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STABILITY ANALYSIS OF SYMMETRICAL ROTOR-BEARING SYSTEMS 
WITH INTERNAL DAMPING USING FINITE ELEMENT METHOD 

L. Forrai 
Department of Mechanics, University of Miskolc 

3515 Miskolc-Egyetemvaros, Hungary 

ABSTRACT 
This paper deals with the stability analysis of self-excited bending vibrations of linear symmetrical rotor-bearing systems caused by 
internal damping using the finite element method. The rotor system consists of uniform circular Rayleigh shafts with internal 
viscous damping, symmetrical rigid disks, and discrete undatnped isotropic bearings. By combining the sensitivity method and the 
matrix representation of the rotor dynamic equations in complex form to assess stability, it is proved theoretically that the stability 
threshold speed and the corresponding whirling speed coincide with the first forward critical speed regardless of the magnitude of 
the internal damping. 
INTRODUCTION 	 indentical undamped isotropic bearings, they have found that 

It is well known that the stability of rotors is influenced by 	the first and second forward precessional modes become 
the internal damping. The early works of Kimball (1924) and 	unstable at the first and second critical speeds, respectively. 

Newlcirk (1924) showed that internal damping destabilizes the 	The purpose of this paper is to show that the numerical 
whirling motion if the rotational speed of the rotor exceeds the 	results above are also valid for a more general rotor system 
first critical speed. The first analytical stability analysis of 	(with viscous internal da7431ng, isotropic undamped bearings) 
rotors was done by Smith (1933), who studied the motion of 	using the finite element method. To this end, the system 
massless shafts carrying one or more rigid disks, mounted in 	equations of the rotor are written in complex form using a note 
isotropic bearings with both "stationary and rotary" damping 	by Nelson (1985): Then, by applying the sensitivity method for 
present. It was found that "when rotary damping but no 	the associated eigenvalue problem, it is proved theoretically 
stationary damping is present, the motion is unstable above 	that the stability threshold speed of the rotor always coincides 

the lowest critical speed of positive precession if the bearings 	with the first forward critical speed regardless of the 

are symmetrical, ..." 	 magnitude of the internal viscous damping coefficient 

The stability problems of rotors with both internal and 	EQUATIONS OF MOTION IN COMPLEX FORM 
external damping have been discussed by several authors 	In this section the equations of motion for a rigid disk, 
(Dimentberg, 1961; Ehrich, 1964; Tondl, 1965 and others). In 	finite shaft element with internal viscous damping, undamped 
most of the works by the investigators listed above, however, 	isotropic bearing, and the complete rotor system are solely 
the gyroscopic effects are neglected. 	 written in complex form by making use of a note by Nelson 

Of the many researchers studying the stability problems of 	(1985) and the paper by Zorzi and Nelson (1977). Note that 
rotors using finite elements, Zorn and Nelson (1977) carried 	the equation of motion for the shaft element presented in 
out first the numerical stability analysis of such rotor systems 	complex form by Nelson (1985) does not contain internal 
including the effects of rotatory inertia, gyroscopic moments, 	damping, whereas in the paper by Zorzi and Nelson (1977), 
and both internal viscous and hysteretic damping. By using 	the effects of both viscous and hysteretic internal damping are 
the numerical examples for a uniform circular shaft with 	included into the finite element model. 
viscous damping coefficient, supported at its ends by two 	Consider a symmetric rotor system as shown in Fig I. The 
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Fig.1. Rotor system in isotropic bearings 

For later use, we also write the complex deflection 
r = v--“iw and the complex rotation 9= coy  + ico, of any 

cross section of the shaft element as 

r = h rp', 	 p` 
	

(2-3) 

where 	(p' ) 7  = [pi , ] 	is the (4x1) complex nodal 

displacement vector of the shaft element, the prime denotes 
differentiation with respect to s, and 

h = 	- 1 W2 sv, 	 (4) 

Fig.2. Typical shaft element 

rotor system consists of symmetrical rigid disks with 
negligible thicknesses, uniform circular Rayleigh shafts with 
viscous internal damping, and n isotropic undamped bearings 
with stiffnesses k, (1=1,2 n). The rotor is balanced and 
rotates at a constant speed 12. The reference system Oxyz is 
fixed in space. The external damping, axial load and the 
gravity are neglected. 

The degrees of freedom of any node i of the rotor system 
are illustrated using a typical finite shaft element of length -e 
as shown in Fig.2. Node i has four degrees of freedom: two 
translations (v„ w 1 ) in the (y,z) directions, and two 

rotations (99,, 992, ) about the (y,z) axes, respectively. Fig.2 

also shows the two translations (v,w) and rotations ((a y  , (pi ) 

of any cross section of the finite shaft element located at a 
distance s from the left node I. 

