomogeneous population. Other results in the

same spirit include [21], where a nonequilibrium model was compared to some equi-

librium XY model in ferromagnets, [19], where authors demonstrate similar results

in one dimension, [111], where the effect of fluctuations on the collective motion of

self-propelled particles is investigated, and [22], where the effect of noise and dimen-

sionality on the scaling behavior of swarms of self-propelled particles is investigated.

Results of a similar nature by different authors can be found in [74, 100, 65].

In [74] the authors consider a dynamic model of swarms of self-propelled particles

with attractive long-range interactions. They show that the system can be found in

either coherent traveling state or incoherent oscillatory state and that the increase in

noise intensity leads to a transition from a coherent to oscillatory state. Similarly,

in [100] the authors propose a model that represents several kinds of cluster motion

observed in nature including collective rotation, chaos, and wandering. The article

in [65] describes a model that exhibits coherent localized solutions in one and two

dimensions. The solution of the model is of finite extent and the density drops sharply

to zero at the edges of the swarm as in biological swarms. Moreover, they develop

continuum version of their discrete model and show that both models agree.
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1.1.3 The Engineering Literature

In recent years, engineering applications such as formation control of multi-robot

teams and autonomous air vehicles have emerged and this has increased the interest

of engineers in swarms. Some examples include [43, 4]. In [43] the authors describe

formation control strategies for autonomous air vehicles. They use optimization and

graph theory approach to find the best set of communication channels that will keep

the aircraft in the desired formation. Moreover, they describe reconfiguration strate-

gies in case of faults or loss of aircraft. Results of a similar nature for ground multi-

robot (multiple autonomous vehicle) teams can be found in [4], where the authors

consider a strategy in which the formation behavior is integrated with other naviga-

tional behavior and present both simulation and implementation results for various

types of formations and formation strategies.

In [88] Reif and Wang introduce the concept of very large scale robotic (VLSR)

systems and consider a distributed control approach based on artificial force laws be-

tween individual robots and robot groups. The force laws are inverse-power or spring

force laws incorporating both attraction and repulsion. The force laws can be distinct

and to some degree they reflect the “social relations” among robots. Therefore, they

call the method social potential fields method. Individual robot motion depends on

the resultant artificial force imposed by the other robots and other components of the

system such as obstacles. The approach is a distributed approach since each robot

performs its own force and control calculations in a (possibly) asynchronous manner.

It is an interesting and important work. However, it does not contain stability proof

of the approach. Our model here can be viewed as a type of a social potential fields

model (with different attraction/repulsion functions).
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Another work on distributed formation control of robots is in [103], where the

authors consider asynchronous distributed control and geometric pattern formation

of multiple anonymous robots. The robots are anonymous in the sense that they all

execute the same algorithm and they cannot be distinguished by their appearances.

Moreover, the robots do not necessarily have a common coordinate system. The

authors present an algorithm for moving the robots to a single point and also charac-

terize the class of geometric patterns that the robots can form in terms of their initial

configuration, and present some impossibility results. Gelenbe et al. provide a survey

of autonomous search strategies by robots and animals in [42]. They first review the

literature on coordination and search by robots, then summarize the research in the

field of animal search.

Recently, formation control results that use control theory for controller devel-

opment and stability analysis have begun to appear [28, 29, 32, 79, 64]. The article

in [28, 29] proposes a method that uses only local information. They use the feedback

linearization technique for controller design to exponentially stabilize the relative dis-

tances of the robots in the formation. Similar results are obtained also in [79], where

the authors use formation constraints and control Lyapunov functions to develop the

formation control strategy and prove stability of the formation (i.e., formation main-

tenance). Similarly, in [32] the same authors specify a model independent strategy

for formation control of a multi-agent system. The results in [64], on the other hand,

are based on using virtual leaders and artificial potentials for robot interactions in a

group of agents for maintenance of the group geometry. They use the system kinetic

energy and the artificial potential energy as a Lyapunov function to prove closed-loop
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stability and employ a dissipative term to achieve asymptotic stability of the forma-

tion. The number of articles in this area with result in similar flavor is increasing

fast. See for example [57]. Note however, not all types of formations may be possible.

In other words, there may formations that may not be feasible given the system dy-

namics. The article in [106] describes a systematic framework for studying feasibility

of formations for both undirected and directed type formations.

Note that several of the works described above [88, 64] (as well as a big portion of

the work in this dissertation) are based on artificial potential functions. An example

of another work that makes use of that concept is [86], where the authors consider

cooperative control of multiple agents. In particular, they describe a cooperative

search method for group of agents using artificial potentials and based on the concept

of rivaling force. The concept of artificial potential functions is not new, and it has

been used extensively for robot navigation and control [61, 90, 62].

One of the early works on generating distributed models of swarms is by Reynolds

in [89]. He describes a distributed behavioral model for animated simulation of a

flock of birds. The simulated flock is an elaboration of a particle system, with the

simulated birds the particles. He implemented each bird as an independent actor that

navigates according to its local perception of the dynamic environment.

Important work on swarm stability is given by Beni and coworkers in [56, 6].

In [56] they consider a synchronous distributed control method for discrete one and

two dimensional swarm structures and prove stability in the presence of disturbances

using Lyapunov methods. On the other hand, [6] is, to best of our knowledge, one

of the first stability results for asynchronous methods. There they consider a linear

swarm model and prove sufficient conditions for the asynchronous convergence of
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the swarm to a synchronously achievable configuration. Although their method is

asynchronous, they do not have time delays in the system. Therefore, their swarm

members always have perfect information about the environment.

Swarm stability under total asynchronism (i.e., asynchronism with time delays)

was first considered in [68, 67, 69]. In [68] a one dimensional discrete time totally

asynchronous swam model is proposed and stability (swarm cohesion) is proved. The

authors prove asymptotic convergence under total asynchronism conditions and finite

time convergence under partial asynchronism conditions (i.e., total asynchronism with

a bound on the maximum possible time delay). In [67], on the other hand, the authors

consider a one dimensional discrete time partially asynchronous mobile swarm model

and prove that cohesion will be preserved under certain conditions, expressed as

bounds on the maximum possible time delay. In [68, 67, 69] the authors assume finite

size of the swarm members (as opposed to point particles) to model real life vehicles

(or species). Therefore, collision avoidance becomes an issue. They do not explicitly

implement a collision avoidance algorithm such as in [35], for example; however,

in [69] they design the control algorithm in a way that avoids collisions between the

swarm members. Recently some results on the multidimensional case have been also

obtained. For example, the work in [70] is focusing on extending the work in [68],

[67] to the multidimensional case by imposing special constraints on the topology, the

“leader” movements, and by using a specific communication topology.

Many of these works have been limited to either one or two dimensional space.

Note that in one dimension, the problem of swarming is very similar to the problem

of platooning of vehicles in automated highway systems, an area that has been studied

extensively (see, for example, [5, 105, 104, 23] and references therein). Note also
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that are ongong efforts to extend the string stability concepts in automated highway

systems to two dimensional mesh stability (see for example [81]).

The recently popular “ant colony optimization” is an optimization method based

on foraging in ant colonies and is discussed in [8]. There, the focus is on biomimicry

for the solution of combinatorial optimization algorithms (e.g., shortest path algo-

rithms) and swarming as we study it this dissertation is not considered. In [85] the

author shows that chemotactic behavior of E. coli coupled with evolutionary and

“elimination/dispersal events” provides for a non-gradient distributed and parallel

optimization procedure that can be used for adaptive control and cooperative control

problems. Also, the author there used a similar characterization of an “attractant-

repellent profile” to ours, and also studied swarm behavior as a distributed opti-

mization method. Member-member swarming mechanisms are different from here,

and are only considered from an optimization perspective. Stability analysis was not

considered in [8], or [85].

Developing models for swarming behavior is important in engineering not only

because we can use them in developing swarms of autonomous agents, but also we

can use these ideas in “controlling” natural flocks (herds, schools, swarms) of animals.

An interesting example for this is the article in [109], where the authors develop a

mobile robot that gathers a flock of ducks and maneuvers them safely to a specified

goal position. They use a potential-field model of flocking behavior and using it

investigate methods for generalized flock control (in simulation). Then they use the

robot to control a real flock of ducks and show that the real world behavior of the

ducks is similar to the expected one from simulations.
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Finally, we would like to mention that models of multi-agent systems with inter-

acting particles may represent not only biological or engineering swarms, but also

other systems and can be used in different engineering applications. For example,

in [17] the authors describe an optimization algorithm based on interaction of indi-

viduals in a population of particles, which is called particle swarm optimization (see

also [58]). The book [58] discusses several different systems such as the operation of

a brain that can be modeled as swarms of interacting agents. The aggregation be-

havior, which we are mostly concerned in this dissertation, in this case can represent

the achievement of an agreement or a consensus between the interacting agents.

1.2 Dissertation Outline

In this dissertation we consider the problem of mathematically modeling and per-

forming stability analysis of swarms (i.e., groups of agents). First, in Chapter 2 (see

also [40]) we specify a continuous time n-dimensional swarm model based on artifi-

cial potential fields and perform stability analysis for stationary aggregating swarms,

where stability is defined as cohesiveness of the swarm. The motion of the individuals

in the swarm is based on long range attraction and short range repulsion with the

other swarm members. We show that all the individuals converge to a small hyperball

around the center of the swarm in a finite time and provide analytical bounds on the

swarm size and time of convergence.

In Chapter 3 (see also [38]) we generalize the model considered in Chapter 2 for a

class of attraction/repulsion functions. In particular, we allow for different types of at-

traction (e.g., linear or constant) and repulsion (e.g., bounded or unbounded). Then,

we show that the model can easily extended to pair-dependent attraction/repulsion
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functions and therefore can describe (guarantee) formation stabilization. Moreover,

we show that by allowing the repulsion to be of “hardlimiting” type, we can achieve

uniform swarm density (as in real biological swarms). Furthermore, we show that the

model can easily be extended to the case in which the swarm members have point

mass dynamics.

In Chapter 4 (see also [41, 39]) we consider social foraging swarms. In other words,

we consider swarms which are moving in a profile of nutrients or toxic substances.

The motion of the swarm members is assumed to be governed by two main factors:

(i) a desire to stay close (but not too close) to the other individuals in the swarm,

and (ii) a desire to find more food. We assume that the swarm members have the

ability to sense (and move along) a gradient and represent the desire to find more food

with a motion along the negative gradient of the profile. We consider and analyze

the motion of the swarm in a plane, a quadratic, and multimodal Gaussian profiles

and show convergence to more favorable (nutrient rich) regions and divergence from

unfavorable (toxic) regions of the profile.

In Chapter 5 we use the ideas developed in Chapters 2, 3, and 4 for modeling

and analysis of the aggregation and cohesiveness of honey bee clusters and in-transit

swarms. The intention of this chapter is to provide a biological example for the work

described in the previous chapters. We model the odor of the pheromones secreted

by the queen bee and the other (worker) bees using profiles and assume that the

bees move along the gradient of these profiles. Moreover, we incorporate unbounded

repulsion on close distances between the bees. The analysis in this chapter is not very

rigorous, since it is not easy to perform full scale rigorous analysis.
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In Chapter 6 (see also [37]) we consider a discrete time one-dimensional asyn-

chronous swarm model with time delays. We assume that one of the edge members

of the swarm is stationary and analyze the stability (which is equivalent to the point

stability in control theory) of the swarm. With the use of some results from parallel

and distributed computation literature we show that despite asynchronism and time

delays the swarm will converge to a constant “comfortable configuration.” The exten-

sion of these results to higher dimensions is not straightforward and is not considered

here.

In Chapter 7 we consider the formation control problem for a multi-agent system.

First, we assume that the agents have have general nonlinear dynamics and show

that the problem can be approached in the framework of decentralized nonlinear

output regulation (servomechanism). After that, we focus on formation control of

mobile robots and apply the controller developed for the general model. We develop

both full information and error feedback controllers achieving the formation control

objectives.

In Appendix A (see also [36]) we consider the decentralized output regulation

problem for a class of nonlinear systems including a class of interconnected systems.

This serves as a background for the results in Chapter 7, where we do not show the

full derivation and the proof of the controller. Therefore, if one needs to see a proof

of why an how the controller designed for the multi-agent system in Chapter 7 works,

one may consult Appendix A (or [36]).
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CHAPTER 2

AGGREGATING SWARMS

In this chapter we consider a model for stationary aggregating swarms, which op-

erate based on long range attraction and short range repulsion between the swarm

members. We analyze the stability properties of the emergent behavior, where sta-

bility is viewed as cohesiveness of the swarm. We show that cohesiveness is achieved

in a finite time. Moreover, we derive explicit bounds on the swarm size and time of

convergence.

2.1 The Swarm Model

Consider a swarm of M individuals (members) in an n-dimensional Euclidean

space. We model the individuals as points and ignore their dimensions. The posi-

tion of member i of the swarm is described by xi ∈ Rn. We assume synchronous

motion and no time delays, i.e., all the members move simultaneously and know the

exact (relative) position of all the other members. The motion dynamics evolve in

continuous time. The equation of motion that we consider for individual i is given by

ẋi =
M

∑

j=1,j 6=i

g(xi − xj), i = 1, . . . ,M, (2.1)

where g(·) represents the function of attraction and repulsion between the members.

In other words, the direction and magnitude of motion of each individual is determined
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as a sum of the attraction and repulsion of all the other individuals on it. The

attraction/repulsion function that we consider is

g(y) = −y
[

a− b exp

(

−‖y‖2

c

)]

, (2.2)

where a, b, and c are positive constants, b > a, and ‖y‖ =
√

y⊤y. For the y ∈ R1

case with a = 1, b = 20, and c = 0.2 this function is shown in Figure 2.1. In higher
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Figure 2.1: The attraction/repulsion function g(·).

dimensions (i.e., y ∈ Rn), the function is exactly the same as in the one dimensional

case, except that it acts on the line connecting the positions of the two members (i.e.,

the line on which the vector y lies).

Note that this function is attractive for large distances and repulsive for small

distances. By equating g(y) = 0, one can easily find that g(y) switches sign at the

set of points defined as

Y =

{

y = 0 or ‖y‖ =

√

c ln

(

b

a

)

= δ

}

.
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Notice that we need b > a, since otherwise the expression will never switch sign except

at zero and there will not be any repulsion between the members no matter how close

they are to each other.

One drawback of the model here is that each individual needs to know the relative

position of all the other individuals. This is not biologically very realistic (although in

engineering it may be overcome with technology like the global positioning system).

In biological swarms, often each individual can see (or sense) only the individuals in

its neighborhood because the ranges of their senses are limited. Therefore, in nature

the attraction or “desire to stick together” depends only on the individuals that it

can sense. In order to have overcome this problem a model employing attraction only

on nearest neighbors together with some concepts from graph theory can be used.

However, this is a topic of further research.

Define the center of the swarm members as

x̄ =
1

M

M
∑

i=1

xi. (2.3)

Note that because of the symmetry of g(·) the center x̄ is stationary for all t. In other

words, since g(·) is symmetric with respect to the origin, member i moves toward

every other member j exactly the same amount as j moves toward i. We express this

more formally in the following lemma.

Lemma 1 The center x̄ of the swarm described by the model in Eq. (2.1) with an

attraction/repulsion function g(·) as given in Eq. (2.2) is stationary for all t.

Proof: Taking the derivative of x̄ with respect to time we obtain

˙̄x =
1

M

M
∑

i=1

ẋi
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= − 1

M

M
∑

i=1

M
∑

j=1,j 6=i

(xi − xj)

[

a− b exp

(

−‖xi − xj‖
c

)]

= − 1

M

M
∑

i=1

M
∑

j=1

(xi − xj)

[

a− b exp

(

−‖xi − xj‖
c

)]

= − 1

M

[

M
∑

i=1

xi

M
∑

j=1

[

a− b exp

(

−‖xi − xj‖
c

)]

−
M

∑

j=1

xj

M
∑

i=1

[

a− b exp

(

−‖xi − xj‖
c

)]

]

= 0,

where we added
[

a− b exp
(

−‖xi−xj‖
c

)]

(xi −xi) = 0 to the summation in the second

line to obtain the third, and interchanged the order of summation in the forth line.

Basically this lemma says that, on average, the swarm described by Eq. (2.1) with

an attraction/repulsion function as given in Eq. (2.2) is not drifting. Note, however,

that although it states that the center of the swarm is stationary, it does not say

anything about the relative motions of the members with respect to it. It may be the

case that the members diverge from the center while it stays stationary. Intuitively,

however, we would expect the members to move toward the center for the given swarm

model. In several of the results and discussions in this chapter we either implicitly or

explicitly will use the fact that x̄ is stationary.

2.2 Analysis of Swarm Cohesion

Our first result is about a swarm member which does not have any neighbors in

its repulsion range. We call such a member a free agent.

Definition 1 A swarm member i is called a free agent if

‖xi − xj‖ > δ, ∀j ∈ S, j 6= i,
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where S = {1, . . . ,M} is the set of members of the swarm.

Note that since the distance from all the other members to a free agent is greater

than δ, there will not be any repulsion force and the total force on this member will

be a combined effect of all the attraction imposed by all the other members. We will

show that this force is pointing toward the center x̄ of the swarm, and therefore, the

member is moving toward it. Before stating this result more rigorously, we define the

error variable as

ei = xi − x̄,

for each individual i = 1, . . . ,M .

Lemma 2 Assume that a member i of the swarm described by the model in Eq. (2.1)

with an attraction/repulsion function g(·) as given in Eq. (2.2) is a free agent at time

t and that its distance to the center x̄ of the swarm is greater then δ, i.e.,

‖ei(t)‖ = ‖xi(t) − x̄‖ > δ.

Then, at time t its motion is in a direction of decrease of ‖ei(t)‖ (i.e., toward the

center x̄).

Proof: From the definition of the center x̄ of the swarm we have
∑M

j=1 x
j = Mx̄.

Subtracting Mxi from both sides we obtain

M
∑

j=1

(xi − xj) = M(xi − x̄) = Mei. (2.4)

Then, the motion of member i can be represented as

ẋi = −
M

∑

j=1,j 6=i

(xi − xj)

[

a+ b exp

(

−‖xi − xj‖2

c

)]
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= −a
M

∑

j=1

(xi − xj) + b

M
∑

j=1,j 6=i

exp

(

−‖xi − xj‖2

c

)

(xi − xj)

= −aMei + b
M

∑

j=1,j 6=i

exp

(

−‖xi − xj‖2

c

)

(xi − xj),

where on the second line we added a(xi − xi) = 0, and substituted the value of

∑M

j=1(x
i − xj) from Eq. (2.4) on the third.

Note that since ˙̄x = 0, we have ėi = ẋi. Choosing the Lyapunov function candidate

for member i as

Vi =
1

2
ei⊤ei =

1

2
‖ei‖2

and taking its derivative along the trajectory of the member we obtain

V̇i = ėi⊤ei = −aM‖ei‖2 +

M
∑

j=1,j 6=i

b exp

(

−‖xi − xj‖2

c

)

(xi − xj)⊤ei. (2.5)

Note that b exp
(

−‖xi−xj‖2

c

)

> 0 for all xi and xj . Therefore, V̇i is bounded by

V̇i ≤ −aM‖ei‖2 +
M

∑

j=1,j 6=i

b exp

(

−‖xi − xj‖2

c

)

‖xi − xj‖‖ei‖. (2.6)

Since member i is a free agent, we have ‖xi − xj‖ > δ, ∀j 6= i and note that for that

range the function exp
(

−‖xi−xj‖2

c

)

‖xi − xj‖ is a decreasing function of the distance

with the maximum δ exp
(

− δ2

c

)

, which occurs at ‖xi − xj‖ = δ. Using these facts,

we have

V̇i ≤ −aM‖ei‖2 + b(M − 1)δ exp

(

−δ
2

c

)

‖ei‖

= −a‖ei‖2 − (M − 1)

[

a‖ei‖ − bδ exp

(

−δ
2

c

)]

‖ei‖.

For the second term to be negative semidefinite we need

‖ei‖ ≥ bδ

a
exp

(

−δ
2

c

)

.
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Note, however, that b
a
exp

(

− δ2

c

)

= 1, which is obtained by substituting the value of δ

and implies that we need ‖ei‖ ≥ δ, which, on the other hand, holds by our hypothesis.

Therefore, we have

V̇i ≤ −a‖ei‖2 = −2aVi,

which proves the assertion.

Remark: From attraction/repulsion function g(·) in Eq. (2.2) one can see that

one term in g(·) always gives attraction and the other repulsion and the resultant

effect is their sum. This leads to similar terms in the derivative of the Lyapunov

function in Eq. (2.5). If an individual is away from all the other individuals, the

second term in the Lyapunov function is negligibly small compared to the first term

and it moves toward the center. If it is close to the other individuals (i.e., in their

repulsion range), then the second term becomes significant.

Note that Lemma 2 does not imply that xi will converge to x̄ for all i. Intuitively,

once a member gets to the vicinity of another member, then the repulsive force will

be in effect and the conditions of Lemma 2 will not be satisfied anymore. However,

it is important because it gives us an idea of the tendency of the individuals to move

toward the center of the swarm. Therefore, it is normal to expect that the members

will (potentially) aggregate and form a cluster around x̄. To prove this we need to

analyze the motion of the members which are not necessarily free agents and that is

done in the next result.

Theorem 1 Consider the swarm described by the model in Eq. (2.1) with an attrac-

tion/repulsion function g(·) as given in Eq. (2.2). As time progresses all the members
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of the swarm will converge to a hyperball

Bǫ(x̄) = {x : ‖x− x̄‖ ≤ ǫ},

where

ǫ =
b

a

√

c

2
exp

(

−1

2

)

.

Moreover, the convergence will occur in a finite time bounded by

t̄ = max
i∈S

{

− 1

2a
ln

(

ǫ2

2Vi(0)

)}

. (2.7)

Proof: Choose any swarm member i. Let Vi = 1
2
ei⊤ei be the corresponding Lya-

punov function. From the proof of Lemma 2 (see Eq. (2.5) we know that

V̇i = −aM‖ei‖2 +
M

∑

j=1,j 6=i

b exp

(

−‖xi − xj‖2

c

)

(xi − xj)⊤ei. (2.8)

Therefore, if

‖ei‖ > b

aM

M
∑

j=1,j 6=i

exp

(

−‖xi − xj‖2

c

)

‖xi − xj‖,

then we will have V̇i < 0. This bound is a function of the distance between the

members. Note that each function in the sum on the right hand side is a bounded

function and by using its maximum we can obtain a position independent bound.

Solving for the maximum i.e., solving the equation

∂

∂y

(

y exp

(

−y
2

c

))

= exp

(

−y
2

c

)

− 2y2

c
exp

(

−y
2

c

)

= 0,

we obtain that it occurs at ‖xi − xj‖ =
√

c
2
, or in other words, the maximum occurs

when the members are at a distance
√

c
2

from each other. Evaluating the maximum
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we have
√

c
2
exp

(

−(
√

c
2)

2

c

)

=
√

c
2
exp

(

−1
2

)

. Substituting this in the above equation

we obtain that V̇i < 0 as long as

‖ei‖ > b(M − 1)

aM

√

c

2
exp

(

−1

2

)

.

Define

ǫ =
b

a

√

c

2
exp

(

−1

2

)

and note that ǫ > b(M−1)
aM

√

c
2
exp

(

−1
2

)

. This implies that as t → ∞, ei converges

within the ball around x̄ defined by b(M−1)
aM

√

c
2
exp

(

−1
2

)

. Since ǫ > b(M−1)
aM

√

c
2
exp

(

−1
2

)

we have ei converging to Bǫ(x̄). Since member i was an arbitrary member, the result

holds for all the members. To prove the finite time convergence note that the equation

of V̇i can be written as

V̇i ≤ −a‖ei‖2−a(M−1)‖ei‖
[

‖ei‖ − b

a(M − 1)

M
∑

j=1,j 6=i

exp

(

−‖xi − xj‖2

c

)

‖xi − xj‖
]

,

which implies that for ‖ei‖ ≥ ǫ, we have

V̇i ≤ −a‖ei‖2 = −2aVi.

Therefore, the solution of Vi satisfies

Vi(t) ≤ Vi(0)e−2at.

For ‖ei‖ = ǫ we have Vi = 1
2
ǫ2 and individual i enters the ǫ vicinity of x̄ at time ti

when the right hand side of the above equation satisfies

Vi(0)e−2ati =
1

2
ǫ2.

Solving for ti we obtain

ti ≤ − 1

2a
ln

(

ǫ2

2Vi(0)

)

.
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Then, since S is a finite set, the maximum t̄ of ti, i ∈ S exists and this proves the

theorem.

This result is important not only because it proves the cohesiveness of the swarm,

but also it provides an explicit bound on the size of the swarm. Note that the bound

ǫ makes intuitive sense. To see this note that increasing parameter a (i.e., increasing

attraction) decreases the size of the bound ǫ. In contrast, increasing parameter b (i.e.,

increasing repulsion magnitude) or parameter c (increasing repulsion range) increases

ǫ and these are intuitively expected results. For the g(·) function given in Figure 2.1

with parameters a = 1, b = 20, and c = 0.2, we have ǫ ≈ 3.8.

Note that the bound on the swarm size b(M−1)
aM

√

c
2
exp

(

−1
2

)

depends on M . There-

fore, for swarms with a small number of members the bound will differ significantly

for different values of M . However, in biological swarms the number of the members

M can be very large and as M → ∞ we have b(M−1)
aM

√

c
2
exp

(

−1
2

)

→ ǫ. In other

words, ǫ is the maximum possible bound on the swarm size independent of the num-

ber of the swarm members. Therefore, for large values of M the size of the cohesive

swarm is relatively independent of the number of the members. In other words, it

is almost constant independent of the number of the individuals. This implies that

as the number of the members increases the density of the swarm will also increase.

This is inconsistent with some biological examples (where the density of the swarm

remains relatively constant and the size of the swarm increases with the number of

individuals) and is due to the particular attraction/repulsion function g(·) that we

chose. In Chapter 3 we will see how this problem can be overcome.

Note also that even the bound b(M−1)
aM

√

c
2
exp

(

−1
2

)

is conservative, because above

we used (xi−xj)⊤ei ≤ ‖xi−xj‖‖ei‖ and also assumed that the functions exp
(

−‖xi−xj‖2

c

)

‖xi−
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xj‖ are at their peak values for all i and j and these both are never the case. There-

fore, the actual size of the swarm is, in general, smaller than ǫ.

2.3 Analysis of Swarm Member Behavior in a Cohesive Swarm

Theorem 1 shows only the region where the swarm members will converge and

provides a bound on the size of the swarm and time of convergence. It does not,

however, say anything about whether the swarm members will stop their motion or

will start an oscillatory motion within the region and this issue needs to be investi-

gated further. To this end, first, we define the state x of the system as the vector of

the positions of the swarm members x = [x1⊤, . . . , xM⊤]⊤. Let the invariant set of

equilibrium points be

Ωe = {x : ẋ = 0}.

We will prove that as t→ ∞ the state x(t) converges to Ωe, i.e., the configuration of

the swarm members converges to a constant arrangement.

Theorem 2 Consider the swarm described by the model in Eq. (2.1) with an attrac-

tion/repulsion function g(·) as given in Eq. (2.2). As t → ∞ we have x(t) → Ωe.

Proof: We choose the (generalized) Lyapunov function

J(x) =
1

2

M−1
∑

i=1

M
∑

j=i+1

[

a‖xi − xj‖2 + bc exp

(

−‖xi − xj‖2

c

)]

.

Then, the gradient of J(x) with respect to each xi is given by

∇xiJ(x) =

M
∑

j=1,j 6=i

[

a(xi − xj) − b(xi − xj) exp

(

−‖xi − xj‖2

c

)]
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=

M
∑

j=1,j 6=i

(xi − xj)

[

a− b exp

(

−‖xi − xj‖2

c

)]

= −
M

∑

j=1,j 6=i

g(xi − xj) = −ẋi. (2.9)

Now, taking the time derivative of the Lyapunov function along the motion of the

system we obtain

J̇(x) = [∇xJ(x)]⊤ ẋ =
M

∑

i=1

[∇xiJ(x)]⊤ ẋi =
M

∑

i=1

[

−ẋi
]⊤
ẋi = −

M
∑

i=1

‖ẋi‖2 ≤ 0, (2.10)

for all t. Then, using the LaSalle’s Invariance Principle [59] we conclude that as

t→ ∞ the state x converges to the largest invariant subset of the set defined as

Ω = {x : J̇(x) = 0} = {x : ẋ = 0} = Ωe.

Since each point in Ωe is an equilibrium, Ωe is an invariant set and this proves the

result.

The proof of the above theorem shows the distributed aspect of the swarming

behavior. In fact, it shows that the swarm members are performing distributed op-

timization (function minimization) of a common function (the generalized Lyapunov

or cost function) using a distributed gradient method. In other words, each member

computes its part of the gradient of the global function at its position (i.e., computes

the gradient with respect to its motion variables) and moves along the negative direc-

tion of that gradient. The global function in this case is a function of the distances

between the members. It may be possible to extend the idea to the more general case

in which more general global cost function could be considered; however, this needs

more research.
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Another view on the distributed nature of the approach can be as follows. Define

Ji(x) =
1

2

M
∑

j=1,j 6=i

[

a‖xi − xj‖2 + bc exp

(‖xi − xj‖2

c

)]

.

Then, note that

ẋi = −∇xiJi(x) = −∇xiJ(x).

This can be interpreted as each member i performing an optimization of its private

cost function Ji(x), which results in minimizing of the combined cost function

J(x) =
1

2

M
∑

i=1

Ji(x)

to obtain the overall behavior of the swarm.

The combination of the above results (Theorems 1 and 2) prove that the swarm

described by the model in Eq. (2.1) with an attraction/repulsion function g(·) as

given in Eq. (2.2) will be cohesive and also that the members will converge to a

constant position (or configuration). Note also that in any of the above analysis we

did not use the dimension of the state space n. Therefore, the results obtained hold

for any dimension n. Moreover, the results here are global. This is a consequence

of the definition of the attraction/repulsion function g(·) in Eq. (2.2) over the entire

domain.

2.4 Simulation Examples

In this section some simulation results will be presented in order to illustrate the

theory presented in the previous sections. For ease of plotting we use only n = 3,

however, qualitatively the results will be the same for higher dimensions. Figure 2.2

shows the paths of the members of a swarm in which there are M = 51 individuals.

The initial positions of the swarm members are represented with circles and their
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Figure 2.2: The paths of the swarm members.

paths with dots. Their positions after 10 seconds are also represented with circles. It

is easily seen that, as expected, all the members move toward each other and form a

cohesive swarm cluster. Figure 2.3 shows the positions of the swarm members after

10 seconds (shown as circles) and the center of the swarm (shown as a star). The

center of the swarm is stationary for all time. In these simulations we used the g(·)

function shown in Figure 2.1, i.e., the g(·) function given by Eq. (2.2) with a = 1,

b = 20, and c = 0.2. For these values of the parameters, the swarm members are

expected to converge to a ball with radius ǫ ≈ 3.8 around the center of the swarm.

Note that the actual swarm size is much smaller than this since ǫ is a conservative

bound, as discussed earlier.

Figure 2.4 shows the paths of the members of a swarm with M = 60 individuals

and initial positions of the swarm members very close to each other. As expected,

as the time progresses the swarm members move away from each other to a more
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Figure 2.3: The swarm member positions after 10 seconds.
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Figure 2.4: Paths of the individuals for very close initial positions.

comfortable distance. The trajectories shown illustrate their motion for 100 seconds.

The plot of the positions of the swarm members after 100 seconds and the center
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of the swarm for this case is comparable to the plot shown in Figure 2.3 and is not

shown here. Moreover, the final positions of the swarm members are already clear

from Figure 2.4. Note that once more the swarm size is much smaller (about 0.2

times) than the maximum swarm size determined by ǫ ≈ 3.8.

Note that the distance between the swarm members is less then the repulsion

range δ of a member. This is expected since even though two members are on each

others repulsion range δ, they cannot push each other because the other members are

pulling them in a direction opposite of their repulsion. Then the equilibrium occurs

when the attraction and repulsion balance and this balance occurs on intermember

distances less then δ. (This is the case in biological swarms too.) Similar results are

obtained when different parameters are used in g(·).

In this chapter, we identified a model for swarm aggregations and performed

stability analysis of the emergent behavior. In the next chapter, we will generalize

and extend these results to a more general class of attraction functions, uniform

density swarms, and formation stabilization.
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CHAPTER 3

A CLASS OF ATTRACTION/REPULSION FUNCTIONS
FOR STABLE SWARM AGGREGATIONS

In this chapter we extend the results in Chapter 2 to a more general class of

attraction/repulsion functions, which can include different types of attraction (e.g.,

linear or constant) and different types of repulsion (e.g., bounded or unbounded)

for stable aggregation of stationary swarms. In addition to these, we also consider

pair-dependent attraction/repulsion and show that for that case the model can be

used stabilization of any needed formation. Furthermore, we show that with little

modification of the model we can achieve uniform swarm density and also can add

point mass dynamics.

3.1 The Class of Attraction/Repulsion Functions

We use the same swarm model as in Chapter 2. In other words, we consider motion

dynamics that evolve in continuous time with the equation of motion of individual i

given by

ẋi =

M
∑

j=1,j 6=i

g(xi − xj), i = 1, . . . ,M, (3.1)

where, xi ∈ R
n is the position of individual i and g : R

n → R
n represents the function

of attraction and repulsion between the individuals.
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As a difference from Chapter 2 consider the attraction/repulsion functions g(·) of

type

g(y) = −y [ga(‖y‖) − gr(‖y‖)] , (3.2)

where ga : R+ → R+ represents (the magnitude of) the attraction term and has a long

range, whereas gr : R+ → R+ represents (the magnitude of) the repulsion term and

has a short range, and ‖y‖ =
√

y⊤y is the Euclidean norm. Let the constants la and

lr represent the ranges of attraction and repulsion, respectively. Then, from above, we

have la ≥ lr. Moreover, we assume that on large distances attraction dominates, that

on short distances repulsion dominates, and there is a unique constant distance δ on

which attraction and repulsion balance. In other words, we assume that there exists

δ such that ga(δ) = gr(δ), and for ‖y‖ > δ we have ga(‖y‖) > gr(‖y‖) and for ‖y‖ < δ

we have gr(‖y‖) > ga(‖y‖). One issue to note here is that for the attraction/repulsion

functions g(·) defined as above we have g(y) = −g(−y). In other words, the above

g(·) functions are odd (and therefore symmetric with respect to the origin). This

is an important feature of the functions and it leads to aggregation behavior. Note

also that the combined term −yga(‖y‖) represents the actual attraction, whereas the

combined term ygr(‖y‖) represents the actual repulsion, and they both act on the line

connecting the two interacting individuals, but in opposite directions. The vector y

determines the alignment (i.e., it guarantees that the interaction vector is along the

line on which y is located), the terms ga(‖y‖) and gr(‖y‖) affect only the magnitude,

whereas their difference determines the direction (along vector y).

It has been observed in nature that there are attraction and repulsion forces (with

attraction having longer range than repulsion) between individuals that lead to the

swarming behavior [114, 47]. For example, for fish attraction is generally based on
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vision and has a long range (provided the water is clear), whereas repulsion is based

on the pressure on the side (the lateral line) of the fish and has a short range (but is

stronger than attraction). Moreover, it has been observed that both attraction and

repulsion are always “on” and the resulting behavior is due to the interplay between

these two forces, and there is a distance (called “equilibrium distance” in biological

literature) at which attraction and repulsion between two individuals balance. Note

that our model is consistent (or captures) these observations.

The next assumption that we have about the attraction and repulsion functions

is that there exist corresponding functions Ja : R+ → R+ and Jr : R+ → R+ such

that

∇yJa(‖y‖) = yga(‖y‖) and ∇yJr(‖y‖) = ygr(‖y‖).

In other words, we choose ga(‖y‖) and gr(‖y‖) such that the above conditions are

satisfied. Note that the functions Ja(‖y‖) and Jr(‖y‖) can be viewed as (potential)

fields of attraction and repulsion, respectively, created around each individual. More-

over, the above assumption restricts the motion of the individuals toward each other

along the gradient of these fields. For simplicity (and easy reference) we will denote

with G the set of attraction/repulsion functions g(·) satisfying the assumptions stated

so far.

An example of an attraction/repulsion function that satisfies the above conditions

is the g(·) function in Eq. (2.2), that we considered in Chapter 2. In other words,

the g(·) function in Eq. (2.2) is a special case of the class of functions in this chapter

with ga(‖y‖) = a and gr(‖y‖) = b exp
(

−‖y‖2

c

)

.
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With the above in mind, note that the motion of each individual is given by

ẋi = −
M

∑

j=1,j 6=i

[

ga(‖xi − xj‖) − gr(‖xi − xj‖)
]

(xi − xj)

= −
M

∑

j=1,j 6=i

[

∇xiJa(‖xi − xj‖) −∇xiJr(‖xi − xj‖)
]

, (3.3)

for all i = 1, . . . ,M . This implies that the minimum of Ja(‖xi − xj‖) occurs on or

around ‖xi − xj‖ = 0, whereas the minimum of −Jr(‖xi − xj‖) (or the maximum of

Jr(‖xi−xj‖)) occurs on or around ‖xi−xj‖ → ∞, and the minimum of the combined

Ja(‖xi − xj‖)− Jr(‖xi − xj‖) occurs at ‖xi − xj‖ = δ. Note that the first term in the

motion equation of an individual is along the negative gradient of Ja(‖xi − xj‖) and

the second term is along the negative gradient of −Jr(‖xi −xj‖). In other words, the

first term tries to move xi towards the minimum of Ja(‖xi − xj‖) (which occurs on

or around ‖xi − xj‖ = 0) and the second term tries to move xi towards the minimum

of −Jr(‖xi − xj‖) or the maximum of Jr(‖xi − xj‖) (which occurs on or around

‖xi − xj‖ → ∞). The minimum of Ja(‖xi − xj‖) − Jr(‖xi − xj‖), which occurs at

‖xi−xj‖ = δ, is different from the minimums of both Ja(‖xi−xj‖) and −Jr(‖xi−xj‖)

(as expected). In other words, at ‖xi − xj‖ = δ the attraction/repulsion profile

between two individuals has a global minimum. Note, however, that the minimum of

the combined profile when there are more than two individuals does not necessarily

occur at ‖xi − xj‖ = δ for all j 6= i. If we view Ja(‖xi − xj‖) and −Jr(‖xi − xj‖)

as potential energy profiles due to the relative positions of the individuals xi and xj ,

then their motions are along the negative gradient of the combined profile towards

the minimum energy configuration.

Swarming in nature occurs in a distributed fashion. In other words, there is no

leader (or boss) and each individual decides independently its direction of motion.

38



Our model captures this in its simplest form by having separate equations of motion

of each individual (implying that it is a Hamiltonian model) that do not depend on

an external variable (such as a command from a boss or another agent). In contrast,

an individual’s motion depends only on the position of the individual itself and its

observation of the positions (or relative positions) of the other individuals. (Note that

in the current model each individual knows the exact relative position of the other

individuals. In other words, its observation is equal to the actual position without

any error. Adding observation uncertainty is a topic of further research.)

As in Chapter 2 define the center of the swarm as x̄ = 1
M

∑M

i=1 x
i. Note that since

the functions g(·) ∈ G are odd, and therefore symmetric with respect to the origin,

given any g(·) ∈ G it is possible to show that the result in Lemma 1 still holds, i.e.,

the center x̄ of the swarm is stationary for all t as is stated formally in the following

lemma.

Lemma 3 The center x̄ of the swarm described by the model in Eq. (3.1) with an

attraction/repulsion function g(·) ∈ G is stationary for all t.

Proof: The proof of this lemma is very similar to the proof of Lemma 1. Let

gar(‖xi − xj‖) = ga(‖xi − xj‖)− gr(‖xi − xj‖). Then, the time derivative of center is

given by

˙̄x = − 1

M

M
∑

i=1

M
∑

j=1,j 6=i

gar(‖xi − xj‖)(xi − xj)

= − 1

M

M−1
∑

i=1

M
∑

j=i+1

[

gar(‖xi − xj‖)(xi − xj) + gar(‖xj − xi‖)(xj − xi)
]

= 0.
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Now, consider the state x = [x1⊤, . . . , xM⊤]⊤ ∈ R
nM of the system and the in-

variant set of equilibrium (or stationary) points Ωe = {x : ẋ = 0}. It can be shown

that the result in Theorem 2 in Chapter 2 still holds, i.e., as t → ∞ the state x(t)

converges to Ωe, implying that the configuration of the swarm members converges to

a constant arrangement.

Theorem 3 Consider the swarm described by the model in Eq. (3.1) with an attrac-

tion/repulsion function g(·) ∈ G. For any x(0) ∈ RnM , as t→ ∞ we have x(t) → Ωe.

Proof: Similar to the proof of Theorem 2 we choose the (generalized) Lyapunov

function J : RnM → R defined as

J(x) =

M−1
∑

i=1

M
∑

j=i+1

[

Ja(‖xi − xj‖) − Jr(‖xi − xj‖)
]

. (3.4)

Taking the gradient of J(x) with respect to the position xi of individual i one can

show that

∇xiJ(x) = −ẋi, (3.5)

holds and the time derivative of the Lyapunov function along the motion of the system

once more is given by

J̇(x) = −
M

∑

i=1

‖ẋi‖2 ≤ 0,

for all t implying decrease in J(x) unless ẋi = 0 for all i = 1, . . . ,M . If the function

g(·) is chosen such that the set defined as

Ω0 = {x : J(x) ≤ J(x(0))}
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is compact (which was the case with the g(·) function in Eq. (2.2) and therefore in the

proof of Theorem 2), then using the LaSalle’s Invariance Principle we can conclude

that as t → ∞ the state x(t) converges to the largest invariant subset of the set

defined as

Ω1 = {x ∈ Ω0 : J̇(x) = 0} = {x ∈ Ω0 : ẋ = 0} ⊂ Ωe.

Note, however, that Ω0 may not necessarily be compact for every g(·) ∈ G, which

may happen if the corresponding J(·) is not radially unbounded. Therefore, the fact

that J̇(x) ≤ 0 does not, in general, directly imply boundedness. This is because J(x)

is a summation of functions and even though given any i and j, j 6= i, we have the

set

{xi, xj : Ja(‖xi − xj‖) − Jr(‖xi − xj‖) ≤ Ja(‖xi(0) − xj(0)‖) − Jr(‖xi(0) − xj(0)‖)}

compact, the same is not implied for the summation (even though there always exists

c̄ such that the set Ωc̄ = {x : J(x) ≤ c̄} is compact). In that case, in general, it may

happen that some individuals diverge towards infinity contributing positively to J̇(x),

whereas majority of the individuals move in a direction of decrease of J(x) contribut-

ing negatively to J̇(x), and J̇(x) may be negative because the overall contribution of

the diverging individuals may be smaller compared to the converging ones (which is

possible because J(x) is not radially unbounded). Note, however, that in our swarm

for every individual i we have [∇xiJ(x)]⊤ ẋi = −‖ẋi‖2 ≤ 0, which implies that every

individual moves in a direction of decrease of J(x). Therefore, the set defined as

Ωx = {x(t) : t ≥ 0} ⊂ Ω0

is compact and we still can apply LaSalle’s Invariance Principle arriving at the con-

clusion that as t → ∞ the state x(t) converges to the largest invariant subset of the
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set defined as

Ω2 = {x ∈ Ωx : J̇(x) = 0} = {x ∈ Ωx : ẋ = 0} ⊂ Ωe.

Since in both of the above cases both Ω1 and Ω2 are invariant themselves and we

have Ω1 ⊂ Ωe and Ω2 ⊂ Ωe, we have x(t) → Ωe as t → ∞ and this concludes the

proof.

Note that in some engineering swarm applications such as uninhabited air vehicles

(UAV’s) individuals never stop. Therefore, the results here may seem not to be

applicable. However, note that these are results describing only aggregation. It is

possible to extend these results to the mobile case by having a motion (or drift) term

in the equation of motion together with the aggregation term described here (as we

will see in Chapter 4). As a result, if all the individuals share exactly the same motion

term (e.g., a predefined speed profile or trajectory of motion), then we will achieve a

cohesive swarm moving collectively since the aggregating term would decay as they

would arrange in the minimum energy configuration (relative arrangement) as the

above result suggests. In other words, the results here will guarantee cohesiveness

during motion.

Note that our approach is distributed in a sense that the individuals do not have

to know the global Lyapunov or potential energy function J(x) given in Eq. (3.4).

Instead, it is sufficient if they know the local or their internal Lyapunov or potential

energy function defined as

Ji(x) =
M

∑

j=1,j 6=i

[

Ja(‖xi − xj‖) − Jr(‖xi − xj‖)
]

,

since

ẋi = −∇xiJi(x) = −∇xiJ(x),
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where J(x) can be written as J(x) = 1
2

∑M

i=1 Ji(x). Note also that for implementation

each individual i may, instead of using actual position difference (xi−xj) to the other

individuals j 6= i, use some observation or estimate êij = (xi − x̂j) of the position

errors in determining its motion. However, the stability for this case needs to be

investigated further.

The result in Theorem 3 is important. It proves that asymptotically the individ-

uals will converge to a constant position. However, it does not say anything about

where these positions will be. We conjecture that given the initial positions of the

individuals xi(0), i = 1, . . . ,M , the final configuration to which the individuals in

the swarm will converge is unique. However, it is not easy to find a direct relation

between x(0) and the final position x(∞). This is an important problem, since it will

solve the formation stabilization problem for autonomous agents obeying our model.

Nevertheless, it can be shown that, with a little modification, the model can be gen-

eralized and applied to the formation control problem (as will be done later in this

chapter).

One drawback of Theorem 3 is that it does not specify any bound on the resulting

size of the swarm. Therefore, we need to investigate this issue further.

3.2 Swarm Cohesion Analysis

In this section, we will try to find bounds on the ultimate swarm size. To this end,

consider again the error variable ei = xi − x̄, for each individual i = 1, . . . ,M , and

note that ėi = ẋi − ˙̄x = ẋi, since from Lemma 3 we have ˙̄x = 0. Then, the derivative

of the Lyapunov function Vi = 1
2
‖ei‖2 = 1

2
ei⊤ei is given by

V̇i = ėi⊤ei = −
M

∑

j=1,j 6=i

[

ga(‖xi − xj‖) − gr(‖xi − xj‖)
]

(xi − xj)⊤ei. (3.6)
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Below, we analyze the case in which we have a linear attraction and a constant or

bounded repulsion.

3.2.1 Linear Attraction and Bounded Repulsion Case

In this section we consider the special case in which

ga(‖y‖) = a

for some finite positive constant a > 0 and for all y (as is the one in Eq. (2.2)), which

corresponds to linear attraction since the actual attraction is given by yga(‖y‖) =

ay. Therefore, the analysis in this section is a direct generalization of the results in

Chapter 2. Incorporating the value of ga(‖xi − xj‖) in Eq. (3.6) we obtain

V̇i = −a
M

∑

j=1,j 6=i

(xi − xj)⊤ei +

M
∑

j=1,j 6=i

gr(‖xi − xj‖)(xi − xj)⊤ei.

Then, from Eq. (2.4, we know that
∑M

j=1,j 6=i(x
i − xj) = Mei, substituting which in

the V̇i equation we obtain

V̇i = −aM‖ei‖2 +
M

∑

j=1,j 6=i

gr(‖xi − xj‖)(xi − xj)⊤ei

≤ −aM‖ei‖
[

‖ei‖ − 1

aM

M
∑

j=1,j 6=i

gr(‖xi − xj‖)‖xi − xj‖
]

,

which implies that V̇i < 0 as long as ‖ei‖ > 1
aM

∑M

j=1,j 6=i gr(‖xi −xj‖)‖xi −xj‖. This,

on the other hand, implies that as t→ ∞ asymptotically we have

‖ei‖ ≤ 1

aM

M
∑

j=1,j 6=i

gr(‖xi − xj‖)‖xi − xj‖.

Note that this equation holds for any type of repulsion, provided that the attraction

is linear. Now, assume that the repulsion is bounded (as is the one in Eq. (2.2)), i.e.,

assume that

gr(‖xi − xj‖)‖xi − xj‖ ≤ b,
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for some finite positive constant b. Then, we conclude that asymptotically for this

case we will have

‖ei‖ ≤ b(M − 1)

aM
<
b

a
= ǫ′,

which provides a bound on the maximum ultimate swarm size. As in the case of

Theorem 1, the convergence occurs in a finite time t̄ as was given in Eq. (2.7) with ǫ

replaced with ǫ′.

Remark: Note that if instead of having ga(‖y‖) = a, we had g(·) such that

M
∑

j=1,j 6=i

ga(‖xi − xj‖)(xi − xj)⊤ei ≥ η‖ei‖2,

for some η > 0 and for all i = 1, . . . ,M , then, with a similar analysis to above, we

would be able to conclude that asymptotically we have

‖ei‖ ≤ 1

η

M
∑

j=1,j 6=i

gr(‖xi − xj‖)‖xi − xj‖.

The analysis in this section is a direct generalization of the results in Chapter 2. In

the following sections, we will consider different cases which will allow for unbounded

repulsion.

3.2.2 Linearly Bounded from Below Attraction and Unbounded
Repulsion

By linearly bounded from below attraction we mean the case in which we have

ga(‖xi − xj‖) ≥ a,

for some finite positive constant a and for all ‖xi − xj‖. For the repulsion functions,

on the other hand, we will consider the unbounded functions satisfying

gr(‖xi − xj‖) ≤ b

‖xi − xj‖2
.
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An example of attraction/repulsion function g(·) satisfying the above assumptions is

shown in Figure 3.1.
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Figure 3.1: A g(·) function with linear attraction and unbounded repulsion.

First, we define the cumulative (or overall) Lyapunov function as V =
∑M

i=1 Vi

and note that since at equilibrium from Theorem 3 we know that ėi = ẋi = 0, we also

have V̇i = 0 for all i and therefore V̇ = 0. In other words, letting gar(‖xi − xj‖) =

ga(‖xi − xj‖) − gr(‖xi − xj‖) we have

V̇ = −
M

∑

i=1

M
∑

j=1,j 6=i

gar(‖xi − xj‖)(xi − xj)⊤ei

= −
M−1
∑

i=1

M
∑

j=i+1

[

gar(‖xi − xj‖)(xi − xj)⊤ei + gar(‖xj − xi‖)(xj − xi)⊤ej
]

= −
M−1
∑

i=1

M
∑

j=i+1

gar(‖xi − xj‖)‖xi − xj‖2

= −1

2

M
∑

i=1

M
∑

j=1,j 6=i

[

ga(‖xi − xj‖) − gr(‖xi − xj‖)
]

‖xi − xj‖2 = 0,
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where to obtain the third line we used the fact that for any α ∈ R we have

α(xi − xj)⊤ei + α(xj − xi)⊤ej = α‖xi − xj‖2, (3.7)

which is true since xi − xj = ei − ej . From the above equation we obtain

M
∑

i=1

M
∑

j=1,j 6=i

ga(‖xi − xj‖)‖xi − xj‖2 =
M

∑

i=1

M
∑

j=1,j 6=i

gr(‖xi − xj‖)‖xi − xj‖2. (3.8)

This equation, in a sense, says that at equilibrium the (weighted by the distance)

attraction and repulsion will balance.

Remark: Note that the cumulative Lyapunov function V is only one way to

quantify the cohesion/dispersion of the swarm. In other words, instead of V , we could

equally well choose

V̄ =
1

2

M−1
∑

i=1

M
∑

j=i+1

‖xi − xj‖2,

which would quantify the interindividual distances instead of the distances to the

center. In some applications, where the center is moving or the relative motion or

positions to each other of the individuals is more important than their relative motion

to a predefined point such as their center, it may be better to use a function like V̄ .

In fact, we arrive at the same conclusion using V̄ since it can be shown that

˙̄V = −M
2

M
∑

i=1

M
∑

j=1,j 6=i

[

ga(‖xi − xj‖) − gr(‖xi − xj‖)
]

‖xi − xj‖2 = MV̇ .

One issue to notice here is that, if we had only attraction (i.e., if we had gr(‖xi −

xj‖) ≡ 0 for all i and j, j 6= i), then the above equation would imply that the

swarm shrinks to a single point, which is the center x̄. In contrast, if we had only

repulsion (i.e., if we had ga(‖xi − xj‖) ≡ 0 for all i and j, j 6= i), then the swarm
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would disperse in all directions away from the center x̄ towards infinity. Having the

attraction dominating at large distances prevents the swarm from dispersing, whereas

having the repulsion dominating on short distances prevents it from collapsing to a

single point, and the equilibrium is established in between.

Note that since the actual attraction term is yga(‖y‖), we have ga(‖xi−xj‖)‖xi −

xj‖ ≥ a‖xi − xj‖ for this case (and hence the name linearly bounded from below

attraction). Then, we have

a

M
∑

i=1

M
∑

j=1,j 6=i

‖xi − xj‖2 ≤
M

∑

i=1

M
∑

j=1,j 6=i

ga(‖xi − xj‖)‖xi − xj‖2.

Similarly, from the bound on gr(‖xi − xj‖) we know that gr(‖xi − xj‖)‖xi − xj‖2 ≤ b

and obtain
M

∑

i=1

M
∑

j=1,j 6=i

gr(‖xi − xj‖)‖xi − xj‖2 ≤ bM(M − 1).

Now, note that from Eq. (2.4 we have ei = 1
M

∑M
j=1(x

i − xj) and therefore for the

sum of the squares of the error we obtain

M
∑

i=1

‖ei‖2 =
1

M

M
∑

i=1

M
∑

j=1,j 6=i

(xi−xj)⊤ei =
1

M

M−1
∑

i=1

M
∑

j=i+1

‖xi−xj‖2 =
1

2M

M
∑

i=1

M
∑

j=1,j 6=i

‖xi−xj‖2,

where we again used the fact in Eq. (3.7) to obtain the second equality.

Combining these equations with Eq. (3.8) we obtain

2aM

M
∑

i=1

‖ei‖2 ≤ bM(M − 1)

which implies that at equilibrium we have

1

M − 1

M
∑

i=1

‖ei‖2 ≤ b

2a
.

Then, for the root mean square of the error we have

erms =

√

√

√

√

1

M

M
∑

i=1

‖ei‖2 ≤
√

b

2a
= ǫrms,

which establishes a bound on the swarm size.
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3.2.3 Almost Constant Attraction and Unbounded Repul-
sion

In this section we consider the attraction functions that satisfy ga(‖xi − xj‖) → 0

as ‖xi − xj‖ → ∞. However, we assume also that

ga(‖xi − xj‖) ≥ a

‖xi − xj‖ .

For the repulsion function we use the same type of functions as in the previous section,

i.e., functions satisfying

gr(‖xi − xj‖) ≤ b

‖xi − xj‖2
.

An example of attraction/repulsion function g(·) satisfying the above assumptions is

shown in Figure 3.2.
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Figure 3.2: A g(·) function with constant attraction and unbounded repulsion.

For this case we have

a
M

∑

i=1

M
∑

j=1,j 6=i

‖xi − xj‖ ≤
M

∑

i=1

M
∑

j=1,j 6=i

ga(‖xi − xj‖)‖xi − xj‖2.
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Also, since

‖ei‖ =
1

M

∥

∥

∥

∥

∥

M
∑

i=1

(xi − xj)

∥

∥

∥

∥

∥

≤ 1

M

M
∑

i=1

‖xi − xj‖

we obtain, in a similar manner to earlier,

aM

M
∑

i=1

‖ei‖ ≤ bM(M − 1)

which implies that

1

M − 1

M
∑

i=1

‖ei‖ ≤ b

a
.

In other words, the average of the error will satisfy

eavg =
1

M

M
∑

i=1

‖ei‖ ≤ b

a
= ǫavg ,

at equilibrium, which constitutes a bound on the swarm size.

3.3 Other Extensions

3.3.1 Hardlimiting Repulsion for Uniform Swarm Density

During the analysis in Chapter 2 we realized that the bound on the swarm size

is independent of the number of individuals M . This leads to the fact that as the

number of individuals increases, the density of the swarm will increase which is not

always consistent with swarms in nature. The same drawback is true for the results

derived so far in this chapter including the case where we used unbounded repulsion.

In this section we will see that a small modification of the model will prevent this

from occurring.

Note that the unbounded repulsion functions we chose are such that

lim
‖xi−xj‖→0+

gr(‖xi − xj‖)‖xi − xj‖ = ∞
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Therefore, even though this will prevent the individuals from occupying the same

space (or prevent collisions, in some sense), it does not guarantee the uniform density

of the swarm. As the number of individuals in the swarm increases the total overall

attraction on each individual increases and the individuals move closer and closer,

even though they cannot occupy the same space. In order to avoid this, we can intro-

duce a finite body size (or private area) of the individuals by using a “hardlimiting”

repulsion function satisfying

lim
‖xi−xj‖→η+

gr(‖xi − xj‖)‖xi − xj‖ = ∞,

where η is a small positive parameter determining the finite body size (or private

area) of the individuals.

However, we would like to emphasize that for this case the results (i.e., the derived

bounds on the swarm size) in this chapter will not hold, which is exactly what we

would like to achieve in this section. In fact, for this case we would expect the size of

the swarm to depend on the number of the individuals and the density of the swarm

to remain uniform recovering the characteristics of real biological swarms. This is

because with the assumption that the initial positions of the individuals are such

that ‖xi(0) − xj(0)‖ > η, we will have ‖xi(t) − xj(t)‖ > η for all t and for all pairs

(i, j). We will illustrate this with simulations at the end of this chapter.

3.3.2 Formation Stabilization

In this section we will show that with a simple modification our model can be

applied to the problem of formation stabilization. First, note that in a given formation

the distances between different pairs of individuals can be different. In other words,

the equilibrium distance δ is dependent on the pairs (i, j) (therefore we will denote
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the equilibrium distances with δij). To accommodate this we consider the case in

which the attraction/repulsion function g(·) are pair dependent. In other words, we

have

ẋi =
M

∑

j=1,j 6=i

gij(xi − xj), i = 1, . . . ,M, (3.9)

where gij(xi−xj) = −gji(xj −xi). However, (xi−xj) = (xk−xl) does not necessarily

imply gij(xi − xj) = gkl(xk − xl). This implies that the attraction and repulsion

functions, and therefore the equilibrium distance δij for different pairs (i, j), can be

different. Then, given a desired formation with desired inter-agent distances dij, one

can choose the attraction/repulsion functions gij(·) such that δij = dij for every pair

of individuals (i, j). This, in turn, results in the fact that the generalized Lyapunov

function J(x) has a unique minimum achieved at the desired formation. Then, in

the light of Theorem 3 (which still holds) we know that asymptotically the desired

formation will be achieved. Note that this is similar to the approach in [79] and is

in contrast to the approach in [64], where the authors use virtual leaders in order to

achieve formations. We would like also to emphasize that for this case Lemma 3 still

holds, i.e., the center of the swarm is stationary. In other words, the model is for

stabilizing stationary formations around their center x̄.

Note that the results in preceding sections will still hold for the case in which the

attraction/repulsion functions g(·) were pair dependent, as described in Eq. (3.9),

as long as each of the attraction and repulsion functions gij(·) ∈ G. For that

case, the bounds will be given in terms of the minimum attraction parameter am =

min1≤i,j≤M{aij} and the maximum repulsion parameter bm = max1≤i,j≤M{bij}.
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3.3.3 Adding Point-Mass Dynamics

In the swarm model that we described in the preceding sections we did not have

mass in the equation of motion of the individuals. However, note that it is not difficult

to extend the model in order to include such effects. One option is to consider

point mass dynamics similar to the models for other animal aggregations such as

in [80, 114, 47, 64]. In particular, it can be assumed that the equation of motion of

each individual is given in Eq. (3.1) can be modified to be

ẋi = vi

v̇i =
1

mi

[

M
∑

j=1,j 6=i

g(xi − xj) − αi

]

, i = 1, . . . ,M, (3.10)

where mi is the mass of the ith individual and αi is such that vi⊤αi > 0 if vi 6= 0.

(Note that similar model was considered recently in [64].) Then, as in [64] using the

generalized Lyapunov function

J ′(x) =
1

2

M
∑

i=1

mi‖vi‖2 + J(x),

where J(x) is as given in Eq. (3.4), one can show that results similar to the ones

described so far follow. In particular, taking the time derivative of J ′(x) we obtain

J̇ ′(x) =

M
∑

i=1

miv̇
i⊤vi +

M
∑

i=1

[∇xiJ(x)]⊤ẋi

=
M

∑

i=1

[

miv̇
i + ∇xiJ(x)

]⊤
vi

= −
M

∑

i=1

vi⊤αi,

which obtained using the fact that ∇xiJ(x) = −ẋi = −vi. Then, with the above

choice of αi we obtain J̇ ′(x) ≤ 0. In particular we can choose αi = vi we obtain
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exactly the same as Eq. (2.10) implying that Theorem 3 also holds in this case.

However, note that some of the other results (e.g., Theorem 1 and the other bounds)

are not necessarily guaranteed to hold for this case and may need further analysis.

Note that this system can be viewed as a point mass control system with a control

input ui given by

ui = −∇xiJ(x) − αi =

M
∑

j=1,j 6=i

g(xi − xj) − αi

which guarantees that as t→ ∞ we have vi → 0.

3.4 Simulation Examples

In this section we will provide some simulation examples in order to illustrate the

operation of the swarm model. Once again we chose n = 3 for the simulations for easy

visualization, however, note that the results hold for any n. We first choose the case

of almost constant attraction and unbounded repulsion with ga(‖xi − xj‖) = a
‖xi−xj‖ ,

and gr(‖xi−xj‖) = b
‖xi−xj‖2 with parameters a = b = 0.2. We chose M = 31 members

whose initial conditions are initialized randomly. The plot in Figure 3.3 shows the

behavior of the swarm for about 15 seconds. As expected, the behavior of the swarm

is similar to those in Chapter 2, i.e., the individuals form a cohesive cluster (around

the center) as predicted by the theory. For this case we have the bound ǫavg = b
a

= 1

as the ultimate size of the swarm. The plot in Figure 3.4 shows the average eavg of

the distances of the individual positions to the swarm center. Note that the average

converges to a value smaller than ǫavg , confirming the analytical derivations. The

behavior of the swarm for the other two cases is similar.
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Figure 3.3: The motion of the swarm members.
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Figure 3.4: The average distance of the individuals to the center.

Now, we will illustrate the case in which swarm density is constant as in biological

swarms. With this objective in mind consider the case of hardlimiting repulsion with

gr(‖xi − xj‖) =
b

(‖xi − xj‖ − c)2
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with c = 2. In other words, we would like the individuals to keep a distance of at

least c = 2 units apart from each other. The aggregating behavior of the swarm for

this case with random initial positions satisfying ‖xi(0)−xj(0)‖ > c for all pairs (i, j)

is similar to the previous case shown in Figure 3.3. The difference, however, is that

the minimum distance between any pair of individuals is always greater than c = 2 as

desired (see the plot in Figure 3.5). Figure 3.6 shows the interindividual distances
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Figure 3.5: The interindividual distances for M = 31.

for the case in which we increased the number of individuals from M = 31 to M = 61.

As one can see, while the minimum distance between pairs is still greater than c = 2,

the maximum distance is larger, implying that the size of the swarm scaled with the

number of individuals while the density of the swarm remained constant which, on

the other hand, conforms our expectations. Having the swarm density constant is an

important feature of the real biological swarms and this shows that our model with

hardlimiting repulsion can describe that fact.
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Figure 3.6: The interindividual distances for M = 61.

Now, consider the model with pair dependent attraction/repulsion functions, i.e.,

consider the model in Eq. (3.9). Assume that we have six agents which are required

to form a formation of an equilateral triangle with three of the agents in the middle

of each edge and distances between two neighboring agents equal to 1. For this case

we design the attraction/repulsion functions for each pair of individuals such that the

generalized Lyapunov function achieves a unique minimum at the desired formation.

This is done by choosing gij(·)’s such that the equilibrium distances are one of δij = 1,

δij = 2, or δij =
√

3 for different pairs (i, j) of individuals depending on their relative

location in the desired formation. Figure 3.7 shows the trajectories of the agents with

initial positions chosen at random. As one can see the agents move and form the

required formation while avoiding collisions in accordance with the expectations since

we used unbounded repulsion.

In Chapter 2 and this chapter we considered stationary aggregating swarms. In

other words, we considered swarms in which the center of mass is stationary and
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Figure 3.7: Equilateral triangle formation of 6 agents.

the motion of the individuals depends only on the relative position of the other

individuals. In Chapter 4 we will consider social foraging swarms. In other words,

we will consider a swarm model in which the motion of individuals is affected by an

external profile of nutrients or toxic substances.
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CHAPTER 4

SOCIAL FORAGING SWARMS

In this chapter we consider a model for social foraging swarms. In other words, we

consider swarms that move in a profile of nutrients or toxic substances. We assume

that the motion of each individual depends on the attraction and repulsion to the

other individuals (as in aggregating swarms) as well as attraction to more favorable

(nutrient rich) regions or repulsion from unfavorable (toxic) regions of the profile.

In order to describe the problem that we consider in intuitive level consider Fig-

ure 4.1 where simple bacterial chemotaxis is shown. In nature if we have a liquid

Figure 4.1: Bacterial chemotaxis (figure from [72]).

with homogeneous concentration of nutrients and with some bacteria in the liquid,

as time progresses the density of the bacteria also becomes uniform in the container
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as is shown in Figure 4.1(a). Then, if a tube with higher concentration of nutrients

is inserted, it can be observed that bacteria swarm in the areas of higher nutrients as

shown in Figure 4.1(b) and with time as they eat the food the density becomes again

uniform (Figure 4.1(b)). However, if a toxic substances are inserted into the tube,

then one can observe that bacteria swim away from the toxic substances as shown in

Figure 4.1(d). This behavior of the bacteria is called chemotaxis. It is known that

bacteria is able sense (approximate) gradients of the environment, which allows it to

achieve such a behavior. Our objective in this chapter is to model and analyze this

kind of behavior. We will represent the nutrients and toxic substances with a profile.

However, in our model the profile will be constant, i.e., it will not dissipate as in the

above example. Moreover, we will have also interindividual attractions in the model.

4.1 The Swarm Model

Consider again M individuals (members) in an n-dimensional Euclidean space

with position vector of individual i denoted by xi ∈ Rn. Let σ : Rn → R represent

the attractant/repellent profile or the “σ-profile” which can be a profile of nutrients

or some attractant or repellent substances (e.g., food/nutrients, pheromones laid by

other individual, or toxic chemicals). Assume that the areas that are minimum points

are “favorable” to the individuals in the swarm. For example, assume that σ(y) < 0

represents attractant or nutrient rich, σ(y) = 0 represents a neutral, and σ(y) > 0

represents a noxious environment at y. (Note that σ(·) can be a combination of

several attractant or repellent profiles.)

We consider the equation of motion of each individual i described by

ẋi = −∇xiσ(xi) +
M

∑

j=1,j 6=i

g(xi − xj), i = 1, . . . ,M, (4.1)
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where g(·) represents the function of mutual attraction and repulsion between the

individuals and is an odd function of the form of Eq. (3.2)

g(y) = −y [ga(‖y‖) − gr(‖y‖)] , (4.2)

with all the assumptions in Chapter 3 satisfied, i.e., g(·) ∈ G.

The term −∇xiσ(xi) represents the motion of the individuals towards regions

with higher nutrient concentration and away from regions with high concentration

of toxic substances. Note that the implicit assumption that the individuals know

the gradient of the profile at their position is not very restrictive since it is known

that some organisms such as bacteria are able to construct local approximations to

gradients [85].

Remark: We would like to emphasize that even though we get our inspiration

from biological swarms, our model constitutes also a kinematic model for swarms of

engineering multi-agent systems. In the context of multi-agent systems the profile

σ(·) constitutes an artificial potential field that models the environment containing

obstacles or threats to be avoided (analogous to toxic substances) and targets to be

moved towards (analogous to food). In systems with real agents (with their specific

dynamics) the trajectories generated by our model can be used as reference trajecto-

ries for the agents to follow.

The objective here is to analyze the qualitative properties of the collective behavior

(motions in n-space) of the individuals. With this in mind, consider again the center

of the swarm as x̄ = 1
M

∑M
i=1 x

i. Then, one can show that the motion of the center is

given by

˙̄x =
1

M

M
∑

i=1

[

−∇xiσ(xi) −
M

∑

j=1,j 6=i

(

a− b exp

(

−‖xi − xj‖2

c

))

(xi − xj)

]
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= − 1

M

M
∑

i=1

∇xiσ(xi) − 1

M

M
∑

i=1

M
∑

j=1,j 6=i

(

a− b exp

(

−‖xi − xj‖2

c

))

(xi − xj)

= − 1

M

M
∑

i=1

∇xiσ(xi), (4.3)

since

1

M

M
∑

i=1

M
∑

j=1,j 6=i

(

a− b exp

(

−‖xi − xj‖2

c

))

(xi − xj) = 0.

Remark: Note that the collective behavior in Eq. (4.3) has a kind of averaging

(filtering or smoothing) effect. This may be important if the σ-profile is a noisy

function (or there is a measurement error or noise in the system as discussed in [45,

46]). In other words, if the σ-profile were a “noisy function” and the individuals were

moving individually (without interindividual attraction/repulsion), then they could

get stuck at a local minima, whereas if they swarm, since they are moving collectively,

the other individuals will “pull” them out of such local minima.

One issue to note here is that as in [85] it is possible to view the foraging (and

therefore social foraging) problem here as a distributed optimization problem (in which

each individual is individually searching for the minimum) or an optimal control

problem, where the objective is to find the “optimal” control policy or search strategy

that will maximize, for instance, the energy intake per time spent foraging. Here,

we are not concerned with this problem. We specify the search strategy, which is a

type of distributed gradient search, and are concerned with stability or convergence

properties of the strategy. Still, however, it is an optimization or distributed function

minimization problem. Note that in nature there are many species with a variety of

foraging or search strategies; some of these are most certainly not gradient-based and

hence lie outside the scope of this work.

62



In this chapter we will consider attraction/repulsion functions which are continu-

ous and have linear attraction, i.e., ga(‖xi−xj‖) = a for some a > 0 and all ‖xi−xj‖,

and bounded repulsion, i.e., gr(‖xi−xj‖)‖xi−xj‖ ≤ b for some b > 0 and all ‖xi−xj‖.

In other words, we consider the attraction/repulsion discussed in Section 3.2.1. The

continuity assumption is needed in order to guarantee the existence and uniqueness

of the solutions of the system. This assumption leads to the fact that g(·) vanishes

at the origin and brings a concern about collisions between the individuals. However,

by setting the magnitude of the repulsion high enough it is possible to avoid colli-

sions at the expense of getting a larger swarm size. Another possibility is to choose

unbounded repulsion, i.e., choose gr(·) such that gr(‖xi − xj‖)‖xi − xj‖ → ∞ as

‖xi − xj‖ → 0 as in Chapter 3. However, incorporating unbounded repulsion in the

context of social foraging swarms is a topic of further research. One function that

satisfies these conditions is the function g(·) in Eq. (2.2) discussed in Chapter 2.

4.2 Cohesion Analysis

Note that for the error ei = xi − x̄ we have

ėi = −∇xiσ(xi) −
M

∑

j=1,j 6=i

[a− gr(‖xi − xj‖)](xi − xj) +
1

M

M
∑

j=1

∇xjσ(xj),

and for the Lyapunov function Vi = 1
2
‖ei‖2 = 1

2
ei⊤ei we obtain

V̇i = −aM‖ei‖2 +
M

∑

j=1,j 6=i

gr(‖xi − xj‖)(xi − xj)⊤ei

−
[

∇xiσ(xi) − 1

M

M
∑

j=1

∇xjσ(xj)

]⊤

ei. (4.4)

Now, we have two assumptions.

Assumption 1 There exists a constant σ̄ > 0 such that ‖∇yσ(y)‖ ≤ σ̄ for all y.
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Assumption 2 There exists a constant Aσ > −aM such that

[

∇xiσ(xi) − 1

M

M
∑

j=1

∇xjσ(xj)

]⊤

ei ≥ Aσ‖ei‖2

for all xi and xj.

Note that Assumption 1 is a very reasonable assumption that is satisfied with

almost any realistic profile (e.g., plane and Gaussian profiles). In contrast, Assump-

tion 2 is a more restrictive assumption. Therefore, it may be satisfied only by few

profiles (e.g., a quadratic profile). With this in mind we state the following result.

Lemma 4 Consider the swarm described by the model in Eq. (4.1) with interindi-

vidual attraction/repulsion function g(·) as given in Eq. (4.2) with linear attraction

(i.e., ga(‖xi − xj‖) = a for some a > 0 and all ‖xi − xj‖) and bounded repulsion,

(i.e., gr(‖xi − xj‖)‖xi − xj‖ ≤ b for some b > 0 and all ‖xi − xj‖). Then, as t→ ∞

we have xi(t) → Bǫ(x̄(t)), where

Bǫ(x̄(t)) = {y(t) : ‖y(t) − x̄(t)‖ ≤ ǫ}

and

• If Assumption 1 is satisfied, then

ǫ = ǫ1 =
(M − 1)

aM

[

b+
2σ̄

M

]

,

• If Assumption 2 is satisfied, then

ǫ = ǫ2 =
b(M − 1)

aM + Aσ

.
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Proof: Case 1: From Assumption 1 one can show that we have
∥

∥

∥

∥

∥

∇xiσ(xi) − 1

M

M
∑

j=1

∇xjσ(xj)

∥

∥

∥

∥

∥

≤ 2σ̄(M − 1)

M
.

Using this bound and the bound on the repulsion to overbound V̇i we obtain

V̇i ≤ −aM‖ei‖
[

‖ei‖ − b(M − 1)

aM
− 2σ̄(M − 1)

aM2

]

,

which implies that as long as ‖ei‖ > ǫ1 we have V̇i < 0.

Case 2: Using Assumption 2 one can show that V̇i satisfies

V̇i ≤ −(aM + Aσ)‖ei‖
[

‖ei‖ − b(M − 1)

aM + Aσ

]

.

Therefore, we conclude that as long as ‖ei‖ > ǫ2 we have V̇i < 0.

This result is important because it proves the cohesiveness of the swarm and

provides a bound on the swarm size, defined as the radius of the hyperball centered

at x̄(t) and containing all the individuals. Therefore, since the center x̄(t) is not

stationary, in order to analyze the collective behavior of the swarm we need to consider

its motion.

In species that engage in social foraging it has been observed that the individuals

in swarms desire to be close (but not too close) to other individuals. In the mean

time, they want to find more food. The balance between these desires determines

the size of the swarm (herd, flock or school). Our model captures this by having an

interindividual attraction/repulsion term and also a term due to the environment (or

the nutrient profile) affecting their motion. In the results above, the resulting swarm

sizes depend on the interindividual attraction/repulsion parameters (a and b) and the

parameters of the nutrient profile (σ̄ and Aσ). Moreover, the dependence on these

parameters makes intuitive sense. Larger attraction (larger a) leads to a smaller
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swarm size, larger repulsion (larger b) leads to a larger swarm size, larger σ̄ (fast

changing landscape) leads to a larger swarm. These concepts are present in foraging

theory in biology and model the balance of the desire of the individuals to “stick

together” with the desire to “get more food” that was created by evolutionary forces.

Note also the effect of Aσ on the bound ǫ2. If Aσ > 0, then ǫ2 decreases with increase

in Aσ which is expected since there is an extra attractive force on the individuals.

If, on the other hand, Aσ < 0, then ǫ2 increases with increase in the magnitude of

Aσ. The threshold Aσ = −aM is the point at which the interindividual attraction is

not anymore guaranteed to “hold the swarm together” since it is counterbalanced by

the repulsion from the profile. In other words, beyond that threshold the repulsion

is so intense that the “desire to keep away from the center of the profile” dominates

(or is more plausible than) the “desire to stick together.” This helps to quantify the

inherent balance between the sometimes conflicting desires for swarm cohesiveness

and for following cues from the environment to find food. Such behavior can be seen

in, for example, fish schools when a predator attacks the school. In that case the fish

move very fast in all directions away from the predator [84].

Note that the desire of the individuals to “stick together” depends on the interindi-

vidual attraction parameter a and the number of individuals M . This is consistent

with some biological swarms, where it has been observed that individuals are attracted

more to larger (or more crowded) swarms. In nature the values of these parameters

have been tuned for millions of years by the evolutionary process.

The above result is an asymptotic result, i.e., xi(t) → Bǫ(x̄(t)) as t → ∞. Note,

however, that for any ǫ∗ > ǫ, xi(t) will enter Bǫ∗(x̄(t)) in a finite time. In other words,
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it can be shown that the swarm of any size a little larger than ǫ will be formed in a

finite time.

4.3 Motion along a Plane Attractant/Repellent Profile

In this section we assume that the profile is described by a plane equation of the

form

σ(y) = a⊤σ y + bσ, (4.5)

where aσ ∈ Rn and bσ ∈ R. One can see that ∇yσ(y) = aσ and Assumption 1 holds

with σ̄ = ‖aσ‖. However, we also note that ∇xiσ(xi)− 1
M

∑M
j=1 ∇xjσ(xj) = 0 for all i,

implying that the last term in Eq. (4.4) vanishes. Therefore, for this profile we have

ǫ = ǫp =
b(M − 1)

aM

as the bound on the size of the swarm. Note that this is exactly the same bound

obtained for aggregating swarms. This is because for this profile, when we consider

the relative motions of the individuals with respect to the center, the effect of the

profile cancel out. Note also that for this case we have

˙̄x(t) = −aσ,

which implies that the center of the swarm will be moving with the constant velocity

vector −aσ (and eventually will diverge towards infinity where the minimum of the

profile occurs).

The motions in this section can be viewed as a model of a foraging herd that

moves in a constant direction (while keeping its cohesiveness) with a constant speed

such as the one considered in [49]. Another view of the system in this section could

be as a model of a multi-agent system in which the autonomous agents move in a
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formation with a constant speed. In fact, transforming the system to ei coordinates

we obtain

ėi =
M

∑

j=1,j 6=i

g(ei − ej), i = 1, . . . ,M,

which is exactly the model of an aggregating swarm considered in Chapter 2 and

Chapter 3. Therefore, all the results obtained in these chapters apply for ei. In par-

ticular, we have ėi(t) → 0 as t → ∞. In other words, the swarm converges to a con-

stant configuration or a formation (i.e., constant relative positions) that moves with

a constant speed in the direction of −aσ. Then, by choosing the attraction/repulsion

functions to be pair dependent gij(·) as was discussed in Section 3.3.2, we can achieve

any desired moving formation.

4.4 Quadratic Attractant/Repellent Profiles

In this section, we will consider

σ(y) =
Aσ

2
‖y − cσ‖2 + bσ, (4.6)

where Aσ ∈ R, bσ ∈ R, and cσ ∈ Rn. Note that this profile has a global extremum

(either a minimum or a maximum depending on the sign of Aσ) at y = cσ. Its gradient

at a point y ∈ Rn is given by

∇yσ(y) = Aσ(y − cσ).

Assume that Aσ > −aM . Then, with a simple manipulation one can show that for

this profile Assumption 2 holds with strict equality. Therefore, the result of Lemma 4

holds with the bound

ǫq = ǫ2 =
b(M − 1)

aM + Aσ

.
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Now, let us analyze the motion of the center x̄. Substituting the gradient in the

equation of motion of x̄ given in Eq. (4.3) we obtain

˙̄x = −Aσ(x̄− cσ).

Defining the error between the center x̄ and the extremum point cσ as eσ = x̄ − cσ,

we have

ėσ = −Aσeσ,

which implies that as t → ∞ we have eσ(t) → 0 if Aσ > 0 and that eσ(t) → ∞ if

Aσ < 0 and eσ(0) 6= 0. Therefore, we have the following result.

Lemma 5 Consider the swarm described by the model in Eq. (4.1) with interindivid-

ual attraction/repulsion function g(·) as given in Eq. (4.2). Assume that the σ-profile

of the environment is given by Eq. (4.6). As t→ ∞ we have

• If Aσ > 0, then x̄(t) → cσ (i.e., the center of the swarm converges to the global

minimum cσ of the profile), or

• If Aσ < 0 and x̄(0) 6= cσ, then x̄(t) → ∞ (i.e., the center of the swarm diverges

from the global maximum cσ of the profile).

Note that this result holds for any Aσ, i.e., we do not need the assumption Aσ >

−aM . (We need the assumption Aσ > −aM to guarantee cohesiveness of the swarm,

i.e., to guarantee the bound ǫq on the swarm size.) Note also that for the case

with Aσ > 0 for any finite ǫ∗ > 0 (no matter how small) it can be shown that

‖x̄(t) − cσ‖ < ǫ∗ is satisfied in a finite time. In other words, ‖x̄‖ enters any ǫ∗

neighborhood of cσ in a finite time. In contrast, for the case with Aσ < 0 and x̄(0) 6= cσ
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for any D > 0 (no matter how large) it can be shown that ‖x̄(t)−cσ‖ > D is satisfied

in a finite time, implying that ‖x̄‖ leaves any bounded D-neighborhood of cσ in a

finite time. If Aσ < 0 and x̄(0) = cσ, on the other hand, then x̄(t) = cσ for all t. In

other words, for this case the swarm will be either “trapped” around the maximum

point because of the interindividual attraction (i.e., desire of the individuals to be

close to each other) or will disperse in all directions if the interindividual attraction

is not strong enough (i.e., Aσ < −aM). Note, however, that even if they disperse,

the center x̄ will not move and stay at cσ.

Here, we did not consider the Aσ = 0 case. This is because if Aσ = 0 then the

profile is uniform everywhere and ∇yσ(y) = 0 for all y ∈ Rn. Therefore, the existence

of the profile does not affect the motion of the individuals and stability analysis is

reduced to the case of nondrifting aggregating swarms considered in Chapter 2 and

Chapter 3.

Combining the results of Lemmas 4 and 5 together with the above observations

gives us the following result.

Theorem 4 Consider the swarm described by the model in Eq. (4.1) with interindi-

vidual attraction/repulsion function g(·) as given in Eq. (4.2) with linear attraction

and bounded repulsion. Assume that the σ-profile of the environment is given by

Eq. (4.6) and that Aσ > −aM . Then, the following hold

• If Aσ > 0, then for any ǫ∗ > ǫ2 all individuals i = 1, . . . ,M , will enter Bǫ∗(cσ)

in a finite time,

• If Aσ < 0 and x̄(0) 6= cσ, then for any D <∞ all individuals i = 1, . . . ,M , will

exit BD(cσ) in a finite time.
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This result is important because it gives finite time convergence (divergence) of

all the individuals to nutrient rich (from toxic) regions of the profile.

Quadratic profiles are rather simple profiles and the results in this section are

intuitively expected. In the next section, we will consider a profile which is a sum of

Gaussians and has multiple extremum points.

4.5 Multimodal Gaussian Attractant/Repellent Profiles

In this section, we will consider a profile which is a combination of Gaussian

profiles,

σ(y) = −
N

∑

i=1

Ai
σ

2
exp

(

−‖y − ciσ‖2

liσ

)

+ bσ, (4.7)

where ciσ ∈ Rn, liσ ∈ R+, Ai
σ ∈ R for all i = 1, . . . , N , and bσ ∈ R. Note that since

the Ai
σ’s can be positive or negative there can be both hills and valleys leading to a

“more irregular” profile as in [85].

The gradient of the profile at a point y is given by

∇yσ(y) =
N

∑

i=1

Ai
σ

liσ
(y − ciσ) exp

(

−‖y − ciσ‖2

liσ

)

.

Note that for this profile Assumption 1 is satisfied with σ̄ =
∑N

i=1
|Ai

σ|√
2liσ

exp
(

−1
2

)

.

Therefore, from Lemma 4 we have

ǫG = ǫ1 =
(M − 1)

aM

[

b+
1

M

N
∑

i=1

|Ai
σ|

√

2

liσ
exp

(

−1

2

)

]

as the bound on the swarm size.

Using the profile gradient equation we can write the equation of motion of the

swarm center x̄ as

˙̄x = − 1

M

N
∑

j=1

Aj
σ

ljσ

M
∑

i=1

(xi − cjσ) exp

(

−‖xi − cjσ‖2

ljσ

)

.
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As one can see, it is not obvious from this equation how the center x̄ will move.

Therefore, for this type of profile it is not easy to prove convergence of the individuals

to minima of the profile for the general case. However, under some conditions it is

possible to prove convergence to the vicinity of a particular cj
σ (if cjσ is the center of a

valley) or divergence from the neighborhood of a particular cj
σ (if cjσ is the center of

a hill).

Lemma 6 Consider the swarm described by the model in Eq. (4.1) with interindi-

vidual attraction/repulsion function g(·) as given in Eq. (4.2). Assume that the σ-

profile of the environment is given by Eq. (4.7). Moreover, assume that for some

k, 1 ≤ k ≤ N , we have

‖xi(0) − ckσ‖ ≤ hk

√

lkσ

for some hk and for all i = 1, . . . ,M , and that for all j = 1, . . . , N, j 6= k we have

‖xi(0) − cjσ‖ ≥ hj

√

ljσ

for some hj , j = 1, . . . , N, j 6= k and for all i = 1, . . . ,M . (This means that the

swarm is sufficiently near ckσ and sufficiently far from other cjσ, j 6= k.) Moreover,

assume that

Ak
σ

√

lkσ
hk exp

(

−h2
k

)

>
1

α

N
∑

j=1,j 6=k

|Aj
σ|

√

ljσ
hj exp

(

−h2
j

)

,

is satisfied for some 0 < α < 1. Then, for ek
σ = x̄− ckσ as t→ ∞ we will have

• If Ak
σ > 0, then ‖ek

σ(t)‖ ≤ ǫG + αhk

√

lkσ

• If Ak
σ < 0 and ‖ek

σ(0)‖ ≥ emax(0)+αhk

√

lkσ, then ‖ek
σ(t)‖ ≥ ǫG +αhk

√

lkσ, where

emax = maxi=1,...,M{ei}.
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Proof: Let V k
σ = 1

2
ek⊤

σ ek
σ be the Lyapunov function.

Case 1: Ak
σ > 0: Taking the derivative of V k

σ along the motion of the swarm we

have

V̇ k
σ = −

N
∑

j=1

Aj
σ

Mljσ

M
∑

i=1

exp

(

−‖xi − cjσ‖2

ljσ

)

(xi − cjσ)⊤ek
σ

= − Ak
σ

Mlkσ

M
∑

i=1

exp

(

−‖xi − ckσ‖2

lkσ

)

‖ek
σ‖2 − Ak

σ

Mlkσ

M
∑

i=1

exp

(

−‖xi − ckσ‖2

lkσ

)

ei⊤ek
σ

−
N

∑

j=1,j 6=k

Aj
σ

Mljσ

M
∑

i=1

exp

(

−‖xi − cjσ‖2

ljσ

)

(xi − cjσ)⊤ek
σ

≤ − Ak
σ

Mlkσ

M
∑

i=1

exp

(

−‖xi − ckσ‖2

lkσ

)

‖ek
σ‖2 +

Ak
σ

Mlkσ

M
∑

i=1

exp

(

−‖xi − ckσ‖2

lkσ

)

‖ei‖‖ek
σ‖

+
N

∑

j=1,j 6=k

|Aj
σ|

Mljσ

M
∑

i=1

exp

(

−‖xi − cjσ‖2

ljσ

)

‖xi − cjσ‖‖ek
σ‖

≤ − Ak
σ

Mlkσ

M
∑

i=1

exp

(

−‖xi − ckσ‖2

lkσ

)

‖ek
σ‖ ×

×



‖ek
σ‖ − emax −

∑N

j=1,j 6=k
|Aj

σ|
Ml

j
σ

∑M

i=1 exp
(

−‖xi−c
j
σ‖2

l
j
σ

)

‖xi − cjσ‖
Ak

σ

Mlkσ

∑M
i=1 exp

(

−‖xi−ck
σ‖2

lkσ

)



 ,

which implies that we have V̇ k
σ < 0 as long as ‖ek

σ‖ > emax + αhk

√

lkσ, and from

Lemma 4 we know that as t→ ∞ we have emax(t) ≤ ǫG.

Case 2: Ak
σ < 0: Similar to above, for this case it can be shown that

V̇ k
σ ≥ |Ak

σ|
Mlkσ

M
∑

i=1

exp

(

−‖xi − ckσ‖2

lkσ

)

‖ek
σ‖

[

‖ek
σ‖ − emax − αhk

√

lkσ

]

,

which implies that if ‖ek
σ‖ > emax + αhk

√

lkσ, we have V̇σ > 0. In other words, ‖ek
σ‖

will increase. From Lemma 4 we have that emax is decreasing. Therefore, since by

hypothesis ‖ek
σ(0)‖ > emax(0) + αhk

√

lkσ we have that V̇σ > 0 holds at t = 0. Now,

consider the boundary ‖ek
σ‖ = ǫG +hk

√

lkσ. It can be shown that on the boundary we
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have

V̇σ ≥
|Ak

σ|hk(1 − α)
(

ǫG + hk

√

lkσ

)

exp (−h2
k)

√

lkσ
> 0,

from which using (a corollary to) the Chetaev Theorem we conclude that ‖ek
σ‖ will

exit the ǫG + hk

√

lkσ-neighborhood of ckσ.

Now, combining the results of Lemmas 4 and 6 we can state the following result.

Theorem 5 Consider the swarm described by the model in Eq. (4.1) with interindi-

vidual attraction/repulsion function g(·) as given in Eq. (4.2) with linear attraction

and bounded repulsion. Assume that the σ-profile of the environment is given by

Eq. (4.7). Assume that the conditions of Lemma 6 hold. Then, as t → ∞ all indi-

viduals will

• Enter the hyperball Bǫ5(c
k
σ), where ǫ5 = 2ǫG + αhk

√

lkσ, if Ak
σ > 0, or

• Leave the hk

√

lkσ-neighborhood of ckσ, if Ak
σ < 0.

The only drawback of the above result is that we need

2ǫG + αhk

√

lkσ < hk

√

lkσ

in order for the result to make sense. This implies that we need

ǫG <

(

1 − α

2

)

hk

√

lkσ

which sometimes may not be easy to satisfy. However, one issue to note is that ǫG is

a very conservative bound. In reality, the actual size of the swarm is typically much

smaller than the bound (e.g., one can derive a tighter bound on the root-mean-square

of the error as was done in Chapter 3 for aggregating swarms.) Therefore, effectively,
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ǫG can be replaced with emax(∞) < ǫG and it may be easier to satisfy the above

condition.

Remark: If N = 1 we have a Gaussian profile (i.e., we have only a single valley

or hill), which is a special case of the multimodal Gaussian profiles considered in

this section. For this case, the conditions of Lemma 6 are automatically satisfied

(i.e., the swarm members are automatically sufficiently close to the single center and

sufficiently far from other centers). Then, as in the case of the quadratic profile, it

can be shown that as t→ ∞ all the individuals converge to the neighborhood of the

single minimum for Aσ > 0 or exit any bounded neighborhood of the single maximum

for Aσ < 0. The results obtained, however, are weaker than the ones for the quadratic

profile. For example, for the Gaussian profile we cannot show that the center x̄(t)

converges to cσ for Aσ > 0 (which was possible for the quadratic profile).

4.6 Analysis of Individual Behavior in a Cohesive Swarm

The results above do not provide information about the ultimate behavior of

the individuals. In other words, they do not specify whether the individuals will

eventually stop moving (as was the case in aggregating swarms) or will end up in

oscillatory motions within the specified regions. In this section, we will investigate

the ultimate behavior of the individuals. In particular, we will analyze the ultimate

behavior of the individuals in a quadratic profile with Aσ > 0, and in a multimodal

Gaussian profile with the conditions of Lemma 6 for the Ak
σ > 0 case satisfied. To

this end, once again we consider the state x = [x1⊤, . . . , xM⊤]⊤ of the system and the

invariant set of equilibrium points be Ωe = {x : ẋ = 0}. We will prove that for the
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above mentioned cases as t → ∞ the state x(t) converges to Ωe, i.e., eventually all

the individuals stop moving.

Theorem 6 Consider the swarm described by the model in Eq. (4.1) with an attrac-

tion/repulsion function g(·) as given in Eq. (4.2) with linear attraction and bounded

repulsion. Assume that the σ-profile is one of the following

• A quadratic profile in Eq. (4.6) with Aσ > 0, or

• A multimodal Gaussian profile in Eq. (4.7) with conditions of Lemma 6 for the

Ak
σ > 0 case satisfied.

Then, as t→ ∞ we have the state x(t) → Ωe.

The proof of this result follows the lines in the proof of Theorem 3 in Chapter 3 and

therefore is omitted.

One issue to note here is that for the cases excluded in the above theorem, i.e.,

for the plane profile, quadratic profile with Aσ < 0, and the multimodal Gaussian

profile for the case with Ak
σ < 0 or with initial conditions not necessarily satisfying

the conditions of Theorem 5, the sets defined as Ωc = {x : J(x) ≤ J(x(0))} may not

be compact. Therefore, we cannot apply the LaSalle’s Invariance Principle (on which

the proof is based) for these cases. Moreover, since they are (possibly) diverging,

intuitively we do not expect them to stop their motion. Furthermore, note that for

the plane profile we have Ωc = ∅. In other words, there is no equilibrium for the

swarm moving in a plane profile unless its slope is zero.
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4.7 Simulation Examples

In this section we will provide some simulation examples to illustrate the theory

in the preceding sections. We chose an n = 2 dimensional space for ease of visu-

alization of the results and used the region [0, 30] × [0, 30] in the space. In all the

simulations performed below we used M = 11 individuals. As parameters of the at-

traction/repulsion function g(·) in Eq. (2.2) we used a = 0.01, b = 0.4, and c = 0.01

for most of the simulations and a = 0.1 for some of them. We performed simulations

for all the profiles discussed in this article.

The first plot shown in Figure 4.2 is for a plane profile with aσ = [0.1, 0.2]⊤ for

the plots on the left and aσ = [0.5, 1]⊤ for those on the right. One easily can see
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Figure 4.2: The response for a plane profile.

that in both of the cases, as expected, individuals move along the gradient aσ exiting
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the simulation region toward unboundedness. Note that for the case aσ = [0.1, 0.2]⊤

initially some of the individuals move in a direction opposite to the negative gradient.

This is because the interindividual attraction is much stronger than the intensity of

the profile. In contrast, for the aσ = [0.5, 1]⊤ case, the intensity of the profile is high

enough to dominate the interindividual attraction. This, of course, does not mean

that the swarm will not aggregate. As they move they will eventually aggregate as

was shown in the preceding sections. We also show the plots of the centers. Note

that the motion of the centers is similar for both of the cases (as expected).

The next result is for the quadratic profile as shown in Figure 4.3. We chose a
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Figure 4.3: The response for a quadratic profile.

profile with extremum at cσ = [20, 20]⊤ and magnitude Aσ = ±0.02. The two plots

on the left of the figure show the paths of the individuals and the center of the swarm

for the case Aσ > 0, whereas those on the right are for the Aσ < 0 case. Once more,
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we observe that the results support the analysis of preceding sections. Note also that

the center x̄ of the swarm converges to the minimum of the profile cσ for the Aσ > 0

case and diverges from the maximum for the Aσ < 0 case.

Results of a similar nature were obtained also for the Gaussian profile (i.e., a

multimodal Gaussian profile with N = 1) as shown in Figure 4.4. Once more we
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Figure 4.4: The response for a Gaussian profile.

chose cσ = [20, 20]⊤ as the extremum of the profile. The other parameters of the

profile were chosen to be Aσ = ±2 and lσ = 20. Note that for the Aσ > 0 case, even

though in theory it cannot be guaranteed that x̄→ cσ, in simulations we observe that

this is apparently the case. This was happening systematically in all the simulations

that we performed.

In the simulation examples for the multimodal Gaussian profile we used the profile

shown in Figure 4.5, which has several minima and maxima. The global minimum is
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located at [15, 5]⊤ with a magnitude of 4 and a spread of 10. The plot in Figure 4.6

Figure 4.5: The multimodal Gaussian profile.

shows two example runs with initial member positions nearby a local minimum and

show convergence of the entire swarm to that minimum. The attraction parameter

a was chosen to be a = 0.01 for this case. Figure 4.7, on the other hand, illustrates

the case in which we increased the attraction parameter to a = 0.1. You can see

that the attraction is so strong that the individuals climb gradients to form a cohesive

swarm. For this and similar cases, the manner in which the overall swarm will behave

(where it will move) depends on the initial position of the center x̄ of the swarm. For

these two runs the center happened to be located on regions which caused the swarm

to diverge. For some other simulation runs (not presented here) with different initial

conditions the entire swarm converges to either a local or global minima. Figure 4.8

shows two runs for which we decreased the attraction parameter again to a = 0.01.
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Figure 4.6: The response for a multimodal Gaussian profile (initial positions close to
a minimum).
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Figure 4.7: The response for a multimodal Gaussian profile.
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For both of the simulations you can see that the swarm fails form a cohesive cluster
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Figure 4.8: The response for a multimodal Gaussian profile.

since the initial positions of the individuals are such that they move to a nearby

local minima and the attraction is not strong enough to “pull them out” of these

valleys. This causes formation of several groups or clusters of individuals at different

locations of the space. Note, however, that Lemma 4 still holds. The swarm does

necessarily converge to a single minimum, because the size ǫG of the swarm is large and

contains all the region in which all the individuals finally converge. For these reasons,

the center x̄ of the swarm does not converge to any minimum (as expected). Note

also that during their motion to the groups, the individuals try to avoid climbing

gradients and this results in motions resembling the motion of individuals in real

biological swarms.
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CHAPTER 5

MODELING AND ANALYSIS OF THE AGGREGATION
AND COHESIVENESS OF HONEY BEE CLUSTERS AND

IN-TRANSIT SWARMS

In this last chapter of of this dissertation, we consider swarming in honey bees as an

example for real biological swarms. We use some of the ideas developed in Chapter 2,

3, and 4 for modeling and analysis of the aggregation and cohesiveness of honey bee

clusters and in-transit swarms. The analysis in this chapter is not very rigorous. The

reasons for that are that first it is difficult to perform a full scale rigorous analysis for

the model that we consider, and second the intended audience are the researchers in

biology, who are not very familiar with techniques like Lyapunov’s stability theory.

In the next section, we begin by providing some background on honey bees.

5.1 Introduction

A colony of honey bees achieves a high level of organization via dynamic division

of labor, communications, and distributed decision making [93, 92, 116]. There is no

“boss,” yet the colony is very effective in foraging, comb construction, hive defense,

thermoregulation, and other activities [93]. In nature a colony lives in, for example,

the hollow of a tree. There is one queen, a few drones, and many workers. The

queen’s responsibility is reproduction since essentially it is the only bee that can lay
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eggs. When a colony gets crowded the worker bees start rearing new queens and after

some time the old queen leaves the hive with part of the workers and drones. Since

she is the only bee that can lay eggs, her survival is of paramount importance for the

survival of the colony. Therefore, the bees that leave the colony should not loose her.

For that reason, once the queen leaves the hive the other bees cluster around her and

they settle on a nearby location (e.g., a branch of a tree). The cluster stays at this

location for a day or two while some of the bees, called scouts, search for a new suitable

nest location. Once a new location is chosen, the cluster lifts, becomes airborne, and

the swarm collectively moves to the new location. Some references on experimental

work that study these activities are given in [101, 76, 10, 11, 77, 73, 3, 1, 95, 91].

During the process of choosing the new nest site, there is a distributed collective

decision making process. However, here we will not consider this process. Instead,

we are only interested in the swarming behavior of the bees, i.e., the clustering of

the bees after they leave the original hive and the stable (cohesive) motion of the

in-transit swarm while moving to the newly chosen nest site.

5.2 Clustering of the Honey Bees Around Their Queen

It is believed that clustering of the honey bees around their queen right after

they leave their original hive is largely due to attraction of the bees to some of the

pheromones laid by the queen. In particular, it is believed that the two pheromones 9-

oxodecenoic acid and 9-hydroxydecenoic acid affect the cluster formation and stability

in swarming honey bees [10, 11, 77, 73, 3] since the bees are attracted to these

pheromones. Researchers believe that these two pheromones act together in a sense

that 9-oxodecenoic acid attracts bees towards the queen from large distances, whereas
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9-hydroxydecenoic acid “stabilizes” (or keeps cohesive) the cluster on short distances.

Note, however, that these may not be the only substances or means in aiding in

the cluster formation. For example, it has been observed that some bees expose

their Nasonov glands (secreting Nasonov pheromone) to attract other bees and also

communicate by other means such as buzz-running, waggle dancing, and a vibration

signal [12, 94, 66]. In other words, the reasons for and mechanisms of swarming may

be very complex and all the details are still not exactly known. However, it is not

necessary to know all the details of the swarming mechanism in honey bees in order

to describe the overall (or gross) behavior and as mentioned above it is known that

the two most important aspects of swarming are the queen pheromones 9-oxodecenoic

acid and 9-hydroxydecenoic acid. Here we will try to mathematically model the odor

profile of the above acids and the motion of the bees along that profile.

5.2.1 Clustering with No Interindividual Attraction

Consider a n = 3 dimensional state space. (Note that for the below analysis this is

not essential. In fact n can be of any order. We assume n = 3 in order to be consistent

with real life swarms.) Assume that the queen is located at a position xq ∈ Rn and

that she is stationary. Denote with B the set of the rest of the bees (which left the

original hive together with the queen). Assume that there are M (worker) bees in B

and denote with xi the position of the ith worker bee. Below, first we will model the

pheromone profile due to the queen secreted attractant pheromones and the “private

area” of the bees. Then, we will specify the equation of motion of the bees along this

profile and analyze the characteristics of the emergent behavior.
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Modeling the Queen’s Pheromone

It is natural to expect that the concentration of the odor released by the queen

is high around her and is decreasing as the distance from her increases due to dif-

fusion. (Here we do not distinguish between the odors of 9-oxodecenoic acid and

9-hydroxydecenoic acid. Instead, we consider their combined effect.) Therefore, we

model the odor profile using a Gaussian type exponential function. In other words,

we assume that the concentration or profile of the attractant odor released by the

queen at a point y ∈ Rn is given by

Jq
a(y) = −bq

2
exp

(

−‖y − xq‖2

cq

)

,

where bq

2
is the “magnitude” and cq is the “spread” of the profile. Such a profile is

shown in the upper left plot of Figure 5.1 for the one dimensional case (i.e., n = 1)

and parameters bq = 10 and cq = 10.

Note that the values of the profile at distances closer to the queen are smaller than

those farther from her and the profile has a global minimum at y = xq. We assume

that lower values of the profile correspond to higher attractant concentration, similar

to the nutrient profile in foraging swarms considered in Chapter 4. (Note that the

sign of the values of the profile is not important for the below analysis. The above

profile is negative; however, if it were required to be positive, we could simply add a

constant and shift the entire profile up without affecting the subsequent analysis.) It

is not clear to us whether in reality the decay in the odor is Gaussian. Moreover, for

the analysis below it is not essential that the profile is of Gaussian type. In fact, it

can be any regular function that has a global minimum at y = xq. Here by a regular

function we mean a function which is a decreasing function of the distance ‖xi −xq‖.
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For example, we could equally well choose

Jq
a(y) = − bq

‖y − xq‖2

(assuming y 6= xq) or any other similar function. We chose the Gaussian function

because it represents a fast decaying profile and the decay in the queen odors might

have such characteristics. Since honey bees are attracted to the odor, we would expect

them to move to the point with higher odor concentration, i.e., toward the queen since

the minimum of the profile occurs at the location of the queen. For this reason, it

is natural to assume that the bees try to move along the (negative) gradient of the

profile (i.e., for each bee i we have its position update be along −∇xiJq
a(xi)). Taking

the gradient of the profile J q
a(y) at a point y we obtain

∇yJ
q
a(y) =

bq
cq

(y − xq) exp

(

−‖y − xq‖2

cq

)

.

One drawback of constraining the motion of the members (individual bees) on

straight lines along −∇yJ
q
a(y) (which are along −(y − xq)), is that in order for them

to encircle the queen we need them initially to be spread all around her. However,

assuming this is not very restrictive.

Modeling the Body Size or Private Area of the Bees

In the above representation, the bees are modeled as point particles, i.e., the

above model does not take into account the finite body size of the bees and the

queen. Therefore, it will (probably) cause all the bees to move to a single point which

is xq, the position of the queen (since she does not move). To model the finite body

size of the bees we introduce finite and very short range (about a body size range)
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Figure 5.1: The queen profile and its gradient for bq = 10, cq = 10, cq1 = 0.1, and
cq2 = 0.1.

unbounded repulsion in the form of

Jq
r (y) =

{ [

c
q
1

‖y−xq‖2 − c
q
2

‖y−xq‖

]

+
(cq

2
)2

4c
q
1

, if ‖y − xq‖ ≤ lqr =
2c

q
1

c
q
2

, y 6= xq

0, otherwise,

where cq1 and cq2 are positive constants. An example of such a function is shown

in the upper right plot in Figure 5.1 for the parameters cq
1 = cq2 = 0.1. Note that

the value of lqr is usually very small. The additive scalar
(cq

2
)2

4c
q
1

is used to scale the

profile in order to avoid discontinuities. We would like to emphasize that having the

repulsion as defined above is also not essential. In fact, any function with a gradient

whose norm becomes unbounded on small distances (i.e., lim‖y−xq‖→0+ ‖∇yJ
q
r (y)‖ →

∞) and is nonzero only on a small range will suffice. If you would like to model

the body size in a “hardlimiting” way, then you can choose a function satisfying
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lim‖y−xq‖→η+ ‖∇yJ
q
r (y)‖ → ∞ where η is a small positive constant representing the

actual physical size of the queen bee, and assuming that initially ‖y − xq‖ > η.

The gradient of J q
r (y) at a point y is given by

∇yJ
q
r (y) =

{

−(y − xq)
[

2c
q
1

‖y−xq‖4 − c
q
2

‖y−xq‖3

]

, if ‖y − xq‖ ≤ lqr , y 6= xq

0, otherwise,

which negated is along (y − xq) (i.e., in the opposite direction to the attraction to

the pheromones). Note also that ∇yJ
q
r (lqr) = 0 and there is no discontinuity in the

gradient. We need continuity of −∇yJ
q
r (y) for uniqueness of the solutions, because it

will appear in the motion equation of the bees in the differential equation model that

we specify below.

Combining these functions, the overall attraction/repulsion profile of the queen is

given by

Jq(y) = Jq
a(y) + Jq

r (y).

Note that both J q
a(y) and Jq

r (y) and therefore J q(y) are symmetric with respect to

the position xq of the queen bee and depend only on the distance to her (i.e., they

depend only on ‖y−xq‖). This implies that we ignore the environmental effects such

as the effect of the wind on the odor profile of the queen in the current model and

analysis. The lower left plot in Figure 5.1 shows an example of such J q(y) profile,

which is the summation of the upper two plots in the figure. The gradient of the

profile is shown in the lower right plot. The gradient of the profile, which corresponds

to the attraction/repulsion function g(·) in Eq. (3.2) in Chapter 3, is rather more

important than the absolute value of the profile itself. In fact, in R1 if the gradient

has the same sign as the relative position of an individual and the queen (the first

and the third quadrant in the figure), then the individual is attracted to the queen
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(which occurs on large distances), whereas if the gradient has the opposite sign to the

relative position (the second and the forth quadrant in the figure), then the individual

is repelled by the queen (which occurs on short distances). (In higher dimensions,

the attractiveness/repulsiveness depends on the inner product of the gradient and the

relative position vector.)

Similar to the queen bee, we can model the finite size of each individual (worker)

bee i by the repulsion potential

J i
r(y) =

{ [

ci
1

‖y−xi‖2 − ci
2

‖y−xi‖

]

+
(ci

2)2

4ci
1

, if ‖y − xi‖ ≤ lir =
2ci

1

ci
2

, y 6= xi

0, otherwise,

whose gradient is similar to the gradient of J q
r (y) above. Note that in this model

so far we do not have attraction between the individual bees themselves. In other

words, we ignore the effects of Nasonov pheromones secreted by (some) of the bees

or any other type of interindividual attraction (by visually seeing the other bees,

for example) as well as any communication between the bees. We will incorporate

a simple type of interindividual attraction later. Incorporating dynamics based on

some type of communication is a topic of further research.

Below, we will model the motion of the worker bees. Note that we do not specify

an equation of motion for the queen since we assume that she is stationary. This is a

reasonable assumption since we are concerned only with the clustering phenomena at

this point. In experiments with real bees researchers sometimes confine the queen in

a cage and fix the cage on a tree, on the ground, or in a hive away from the original

swarm to observe whether the swarm members will move toward and form a cluster

around her.
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Modeling Bee Motion and Aggregation

The motion of each individual (worker) bee can be assumed to be along the direc-

tion of the gradient of the pheromone profile of the queen, while avoiding collisions

with her and the other bees. In other words, the motion of each worker bee can be

represented with

ẋi = −∇xiJq(xi) −
∑

j∈B,j 6=i

∇xiJ j
r (x

i)

= −gq(‖xi − xq‖)(xi − xq) +
∑

j∈B,j 6=i

gi(‖xi − xj‖)(xi − xj), (5.1)

where

gq(‖xi − xq‖) =







bq

cq
exp

(

−‖xi−xq‖2

cq

)

−
[

2c
q
1

‖xi−xq‖4 − c
q
2

‖xi−xq‖3

]

, if ‖xi − xq‖ ≤ lqr ,

bq

cq
exp

(

−‖xi−xq‖2

cq

)

, otherwise,

gi(‖xi − xj‖) =

{ [

2ci
1

‖xi−xj‖4 − ci
2

‖xi−xj‖3

]

, if ‖xi − xj‖ ≤ lir,

0, otherwise,

and B is the set of all bees excluding the queen with a total of M individuals (bees),

as mentioned above. Note that there exists δq such that gq(δq) = 0 and

{

gq(‖xi − xq‖) < 0, if ‖xi − xq‖ < δq,
gq(‖xi − xq‖) > 0, if ‖xi − xq‖ > δq.

Note also that we have

gi(‖xi − xj‖) ≥ 0,

for all i and for all j, where the equality holds for ‖xi − xj‖ ≥ lir. Now we make

a simplification by assuming that the size and therefore the repulsion range and

magnitude of all the worker bees is the same. In other words, we assume that ci
1 = c1

and ci2 = c2 for all i ∈ B, which implies that gi(‖y‖) = g(‖y‖) for all i ∈ B.

One objection to the model in Eq. (5.1) could be the fact that in regions in which

∇xiJq(xi) is small, the motion of the ith bee will also be slow. Note, however, that
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we could choose J q(y) such that ∇yJ
q(y) is almost constant (e.g. J q(y) = bq‖y− xq‖

with ∇yJ
q(y) = bq

(y−xq)
‖y−xq‖). Even though such a J q(y) may not be a very realistic

representation of the odor profile, it still may represent a good model. It may represent

the case in which for the bee’s motion it is not important what the underlying profile

is, as long as it knows the direction of its gradient, and moves with constant speed

along it.

Defining the distance between the position of the ith bee and the queen as ei =

xi − xq we obtain

ėi = −gq(‖ei‖)ei +
∑

j∈B,j 6=i

g(‖xi − xj‖)(xi − xj),

since the queen is stationary (i.e., ẋq = 0). Now, let the Lyapunov function for the

ith bee be Vi = 1
2
‖ei‖2 = 1

2
ei⊤ei. Taking its derivative along the motion of the bees

we obtain

V̇i = −gq(‖ei‖)‖ei‖2 +
∑

j∈B,j 6=i

g(‖xi − xj‖)(xi − xj)⊤ei.

Note here that since the inner product (xi − xj)⊤ei can be both positive and nega-

tive, we cannot directly say anything about the sign of V̇i and cannot directly draw

conclusions about the motion of the bee. However, if the bee is far away (out of the

repulsion range) of the queen and the other bees (i.e., if ‖ei‖ > δq and ‖xi − xj‖ > lr

for all j 6= i), then we can conclude that it moves towards the queen. To see this,

note that if ‖xi − xj‖ > lr for all j 6= i, then we have g(‖xi − xj‖) = 0 for all j 6= i

implying that

V̇i = −gq(‖ei‖)‖ei‖2.

Moreover, since ‖ei‖ > δq we have gq(‖ei‖) > 0 and therefore V̇i < 0 implying that Vi

(and therefore ‖ei‖) decreases (i.e., the bee moves towards the queen).
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Note that this is an expected result, which simply implies that if there are no

other bees around the bee in question to hinder its motion, then its motion will

depend only on the pheromone concentration (the attractant profile) and following

its negative gradient (towards higher concentration since the smaller values represent

higher concentration) will cause a motion towards the queen.

Note that since the bees only push each other on close distances, if we had a bee

which has neighbors with ‖xi − xj‖ < δ, but all these members were “behind” it

with respect to its relative position to the queen, then we would have it also moving

towards the queen. To see this, note that for all the bees who are “behind” it we have

(xi − xj)⊤ei < 0 implying V̇i < 0 and we arrive at the same conclusion as above. In

contrast, if the ith bee had neighbors with ‖xi − xj‖ < δ, but some of them were in

“front” of it, i.e., if (xi − xj)⊤ei > 0 for some j, then we cannot directly derive any

conclusion about the motion of the bee in question. Note, however, that intuitively,

using an inductive procedure, it is possible to argue that the bees that are closest (in

all directions) to the queen will first converge to her (based on the above observation).

Then, they will be followed by the second inner circle of the bees and so on, until all

the bees converge and form a cluster around the queen.

Stopping on the Cluster

Assume that ẋq = 0 and that xi(0) 6= xq for all i and xi(0) 6= xj(0) for all j 6= i.

Now, note that the above model is very similar to the foraging swarm with a Gaussian

nutrient profile. The only difference is that at the center of the profile there is an

unbounded hump, and there is no interindividual attraction between the bees (i.e.,

there is only repulsion). Then, from the result in Theorem 3 we know that xi → 0

for all i ∈ B, i.e., all the bees will stop. However, since the bees may not be able to
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stop in mid-air, some people may find the fact that they stop counter intuitive. Note,

however, that so far we did not specify the final positions of the bees. Intuitively, it

must be the case that they stop on a cluster around the queen.

Characteristics of Bee Cluster Packing

Since ẋi → 0 we have also that V̇i → 0. Equating V̇i to zero (which corresponds

to the final equilibrium) we have

V̇i = −gq(‖ei‖)‖ei‖2 +
∑

j∈B,j 6=i

g(‖xi − xj‖)(xi − xj)⊤ei = 0

from which we obtain

gq(‖ei‖)‖ei‖2 =
∑

j∈B,j 6=i

g(‖xi − xj‖)(xi − xj)⊤ei,

for all i. Now, note that gq(‖ei‖) can be both positive and negative.

If gq(‖ei‖) < 0 (i.e., ‖ei‖ < δq), then the left hand side of the above equation

is negative and right hand side has to be negative also. This implies that there

exits at least one bee j such that ‖xi − xj‖ < lr (since for ‖xi − xj‖ ≥ lr we have

g(‖xi−xj‖) = 0) and (xi−xj)⊤ei < 0. Since (xi−xj) = (ei−ej) we have (ei−ej)⊤ei <

0 or ‖ei‖2 < ej⊤ei from where we obtain

‖ei‖ < γi,j‖ej‖ ≤ ‖ej‖,

where γi,j is the cosine of the angle between ei and ej . Note from the facts that γi,j is

the cosine and ‖xi − xj‖ < lr ≤ δq (here we assume that the queen’s repulsion range

or private area is equal to or larger than that of the worker bees), and ‖ei‖ > δq and

‖ej‖ > δq that 0.5 < γi,j ≤ 1 and as ‖ei‖ gets large γi,j ≈ 1 even when individuals i

and j are not necessarily aligned with the queen. From the cosine theorem we have

‖ei‖2 + ‖ej‖2 − 2γi,j‖ej‖|ei‖ = ‖xi − xj‖2 < l2r .
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Since γi,j ≤ 1 we have

‖ei‖2 + ‖ej‖2 − 2‖ej‖|ei‖ < l2r ,

from where we obtain

‖ej‖ − ‖ei‖ < lr.

Combining this with the above inequality we have

‖ei‖ < ‖ej‖ < ‖ei‖ + lr.

In other words, if bee i is within the queen’s repulsion range during equilibrium, there

must be at least one other bee j behind her which is blocking her motion away from

the queen and pushing her towards the queen. Otherwise, we cannot have ‖ei‖ < δq

during equilibrium (as expected).

If gq(‖ei‖) > 0 (i.e., ‖ei‖ > δq), then the left hand side of the above equation is

positive and the right hand side has to be positive also. By similar reasoning as above

there must be at least one bee j such that ‖xi −xj‖ < lr and (xi −xj)⊤ei > 0. Then,

with analysis similar to above, we obtain

‖ei‖ > γi,j‖ej‖.

Using the cosine theorem for ej this time we have

‖ej‖2 = ‖ei‖2 + ‖xi − xj‖2 − 2(xi − xj)⊤ei

≥ (‖ei‖ − ‖xi − xj‖)2.

Since ‖ei‖ > δq and ‖xi − xj‖ < lr and with the assumption that δq ≥ lr we have

‖ei‖ > ‖xi − xj‖, and therefore we obtain

‖ej‖ ≥ ‖ei‖ − ‖xi − xj‖ > ‖ei‖ − lr.
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Combining this with the previous inequality we obtain

‖ei‖ − lr < ‖ej‖ < 1

γi,j

‖ei‖.

In other words, if bee i is far from the queen during equilibrium, then there must

be at least one other bee j in front of her which is blocking her motion towards the

queen.

Using the above two observations repeatedly for every individual and recalling

the assumption that initially the bees are spread in all directions around the queen

we see that they will cluster around her. Note, however, that the analysis so far do

not depend on the assumption that the initial positions of the bees are spread in all

directions around the queen. Therefore, they hold even if the initial positions of the

bees do not satisfy that assumption. If they are spread all around, then they form a

cluster around the queen with size depending on the number of bees in each direction

relative to the queen. The largest swarm size (the worst case) occurs when all the

bees are aligned (with each other and the queen) initially. In that case they form a

line with a maximum possible size of δq + (M − 1)lr assuming that all of them are

on the same side of the queen and 2δq + (M − 2)lr if they are on both sides of the

queen. Note that this is an expected result since our model assumes that the bees

move only along the (negative) gradient of the queen pheromone profile combined

with interindividual interactions and for the above special case the gradients along

the motions of all the bees are aligned.

Consider the cumulative Lyapunov function V =
∑

i∈B Vi. As in Chapter 3 it can

be shown that at equilibrium we have

V̇ = −
∑

i∈B

gq(‖ei‖)‖ei‖2 +
1

2

∑

i∈B

∑

j∈B,j 6=i

g(‖xi − xj‖)‖xi − xj‖2 = 0, (5.2)
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from which we obtain

∑

i∈B

gq(‖ei‖)‖ei‖2 =
1

2

∑

i∈B

∑

j∈B,j 6=i

g(‖xi − xj‖)‖xi − xj‖2.

Therefore, we can say that during equilibrium on average we have

gq(‖ei‖)‖ei‖2 =
1

2

∑

j∈B,j 6=i

g(‖xi − xj‖)‖xi − xj‖2,

from which we conclude that on average we have ‖ei‖ > δq since right hand side is

positive implying that the left hand side is also positive. Note that it is not possible

to directly solve for the exact value of ‖ei‖ from the above equation since there are

two possible solutions for a given value of the summation on the right.

Note that in the above model, the short range repulsion is only a kind of distur-

bance which does not allow the members to get close together, but does not change

the overall stability properties of the system. To see this, consider the limiting case in

which δq → 0 and lr → 0. Then, provided that the initial positions of the individuals

are such that xi(0) 6= xj(0) for all i and j, j 6= i, then we will asymptotically have

ei → 0 for all i. Note, however, that we will never have ei = 0 or xi = xj for j 6= i.

Having finite range repulsion does not change these properties. It only enlarges the

region in which the bees converge.

Finally, we would like to note that, as in Section 3.3.1, one can use a hardlimiting

repulsion to represent the real (or effective) body size of diameter η for each bee, i.e.,

one can choose J j
r (x

i) such that lim‖xi−xj‖→η+ ∇xiJ j
r (x

i) = ∞, in order to prevent the

individuals i and j to move closer that the distance η to each other

5.2.2 Clustering with Interindividual Attraction

In the analysis so far we assumed that there was no interindividual attraction

between the bees during the swarming process. However, we do not exactly know
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whether this is the case in reality or not. In fact, the motion of the bees may be

affected by the location of the other bees. In other words, they may be tending

to go to the location with higher bee concentration based on, for example, visual

information or some other cues such as Nasonov pheromone released by the other

bees. In order to incorporate such an effect, we can add an interindividual attraction

in the motion equation of the bees. In other words, for example, we could consider

g(‖xi − xj‖) =

[

c1
‖xi − xj‖2

− c2
‖xi − xj‖

]

,

which corresponds to the attraction/repulsion potential

Jar(‖xi − xj‖) = c1 ln(‖xi − xj‖) − c2‖xi − xj‖.

Note that this corresponds to a constant attraction and unbounded repulsion. The

equation of motion of the ith worker be is still given by

ẋi = −gq(‖ei‖)ei +
∑

j∈B,j 6=i

g(‖xi − xj‖)(xi − xj).

However, we do not anymore have g(‖xi − xj‖) ≥ 0. Instead, we have g(lr) = 0 and

{

g(‖xi − xj‖) > 0, if ‖xi − xj‖ < lr (repulsion),
g(‖xi − xj‖) > 0, if ‖xi − xj‖ > lr (attraction).

Note that the fact that as t → ∞, xi → 0 for all i still holds with the attraction

added. This implies that V̇ = 0 in Eq. (5.2) still holds. Assume for a moment that

there is no attraction towards the queen. Then, the first term in the V̇ equation is

zero (see Eq. (5.2)) and we have

1

2

∑

i∈B

∑

j∈B,j 6=i

g(‖xi − xj‖)‖xi − xj‖2 = 0,

and by substituting the value of g(‖xi − xj‖) we obtain

∑

i∈B

∑

j∈B,j 6=i

[

c1 − c2‖xi − xj‖
]

= 0.
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Rearranging the terms we obtain

1

M(M − 1)

∑

i∈B

∑

j∈B,j 6=i

‖xi − xj‖ =
c1
c2

= lr,

which implies that the average interindividual distance will be equal to c1
c2

. In other

words, the bees will be closely packed together. Therefore, for this case, c1
c2

= lr

cannot represent the physical size of a bee, but another parameter determining the

interindividual distance between the bees in the cluster. If there is a need to represent

the physical size of a bee, one needs to use a hardlimiting repulsion function.

Having found the compactness of the cluster formed by the bees with the assump-

tion that there were no attraction towards the queen, we would expect that similar

compactness is achieved in the cluster formed around the queen in the case when there

is attraction to her. Note, however, that there may be a drawback in this model if the

interindividual attraction dominates the attraction towards the queen. Specifically, if

the parameters of the model are not properly set, then the bees may pass the queen,

form a cluster somewhere else first, and then try to move collectively towards the

queen. This behavior will not be biologically realistic for real life swarms. Therefore,

the parameters of the queen pheromone profile should be set high enough and those

of the interindividual attraction small enough so that the attraction to the queen is

the dominating force.

5.2.3 Simulation of the Clustering of Honey Bees

Now, we present some simulation illustrating the clustering of the bees around

their queen. The simulations that we present here are for the case in which there are

no interindividual attractions between the worker bees. Figure 5.2 shows the paths of

the worker bees during the clustering affect of them around the queen (we initialize

99



the queens initial position in between the other bees). As one can see, the bees are

initially spread around, however, they move and form a cluster around the queen.

Figure 5.3 shows the position of the bees after about 20 seconds (when the cluster is

−30
−20

−10
0

10
20

30

−30

−20

−10

0

10

20

30

−30

−20

−10

0

10

20

30

The paths of the swarm members

Figure 5.2: Clustering of the honey bees around the queen.

formed). As is seen from the figure, the bees (denoted by circles) are spread around

the queen (denoted by a star) at a very close distance to her and to each other (as

expected).

The first plot in Figure 5.4 shows the minimum interindividual distance and the

minimum distance between the individuals and the queen (i.e., it shows mini∈S,j∈S,j 6=i ‖xi−

xj‖ and mini∈S ‖xi −xq‖), whereas the second plot shows the maximum interindivid-

ual distance and the maximum distance between the individuals and the queen (i.e.,

it shows maxi∈S,j∈S,j 6=i ‖xi−xj‖ and maxi∈S ‖xi−xq‖). As you can see the minimum

distance to the queen and the minimum interindividual distance both settle at values

around 0.5, wheres the maximum distance to the queen settles at about 1 and the
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Figure 5.3: The position of the honey bees after 25 seconds (the cluster is formed).
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Figure 5.4: The minimum and the maximum distances between the queen and the
individuals and interindividual distances.

maximum interindividual distance (which is the maximum size of the swarm) settles

at a value around 2.

In the above simulations we used M = 51 individuals (excluding the queen),

c1 = c2 = 0.1 for the parameters of the short range interindividual repulsion function
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and bq = 10, cq = 10, and cq1 = cq2 = 0.1 for the parameters of the queen attraction

and repulsion potentials, respectively. Note that for these parameters we have lr =

2c1
c2

= 2. In other words, the final swarm size is as large as the repulsion range of a

single bee. The above simulations seem to be consistent with the behavior of actual

honey bees.

5.3 In-Transit Honey Bee Swarm

Although not exactly known, it has been observed that the motion of the honey

bee swarms while moving to a new nest site is guided by the scouts who secret

Nasonov pheromones to attract the other bees and also “fly through” the swarm.

Moreover, the pheromones of the queen keep the bees in her close vicinity. To model

all these aspects we divide the swarm of bees into three groups, which are the queen

bee denoted by q, the scouts bees denoted by the set S, and the worker bees denoted

by the set W . We assume that the sets of the scout bees and the worker bees are

distinct, i.e., we assume that S ∩W = ∅. Moreover, note that for the set B defined

in the previous section we have B = S ∪W .

5.3.1 Modeling the Scouts

We assume that the motion of the ith scout bee (i.e., i ∈ S) can be described as

ẋi
s = −as(t)

(xi
s − xf )

‖xi
s − xf‖

−
∑

j∈S,j 6=i

gs(‖xi
s − xj

s‖)(xi
s − xj

s), x
i
s 6= xf , (5.3)

where xi
s is the current position of the ith scout bee i ∈ S and xf is the final nest

position which the scout knows and we assumed that xi
s 6= xf . The parameter as(t)

is a speed profile parameter and is assumed to satisfy a1 ≤ as(t) ≤ a2 for some finite

positive constants a1 and a2 (i.e., constants satisfying 0 < a1 ≤ a2 <∞ for all t ≥ 0).
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In other words, we assume that the motion of the scout bees is determined only by

its position, the position of the nest, and the relative position of the other scout bees

(and is not affected by the position and the motion of the queen and the worker bees).

For the case when xi
s = xf , we can choose

ẋi
s = 0, xi

s = xf ,

implying that once a scout reaches the nest, it will stop and the pheromones of the

other scouts will not affect it anymore. Another option for the scout motion once the

nest is reached could be

ẋi
s = −

∑

j∈S,j 6=i

gs(‖xi
s − xj

s‖)(xi
s − xj

s), x
i
s = xf .

In other words, in this case only the relative position of the other scouts will govern

the motion of the scout in question (so they will be able to push it a little bit away

from xf ). Note that no more than one scout can occupy xf simultaneously.

According to the above model while the scouts move, they do not even try to

avoid collisions with the other bees (it is the job of the other bees to do so). It

is not known how biologically realistic this is. Above, the second term given by

gs(‖xi
s − xj

s‖)(xi
s − xj

s) corresponds to the gradient of the function Js(‖xi
s − xj

s‖) (i.e.,

gs(‖xi
s − xj

s‖)(xi
s − xj

s) = ∇xi
s
Js(‖xi

s − xj
s‖)), where Js(‖xi

s − xj
s‖) is a “potential”

function of type of J q(·) discussed in the previous section, and has an attraction term

to model the effect of the Nasonov pheromone profile laid by the scouts and a short

range repulsion term to model the distance keeping (preventing collisions) of the bees

during their flight. We assume that all the scouts lay the same amount of Nasonov

pheromone and therefore use the same function Js(·) for all of them. Note also that

this can be considered as a motion in the direction along the negative gradient of the
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attraction profile of the nest defined by

Jf(x) = as(t)‖x− xf‖.

In other words, the above model basically assumes that the scouts move on straight

lines toward the nest location (while also trying to keep an appropriate distance from

each other but not necessarily from the other bees) with a variable speed determined

by as(t). It has been observed that the swarm starts motion with a slow speed then

accelerates up to 11 kilometers per hour and when it is close to the nest it slows

down [95]. We will use this parameter to adjust a realistic speed profile for the

swarm.

5.3.2 Modeling the Queen and the Workers

We assume that the queen is attracted only by the scouts (due to the Nasonov

pheromone secreted by them) and tries to follow them, which can be represented as

ẋq = −
∑

j∈S

gs(‖xq − xj
s‖)(xq − xj

s). (5.4)

Note that above we used the same gs(·) in the motion equation of the queen as that

of the scouts. This is due to the assumption that all the bees (the queen, the scouts

and the workers) observe the Nasonov pheromone profile in the same manner, for

simplicity. Therefore, we will have the same Js(·) and for that reason the same gs(·)

in the motion equation of all the bees.

We assume that the motion of the worker bees is given by a combination of a

desire to stay near the queen (due to the queen secreted pheromones) and a desire

to follow the scouts (due to the Nasonov pheromone secreted by them and perhaps

other reasons such as following their “streaking” motion). Therefore, the motion of
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the ith worker bee i ∈W is given by

ẋi = −gq(‖xi − xq‖)(xi − xq)−
∑

j∈S

gs(‖xi − xj
s‖)(xi − xj

s) +
∑

j∈W

g(‖xi − xj‖)(xi − xj),

(5.5)

where, the term −gq(‖xi − xq‖)(xi − xq) represents the attraction to the queen (as

before), the terms −gs(‖xi − xj
s‖)(xi − xj

s) are for their attraction to the scouts, and

the terms g(‖xi − xj‖) is a short range repulsion to model their distance keeping

(avoiding collisions) among each other and is as was defined in the previous section.

(Note, however, that even though the function type is similar to the one defined

before, the parameters of the function may be different since the bees keep larger

distances while in-transit compared to those in the cluster. This is true also for the

profiles Jq(·) and Js(·).)

Another component that could be added to the above motion equations is a long

range attraction of the members to each other (as in the previous section). Since it

is not known whether the bees are attracted to each other, here we will not do that.

Note that the above set up is in a sense (or a special case of) the social potential fields

method discussed in [88]. Note also that here we did not model the “fly through” of

the scouts to guide the flying swarm. To incorporate these dynamics in the model

and in the simulation will require a careful consideration and additional research.

5.3.3 Scout Motion

Now, let us analyze the qualitative behavior of the motion of the scouts. To this

end, define the center of the scouts as

x̄s =
1

Ms

∑

i∈S

xi
s,
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where Ms = |S| is the cardinality (the number of members) of the set S. Then, it

can be shown that

˙̄xs = −as(t)

Ms

∑

i∈S

(xi
s − xf )

‖xi
s − xf‖

. (5.6)

Note that the result in Eq. (5.6) was obtained by assuming that xi
s 6= xf for all i ∈ S,

and this is a reasonable assumption assuming that the swarm is far away from the

nest. Once they move very close to the nest it may happen that for some (and only

one) i ∈ S we have xi
s = xf and Eq. (5.6) may not hold; however, since in that case

we have already achieved convergence to the nest we do not need to analyze this case.

Defining the distance between the center x̄s of the scouts and the new nest location

xf as es = x̄s − xf and letting the corresponding Lyapunov function be Vs = 1
2
‖es‖2

we obtain

V̇s ≤ −as(t)

Ms

∑

i∈S

‖es‖
‖xi

s − xf‖



‖es‖ −
∑

i∈S
‖xi

s−x̄s‖
‖xi

s−xf‖
∑

i∈S
1

‖xi
s−xf‖



 ,

which implies that as long as

‖es‖ >
∑

i∈S
‖xi

s−x̄s‖
‖xi

s−xf‖
∑

i∈S
1

‖xi
s−xf‖

we will have V̇s < 0. Let xsM = maxi∈S ‖xi
s − x̄s‖. Then, ‖es‖ > xsM guarantees that

V̇s < 0, which, on the other hand, implies that as t → ∞ we will have ‖es‖ ≤ xsM .

Therefore, as t→ ∞ we will have that the nest is in between (or surrounded by) the

scout bees.

Now, to analyze the ultimate behavior of the scouts consider the generalized Lya-

punov function (or the “potential energy” function)

J1(xs) = as(t)
∑

i∈S

‖xi
s − xf‖ +

1

2

∑

i∈S

∑

j∈S,j 6=i

Js(‖xi
s − xj

s‖),
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where xs = [x1⊤
s , . . . , xMs⊤

s ]⊤ is the state of the scouts subsystem. Taking the gradient

of J1(xs) with respect to xi
s we obtain

∇xi
s
J1(xs) = as(t)

(xi
s − xf )

‖xi
s − xf‖

+
∑

j∈S,j 6=i

gs(‖xi
s − xj

s‖)(xi
s − xj

s) = −ẋi
s.

Then, the time derivative of J1(xs) is given by

J̇1(xs) = −
∑

i∈S

‖ẋi
s‖2 +

das(t)

dt

∑

i∈S

‖xi
s − xf‖.

From real life swarms we know that the bee swarm speeds up (increases its speed)

after takeoff for some time (implying das(t)
dt

> 0) and slows down (decreases its speed)

while approaching the nest (implying das(t)
dt

< 0). In other words, there are time

instances t1 and t2 such that for t ≤ t1 we have das(t)
dt

> 0, whereas for t ≥ t2 we have

das(t)
dt

< 0. Note that for das(t)
dt

> 0 we cannot guarantee that J̇1(xs) < 0, whereas, for

the das(t)
dt

< 0 we can say that this is the case. Note also that since we have as(t) ≥ a1

for all time t, it cannot be the case that das(t)
dt

< 0 for all t ≥ t2. Therefore, we will

require that das(t)
dt

→ 0, or even further, we will assume that there is a time t3 > t2

such that for all t ≥ t3 we will have das(t)
dt

= 0. This guarantees that for t ≥ t3 we have

J̇1(xs) = −∑

i∈S ‖ẋi
s‖2 implying that ẋi

s → 0 for all i ∈ S. In other words, all the

scout bees will eventually stop (surrounding the new hive). With a similar analysis

to the clustering case (discussed in the previous section) one can find the possible

maximum distance of the scouts to the new hive once they stop (which will occur if

all the scouts are aligned with the hive location).

5.3.4 Queen and Worker Motion

Note that the above analysis is not the full picture. Now we have to make sure

that the queen and the worker bees follow the scouts during their journey to their

107



new home. To this end, define eq = xq −xf and the corresponding Lyapunov function

as Vq = 1
2
‖eq‖2. Then, we have

V̇q ≤ −
∑

i∈S

gs(‖xq − xi
s‖)‖eq‖

[

‖eq‖ −
∑

i∈S gs(‖xq − xi
s‖)‖xi

s − xf‖
∑

i∈S gs(‖xq − xi
s‖)

]

,

which is obtained assuming that there is no scout in the vicinity of the queen (i.e.,

that gs(‖xq − xi
s‖) > 0 for all i ∈ S). Note that this is a reasonable assumption once

we assume that the scouts are in front of the swarm, while the queen is in the middle

of the swarm. From there we see that if

‖eq‖ >
∑

i∈S gs(‖xq − xi
s‖)‖xi

s − xf‖
∑

i∈S gs(‖xq − xi
s‖)

then we have V̇q < 0, which is guaranteed to be satisfied whenever ‖eq‖ > maxi∈S ‖xi
s−

xf‖ or the queen is “behind” the scout bees and there is no scout bee in her vicin-

ity (i.e., repulsion range). Therefore, we will assume that the scouts initially (and

therefore always) are “in front” of the queen (i.e., between the queen and the nest).

Now, let us look at the “potential energy” or the generalized Lyapunov function

that the queen is trying to minimize with its motion. Let

J2(x
q, xs) =

∑

i∈S

Js(‖xq − xi
s‖),

and note that

∇xqJ2(x
q, xs) =

∑

i∈S

gs(‖xq − xi
s‖)(xq − xi

s) = −ẋq

and

∇xi
s
J2(x

q, xs) = −gs(‖xq − xi
s‖)(xq − xi

s).

Then, we have

J̇2(x
q, xs) = ∇xqJ⊤

2 (xq, xs)ẋ
q +

∑

i∈S

∇xi
s
J⊤

2 (xq, xs)ẋ
i
s
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= −‖ẋq‖2 +
∑

i∈S

∇xi
s
J⊤

2 (xq, xs)ẋ
i
s

=
∑

i∈S

gs(‖xq − xi
s‖)(xq − xi

s)
⊤(ẋq − ẋi

s),

from which we can see that the motion of the queen is such that it tries to mini-

mize J2(x
q, xs) (which follows from the −‖ẋq‖2 term), whereas, the motions of the

scouts may not necessarily be in that direction. Now, in order to make sure that the

queen is not falling behind, we need J̇2(x
q, xs) ≤ 0 during the motion. The equality

J̇2(x
q, xs) = 0 would imply that the queen is keeping a constant average distance to

the scouts, whereas the strict inequality J̇2(x
q, xs) < 0 would imply that she is getting

closer to them. From the last equality we see that (assuming that there is enough

distance between the queen and the scouts) we need (xq − xi
s)

⊤(ẋq − ẋi
s) ≤ 0 in order

to have J̇2(x
q, xs) ≤ 0, which implies (assuming that the queen and the scout i were

aligned) that if (xq − xi
s) > lsr > 0, where lsr is the repulsion range for the scouts (say,

the queen is behind the scout), then we need (ẋq − ẋi
s) ≤ 0 (or the queen moving at

least as fast as the scout, i.e., ‖ẋq(t)‖ ≥ as(t)) in order to contribute nonpositively

to J̇2(x
q, xs). If they are not aligned, we will need the cosine of the angle between

(xq − xi
s) and (ẋq − ẋi

s) to be nonpositive (or the angle be between 90o and 270o) in

order to have the product (xq−xi
s)

⊤(ẋq− ẋi
s) ≤ 0. Note that from the second equality

above we obtain

J̇2(x
q, xs) ≤ −‖ẋq‖2 + as(t)

∑

i∈S

∇xi
s
‖J⊤

2 (xq, xs)‖,

which can be guaranteed to be negative semidefinite if

a2 ≤
∥

∥

∑

i∈S gs(‖xq − xi
s‖)(xq − xi

s)
∥

∥

2

∑

i∈S gs(‖xq − xi
s‖)‖xq − xi

s‖

is satisfied. Then, given a2 and the function gs(·), there is always a set of initial

conditions such that lsr ≤ ‖xq(0)−xi
s(0)‖ ≤ β for all i ∈ S and for some β such that the
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above equation is satisfied for all t. In other words, if the queen is initially sufficiently

close to the scouts (depending on the profile function gs(·) and the maximum speed

a2), then she will follow them to the nest.

Note also that since once they reach the nest ẋi
s → 0 for all i ∈ S, as shown before,

we have J̇2(x
q, xs) → −‖ẋq‖2 < 0, which implies that ẋq → 0 as t → ∞. Then, from

the queen motion equation in Eq. (5.4) we see that she will stop no further than δs

distance (the distance at which gs(·) = 0 or switches sign) from at least one scout.
Now, consider worker bee i ∈W . Define its distance to the nest to be ei = xi−xf

and the corresponding Lyapunov function Vi = 1
2
‖ei‖2. Then, we have

V̇i = −gq(‖x
i − xq‖)(xi − xq)⊤ei −

∑

j∈S

gs(‖x
i − xj

s‖)(x
i − xj

s)
⊤ei +

∑

j∈W,j 6=i

g(‖xi − xj‖)(xi − xj)⊤ei.

Now, note that if that bee kept enough distance to all the other bees (including the

scouts and the queen) during its motion, then we would have g(‖xi − xj‖) = 0 for

all j ∈ W, j 6= i, gs(‖xi − xj
s‖) > 0 for all j ∈ S, and gq(‖xi − xq‖) > 0. Moreover,

if the bee were located “behind” the queen and the scouts, then we would have

(xi − xq)⊤ei > 0 and (xi − xj
s)

⊤ei > 0 for all j ∈ S, implying that V̇i < 0. In other

words, if the above conditions are satisfied, then the bee will move towards the nest.

If, in contrast, the bee is located between the queen and the scouts, then the motion

of the bee will be determined from the relative attraction from the scouts and the

queen. Therefore, we can say that the attraction to the bees in the “rear” of the

moving swarm will be in one direction only (forward). The bees located in the area

between the queen and the scouts, on the other hand, will be attracted forward by the

scouts and backward by the queen. However, since there is only one queen and many

scouts, the direction of the overall cumulative attraction will be forward (assuming

that the scouts are close enough). Moreover, since the attraction on the queen is

only by the scouts in forward direction, she should be tending to move faster than
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the workers in front of her. Similarly, the bees behind her should be tending to move

faster then her, because they are attracted by her as well as the scouts. Therefore,

we will have a swarm in which the speed will tend to “increase” as you move from

front to the rear and this will keep the swarm cohesive (as long as the scouts are slow

enough so that the rest can keep up with them).

By choosing the potential energy for the worker bees as

J3(x) =
∑

i∈W

Jq(‖xi − xq‖) +
∑

i∈W

∑

j∈S

Js(‖xi − xj
s‖) +

∑

i∈W

∑

j∈W,j 6=i

Jr(‖xi − xj‖)

and using analogous arguments to those for the queen and the scouts, one can argue

that for the worker bees also we will have ẋi → 0 for all i ∈ W . Then, using the

motion equation in Eq. (5.5) one can argue that each worker will have at least one

close neighbor who is preventing it to move towards the queen and the scouts at

equilibrium implying that they have reached close vicinity of the new hive.

5.3.5 Simulation of an In-Transit Swarm

Now we will present some simulation examples to illustrate the behavior of the

in-transit honey bee swarm model. Figure 5.5 shows the plot of the trajectory of

a honey bee swarm during motion from an initial position at [0, 0, 0]⊤ to the newly

chosen nest position at [50, 50, 50]⊤. For the simulations in this section we used the

parameters c1 = c2 = cq1 = cq2 = cs1 = cs2 = 0.1, bq = cq = 30, and bs = cs = 20, where

the parameters cs1 and cs2 are the repulsion and bs and cs are the attraction parameters

of the scouts, respectively. The other parameters are as defined in the earlier sections.

As expected the swarm is preserving its cohesiveness during the entire motion.

Figure 5.6 shows the swarm after its arrival at the nest. The worker bees are

represented by circles, the queen by a star, the scouts (we choose two scouts only)
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Figure 5.5: The trajectory of the motion of the honey bee swarm toward the new
nest.

by squares and the nest location by a diamond. Note that the position of the scouts

are on two different sides of the nest (as expected from the analysis in the preceding

sections). Moreover, all the other bees including the queen are in the vicinity of the

nest. The queen’s position is also close to the center of the swarm. However, this is

not necessarily always the case in every simulation run. Her final position depends

on her initial position.

Figure 5.7 shows the speed profile of the swarm. We obtained this figure by

averaging the velocities of the members on each interval of 5 meters and plot it with

respect to the distance from the initial position. Recall that we could adjust the speed

of the scouts, which affects the speed of the entire swarm. In this particular simulation

we used a piecewise constant speed parameter as(t), whose value was dependent on

the average distance of the swarm to the nest. Note the similarity of this velocity

profile plot with the plots in the literature (see for example [95]). Here we have the

speed in kilometers per hour, implying that the swarm flew with a maximum speed
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Figure 5.6: The honey bee swarm after it has arrived at the nest.

of about 8 kilometers per hour. Note that by adjusting as(t) we can have any desired

speed profile for the swarm. Here we chose as(t) such that the swarm starts its motion

slowly, then speeds up, and finally slows down as approaches the nest, as noted in

the literature.
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Figure 5.7: The average of the speeds of the bees in a honey bee swarm.
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5.4 Discussion

The clustering in honey bees and in-transit honey bee swarms are spectacular phe-

nomena that have been studied experimentally by biologists during the past several

decades. However, many aspects of these phenomena are still not well understood.

Moreover, to best of our knowledge, there has not been any mathematical model

proposed so far. In this chapter we tried to use the ideas from the preceding chapters

to develop a simple mathematical models for both aggregation of bees in clusters

and in-transit swarms. The model consists of simple ordinary differential equations

describing the motion of each individual bee. The equations incorporate terms for

attraction towards the queen (or the scouts) due to the pheromones laid by her (or

them) and an unbounded repulsion to incorporate a finite “private area” for each bee

(in order to move beyond point particle models and incorporate their finite size, to

some extent).

The pheromones are represented by a decaying function, a “profile,” centered at

their source (the queen or the scout bees) and the individuals try to move along

the negative gradient of that profile towards higher pheromone concentration. We

did not incorporate environmental disturbances such as the effect of the wind on

the pheromone profile or the motion of the bees. Incorporating such dynamics is a

topic of further research. Our model is simple and in some cases biologically not

very realistic. For example, for the clustering case, in order for the model to describe

real life clustering, we have to assume that initially the bees surround the queen

(although this probably is usually the case). Otherwise, the group that they form

around the queen will not be a real cluster. Moreover, the model (for clustering) lets

us to perform a global analysis, whereas in real life bee swarms it is impossible to
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have global convergence since the range of senses of the bees is limited. Similarly,

in the in-transit swarm we assume that all the scouts are in front of the queen (and

the other bees) and leading towards the nest, and this is apparently not always the

case in real life bee swarms. Moreover, since the motion of the bees depends on the

gradient of the overall (combined) profile, in regions where this gradient is small (i.e.,

the regions which are far away from the sources creating the profile) the bee will

move slowly. Some may consider this unrealistic. However, it is possible to argue

that the equation of motion that we used here does not represent the actual motion

of a bee, but it represents its effective average motion. Therefore, in the regions where

there is no distinguishable change in the pheromone concentration (i.e., the gradient

is small) it “wanders around” in search for better concentration and on average slowly

moves towards higher concentration regions. Despite all these drawbacks, provided

the parameters of the model and the initial positions of the bees are set properly, the

emergent behavior from the model is in general agreement with the behavior of real

life bee swarms.

In our initial model we did not incorporate mass and therefore the related extra

dynamics into the motion of the bees. However, such dynamics can easily be added

as was shown for aggregating swarms in Chapter 3. One important conclusion which

can be derived from the behavior of the model described is that it is not absolutely

necessary to have higher intelligence in order to achieve swarming behavior. Instead,

simple chemotaxis abilities and moving in a direction are sufficient. Even though such

ability may not be all the components affecting the swarming behavior in honey bees,

they seem to be important ingredients as is understood in the honey bee literature.
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In order to better understand and model the clustering and swarming behavior in

honey bees, there is a need for more experimental studies. For example, in order to

model the effect of the pheromones, there is a need for studying how the pheromones

diffuse and how their effects can best be modeled (here we did not use partial differ-

ential equation models to ensure some analytical tractability). Once the pheromone

profile is sensed, how do the bees decide which direction to move? Can they sense

the gradient (the change in concentration) and do they move along it (as we modeled

here). It is known that even some simple bacteria such as E. coli can construct local

approximation of a gradient and follow it [85] and it is natural to expect that the

bees can do the same. However, this requires more study. Other aspects to study

are the positions of the queen and the scouts in the airborne in-transit swarm. Is it

really the case that the queen is somewhere in the middle? Are there any (relative)

positions that the scouts choose to be in the swarm, or can they be anywhere just like

the other worker bees? Why do the bees follow the scouts? Are they attracted to the

Nasonov pheromone laid by them or are there other reasons such as the “streaking”

phenomenon? They probably sense the presence of the queen during motion. Are

they also attracted to her vicinity? If she escapes will they continue following the

scouts (at least for some time) or will they follow her?

The analysis here makes intuitive sense. However, it is not always very rigorous.

The main obstacle for performing a rigorous analysis is the fact that here we do

not have (linear) interindividual attraction between the bees and the repulsion is

unbounded. Nevertheless, our work is apparently the first directed towards developing

a more realistic and rigorous mathematical model of the honey bee swarming behavior.
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CHAPTER 6

ONE-DIMENSIONAL DISCRETE-TIME
ASYNCHRONOUS SWARMS

In this chapter we consider one-dimensional discrete time asynchronous swarms

with time delays. In other words, we consider a swarm model in which the member

positions are scalars (i.e., they are on the real line), the individuals can move asyn-

chronously, and there are time delays in sensing the positions of the neighbors. The

motion of each individual is based on the relative location of its nearest neighbors on

its both sides. We analyze the stability properties of the model and prove that the

individuals will converge to a constant relative arrangement, that we call the comfort-

able position (with comfortable intermember distance). Our stability analysis employs

some results on contractive mappings from the parallel and distributed computation

literature.

6.1 The Swarm Model

In this section we introduce the swarm model that we consider in this chapter.

First, we describe the model of a single swarm member. Then, we present the one-

dimensional swarm model (i.e., when many swarm members are arranged next to each

other on a line).
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6.1.1 Single Swarm Member Model

The single swarm model described in this section is taken from [68, 67]. We

present it here for convenience. The single swarm member model that we consider is

shown in Figure 6.1. As seen in the figure, it has a driving device for performing the

(left and right)

Position sensors

Neighbor

for movements

Driving device

Left−looking
proximity sensor

Right−looking

proximity sensor

Figure 6.1: Single swarm member.

movements and a neighbor position sensors for sensing the position of the adjacent

(left and right) neighbors. It is assumed that there is no restriction on the range on

these sensors. In other words, we assume that they can provide the accurate position

of the neighbor even if the neighbor is far away. Each swarm member also has two

proximity sensors on both sides (left and right). These sensors have sensing range of

ǫ > 0 and can sense instantaneously in this proximity. Therefore, if another swarm

member reaches an ǫ distance from it, then this will be instantaneously known by

both of the members. However, if the neighbors of the swarm member are out of the

range of the proximity sensor, then it will return an infinite value (i.e., −∞ for the

left sensor and +∞ for the right sensor) or some large number that will be ignored
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by the swarm member. The use of this sensor is to avoid collisions with the other

members in the swarm.

In the next section we describe the model of a swarm (collection) of members

described in this section arranged on a line.

6.1.2 One-Dimensional Swarm Model

Consider a discrete time one-dimensional swarm described by the model

x1(k + 1) = x1(k), ∀k

xi(k + 1) = max
{

xi−1(k) + ǫ,min
{

xi(k) − g
(

xi(k)

−xi−1(τ
i
i−1(k)) + xi+1(τ

i
i+1(k))

2

)

,

xi+1(k) − ǫ
}}

, ∀k ∈ Ki, i = 2, . . . , N − 1 (6.1)

xN (k + 1) = max {xN−1(k) + ǫ, xN (k) − g(xN (k)

−xN−1(τ
N
N−1(k)) − d)}, ∀k ∈ KN ,

where xi(k), i = 1, . . . , N , represents the position of individual (member) i at time k

and Ki ⊆ K = {1, 2, . . .} is the set of time instants at which member i updates its

position. At the other time instants member i is stationary. In other words, we have

xi(k + 1) = xi(k), ∀k 6∈ Ki and i = 2, . . . , N. (6.2)

Note that the first member of the swarm is always stationary at position x1(0). The

other members (except member N), on the other hand, try to move to the position

which their current information tells them is the middle of their adjacent neighbors.

In other words, they try to move to the position ci(k) defined as

ci(k) =
xi−1(τ

i
i−1(k)) + xi+1(τ

i
i+1(k))

2
, i = 2, . . . , N − 1,
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where τ i
j , j = i − 1, i + 1, is used to represent the time index at which member i

obtained position information of its neighbor j. Of course due to the delays ci(k)

may not be the midpoint between members i − 1 and i + 1 at time k. The last

member (member N), on the other hand, tries to move to

cN(k) = xN−1(τ
N
N−1(k)) + d,

what it perceives to be a distance d from its left neighbor. The constant d represents

the comfortable intermember distance. Note that, in contrast to the work in [68, 67],

only the N th member of the swarm knows (or decides) the value of d. It is assumed

that d≫ ǫ.

The elements of K (and therefore of Ki) should be viewed as indices of the sequence

of physical times at which the updates occur (similar to the times of events in discrete

event systems), not as actual times. In other words, they are integers that can be

mapped to actual times. The sets Ki are independent from each other for different i.

However, it is possible to have Ki ∩Kj 6= ∅ for i 6= j (i.e., two or more members move

simultaneously). Note that τ i
j (k) satisfies 0 ≤ τ i

j (k) ≤ k for k ∈ Ki, where τ i
j(k) = 0

means that member i did not obtain any position information about member j so

far (it still has the initial position information), whereas τ i
j (k) = k means that it has

the current position information of member j. The constant ǫ is the range of the

proximity sensors as discussed in the preceding section.

The function g(·) describes the attractive and repelling relationships between a

swarm member and its adjacent neighbors. It determines the step size that a member

will take toward the middle of its neighbors (if it is not already there). We assume
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that

αy(t) ≤ g(y(t)) ≤ ᾱy(t), if y(t) ≥ 0

ᾱy(t) ≤ g(y(t)) ≤ αy(t), if y(t) < 0, (6.3)

where α and ᾱ are two constants satisfying

0 < α < ᾱ < 1.

Figure 6.2 shows the plot of one such g(·). In the figure we also plotted αy(t) and

ᾱy(t) for α = 0.1 and ᾱ = 0.9. Note that even though this g(·) function looks
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Figure 6.2: Example g(·) function.

different than the attraction/repulsion functions considered in the preceding chapters

(see for example Eq. (3.2)), in reality it is not. To see this, assume that the argument

for g(·) were not xi(k) − ci(k), but were xi(k) − xi−1(k) − d, i.e., consider g(xi(k) −

xi−1(k) − d). Then, (assuming xi(k) − xi−1(k) > 0 for all k) we have g(xi(k) −

xi−1(k)−d) > 0, i.e., the function is attractive, for xi(k)−xi−1(k) > d, and g(xi(k)−
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xi−1(k) − d) < 0, i.e., the function is repulsive, for xi(k) − xi−1(k) < d. In other

words, the attraction/repulsion functions considered here leads effectively to the same

behavior as the attraction/repulsion functions considered in the preceding chapters for

continuous time swarms. The difference in the shape of the function arises essentially

from the different arguments it uses.

Notice that the model in Eq. (6.2) is in a sense a discrete event model which

does not allow for collisions between the swarm members. This is because if during

movement member i suddenly finds itself within an ǫ range of one (or both) of its

neighbors, it will restrain its movement by that neighbor according to Eq. (6.2).

We will at times use the notation x(k) = [x1(k), . . . , xN(k)]⊤ to represent the

position at time k of all the members of the swarm. Define the swarm comfortable

position as

xc = [x1(0), x1(0) + d, . . . , x1(0) + (N − 1)d]⊤.

In this chapter we consider the stability of this position by considering the motions of

the swarm members when they are initialized at positions different from xc. We will

consider two cases: synchronous operation with no delays and totally asynchronous

operation. These are described in the following two assumptions.

Assumption 3 (Synchronism, No Delays) The sets Ki and the times τ i
j (k) satisfy

Ki = K for all i and τ i
j(k) = k for all i and j = i− 1, i+ 1.

This assumption says that all the swarm members will move at the same time instants.

Moreover, every member will always have the current position information of its

adjacent neighbors.

The next assumption, on the other hand, says that the members can move at

totally independent time instants and that the “delay” between two measurements
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performed by a member can become arbitrarily large. However, there always will be

next time when the member will perform a measurement.

Assumption 4 (Total Asynchronism) The sets Ki are infinite, and if {kℓ} is a se-

quence of elements of Ki that tends to infinity, then limℓ→∞ τ i
j (kℓ) = ∞ for every j.

Now we have the following preliminary result. We state it here, because it will be

used in the next section.

Lemma 7 For the swarm described in Eq. (6.2) given any x(0), there exists a con-

stant b̄ = b̄(x(0)) such that xi(k) ≤ b̄, for all k and all i, 1 ≤ i ≤ N .

Proof: We prove this via contradiction. Assume that xi(k) → ∞ for some i, 1 ≤

i ≤ N . This implies that xj(k) → ∞ for all j ≥ i. We will show that it must be the

case that xi−1(k) → ∞. Assume the contrary. Then we have xi(k) − xi−1(k) → ∞,

whereas xi−1(k)−xi−2(k) < b for some b. However, there is always a time ki−1 ∈ Ki−1

at which member i − 1 performs position sensing of its neighbors and since at some

time xi(k) − xi−1(k) ≫ xi−1(k) − xi−2(k), it moves to the right. Repeating the

argument for each time instant, we obtain xi−1(k) → ∞. Continuing this way it

can be shown that xi(k) → ∞ for all i 6= 1. Moreover, since x1 is constant and

x2(k)−x1(k) → ∞ we have all xi(k)−xi−1(k) → ∞, i = 2, . . . , N . To see this assume

that x2(k) − x1(k) → ∞, whereas x3(k) − x2(k) < b for some b. Then, there exists

always a time k2 ∈ K2 at which member 2 performs a position sensing of its neighbors

and it moves to the left. Therefore, it must be the case that x3(k) − x2(k) → ∞.

Repeating the argument for the other members we arrive at the conclusion that it

should hold for all i. This leads to a contradiction since there is always a time
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kN ∈ KN at which member N performs position sensing of its left neighbor. From

the definition of the model if xN (k) − xN−1(k) > d the N th member will move to

the left. In other words, xN(k) − xN−1(k) cannot diverge. Then, there is always

a time kN−1 ∈ KN , kN−1 > kN at which member N − 1 performs position sensing

of the neighbors, and since xN−1(k) − xN−2(k) > xN (k) − xN−1(k) it moves to left.

Therefore, xN−1(k)−xN−2(k) also cannot diverge. Continuing with similar reasoning

one can show that all xi(k) − xi−1(k) are bounded implying the result.

This result is important, because it basically says that for the given swarm model

unboundedness of the swarm member positions and intermember distances (the dis-

solution of the swarm) will not occur. Therefore, the main question to be answered

is whether the swarm member positions x(k) will have periodic solutions or will con-

verge to some constant. In the next section we will analyze the system in the case of

synchronism with no delays. This will be used later in the proof of our main result.

6.2 The System Under Total Synchronism

In this section we will assume that Assumption 3 holds (i.e., all the members

move at the same time and they always have the current position information of the

neighbors) and analyze the stability properties of the system.

Now we have the following preliminary result.

Lemma 8 For the system in Eq. (6.2) assume that Assumption 3 holds (i.e., we have

synchronism with no delays). If x(k) → x̄ as k → ∞, where x̄ is a constant vector,

then x̄ = xc.

Proof: First of all, note that the intermember distances on all the states that the

system can converge to are such that x̄i − x̄i−1 > ǫ for all i (i.e., it is impossible for
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the states to converge to positions that are very close to each other). To prove this,

we assume that x̄i − x̄i−1 = ǫ for some i and x̄j − x̄j−1 > ǫ for all j 6= i and seek to

show a contradiction. In that case,

x̄i+1 − x̄i > ǫ

so

x̄i −
x̄i−1 + x̄i+1

2
< 0

and we have from model constraints in Eq. (6.2) that

x̄i−1 + ǫ < x̄i − g

(

x̄i −
x̄i−1 + x̄i+1

2

)

< x̄i+1 − ǫ.

From Eq. (6.2) this implies that at the next time instant ki ∈ Ki member i will move

to the right toward member i+ 1. Therefore, it must be the case that x̄i+1 − x̄i = ǫ

since otherwise x̄i − x̄i−1 = ǫ also cannot hold. Continuing this way one can prove

that all intermember distances must be equal to ǫ. However, in that case, since d≫ ǫ,

from last equality in Eq. (6.2) we have

x̄N − g(ǫ− d) > x̄N−1 + ǫ

and this implies that on the next time instant kN ∈ KN member N will move to the

right. Therefore, no intermember distance can converge to ǫ. For this reason, to find

x̄ we can drop the min and max and consider only the middle terms in Eq. (6.2).

Since x(k) → x̄ as t→ ∞ it should be the case that ultimately

x̄1 = x̄1

x̄i = x̄i − g

(

x̄i −
x̄i−1 + x̄i+1

2

)

, i = 1, . . . , N − 1

x̄N = x̄N − g(x̄N − x̄N−1 − d),
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from which we obtain

x̄1 = xc
1

2x̄i = x̄i−1 + x̄i+1, i = 1, . . . , N − 1

x̄N = x̄N−1 + d. (6.4)

Solving the second equation for x̄N−1 we have

2x̄N−1 = x̄N−2 + x̄N

from which we obtain

x̄N−1 = x̄N−2 + d.

Continuing this way, we obtain

x̄i = x̄i−1 + d, ∀i = 1, . . . , N − 1.

Then since the first member is stationary we have x̄1 = x1(t) = x1(0) = xc
1 and this

proves the result.

This lemma basically says that xc is the unique fixed point or equilibrium point of the

system described by Eq. (6.2). In this chapter we analyze the stability of this fixed

point which corresponds to the arrangement with comfortable intermember distance.

Lemma 9 Assume that xi(0) − xi−1(0) > ǫ for all i = 2, . . . , N . Moreover, assume

that Assumption 3 holds (i.e., we have synchronism with no delays). Then, xi(k) −

xi−1(k) > ǫ for all i = 2, . . . , N , and for all k.

Proof: We will prove this by induction. By assumption for k = 0 we have xi(0) −

xi−1(0) > ǫ for all i = 2, . . . , N . Assume that for some k we have xi(k) − xi−1(k) > ǫ
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for all i = 2, . . . , N . Then we have

xi−1(t) + xi−2(t)

2
<
xi(t) + xi−1(t)

2
− ǫ. (6.5)

On the other hand, from Eq. (6.4) we have

xi(k + 1) = xi(k) − αi

(

xi(k) −
xi−1(k) + xi−2(k)

2

)

= (1 − αi)xi(k) + αi

(

xi−1(k) + xi−2(t)

2

)

,

where α < αi < ᾱ. Therefore, as shown in Figure 6.3, we have

if xi(k) <
xi−1(k)+xi−2(k)

2
, then xi(k) < xi(k + 1) < xi−1(k)+xi−2(k)

2
,

and

if xi(k) >
xi−1(k)+xi−2(k)

2
, then xi(k) > xi(k + 1) > xi−1(k)+xi−2(k)

2
.

xi+1(k)

ci(k)− xi(k)
xi(k + 1)

αi(ci(k)− xi(k))

ci(k)xi−1(k) xi(k)

Figure 6.3: Step of a swarm member.

Then, Eq. (6.5) implies that xi(k+1)−xi−1(k+1) > ǫ and this completes the proof.

This lemma implies that for the synchronous case with no delays, provided that

initially the members are sufficiently apart from each other, the proximity sensors
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will not be used and that we can drop the min and max operations in Eq. (6.2) and

the system can be represented as

x1(k + 1) = x1(k)

xi(k + 1) = xi(k) − g

(

xi(k) −
xi−1(k) + xi+1(k)

2

)

,

xN (k + 1) = xN(k) + g (xN (k) − xN−1(k) − d) .

Define the following change of coordinates

e1(k) = x1(k) − xc
1

ei(k) = xi(k) − (xi−1(k) + d), i = 1, . . . , N.

Then, one obtains the following representation of the system

e1(k + 1) = e1(k) = 0,

e2(k + 1) = e2(k) − g

(

e2(k) − e3(k)

2

)

,

ei(k + 1) = ei(k) − g

(

ei(k) − ei+1(k)

2

)

+g

(

ei−1(k) − ei(k)

2

)

, i = 3, . . . , N − 1,

eN(k + 1) = eN (k) − g(eN(k)) + g

(

eN−1(k) − eN(k)

2

)

.

Noting that it is possible to write the g(·) function as

g(y(k)) = α(k)y(k),

where

0 < α ≤ α(k) ≤ ᾱ < 1,

we can represent the system with

e2(k + 1) =

(

1 − α2(k)

2

)

e2(k) +
α2(k)

2
e3(t),
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ei(k + 1) =

(

1 − αi(k)

2
− αi−1(k)

2

)

ei(k)

+
αi−1(k)

2
ei−1(k)

+
αi(k)

2
ei+1(k), i = 3, . . . , N − 1,

eN(k + 1) =

(

1 − αN(k) − αN−1(k)

2

)

eN (k)

+
αN−1(k)

2
eN−1(k),

where we dropped e1(k) since it is zero for all k. In other words, our system is, in a

sense, a linear time varying system of the form

e(k + 1) = A(k)e(k),

where e(k) = [e2(k), . . . , eN(k)]⊤ and

A(k) =



























(

1 − α2(k)
2

)

α2(k)
2 0 . . . 0

α2(k)
2

(

1 − α3(k)
2 − α2(k)

2

)

α3(k)
2

...

0 α3(k)
2

. . .
. . .

...
...

. . .
. . . αN−2(k)

2 0
...

. . . αN−2(k)
2

(

1 − αN−1(k)
2 − αN−2(k)

2

) αN−1(k)
2

0 . . . 0 αN−1(k)
2

(

1 − αN (k) − αN−1(k)
2

)



























.

Now we present the following lemma that will be used later.

Lemma 10 The spectrum of the matrix A(k), ρ(A(k)) satisfies

ρ(A(k)) ≤ 1

for all k.

Proof: Note that for the given A(k) we have

‖A(k)‖1 = ‖A(k)‖∞ = 1

for all k. On the other hand, for any given matrix A(k) it is well known that the two

norm satisfies

‖A(k)‖2 ≤ ‖A(k)‖1‖A(k)‖∞.
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Hence, since we have

ρ(A(k)) = ‖A(k)‖2,

we obtain

ρ(A(k)) ≤ 1

for all k, which completes the proof.

This lemma basically says that the eigenvalues of A(k) (which are all real numbers

since A(k) is symmetric) lie on the unit disk for each k. However, this result is not

satisfactory and we need to prove that all of the eigenvalues of A(k) lie within the

unit circle for each k. This is done with the help of the next lemma.

Lemma 11 Let α ≤ αi(k) = αi ≤ ᾱ for all k and i = 2, . . . , N (i.e., the αi’s in the

matrix A are all constants). Then,

ρ(A(k)) = ρ(A) < 1,

and we have e(k) → 0 as k → ∞.

Proof: To prove the assertion, note that A(k) is a symmetric matrix. Therefore,

there exists a unitary transformation P (i.e., P−1 = P⊤) such that Ā = PAP⊤, where

Ā = diag{ā2, . . . , āN}. For the sake of contradiction assume that ρ(A) = 1. Then,

it must be the case that āi = 1 for some i, 2 ≤ i ≤ N . Define the transformation

ē = Pe. Then the system can be described as

ē(k + 1) = Āē(k).

Since Ā is diagonal and āi = 1 we have ēi(k) = ēi(0) for all k, whereas ēj(k) → 0 as

k → ∞ for all j 6= i. This, on the other hand, implies that e(k) → Piēi(0) = ec as
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k → ∞, where Pi is the ith column of P . Depending on the value of ēi(0), the value of

ec can be any number. However, this contradicts the result of Lemma 8. Therefore,

āi < 1 for all i = 2, . . . , N , and this implies that ρ(A) < 1.

Since in the above lemma α = [α2, . . . , αN ]⊤ was chosen arbitrary, the result holds

for all α such that α ≤ αi ≤ ᾱ. Hence, we have

ρ(A(k)) < 1

for each k. Before proceeding define

ρ̄ = sup
α≤αi≤ᾱ,i=2...N

{ρ(A)}.

Then, from the above result we have

ρ̄ < 1.

6.3 The System Under Total Asynchronism

In this section we return to the totally asynchronous case. In other words, we

assume that Assumption 4 holds. To prove its stability we will use the result from

the synchronous case and a result from [7]. For convenience we present this result

here.

Consider the function f : X → X, whereX = X1×. . . ,×Xn, and x = [x1, . . . , xn]⊤

with xi ∈ Xi. The function f is composed of functions fi : X → Xi in the form

f = [f1, . . . , fn]⊤ for all x ∈ X. Consider the problem of finding the point x∗ such

that

x∗ = f(x∗)

using an asynchronous algorithm. In other words, use an algorithm in which

xi(k + 1) = fi(x1(τ
i
1(k)), . . . , xn(τ i

n(k))), ∀t ∈ Ki,
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where τ i
j(k) are times satisfying

0 ≤ τ i
j (k) ≤ k, ∀k ∈ K.

For all the other times k 6∈ Ki, xi is left unchanged. In other words, we have

xi(k + 1) = xi(k), ∀k 6∈ Ki.

Consider the following assumption.

Assumption 5 There is a sequence of nonempty sets {X(k)} with

· · · ⊂ X(k + 1) ⊂ X(k) ⊂ · · · ⊂ X,

satisfying the following two conditions:

1. Synchronous Convergence Condition (SCC): We have

f(x) ∈ X(k + 1), ∀k and x ∈ X(k).

Furthermore, if {yk} is a sequence such that yk ∈ X(k) for every k, then every

limit point of {yk} is a fixed point of f .

2. Box Condition (BC): For every k, there exist sets Xi(k) ⊂ Xi such that

X(k) = X1(k) ×X2(k) × . . .Xn(k).

Then we have the following result.

Theorem 7 Asynchronous Convergence Theorem [7]: If the synchronous conver-

gence condition and box condition of Assumption 5 hold, and the initial solution

estimate x(0) = [x1(0), . . . , xn(0)]⊤ belongs to the set X(0), then every limit point of

{x(k)} is a fixed point of f .
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This is a powerful result that can be applied to many different problems. The main

idea behind its proof is that if there is a time k1 such that xj(τ
i
j(k1)) ∈ Xj(k) for all

j and all i, then the SCC and the BC conditions above guarantee that x(k1 + 1) ∈

X(k + 1). Then, x(k) ∈ X(k + 1) for all k ≥ k1 and due to the total asynchronism

assumption there will be always another time k2 > k1 such that xj(τ
i
j (k2)) ∈ Xj(k+1)

for all j and all i. Since initially we have xj(τ
i
j(0)) = xj(0) ∈ Xj(0), we can use the

above arguments in an induction.

Now we state the main result of this chapter.

Theorem 8 For the N-member swarm modeled in Eq. (6.2) with g(·) as given in

Eq. (6.3), if Assumption (4) holds and xi+1(0)− xi(0) > ǫ, i = 1, . . . , N − 1, then the

swarm member positions will converge asymptotically to the comfortable position xc.

Proof: In order to prove this result we once again consider the synchronous case.

Recall that for this case the system can be described by

e(k + 1) = A(k)e(k).

In the previous section it was shown that for the synchronous case we have λ(A(k)) ≤

ρ̄ < 1 for all k and that e(k) → 0 as k → ∞ (i.e., the position with comfortable

intermember distance xc). This implies that A(k) is a maximum norm contraction

mapping for all k. Define the sets

E(k) = {e ∈ R
N−1 : ‖e‖∞ ≤ ρ̄k‖e(0)‖∞}.

Then, since A(k) is a maximum norm contraction mapping for all k we have e(k) ∈

E(k) for all k and

. . . ⊂ E(k + 1) ⊂ E(k) ⊂ . . . ⊂ E = R
N−1.
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Moreover, each E(k) can be expressed as

E(k) = E2(k) × E3(k) × . . . EN (k).

Since the position with comfortable intermember distance e = 0 (i.e., x = xc) is the

unique fixed point of the system and the synchronous swarm converges to it, it is im-

plied that Assumption 5 above is satisfied. Applying the Asynchronous Convergence

Theorem we obtain the result.

This result is important because it says that the stability of the system will be

preserved (i.e., the system will converge to the comfortable distance) even though

we have totally asynchronous motions. Note that the fact that in the asynchronous

case the min and max operations are preserved does not change the result since the

stability properties of the synchronous system is preserved even with them present in

the model. In fact, having them is, in a sense, beneficial because they also serve as

another neighbor position sensing by the members that come to an ǫ distance from

each other and this provides more accurate neighbor position information.

A direct consequence of Theorem 8 is the stability of swarm in which one member

in the middle is stationary, whereas all the other middle members try to move as above

and both of the edge members try to move to a distance d from their neighbors. In

other words, suppose the swarm is described by

x1(k + 1) = min {x1(k) − g(x1(k) + d− x2(τ
1
2 (k))),

x2(k) − ǫ}∀k ∈ K1,

xj(k + 1) = xj(k), ∀k and for some j, 1 ≤ j ≤ N

xi(k + 1) = max {xi−1(k) + ǫ,min {xi(k) − g(xi(k)

−xi−1(τ
i
i−1(k)) + xi+1(τ

i
i+1(k))

2
),
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xi+1(k) − ǫ}}, ∀k ∈ Ki,

i = 2, . . . , N − 1, i 6= j,

xN (k + 1) = max {xN−1(k) + ǫ, xN (k) − g(xN (k)

−xN−1(τ
N
N−1(k)) − d)}, ∀k ∈ KN . (6.6)

In this case we have the following corollary as a direct consequence of Theorem 8.

Corollary 1 For the N-member swarm modeled in Eq. (6.6) with g(·) as given in

Eq. (6.3), if Assumption (4) holds and xi+1(0)− xi(0) > ǫ, i = 1, . . . , N − 1, then the

swarm member positions will converge asymptotically to xc, where xc is defined such

that xc
j = xj(0) and xc

i = xj(0) + (i− j)d, for all i 6= j.

The importance of this result is for systems in which the “leader” of the swarm is

not the first (or the last) member, but a member in the middle.

In this chapter we considered discrete time asynchronous swarms with time delays

in one-dimensional space. Extension of these results to higher dimensions is not

straightforward and needs further research.
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CHAPTER 7

FORMATION CONTROL OF MOBILE ROBOTS

In the recent years there has been a significant interest in the control of multiple

agents (i.e., a swarm of agents) moving in a formation or performing a coordinated

task. This is because there are many potential applications of such systems including

formation control of uninhabited autonomous vehicles (UAV’s), coordination and

control of teams of robots, control of satellite formations or clusters of telescopes, etc.

In this chapter we consider the formation control problem of a system of M agents in

the context of nonlinear output regulation (servomechanism) problem. As a difference

from the work in the preceding chapters, the agents are assumed to have nonlinear

dynamics and we are concerned with controller development. First, we consider a

generic model for an agent with general nonlinear dynamics, and later we focus on a

dynamic model of mobile robots.

7.1 The General Model

Consider a multi-agent system that consists ofM agents (individuals) with motion

dynamics given by

ẋi = fi(x
i, µi, ui),

yi = hi(x
i, µi), 1 ≤ i ≤M, (7.1)
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where xi ∈ R
ni represent the local state of each agent, ui ∈ R

mi are the local control

inputs, and yi ∈ Rmi are the local outputs which are geometric variables that are used

to define the formation. These variables can either be just the state of the system or

output projections onto some space on which one wants the formation to evolve. We

assume that the functions fi and hi, i = 1, . . . ,M , are known and smooth.

The signals µi ∈ Rri represent the local exogenous inputs (i.e., reference inputs

and disturbances) which are assumed to be generated by the local neutrally stable

systems

µ̇i = gµi(µi), i = 1, . . . ,M, (7.2)

where gµi are also known and smooth. Note that the assumption that we know the

dynamics gµi is not absolutely necessary. In fact, we only need to know the dynamics

of an internal model which can generate the same output signals as the system in

Eq. (7.2) (the output of that system will be defined later). For the full information

case the internal model is the system itself. For the error feedback case, on the other

hand, it is an immersion of the system.

Formation Constraints: We assume that there are a set of predefined constraints

ηi,j(y
i, yj) = 0, 1 ≤ i, j,≤M, j 6= i, (7.3)

which uniquely determine the formation.

Remark: Note that it is not necessary to have constraints for every pair of

agents. It is enough to have only minimal number of constraints, which uniquely

determine the desired formation. It is possible, for example, to obtain such a set of

minimal number of constraints, by using the concepts of rigid and unfoldable graphs

from graph theory.
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Now, assume that there exists a virtual leader for the formation and the individuals

(i.e., the formation) are required to follow (track) that leader. In other words, the

objective is to design each of the local control inputs ui such that the formation

constraints in Eq. (7.3) are satisfied and the formation follows the trajectories of the

virtual leader. We assume that the dynamics of the virtual leader are generated by

the neutrally stable system

ṡ = gs(s),

yl = qs(s), (7.4)

where s ∈ Rr and gs is known and smooth.

The assumption that the system in Eq. (7.4) is neutrally stable is a little bit

restrictive. However, note that it still covers a large class of reference trajectories

including constant and periodic (e.g., sinusoidal) trajectories. Such reference trajec-

tories can be found in many practical applications such as orbiting satellites around

the earth or agents guarding an object etc. Moreover, it is possible to generate more

complicated trajectories by switching between a sequence of stable exosystems. In

particular, note that the output of a system which is a chain of d integrators is a spline

of degree d [63]. Therefore, given any smooth trajectory, it is possible to approximate

it using splines [115] and for that reason find a sequence of exosystems that generate

these splines (and therefore the desired trajectory). The only problem for this case is

that we need the switching to be slow enough (implying that the reference trajectory

is smooth enough) so that tracking can be achieved.

Tracking Constraints: We assume that there are a set of predefined constraints

ηi,l(y
i, yl) = 0, 1 ≤ i ≤M, (7.5)
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which need to be satisfied by the agents during motion.

Note that the formation and tracking constraints cannot be just arbitrary. In

other words, in order for the problem to be solvable the formation constraints and

the tracking constraints need to be nonconflicting, i.e., simultaneous satisfaction of

both of the constraints should be feasible.

Now, since the (requred) dynamics of the agents are tied to the dynamics of the

virtual leader through the tracking constraints, it is possible to view the dynamics of

the virtual leader as external inputs to the individual agent dynamics. With this in

mind, for each i we define si = [s⊤, µi⊤]⊤ and each of the local exosystems becomes

ṡi = gi(s
i) =

[

gs(s)
gµi(µi)

]

, (7.6)

which are neutrally stable and the gi(s
i) are known and smooth.

Note that we can view the constraints ηi,j and ηi,l as the new outputs of the system

and develop the local controllers ui to regulate these outputs to zero. However, here

we will not consider this case. Instead, we have the following simplifying assumption.

Assumption 6 There exist known smooth mappings qi(s
i), i = 1, . . . ,M such that

ηi,j(qi(s
i), qj(s

j)) = 0, 1 ≤ i, j ≤M, j 6= i,

ηi,l(qi(s
i), qs(s)) = 0, 1 ≤ i ≤M.

Remark: Assumption 6 constitutes, in a sense, a “feasibility assumption.” In

other words, if the formation constraints and the tracking constraints are nonconflict-

ing (implying that the desired formation is feasible), then this assumption is always

satisfied. Therefore, such qi(s
i), i = 1, . . . ,M always exist. However, in general, we
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may not always know these mappings, which makes the assumption a bit restrictive.

7.2 The Nonlinear Servomechanism Based Controller

Now, note that if we can force the output of each system to satisfy yi = qi(s
i), then

we will guarantee that both the formation constraints and the tracking constraints

are satisfied. With this objective in mind we can redefine the new (error) output of

each agent as ei = h̄i(xi, s
i) = yi − qi(s

i) = hi(xi, µ
i) − qi(s

i) and rewrite the system

to obtain

ẋi = f̄i(x
i, si, ui),

ei = h̄i(xi, s
i), 1 ≤ i ≤M, (7.7)

where we used the notation f̄i since we used si instead of µi in fi. Note that with

this formulation the problem of formation control and trajectory following (i.e., both

the formation constraints and the tracking constraints satisfied) in the presence of

disturbances is equivalent to the problem of decentralized nonlinear output regulation

(servomechanism) of the class of systems described in Eq. (7.7).

In Appendix A we analyze the decentralized output regulation problem for a class

of nonlinear system including interconnected systems in the framework of [54]. Note

that the system here is a special case of the systems considered there. (Actually, the

problem is even simpler since the agent dynamics are decoupled.) Therefore, we can

directly apply the results obtained there. Now, we briefly describe the conditions for

the solvability of the problem (for more information see Appendix A or [54]).

Let Ai = ∂fi

∂xi
(0, 0, 0), Bi = ∂fi

∂ui
, (0, 0, 0), and Ci = ∂hi

∂x
(0, 0). Then, necessary

conditions for the solvability of the problem are that
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1. Each of the pairs (Ai, Bi) is controllable and

2. There exist mappings xi = πi(si) and ui = ci(si), 1 ≤ i ≤ M , with πi(0) = 0

and ci(0) = 0, 1 ≤ i ≤ M , defined in a neighborhood So
i of the origin of Rri+r,

respectively, such that

∂πi(si)

∂si
gi(s

i) = fi(π
i(si), ci(si)),

0 = hi(π
i(si)) − qi(s

i), 1 ≤ i ≤M, (7.8)

for all si ∈ So
i , respectively.

Full Information Controller

For some systems the states si of the exosystems may be known and it may

be possible to solve the nonlinear partial differential equations in Eq. (7.8) for the

mappings πi(si) and ci(si). In that case the above two conditions are also sufficient

for the solvability of the problem. In fact, one controller that achieves the (local)

formation control and collective trajectory tracking is given by

ui = ci(si) +Ki(x
i − πi(si)),

where each of the matrices Ki is chosen such that for all i the matrices (Ai − BiKi)

are Hurwitz. This controller is a direct consequence of the results in [54] (since the

system is decoupled).

Error Feedback Controller

In general, it may not be possible to know si or to solve Eq. (7.8) for the mappings

πi(si) and ci(si). Therefore, it may be desirable to develop a decentralized dynamic

error feedback controller (i.e., a controller that uses only the local output information

ei) which still achieves the objective.
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In order for the error feedback nonlinear servomechanism problem to be solvable

we need a few more necessary (and sufficient) conditions to be satisfied in addition

to above mentioned two conditions (needed for the full information case). These

conditions are the following:

1. The autonomous systems with outputs

ṡi = gi(s
i),

ui = ci(si), 1 ≤ i ≤M

are immersed into

ξ̇i = ϕi(ξ
i),

ui = γi(ξ
i), 1 ≤ i ≤M, (7.9)

defined on neighborhoods Ωi, 1 ≤ i ≤ M, of the origins of R
pi, respectively, in

which ϕi(0) = 0 and γi(0) = 0, 1 ≤ i ≤M.

2. The matrices

Φi =
[

∂ϕi

∂ξi

]

ξi=0
and Γi =

[

∂γi

∂ξi

]

ξi=0

for 1 ≤ i ≤ M are such that each of the pairs

[

Ai 0
NiCi Φi

]

,

[

Bi

0

]

, 1 ≤ i ≤ M, (7.10)

is stabilizable for some Ni, 1 ≤ i ≤M, and each of the pairs

[

Ci 0
]

,

[

Ai BiΓi

0 Φi

]

, 1 ≤ i ≤M, (7.11)

is detectable.
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If these conditions are satisfied, the decentralized error feedback nonlinear ser-

vomechanism problem is solvable and the local controllers which solve the problem

are given by

ξ̇i = ϕi(ξ
i) +Nie

i,

χ̇i = Ψiχ
i + Lie

i, (7.12)

ui = γi(ξ
i) +Giχ

i, 1 ≤ i ≤M,

where the matrices Ψi, Li, and Gi are chosen such that the matrices

Ãi =

[

Āi B̄iGi

LiC̄i Ψi

]

,

where

Āi =

[

Ai BiΓi

NiCi Φi

]

, B̄i =

[

Bi

0

]

, and C̄i =
[

Ci 0
]

,

are Hurwitz. Note that such a triple of matrices always exists. In other words, the

above conditions guarantee the existence of such a stabilizing controller. For example,

one possible choice is an observer based controller given by [59]

Ψi = Āi − B̄iKi −HiC̄i, Gi = Ki, Li = −Hi,

where Ki and Hi are such that the matrices (Āi−B̄iKi) and (Āi−HiC̄i) are Hurwitz.

Remark: Note that the results described above are local results for the general

nonlinear vehicle dynamics. In other words, they do not hold for all possible initial

conditions. If, however, the vehicle dynamics for the agents were linear, then the

results would hold globally. It is possible to obtain global or semiglobal results also

for a class of nonlinear dynamics. This could be done by considering vehicle dynamics

of the form of the systems described in [98, 96, 97, 60] and adapting their procedures

to the framework considered here.
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7.3 Formation Control of Mobile Robots

In this section we consider the dynamics of mobile robots and apply the controller

discussed in the preceding section for formation control.

7.3.1 The Robot Dynamic Model

Consider a system of M mobile robots in R2 with motion equations given by

ẋi = vi cos(θi),

ẏi = vi sin(θi),

θ̇i = wi

v̇i =
1

mi

F i,

ẇi =
1

Ji

τ i, 1 ≤ i ≤ M,

where xi and yi are the Cartesian coordinates, θi is the steering angle, vi is the linear

speed, and wi is the angular speed of each agent. The quantities mi and Ji are

positive constants and represent the mass and the moment of inertia of each agent,

respectively. The control inputs to the system are the force input F i and the torque

input τ i. Note that this model includes both kinematic and dynamic equations for

the system. In other words, it is obtained by adding the velocity (linear and angular)

dynamics to the system (which are neglected in the kinematic only model). This is

equivalent to adding two integrators to the kinematic system. Note that the system

is in an affine form.

7.3.2 Problem Definition

In this section we assume that the point of interest of each robot is a point in

front of the robot at a distance di from the center of the robot. In other words, we
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are interested in the point zi with coordinates given by

zi =

[

xi + di cos(θi)
yi + di sin(θi)

]

.

This point may represent a gripper at the end of a hand of length di or a sensor

position in front of the robot. We will treat zi as the output of the system. (The

gripper may be holding something or performing some cooperative task and therefore

may be the point of interest. Similarly, if it were a sensor, there may be a requirement

for the sensor to be positioned in a particular way.)

Now, assume that the formation constrains are described in terms of the relative

distances of the outputs (points of interest) of the subsystems (agents) and are given

by

‖zi − zj‖ = di,j, 1 ≤ i, j ≤M, j 6= i.

Similarly, assume that the tracking constraints are also described as relative distances

of the outputs of the agents with respect to the output position of the virtual leader

and are given by

‖zi − zl‖ = di,l, 1 ≤ i ≤M,

where zl is the output of the virtual leader. Note that, as was mentioned before, it

is not required to have constraints for every pair of individuals and every individual

and the virtual leader. We need to have only a sufficient number of constraints which

uniquely determine the formation.

We assume that the reference trajectories to be tracked by the formation are

generated by the linear neutrally stable exosystem

ṡ = Gss,

yl = Css, (7.13)
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and that we do not have any local exogenous inputs to the system.

Now, note that Assumption 6 is easily satisfied (provided that the constraints

are feasible). In other words, there exist vectors ri such that ‖ri − rj‖ = di,j and

‖ri‖ = di,l. We can choose any set of ri which satisfy these conditions. Then, for each

agent i the trajectory to be tracked can be defined as

qi(s) = Css+ ri.

This qi(s
i) implies that the relative position of the output of each robot with respect

to the output position of the virtual leader is given by the corresponding constant

vector ri.

7.3.3 Controller Development

In Appendix B it was shown that with appropriate change of coordinates and

choice of control input the input-output dynamics with respect to the above defined

zi can be linearized. The dynamics of the robot in the new coordinates are given by

(see Appendix B)

żi = ζ i

ζ̇ i = ui

θ̇i = − 1

di

ζ i
1 sin(θi) +

1

di

ζ i
2 cos(θi).

Note that the state θi represent the unobservable states and that the zero dynamics

of the system are marginally stable since when ζ i = 0 we have θ̇i = 0.

Since the input-output map of the system is linear, one can analytically solve for

the manifold equations using

πi
1(s) = qi(s), πi

2(s) = ∂qi(s)
∂s

Gss, ci(s) =
∂πi

2(s)

∂s
Gss.
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Note, however, that these are only a part of the manifold corresponding to the linear

part of the dynamics. For the part corresponding to the unobservable dynamics we

have the following assumption.

Assumption 7 There exists a mappings λi(s) with λ(0) = 0 such that

∂λi(s)

∂s
Gss = −1

li
πi

2,1(s) sin(λi(s)) +
1

li
πi

2,2(s) cos(λi(s)).

We do not need to know λi(s) in order to be able to implement the controller.

Full Information Controller

Now, define x̃i
1 = zi−πi

1(s), x̃
i
2 = ζ i−πi

2(s), and ũi = ui−ci(s). Then, the system

becomes

˙̃x
i

1 = x̃i
2

˙̃x
i

2 = ũi

and the problem is reduced to the problem of stabilization of the above system. By

choosing the stabilizing controller as

ũi = −α1x̃
i
1 − α2x̃

i
2

with α1 and α2 such that the matrix

[

0 1
−α1 −α2

]

is Hurwitz we know that we will achieve exponential stability of the system (i.e.,

exponentially fast convergence to the zero error manifold). For example, the choice

of α1 = 2 and α2 = 3 will render the poles of the system at −1 and −2. From here
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the (full information) controller that achieves both formation control and trajectory

tracking for the system is given by

ui = ci(s) − α1

(

zi − πi
1(s)

)

− α2

(

ζ i − πi
2(s)

)

,

and the final control input to the robot [F i⊤, τ i⊤]⊤ is obtained by inserting ui in the

linearizing control in Eq. (B.1) in Appendix B.

Here the first term in the control input guarantees that the agent tracks the

trajectory generated by the virtual leader (once it is on the trajectory), whereas the

second term moves it towards that trajectory if initially it is not on the trajectory.

Note that the individuals do not need to have information about the other agents in

the system. They only need to know the information about the virtual leader and

their relative desired positions ri. Note, however, that inherently there is a drawback

in this since it cannot guarantee avoidance of collisions between the robots. In order

to avoid collisions it may be possible to augment (redesign) the stabilizing controller

with a collision avoidance term (e.g., a term based on on artificial social potential

fields or attraction/repulsion between the agents, similar to the swarms considered

earlier). However, this is a topic of further research and will not be considered here.

Another observation we need to mention here is that since the zero dynamics

of the equations are not asymptotically stable (recall that they are only neutrally

stable), during a transient they may grow large. However, note that the state of the

zero dynamics (unobservable dynamics) θi corresponds to the orientation angle of the

robot, and is 2π periodic. Therefore, the temporary instability (possible during a

transient) in θi does not constitute any real danger. Physically it means that during

transient, while the robot is trying to reach the zero error manifold, it may rotate

around itself several times.
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Error Feedback Controller

Now, we will consider the case in which the exogenous signals are not known.

Instead, we have only the measurement of the output error ei. To this end, first note

that since the exosystem that we consider is linear there exist always a mapping τ i(si)

such that it is immersed into a linear observable system. In fact, one such mapping

is given by

τ i(s) =

[

ci(s)
∂ci(s)

∂s
Gss

]

.

With the above transformation this system is immersed into the linear system

τ̇ i(s) = Φiτ
i(s),

ci(s) = Γiτ
i(s),

which is in observable canonical form and has eigenvalues on the imaginary axis. By

choosing the matrices Ni such that the pairs (Φi, Ni) are controllable (e.g., choose Ni

such that the pair is in controllable canonical form), the pair in Eq. (7.10) stabilizable

and the pair in Eq. (7.11) is already detectable for the above internal model. Then,

the interconnection of the internal model and system is stabilizable. This implies

that we can easily choose the dynamic controller (Ψi, Gi, Li) as described in the

previous section (or any other means as long as it stabilizes the closed loop system)

and complete the design of the controller.

7.3.4 Other Possible Designs

One of the drawbacks of the of the partially feedback linearizing controller, based

on which the results in the previous section were developed, is that the zero dynamics
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of the system are not asymptotically stable, which may degrade the transient perfor-

mance. Another possible drawback could be the fact that each of the agents must

know its global coordinates (i.e., coordinates with respect to some global coordinate

system) x, y, and θ. In some applications, this may not be the case. Instead, there

may be a leader (virtual or not) which knows its global coordinates, whereas, the

other robots know (can measure) only their relative coordinates with respect to the

preceding agents. Moreover, the transformation there holds only for a particular point

on a distance d from the center of the robot and does not hold for the center itself.

Therefore, it may not be possible to use the partially feedback linearizing controller

if the point of interest is the center of the robot.

In cases such as the ones above there may be a need for development of a different

type of controller. One alternative would be to fully linearize the system by usin

dynamic feedback. In fact, it can be shown that by adding an integrator to one of

the inputs of the system and appropriate change of coordinates, the system dynamics

with respect to the output

zi =

[

xi

yi

]

,

can be fully linearized (see Eq. (B.2 in Appendix B) with the condition that vi 6= 0.

Then, one can design the controller using (possibly) output regulation framework for

the linearized system such that the control objectives (the formation and tracking

constraints) are satisfied. Note, however, that special care must be taken in order to

ensure that vi 6= 0.

As an alternative for the case in which the agents know (or can measure) only

their relative coordinates (i.e., relative position and orientation), then the local model

derived in Appendix B can be used. As was shown in Appendix B, for this case also
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the system dynamics can be fully linearized with respect to the output

zj =

[

lij
ψij

]

,

which is the vector of the relative distance lij and relative orientation ψij of the

follower agent j with respect to leading agent i. This transformation also is possible

with condition that vi 6= 0. Note also that there is also a drawback, which is the fact

that the linearizing transformation for the relative dynamics of the follwer agent j

depends also on the state of the leading agent i. Therefore, developing a controller

that achieves satisfactory formation control needs careful consideration and additional

research. Nevertheless, following this approach can lead to potentially useful result.

7.3.5 Simulation Examples

In this section we will provide an example problem, show the controller develop-

ment and provide simulation examples. Assume that we have a system consisting of

three agents, which are required to move in an equilateral triangle formation along

a circle. This implies that the trajectories of the virtual leader are generated by the

linear given in Eq. (7.13) with

Gs =









0 −β 0 0
β 0 0 0
0 0 0 −β
0 0 β 0









, Cs =

[

1 0 0 0
0 0 1 0

]

.

Assume that the parameter β = 1 and initial conditions are s(0) = [10, 0, 10, 10]⊤.

Assume that the virtual leader is located at the center of the triangle and the relative

position vectors for the agents are given by

r1 =

[

0
1

]

, r2 =

[
√

3
2

−1
2

]

, and r3 =

[

−
√

3
2

−1
2

]

.
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Then, the desired position of agent i is given by

qi(s) =

[

s1

s3

]

+ ri.

Using the above qi(s) we can solve for the manifold equations to obtain

πi
1(s) =

[

s1

s3

]

+ ri, πi
2(s) = β

[

s2

s4

]

, ci(s) = −β2

[

s1

s3

]

,

using which the full information controller is given by

ui = −β2

[

s1

s3

]

− α1

(

zi − ri −
[

s1

s3

])

− α2

(

ζ i − β

[

s2

s4

])

.

For the stabilizing controller we choose the parameters as α1 = 2 and α2 = 3,

which lead to the poles at −1 and −2. Figure 7.1 shows the response of the system

for about 15 seconds. As you can see, initially the individuals are not in the required

formation; however, they form the formation very fast (exponentially fast) and follow

the required trajectory in a formation.
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0
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Figure 7.1: The response for the full information controller with α1 = 2 and α2 = 3.
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Before developing the error feedback controller note that for this problem the

dynamics of the system are decoupled for the two dimensions (of the state space).

Therefore, we will also decouple the problem of the servocontroller design. In other

words, we will consider each dimension as a separate single-input-single-output system

and design the controller for that dimension. (Actually, we will design a controller

for one dimension only and use the same structure for the other dimension too, since

the dynamics in both dimensions is the same.)

Considering only the single dimensional subsystem generating the controller we

have

ṡ =

[

0 −β
β 0

]

s

ci(s) = −β2s1,

and the transformation τ i(s) is given by

τ i(s) =

[

−β2s1

β3s2

]

.

Using that transformation the system is immersed into

τ̇ i(s) =

[

0 1
−β2 0

]

τ i(s),

ci(s) =
[

1 0
]

τ i(s).

Note that for this system we have

Ai =

[

0 1
0 0

]

, Bi =

[

0
1

]

, Ci =
[

1 0
]

,Φi =

[

0 1
−β2 0

]

, and Γi =
[

1 0
]

.

By choosing

Ni =

[

0
1

]

,
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the interconnection of the internal model and system is stabilizable for any constant

β.

Now, choose the desired pole locations for the closed loop system and the observer

as [−1,−2,−3,−4] and find the stabilizing controller by using the Matlab command

place as

Li = place(Āi, C̄
⊤
i , [−1,−2,−3,−4])⊤,

Gi = place(Āi, B̄i, [−1,−2,−3,−4]),

Ψi = Āi − B̄iGi − LiC̄i,

which are given by

Ψi =









−10 1 0 0
−59 −10 10 −40
−40 0 0 1
−33 0 −1 0









, Gi =









34
10
−9
40









, and Li =
[

−10 −25 −40 −34
]

.

The plot on the left in Figure 7.2 shows the motion of the system for about

20 seconds. Note that it takes more time for the system (compared to the full
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For about 20 seconds. After 15 seconds.

Figure 7.2: The response for the error feedback controller.
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information case) to converge to the desired formation and to follow the trajectory of

the virtual leader. This is due to the fact that it takes some time for the observer states

to converge and therefore to generate the appropriate control input. Nevertheless, it

still converges in a short period of time. The plot on the right in Figure 7.2 shows the

trajectories of the three agents for the last 5 seconds of the above case. As you can

see, they have converged to the desired formation and follow the desired trajectory.

Figure 7.3 shows another simulation (for which we do not show the controller

development), in which we used a set of three neutrally stable exosystems and a

(circular) sequence of switching between them. This was done in order to simu-
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−200

−150

−100
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Robots searching an area in a formation

x

y

Figure 7.3: Three robots searching an area.

late a searching behavior of three robots which needed to move aligned though a

predefined rectangular region and it was not possible to generate their path using

single neutrally stable exosystem. The plot shown in the figure is for the case using

the full information controller. As expected, the robots move to the area, align with
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each other (as required by the formation constraints), and perform the search keeping

the needed distance. As was mentioned before, by appropriately switching between

the exosystems, it is possible to generate (and therefore track) even more complex

trajectories.
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CHAPTER 8

CONCLUSIONS

In this chapter we will summarize the work done in this dissertation and also will

point out some potentially fruitful future research directions.

8.1 Summary and Contributions

In this dissertation we considered the problem of mathematically modeling and

performing stability analysis of swarms. First, we considered stationary aggregating

swarms in Chapter 2 and showed that for the given model cohesiveness of the swarm

is achieved in a finite time. We also derived explicit bounds on the swarm size and

the time of convergence. The results derived are global and hold for any dimension

n of the state space. Following that, in Chapter 3 we extended the results in Chap-

ter 2 to incorporate different types of attraction/repulsion functions in the model.

In particular, we allowed for unbounded repulsions, therefore guaranteeing avoidance

of collisions. We also showed that the model can easily be modified to describe uni-

form swarm density as in real biological swarms or to achieve formation stabilization

for any desired formation. In Chapter 4 we considered social foraging swarms (i.e.,

swarms moving in a profile of nutrients or toxic substances) and showed collective
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convergence to more favorable (nutrient rich) regions and divergence from unfavor-

able (toxic) regions of the profile. All these results are based on the use of artificial

potential functions and are unique results on swarm cohesiveness establishing bounds

on swarm size. Note also that the results in these chapters are very much related to

optimization theory. In fact, one may view the social foraging swarm as a distributed

minimization of the profile function using a distributed gradient method.

The biological literature [9, 114, 47, 80] provided the main inspiration for these

results. However, as a difference from the work in biology, we were able to perform

rigorous stability analysis. Other work with immediate relevance to the work in

these chapters includes the literature on multi-agent control using artificial potential

functions [88, 64]. Our swarm model can be viewed as a type of social potential fields

method described in [88]. However, note that no stability analysis was performed in

[88]. The recent results in [64] consider a very similar model to ours and also use

Lyapunov stability theory for analysis. Note, however, that they are not concerned

with cohesiveness of the swarm as we are and also their results are local. To best of

our knowledge, our results are the first that view cohesiveness as a stability property

and simultaneously establish bounds on the swarm size.

In Chapter 5 we considered the problem of modeling and analysis of the aggrega-

tion and cohesiveness of honey bee clusters and in-transit swarms. In the honey bee

literature there are many experimental results published [101, 76, 10, 11, 77, 73, 3,

1, 95, 91]; however, there have not been any mathematical models developed. Even

though the analysis in the chapter is not very rigorous, it is (to best of our knowl-

edge) the first attempt to create a mathematical model for the clustering or swarming
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behavior of honey bees. Therefore, it has the potential of triggering further research

and (possibly) experimental studies in the area.

In Chapter 6 we diverged from the work in the previous chapters by considering a

discrete time one-dimensional asynchronous swarm model with time delays. Note that

the problem of performing stability analysis of swarms under asynchronism and time

delays is, in general, not an easy problem. We were able to obtain stability by making

use of some earlier results from parallel and distributed computation literature. Note

that one dimensional swarms are very similar to the platooning in automated highway

system, which is an area which has been studied extensively (see for example [5, 105,

104, 23]). The closest results to our work in this chapter is the work by Liu and

Passino in [68, 67, 69, 70]. In fact, in our work in this chapter we used the single

swarm member model from [68]. However, we used different model for interindividual

attractions and repulsions and also different mathematical tools for stability analysis.

In Chapter 7 we considered the formation control problem for a multi-agent sys-

tem. We showed that the problem can be approached in the framework of decentral-

ized nonlinear output regulation (servomechanism) problem and explicitly specified

the controller which achieves formation stabilization as well as trajectory tracking.

We also showed how the controller can be used for formation control of mobile robots.

To best of our knowledge, this is the first attempt to consider the formation control

problem in the context of output regulation. It differs from the other work on for-

mation control [28, 29, 32, 79] not only because we use output regulation theory,

but also because we consider a general nonlinear dynamic model and then apply it

to formation control of robots. The algorithm has some drawbacks (e.g., we cannot

guarantee collision avoidance). However, it is an initial step for developing rigorous
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multi-agent coordination and control strategies based on nonlinear output regulation

theory.

In Appendix A decentralized output regulation of a class of nonlinear systems was

considered. It basically constitutes an extension of the results on linear output regu-

lation in [26] to the nonlinear case in the framework of [54]. Therefore, Appendix A

is not directly an integral part of this work. However, the results developed there

provided a basis for the results in Chapter 7. Moreover, they are a small contribution

to the nonlinear output regulation literature on their own.

Appendix B discusses three useful transformations (representations) of the dynam-

ics of a mobile robot. One of these transformations is used in Chapter 7 to partially

linearize the system dynamics before developing the nonlinear servomechanism based

controller.

8.2 Future Research Directions

There are several possible potentially fruitful research directions which can be

pursued starting with this work as a base. First, note that in the swarm models

considered in Chapters 2, 3, and 4 all the individuals were assumed to know the exact

(relative) position of all the other individuals. Therefore, a good contribution would

be to consider the case in which there is some kind of communication topology between

the agents, i.e., the swarm members can communicate or sense only a subset of the

other agents and the swarming behavior is based only on these sensed individuals. The

communication topology can be considered to be fixed (i.e., the individuals can see

only a predefined fixed set of other individuals) or dynamic (i.e., the set of individuals

which can be seen by a given swarm member can vary). For example, consider the
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case in which the agents are able to sense (see) only their nearest neighbors and the

neighbors can change with time. Proving stability under such conditions is an open

problem that needs to be analyzed.

As another extension we can consider stability of the system under uncertainties

such as measurement errors or communication delays. In other words, assume that

the agents measure the relative position of their neighbors using sensors and there

are imperfections in the sensors. Can we still guarantee similar swarming behavior?

Or, assume that the swarm members communicate their position to their neighbors

and there are communication delays. Therefore, since the agents are moving, at the

time when individual i receives the position information of individual j, individual j

has already moved to another position. Can we still guarantee stability?

Note that the model of social foraging swarm in Chapter 4 can be considered as

a model of a multi-agent system moving in a environment. In that case, the profile

represents the environment, and nutrients are analogous to targets (to which the

agents are required to move) and toxic substances are analogous to threats (which

the agents need to avoid). Note, however, that the profile that we considered is a

static profile, i.e., it does not change with time. It is an open problem to analyze

the stability characteristics of the emergent behavior for dynamically varying profiles.

This will allow us to handle cases of moving or “pop-up” targets and/or threats.

The swarm model that we consider constitutes essentially a kinematic model for

swarming behavior. In this context, the swarm members of our model can be viewed

as virtual agents that generate the trajectories tracked by real agents with their

own dynamics. If we have a group (a swarm) of vehicles with their own dynamics

with the requirement of some kind of swarming behavior (e.g., formation keeping).
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Then, we can use the above approach, or, in contrast, we can consider developing a

control strategy that will directly achieve the swarming behavior. Therefore, given

known, general fixed vehicle (agent) dynamics, there is a need for a general controller

controller development for swarming behavior.

Analyzing the stability of asynchronous swarms with time delays is important

since many biological or engineering systems may have these characteristics. In Chap-

ter 6 we considered the problem in one dimension. However, developing a general n-

dimensional swarm model and performing rigorous stability analysis of the emergent

behavior is an important open problem.

In Chapter 7 we considered the formation control problem for a general multi-

agent system and in particular for mobile robots. One issue that we did not directly

address is the collision avoidance problem. Therefore, during steady state the sys-

tem may perform well. However, we cannot guarantee that collisions will not occur

during the transient. Therefore, the stabilizing controller may need to be augmented

or redesigned in order to address this issue. One possible approach could be to ap-

proach the problem using artificial social potential fields (with possible unbounded

repulsion). Another issue is that in the developments in Chapter 7 we had the im-

plicit assumption that all of the agents (robots) know their coordinates with respect

to a global coordinate system. In some engineering applications this may not be the

case. Instead, there may only be a leader which knows its global coordinates and the

rest of the agents may only know their position relative to the preceding neighbors.

Can we develop a decentralized nonlinear output regulation based controller for the

system of this form? Developing of such a controller would constitute an important

contribution to the formation control literature.
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Swarming of honey bees is a spectacular phenomena that occurs when the hive

gets crowded and the queen leaves the hive together with few thousand worker bees

and few drones. So far there has not been a mathematical model generated for this

behavior. In Chapter 5 we tried to create a simple model, which can be viewed as

a preliminary work in this area. It may serve as a starting point for development of

general, complex, and realistic model for honey bee swarming behavior. We believe

that this not only will help better understand the behavior of the honey bees but

also will trigger more experimental results in the area and can eventually lead to

development of swarm prevention techniques, therefore having important impact on

the honey bee agriculture.

Finally, we as engineers usually would like to implement the techniques that we

develop. Sometimes implementation of seemingly easy methods is not that straight-

forward, because of neglected dynamics or some other implementation issues. There-

fore, in order to verify the operation of the developed theory, there is a need for

comprehensive experimental (implementation) studies. Such studies may also pro-

vide us with more insights for a better understanding the behavior of real biological

swarms.

163



APPENDIX A

DECENTRALIZED REGULATION OF A CLASS OF
NONLINEAR SYSTEMS

In this appendix we investigate the decentralized output regulation problem of a

class of nonlinear systems. We show that the results of decentralized output regulation

of linear systems can easily be adapted to nonlinear systems within the Isidori-Byrnes

framework. The resulting decentralized controller consists of local controllers, each

of which is a parallel connection of a stabilizer and a (partial) internal model. In the

next section we start by providing some background on the literature on nonlinear

output regulation.

A.1 Introduction

The output regulation problem, or the so called servomechanism problem, has

been studied extensively in the past few decades. For the class of linear systems,

the problem was studied and solved in the 70’s. See for example [26, 24, 34, 33].

The output regulation of nonlinear systems was first pursued by Huang and Rugh

[51] for systems with constant exogenous signals and by Isidori and Byrnes [55] for

more general class of exosystems (see also [54]). In [53] the servomechanism problem

for systems with slowly varying but not necessarily bounded exogenous signals was
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addressed, and a solution method based on the series expansion of the system func-

tions and the solution of the regulator equations was presented. It was also shown

that the solution of the problem depends also on the higher order harmonics of the

system. Later in [52] the results were extended to present an approximate method

for calculating the solution of the regulator equations and was shown that under the

developed strategy a “guaranteed” bounded tracking is achieved where the bound on

the tracking error depends on the quality of the approximation. Similarly, in [16, 112]

neural networks were used to approximate the solutions of the regulator equations.

Recent research in this area has been focusing on robust regional, semiglobal, or global

regulation of nonlinear systems. See for example [60, 98, 96, 97, 99]. In [97, 99] the

authors use adaptive internal model for semiglobal output regulation in presence of

unknown (but parametrized) linear exosystem. This result is important since it puts

the output regulation problem in the framework of adaptive control.

The decentralized servomechanism problem for linear systems was considered by

Davison in [25], where he provides necessary and sufficient conditions for the solvabil-

ity of the problem. Here we extend his results for the regulation of nonlinear systems

in the framework of [55] (see also [54]).

A.2 The Decentralized Regulation Problem

In this section we consider the problem of finding a decentralized controller for

the output regulation of a class of nonlinear systems described by

ẋ =

ν
∑

i=1

fi(x, w, ui),

ei = hi(x, w), 1 ≤ i ≤ ν, (A.1)
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where x ∈ R
n is the state, ui ∈ R

mi and ei ∈ R
mi , 1 ≤ i ≤ ν, (m =

∑ν

i=1mi) are the

control inputs and outputs at each local station, respectively. The functions fi and

hi, i = 1, . . . , ν, are known and smooth, and mi, i = 1, . . . , ν, and ν are known. (We

consider a square system for ease of analysis; however, note that it is not essential

for the results to hold.) The signal w ∈ Rr represents the exogenous inputs, that are

the reference inputs, that need to be tracked, and the disturbances, that need to be

rejected. It is assumed that all the exogenous signals are generated by a neutrally

stable exosystem

ẇ = s(w), (A.2)

where s is known and smooth.

The problem is to regulate each of the outputs ei, i = 1 . . . ν, to zero using only

local (decentralized) controls ui, i = 1 . . . ν, that use only the (local) information from

the corresponding output ei. We define the problem as follows.

Decentralized Output Regulation Problem (DORP): Given a nonlinear sys-

tem of the form of Eq. (A.1) and a neutrally stable exosystem in the form of Eq. (A.2),

find, if possible ν integers p1, p2 . . . , pν , and mappings ηi(ξi, ei) and θi(ξi), 1 ≤ i ≤ ν,

where ξi ∈ Rpi, such that the following conditions are satisfied:

(S) The equilibrium (x, ξ1, . . . , ξν) = (0, 0, . . . , 0) of

ẋ =
ν

∑

i=1

fi(x, 0, θi(ξi)),

ξ̇i = ηi(ξi, hi(x, 0)), 1 ≤ i ≤ ν, (A.3)

is locally exponentially stable.

(R) There exists a neighborhood V of the origin ofX×Ω×W , where Ω = Ω1×. . .×Ων ,
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with Ωi ⊂ R
pi, such that, for each initial condition (x(0), ξ(0), w(0)) ∈ V (where

ξ(0) = [ξ⊤1 (0), . . . , ξ⊤ν (0)]⊤), the solution of the system

ẋ =
ν

∑

i=1

fi(x, w, θi(ξi)),

ξ̇i = ηi(ξi, hi(x, w)), 1 ≤ i ≤ ν, (A.4)

ẇ = s(w)

satisfies the condition

lim
t→∞

hi(x(t), w(t)) = 0, 1 ≤ i ≤ ν. (A.5)

Before proceeding we will make the following definitions. Let Ai = ∂fi

∂x
(0, 0, 0),

Bi = ∂fi

∂ui
(0, 0, 0), Ci = ∂hi

∂x
(0, 0), S = ∂s

∂w
(0), Fi = ∂ηi

∂ξi
(0, 0), Gi = ∂ηi

∂ei
, (0, 0), and Hi =

∂θi

∂ξi
(0). Then, using these define A =

∑ν
i=1Ai, B = [B1, . . . , Bν ], C = [C⊤

1 , . . . , C
⊤
ν ]⊤,

F = bd[F1, . . . , Fν ], G = bd[G1, . . . , Gν ], and H = bd[H1, . . . , Hν], where bd stands for

block diagonal. Now, we have the following result, which is a decentralized version of

those in [55].

Lemma 12 Assume that for some ηi(ξi, ei) and θi(ξi), 1 ≤ i ≤ ν, the condition (S) is

satisfied. Then, the condition (R) is also satisfied if, and only if, there exist mappings

x = π(w) and ξi = σi(w), 1 ≤ i ≤ ν, with π(0) = 0 and σi(0) = 0, 1 ≤ i ≤ ν, defined

in a neighborhood W o of the origin of Rr satisfying the conditions

∂π

∂w
s(w) =

ν
∑

i=1

fi(π(w), w, θi(σi(w))),

∂σi

∂w
s(w) = ηi(σi(w), 0), 1 ≤ i ≤ ν, (A.6)

0 = hi(π(w), w), 1 ≤ i ≤ ν,

for all w ∈W o.
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Proof: Necessity: Since the systems satisfies condition (S) with the above controller

we have that the eigenvalues of the matrix (that is the linearization of the closed loop

system around the origin)
[

A BH
GC F

]

are located on the open left half complex plane, whereas, the eigenvalues of S (the

linearization of the exosystem) are all on the imaginary axis (because of its neutral

stability). From the center manifold theory [13] we know that there exists a center

manifold x = π(w) and ξi = σi(w), 1 ≤ i ≤ ν, such that the following equations are

satisfied

∂π

∂w
s(w) =

ν
∑

i=1

fi(π(w), w, θi(σi(w))),

∂σi

∂w
s(w) = ηi(σi(w), hi(π(w), w)), 1 ≤ i ≤ ν. (A.7)

Now, assume that the condition (R) is satisfied but the last equalities in Eq. (A.6)

do not hold. Then, there is an output i, 1 ≤ i ≤ ν, such that for some wo and π(wo)

we have

‖hi(π(wo), wo))‖ = Mi > 0

and there exists a neighborhood U of (π(wo), wo) such that

‖hi(π(w), w))‖ > Mi/2

for all (π(w), w) ∈ U . On the other hand, since condition (R) holds there exists a

time T > 0 such that for all t > T

‖hi(π(w(t)), w(t)))‖ < Mi/2.

However, since the exosystem is neutrally stable, always there is some time t1 > T

such that (π(w(t1)), w(t1)) ∈ U which leads to a contradiction. Therefore, the last
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equalities in Eq. (A.6) hold. Substituting their values in the other two equations

implies that all the equalities in Eq. (A.6) hold.

Sufficiency: Assume that Eq. (A.6) are satisfied. Then, by construction x = π(w)

and ξi = σi(w), 1 ≤ i ≤ ν, constitute a center manifold for the system. From the

properties of the center manifolds we know that for some M > 0 and a > 0 we have

‖x̄(t) − π̄(w(t))‖ ≤Me−at‖x̄(0) − π̄(w(0))‖, ∀t ≥ 0,

where x̄ = [x, ξ1, . . . , ξν]
⊤ and π̄ = [π, σ1, . . . , σν ]

⊤. Define x̃ = x(t) − π(w(t)). Then,

we have

lim
t→∞

ei(t) = lim
t→∞

hi(π(w(t)) + x̃(t), w(t)) = hi(π(w(t)), w(t)) = 0,

for all 1 ≤ i ≤ ν. Therefore, the condition (R) is satisfied.

Before proceeding further, we have to introduce the notion of fixed modes [25, 113].

Definition 2 Consider a linear time invariant system described by the triple (C,A,B) ∈

Rm×n × Rn×n × Rn×m. Let K be a set of matrices in Rm×m. Then, the set of fixed

modes of (C,A,B) with respect to K is defined as follows:

Λ(C,A,B,K) =
⋂

K∈K

λ(A+BKC),

where λ(A+BKC) is the set of eigenvalues of (A+BKC).

In other words, the set of fixed modes with respect to a given set of matrices are the

set of eigenvalues that cannot be changed by an output feedback with a gain matrix

within this set. Note that Λ(C,A,B,Rm×m) is the set of the modes of A that are

either uncontrollable or unobservable. We will consider only the set of block diagonal

gain matrices

Kbd = {K : K = bd[K1, . . . , Kν], Ki ∈ R
mi×mi , i = 1, . . . , ν}.
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Below, we will use the notation {Ωo, ϕ, γ} to denote a system

ξ̇ = ϕ(ξ),

u = γ(ξ),

defined for ξ ∈ Ωo. Now, we have the following result.

Theorem 9 The DORP is solvable if, and only if, there exist mappings x = π(w)

and ui = ci(w), 1 ≤ i ≤ ν, with π(0) = 0 and ci(0) = 0, 1 ≤ i ≤ ν, all defined in a

neighborhood W o of the origin of Rr and satisfying the conditions

∂π

∂w
s(w) =

ν
∑

i=1

fi(π(w), w, ci(w)),

0 = hi(π(w), w), 1 ≤ i ≤ ν, (A.8)

for all w ∈ W o, and such that the autonomous systems with outputs {W o, s, ci}, 1 ≤

i ≤ ν, are immersed into

ξ̇i = ϕi(ξi),

ui = γi(ξi), 1 ≤ i ≤ ν, (A.9)

defined on neighborhoods Ωi, 1 ≤ i ≤ ν, of the origins of Rpi, respectively, in which

ϕi(0) = 0 and γi(0) = 0, 1 ≤ i ≤ ν, and the matrices

Φi =
[

∂ϕi

∂ξi

]

ξi=0
and Γi =

[

∂γi

∂ξi

]

ξi=0

for 1 ≤ i ≤ ν are such that all the fixed modes with respect to Kbd of the triple

[

C 0
]

,

[

A BΓ
NC Φ

]

,

[

B
0

]

, (A.10)

where Φ = bd[Φ1, . . . ,Φν ] and Γ = bd[Γ1, . . . ,Γν ], have negative real parts, for some

choice of N = bd[N1, . . . , Nν ].
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Proof: Necessity: Suppose that the local controllers

ui = θi(ξi), ξ̇i = ηi(ξi, ei), 1 ≤ i ≤ ν, (A.11)

solve the decentralized regulation problem. Then, by Lemma 12 there exist mappings

x = π(w) and ξi = σi(w), 1 ≤ i ≤ ν, with π(0) = 0 and σi(0) = 0, 1 ≤ i ≤ ν, such

that Eq. (A.6) are satisfied. Set ci(w) = θi(σi(w)), γi(ξi) = θi(ξi), ϕi(ξi) = η(ξi, 0),

1 ≤ i ≤ ν. Now, note that these satisfy Eq. (A.8). Moreover, we have ∂σi

∂w
s(w) =

ϕi(σi(w)) and ci(w) = γi(σi(w)), 1 ≤ i ≤ ν, implying that {W o, s, ci} are immersed

into {Ωo
i , ϕi, γi}, for all 1 ≤ i ≤ ν. Moreover, since the given local controllers solve

the regulation problem, the eigenvalues of the matrix

[

A BΓ
GC Φ

]

are all located in the open left half plane. This, on the other hand, implies that

all the fixed modes of the triple in (A.10) have negative real parts for N = G, i.e.,

Ni = Gi, 1 ≤ i ≤ ν.

Sufficiency: Choose Ni, 1 ≤ i ≤ ν, such that the triple in (A.10) has all of its

fixed modes with negative real parts. Then from Theorem 1 in [113] we know that

the decentralized stabilization problem of the system described by the above triple is

solvable using dynamic output feedback. In other words, there exist integers q1, . . . , qν ,

all greater than or equal to zero, and a real constant matrices of the form M =

bd[M1, . . . ,Mν ], L = bd[L1, . . . , Lν ], and Ψ = bd[Ψ1, . . . ,Ψν], where Li ∈ Rqi×mi ,Mi ∈

Rmi×qi, and Ψi ∈ Rqi×qi, such that the roots of the polynomial det(λI−Ae−BeKeCe)

have negative real parts. Above the matrices Ke, Ae, Be, and Ce are

[

0 M
L Ψ

] [

Ā 0
0 0

] [

B̄ 0
0 I

] [

C̄ 0
0 I

]

,
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respectively, and C̄, Ā, and B̄ represent the matrices in (A.10).

Then choose each of the stabilizing local compensators as

χ̇i = Ψiχi + Liei, 1 ≤ i ≤ ν, (A.12)

and the overall control input as

ui = γi(ξi) +Miχi, (A.13)

which render the matrix (Ae +BeKeCe) =































A B1Γ1 B2Γ2 . . . BνΓν B1M1 . . . BνMν

N1C1 Φ1 0 . . . 0 0 . . . 0

N2C2 0 Φ2
. . .

...
...

...
...

...
. . .

. . . 0
...

...

NνCν 0 . . . 0 Φν 0
...

L1C1 0 . . . . . . 0 Ψ1
. . .

...
...

...
. . .

. . . 0
LνCν 0 . . . . . . . . . . . . 0 Ψν































Hurwitz. In other words, the system is rendered exponentially stable in the first

approximation. Moreover, by hypothesis there exist mappings x = π(w) and ξi =

σi(w), 1 ≤ i ≤ ν, with π(0) = 0, σi(0) = 0, 1 ≤ i ≤ ν, and ξi = τi(w) such that

Eq. (A.8) hold together with (because of the immersion) ∂τi

∂w
s(w) = ϕi(τi(w)) and

ci(w) = γi(τi(w)), 1 ≤ i ≤ ν. Then Eq. (A.8) together with ξi = τi(w), χi = 0, 1 ≤

i ≤ ν, satisfy Eq. (A.6). This, on the other hand, implies that the sufficient conditions

of Lemma 12 are satisfied (i.e., we have local controller that satisfies conditions (S)

and Eq. (A.6) are satisfied), and therefore, regulation is achieved.

From this formulation, we have that each of our local controllers have the following

form

ξ̇i = ϕi(ξi) +Niei,
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χ̇i = Ψiχi + Liei, (A.14)

ui = γi(ξi) +Miχi, 1 ≤ i ≤ ν.

In other words, each of the local controllers consists of a parallel connection of a

dynamic compensator and a servocompensator.

Note that with appropriate definitions, this system can be converted to the general

form discussed in [54]. In other words, define u = [u1, . . . , uν]
⊤, e = [e1, . . . , eν ]

⊤, ξ =

[ξ1, . . . , ξν]
⊤, χ = [χ1, . . . , χν ]

⊤, c(w) = [c1(w), . . . , cν(w)]⊤, γ(ξ) = [γ1(ξ1), . . . , γν(ξν)]
⊤,

ϕ(ξ) = [ϕ1(ξ1), . . . , ϕν(ξν)]
⊤. Then, the controller in compact form becomes

ξ̇ = ϕ(ξ) +Ne,

χ̇ = Ψχ+ Le, (A.15)

u = γ(ξ) +Mχ,

which is exactly the form of the centralized controller discussed in [54]. Note that the

overall controller consists of a decentralized stabilizer and a decentralized internal

model or servocompensator. The job of the servocompensator is to generate the

control input that will render the zero error manifold invariant. On the other hand,

the dynamic compensator acts as stabilizer that yields this manifold locally attractive.

The analysis here can be viewed, in a sense, as a special case of the more general

framework developed in [54], with the restriction that the controller matrices have

the block diagonal form as above. Natural consequence of this requirement is the

extra condition that the three matrices in (A.10) do not have unstable fixed modes

with respect to Kbd. On the other hand, it is possible to present the results here in

a more general framework so that the results in [54] are viewed as a special case of
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the ones here. To see this, note that the conditions on controllability of

[

A 0
NC Φ

]

,

[

B
0

]

,

and detectability of

[

C 0
]

,

[

A BΓ
0 Φ

]

,

are equivalent to that the triple

[

C 0
]

,

[

A BΓ
NC Φ

]

,

[

B
0

]

,

has no unstable fixed modes with respect to the set of m × m real matrices K. In

other words, the results here can be stated with respect to any general set of given

matrices (of appropriate dimensions), say K̄, that will include as special case the

analysis in [54] when K̄ = K and the decentralized control mechanism presented here

when K̄ = Kbd.

Since the above result is stated in terms of the fixed modes of the cascade con-

nection of the plant and the servocompensator, one issue to be addressed here is

the characterization of the fixed modes. In other words, how do we determine the

existence of fixed modes. A nice and simple characterization of the fixed modes of

decentralized systems was provided in [2]. Consider the linear decentralized system

ẋ = Āx+
ν

∑

i=1

B̄iui,

yi = C̄ix, 1 ≤ i ≤ ν. (A.16)

Then, for any index set I = {i1, . . . , ij} ⊂ {1, 2, . . . , ν} and its complement Ic =

{ik, . . . , il} (i.e., I ∪ Ic = {1, 2, . . . , ν} and I ∩ Ic = ∅) denote by B̃I = [B̄i1 , . . . , B̄ij ]

and C̃Ic = [C̄⊤
ik
, . . . , C̄⊤

il
]⊤. Then, a complex number λ ∈ C is a decentralized fixed
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mode of (C̄, Ā, B̄) if, and only if,

det

[

Ā− λI B̃I
C̃Ic 0

]

= 0

for some I ⊂ {1, 2, . . . , ν}.

Note that the above equation does not hold for λ that are not eigenvalues of Ā.

Therefore, one needs to check it for only those λ that are eigenvalues of Ā. In the

view of this, for our system for each N one can find the eigenvalues of

Ā =

[

A BΓ
NC Φ

]

and then check for the existence of fixed modes. Still, however, this condition is

in terms of the cascade connection of the plant and the servocompensator (as in the

above theorem). It is possible to show that sufficient condition for the triple in (A.10)

not to have unstable fixed modes with respect to the set of block diagonal matrices

Kbd is that

1. the triple (C,A,B) does not have any unstable fixed modes with respect Kbd

and

2. det

[

A− λI B
C 0

]

6= 0 for all λ that are unstable eigenvalues of Φ.

In the next section, we consider the class of interconnected systems that can be

considered as a special case of the general class discussed so far.

A.3 Regulation of a Class of Interconnected Systems

In this section, we consider the output regulation problem of the class of intercon-

nected systems described by

ẋi = fi(x1, . . . , xν , wi, ui),

ei = hi(xi, wi), 1 ≤ i ≤ ν, (A.17)
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where xi ∈ R
ni (n =

∑ν

i=1 ni) represent the local state of each subsystem, ui ∈ R
mi

and ei ∈ Rmi , 1 ≤ i ≤ ν, (m =
∑ν

i=1mi) are the local control inputs and outputs,

respectively. The signal wi ∈ Rri (r =
∑ν

i=1 ri) are the local exogenous inputs to each

subsystem and are generated by neutrally stable exosystems

ẇi = si(wi), 1 ≤ i ≤ ν. (A.18)

We assume that all the above functions fi, hi, and si are known and smooth. As

before, the objective is to design a regulator that uses only local controls that will

provide asymptotic regulation of the output of each of the subsystems to zero.

From the earlier analysis we know that a necessary condition for the existence of a

solution of this problem is the existence of mappings xi = πi(wi) and ui = ci(wi), 1 ≤

i ≤ ν, with πi(0) = 0 and ci(0) = 0, 1 ≤ i ≤ ν, defined in a neighborhood W o
i of the

origin of Rri , respectively, such that

∂πi

∂wi

si(wi) = fi(π1(w1), . . . , πν(wν), wi, ci(wi)),

0 = hi(πi(wi), wi), 1 ≤ i ≤ ν, (A.19)

for all wi ∈W o
i , respectively.

Once again letAi = ∂fi

∂xi
(0, . . . , 0, 0, 0), Ei,j = ∂fi

∂xj
(0, . . . , 0, 0, 0),Bi = ∂fi

∂ui
, (0, . . . , 0, 0, 0),

and Ci = ∂hi

∂x
(0, 0). Then, define

A =











A1 E1,2 . . . E1,ν

E2,1
. . .

. . .
...

...
. . .

. . . Eν−1,ν

Eν,1 . . . Eν,ν−1 Aν











,
B = bd[B1, . . . , Bν ],
C = bd[C1, . . . , Cν ].

(A.20)

Then, the linearization of the system in (A.17) around the origin can be represented

as

ẋi = Aixi +
ν

∑

j=1,j 6=i

Ei,jxj +Biui
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yi = Cixi, 1 ≤ i ≤ ν, (A.21)

where we assumed w = 0 and ignored the higher order terms.

One can easily see that it is possible to establish a counterpart of Lemma 12 also

for this case. Therefore, we will not present such a result here. However, to establish

the main result of this section we will need the following lemma that is taken from [25].

Lemma 13 Consider the interconnected composite system in (A.21) and assume that

each of the subsystems (Ci, Ai, Bi), i = 1, . . . , ν, are all stabilizable and detectable.

Then, there exists a scalar E > 0, such that for the class of nonzero interconnec-

tion gains Ei,j satisfying ‖Ei,j‖ < E, i = 1, . . . , ν, j = 1, . . . , ν, i 6= j, the system is

stabilizable via decentralized control.

The rationale behind the proof of this lemma is as follows. Assume that Ei,j = 0

for all 1 ≤ i ≤ ν, 1 ≤ j ≤ ν, i 6= j, then since each of the subsystems is stabilizable

and detectable and the system is decoupled, we can find an appropriate local output

feedback such that all the eigenvalues of the closed loop system would have negative

real parts. Therefore, if the interconnections are sufficiently weak, then the stability

properties of the closed loop system matrix are preserved.

Let Ē = sup{E}, where E is as defined in the above lemma. Now, we state the

main result of this section.

Theorem 10 The DORP for the interconnected system in (A.17) is solvable if

1. There exist mappings xi = πi(wi) and ui = ci(wi), 1 ≤ i ≤ ν, with πi(0) = 0

and ci(0) = 0, 1 ≤ i ≤ ν, defined in a neighborhood W o
i of the origin of Rri,

respectively, such that Eq. (A.19) are satisfied for all wi ∈W o
i , respectively.
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2. The autonomous systems with outputs {W o
i , si, ci}, 1 ≤ i ≤ ν, are immersed

into

ξ̇i = ϕ(ξi),

ui = γi(ξi), 1 ≤ i ≤ ν, (A.22)

defined on neighborhoods Ωi, 1 ≤ i ≤ ν, of the origins of Rpi, respectively, in

which ϕi(0) = 0 and γi(0) = 0, 1 ≤ i ≤ ν.

3. The matrices

Φi =
[

∂ϕi

∂ξi

]

ξi=0
and Γi =

[

∂γi

∂ξi

]

ξi=0

for 1 ≤ i ≤ ν are such that each of the pairs

[

Ai 0
NiCi Φi

]

,

[

Bi

0

]

, 1 ≤ i ≤ ν, (A.23)

is stabilizable for some Ni, 1 ≤ i ≤ ν, and each of the pairs

[

Ci 0
]

,

[

Ai BiΓi

0 Φi

]

, 1 ≤ i ≤ ν, (A.24)

is detectable.

4. The interconnections satisfy ‖Ei,j‖ ≤ Ē.

Proof: We will show that the conditions above satisfy the sufficient conditions of

Lemma 12. To this end, choose the matrices Ni, 1 ≤ i ≤ ν, such that the pairs

in (A.23) are stabilizable. Now, note that each of the triples

[

Ci 0
]

,

[

Ai BiΓi

NiCi Φi

]

,

[

Bi

0

]

,
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is stabilizable and detectable. Therefore, there exist matrices Ψi, Li, and Mi, i ≤ i ≤

ν, such that the matrices

Āi =





[

Ai BiΓi

NiCi Φi

] [

Bi

0

]

Mi

Li

[

Ci 0
]

Ψi





have their eigenvalues in the open left half plane. Define

Ēi,j =





Ei,j 0 0
0 0 0
0 0 0



 .

Then, the linearization of the closed loop system equations become











Ā1 Ē1,2 . . . Ē1,ν

Ē2,1
. . .

. . .
...

...
. . .

. . . Ēν−1,ν

Ēν,1 . . . Ēν,ν−1 Āν











.

Since the interconnections satisfy ‖Ei,j‖ ≤ Ē, from Lemma 13 we know that there

exists a decentralized controller that stabilizes the system. In other words, above we

can choose the matrices Li,Mi, and Ψi such that the closed loop system is stable. This

proves that the condition (S) is satisfied. This together with the other hypotheses of

the theorem satisfy the sufficiency conditions of Lemma 12 (or an equivalent modified

version of Lemma 12 for interconnected systems), and this completes the proof.

A sufficient condition of the pairs in (A.23) and (A.24) to be stabilizable and

detectable, respectively, is that no unstable transmission zero of (Ci, Ai, Bi) is a pole

of Φi, or in other words,

rank

[

Ai − λI Bi

Ci 0

]

= ni +mi

for all unstable eigenvalues λ of Φi.
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A.4 Extensions

A.4.1 Decentralized Structurally Stable Regulation

It is not difficult to see that the analysis presented so far can easily be extended

to the problem of robust regulation of systems with unknown parameters, i.e., struc-

turally stable regulation. In other words, consider the system

ẋ =

ν
∑

i=1

fi(x, w, ui, µ),

ei = hi(x, w, µ), 1 ≤ i ≤ ν, (A.25)

where µ ∈ Rs is a vector of unknown parameters. The analysis easily follows in

the line presented so far after redefining the exogenous signal and the exosystem as

wa = [w⊤, µ⊤]⊤ and

ẇa = sa(wa) =

[

s(w)
0

]

.

Similarly, we can redefine the equations of the system as

ẋ =

ν
∑

i=1

fa
i (x, wa, ui),

ei = ha
i (x, w

a), 1 ≤ i ≤ ν, (A.26)

which is exactly in the form of Eq. (A.1). Therefore, all the earlier results follow with

w replaced with wa and the linearization of the system evaluated at the nominal value

µ̄ of µ. Then, the results hold for any µ that is in a sufficiently small neighborhood

of µ̄.

A.4.2 Discrete Time Systems

After the results in [55] on the nonlinear regulation problem for continuous time

systems, several authors considered discrete time systems and obtained parallel re-

sults. See for example [14, 50, 15]. From these articles, one easily notices that the
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discrete time results follow the continuous time ones with only minor differences.

One difference that arises between the two cases is that the center manifold theory

for maps is used in the discrete time case. Therefore, the regulator equations in (A.8)

become

π(s(w)) =

ν
∑

i=1

fi(π(w), w, ci(w)),

0 = hi(π(w), w), 1 ≤ i ≤ ν. (A.27)

In other words, the partial derivatives in the continuous time regulator equations

are replaced with composition of functions in the discrete time ones. The rest of

the analysis follows in the lines parallel to the continuous time case. Therefore, the

development in the earlier sections can without any difficulty be extended to the

discrete time systems.

A.5 Final Remarks

The problem of output regulation in presence of uncertainties and disturbances is

an important problem in control theory. It has been extensively studied and solved

for linear systems, and locally for nonlinear systems, and globally or semiglobally for

some classes of nonlinear systems. Efforts to develop conditions for the solvability of

the problem in a semiglobal or global sense as well as developing effective controllers

for these still continue. In this appendix, we presented conditions for the solution of

the local problem using decentralized controllers. Some of the ideas and results de-

veloped here were used for developing decentralized nonlinear servomechanism based

controllers of r formation control of multi-agent systems in Chapter 7.
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APPENDIX B

ROBOT DYNAMICS

In this appendix we consider the dynamics of a mobile robot and show that with

appropriate change of coordinates they can be either partially or fully linearized. In

particlar, we show the dynamics of a point which is on a distance d in front of the

robot can be partially linearized with a static controller, whereas the dynamics of the

actual pision of the robot can be fully linearized with a static controller. Then, we

derive a model of the (local) relative dynamics of a robot following another robot.

B.1 The Robot Dynamic Model

Consider a mobile robot whose equations of motion are given by

ẋ = v cos(θ),

ẏ = v sin(θ),

θ̇ = w

v̇ =
1

m
F,

ẇ =
1

J
τ,

where x and y are the Cartesian coordinates with respect to some global coordante

system, θ is the steering angle, v is the linear speed, and w is the angular speed of

182



the robot. The quantities m and J are positive constants and represent the mass and

the moment of inertia of the robot, respectively. The control inputs to the system

are the force input F and the torque input τ .

B.2 Partial Feedback Linearization

Consider a point z in front of the robot at a distance d from its center, whose

coordinates are given by

z =

[

x+ d cos(θ)
y + d sin(θ)

]

.

Define z as the ouput of the system and note that with respect that output the

system is input-output feedback linearizable with a constant relative degree. To see

this differentiate the output z and obtain

ż =

[

v cos(θ) − dw sin(θ)
v sin(θ) + dw cos(θ)

]

=

[

cos(θ) −d sin(θ)
sin(θ) d cos(θ)

] [

v
w

]

.

Similarly, the second derivative of the output is given by

z̈ =

[

−vw sin(θi) − dw2 cos(θ) + 1
m
F cos(θ) − d

J
τ sin(θ)

vw cos(θ) − dw2 sin(θ) + 1
m
F sin(θ) + d

J
τ cos(θ)

]

=

[

−vw sin(θ) − dw2 cos(θ)
vw cos(θ) − dw2 sin(θ)

]

+

[

1
m

cos(θ) − d
J

sin(θ)
1
m

sin(θ) d
J

cos(θ)

] [

F
τ

]

.

By choosing

[

F
τ

]

=

[

1
m

cos(θ) − d
J

sin(θ)
1
m

sin(θ) d
J

cos(θ)

]−1 [

u−
[

−vw sin(θ) − dw2 cos(θ)
vw cos(θ) − dw2 sin(θ)

]]

, (B.1)

where u = [u1, u2]
⊤, we obtain

z̈ = u.

Note that the matrix
[

1
m

cos(θ) − d
J

sin(θ)
1
m

sin(θ) d
J

cos(θ)

]
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is always invertible, since its determinant is given by d
mJ

(implying that the linearizing

controller always exists).

Let ζ = ż to obtain

ż = ζ

ζ̇ = u

θ̇ = −1

d
ζ1 sin(θ) +

1

d
ζ2 cos(θ),

where the last equation is obtained by inverting the ż equation. The state θ represent

the unobservable states (which is rendered unobservable because of our particular

choice of control) that do not appear at the output. Note that the zero dynamics of

the system are marginally stable since when ζ = 0 we have θ̇ = 0.

B.3 Full Linearization Using Dynamic Feedback

Consider dynamic equations of a mobile robot given in Eq. (B.1). The reason

why it is not possible to fully linearize that system is that one of inputs (the force

input) appears too early at the output. Therefore, by delaying that input it might

be possibel to fully linearize that syste. To thi end, add an integrator at that input

in order to delay it. Then, the motion equation of the robot becomes

ẋ = v cos(θ),

ẏ = v sin(θ),

v̇ =
1

m
ξ,

ξ̇ = u1,

θ̇ = w

ẇ =
1

J
u2,
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where we denoted the (new) control inputs to the system with u1 (the derivative of

the force) and u2 (the torque). (Note that these are not the same inputs considered

in the previous section.) Now, define the position of the robot as the output (the

point of interest) of the robot. In other words, let

z =

[

x
y

]

.

Then, we have the first derivative

ż =

[

v cos(θ)
v sin(θ)

]

,

the second derivative

z̈ =

[

1
m
ξ cos(θ) − vw sin(θ)

1
m
ξ sin(θ) + vw cos(θ)

]

,

and the third derivative

z(3) =

[

− 2
m
ξw sin(θ) − v(w)2 cos(θ)

2
m
ξw cos(θ) − v(w)2 sin(θ)

]

+

[

1
m

cos(θ) − v
J

sin(θ)
1
m

sin(θ) v
J

cos(θ)

] [

u1

u2

]

.

Then, similar to above, with the choice of the linearizing control

[

u1

u2

]

=

[

1
m

cos(θ) − v
J

sin(θ)
1
m

sin(θ) v
J

cos(θ)

]−1 [

ν −
[

− 2
m
ξw sin(θ) − v(w)2 cos(θ)

2
m
ξw cos(θ) − v(w)2 sin(θ)

]]

,

we obtain

z(3) = ν, (B.2)

where ν = [ν1, ν2]
⊤.

Note that the determinant of the square matrix in front of the control vector is

given by v
mJ

, implying that it is invertible provided that v 6= 0, i.e., the velocity of

the robot is nonzero. Therefore, provided that v 6= 0, we can use the above feedback

linearizing controller to fully linearize the system dynamics. Note, however, that

special care must be taken in order to guarantee that the velocity of the robot is

always nonzero (especially during the transient).
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B.4 Local Model for a Group of Robots

In this section we will derive local (relative) coordinates of a robot following

another robot. Let lij denote the relative distance between robots (agents) i and

j. Assume that agent i is leading and agent j is following. Assume that the angle

between the direction of motion of agent i and the line connecting the positions of

agent i and j is denoted by ψij . (See Figure B.1.) From the figure one can see that

θi

θj

ψij

ψij − θi + θj

lij

vi

vj

i

j

vj cos(ψij − θi + θj)

−vi cos(ψij)

Figure B.1: The kinematics of the inter-agent distance.

the kinematics of the distance between the agents i and j can be written as

l̇ij = −vi cos(ψij) + vj cos(ψij − θi + θj). (B.3)

In a similar manner to above we can write the kinematics of the relative angle ψij. In

particular, by noting that the change in the angle is affected only by the components

of the agent velocities which are perpendicular to lij and using the fact that the arc
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length in a circle is given by

arch length = angle× radius

one can show that the kinematics of the angle ψij are given by (see Figure B.2)

ψ̇ij = wi +
1

lij
vi sin(ψij) −

1

lij
vj sin(ψij − θi + θj). (B.4)

θj

ψij

ψij − θi + θj

lij

i

j

θi

vi

vi sin(ψij)

vj sin(ψij − θi + θj)

vj

wi

Figure B.2: The kinematics of the relative angle.

Note that given agent i the two variables lij and ψij uniquely determine the exact

position of agent j in two dimensional space. Similarly, given two agents i and j one

can use the relative distances lik and ljk to uniquely determine the position of a third

agent k.

Using the above kinematic variables for the relative position and the orientation of

the following robot j with respect to the leading robot i together with the dynamics

of the robot we obtain

l̇ij = −vi cos(ψij) + vj cos(ψij − θij)
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ψ̇ij = wi +
1

lij
vi sin(ψij) +

1

lij
vj sin(ψij − θij) (B.5)

v̇j =
1

mj

ξj ,

ξ̇j = uj
1,

θ̇ij = wi − wj

ẇj =
1

Jj

uj
2.

For this system, by defining the output of the system as

zj =

[

lij
ψij

]

,

one can actually show that the dynamics are full feedback linearizable under the same

condition vj 6= 0. Note, however, that the linearizing transformation depends also on

the state of the leading agent i. Therefore, the control input to agent j , will need

information about the state (and possibly the inputs) of agent i.
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