The complex displacement vector p, at node i of the 
shaft element is defined by complex coordinates as 

pi  = [r, ]=[y, +lw, 

49, 	44,, -FiVa 
	 (1)  

Here w„ çv2 , w, and v, are the translational shape 
functions defined by Zorzi and Nelson (1977). 
Rigid Disk The equation of motion for a rigid disk in 
complex form is given by 

+w )0° — G' = r, 	(5) 

where p °  is the displacement vector, corresponding to four 
degrees of freedom (V, , coy° , co") of the node at- which the 

disk is attached. The definition of the translational and 
rotational mass matrices (M ) and the gyroscopic 
matrix G°  are given in the note by Nelson (1985). Here we 
also write the translational and rotational kinetic energies 
(Tit  , ) for the disk in terms of p d  and its conjugate r: 

Te d = Fnd [(, )2 ± ovt y = 	Wod 	(6) 

- 114(e,y4-(e)1= 1 (td ) r m:v, 	(7) 
2 	 2 

where 	nil  and 	1 „ are the mass and diametral mass 
moment of inertia of the disk, respectively. 
Finite Shaft Element The equation of motion for the finite 
rotating shaft element with internal viscous damping in 
complex form is given by 

(M; +M; )0 1  +(TX; 	+(K; + ni2K;)p .  = F' (8) 

Here 	q is the internal viscous damping coefficient, 
K: = —i1C, the complex circulation matrix. The mass matrices 
(M: ,11V, ) and the bending stiffness matrix K.: are also 
defined in the paper by Nelson (1985). 

The translational and rotational kinetic energies (T,' ,T,' ), 
and the bending strain energy U' of the shaft element can be 
expressed through the use of equations (2-4): 
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= flP(1)2 	)ds =IT? )r 	 (9) 

	

= -21- 14(0; + 0)d1 = f 	 (10) 

U' = 	E/I(v")' +(w"):  Ids = l(F)rIC:pt, 
2 	 2 	

(11) 

where p is the mass per unit length, Id  the diametral mass 
moment of inertia of the shaft per unit length, El the bending 
rigidity of the shaft element, 

= 	m; = 1,,IT(h17 ds, K; = Elii"(h") r  cis. 

(12-14) 

Isotropic Bearing. The linear equation of an undamped 
isotropic bearing model can be written in complex form: 

Kbp. = Fb 	 (15) 
where 

	

K' = 
[0k 001 	

(16) 

is the bearing stiffness matrix, p" is the complex 
displacement vector at the bearing location (node) and r is 
the complex bearing external force vector. Clearly, the strain 
energy U' of the bearing can be expressed as 

I —1 T •to 

	

= —(p ) K p 	 (17) 
2 

System Equations. The equations of motion of the complete 
rotor system can be obtained by assembling all component 
equations of form equations (5), (8) and (15). The resulting 
equation is of the form: 

mii+ (i7K, —42G)15 +(K, — ir712K.)p = 0, 	(18) 

where 

	

Pr =(17T,P 72...PIN1 	 (19) 
is the (2Nx1) complex nodal displacement vector of the rotor 
system (N equals the number of nodes). The stiffness matrix 
K, can be written as 

	

K, = K. +K' 	 (20) 
where K' is a diagonal matrix the nonzero elements of 
which are the stiffnesses of the isotropic bearings. The M,K, 
and G matrices are the mass, bending stiffness, and 
gyroscopic matrices of the system obtained by assembling the 
element matrices. 
Positive Definite Matrices. Since kinetic energy, by 
definition, cannot be negative, the last kinetic energy relations 

represented by equations (6-7) and (9-10) are called positive 
quadratic (Hermitian) forms, and the mass matrices 
M.„1%/1°,M1, and 111; are called positive definite matrices. 
Similarly, from the strain energy expressions, equations (11) 
and (17), it can be seen that K; and K' are also positive 
definite matrices. Evidently, the system matrices M,K,,K3 
and K, are positive definite Hermitian matrices. Thus the 
following relations hold: 

Frmp >0, FrIC,p >0, rK ,P  >0, (p 0). 	(21) 

Note that the system gyroscopic matrix G is not Hermitian, 
however, by using the definitions of the gyroscopic matrices 
(G4  ,G') listed in the Appendix of Nelson's paper (1985) it 
can be expressed as a product of the imaginary unit and a 
corresponding positive definite Hermitian matrix 

G=iM,, 	 (22) 

forMip > 0 	(p 0). 	 (23) 

STABILITY ANALYSIS 
On seeking a solution to equation (18) of the form 

p=Pem, 	 (24) 
we obtain the eigenvalue problem: 

[EM + A( r7K, —12G) +K, — irg2K]P = 0 	(25) 

with 4N eigenvalues A, and corresponding eigenvectors 
P„ (j = 1,2 ..... 4 N). The eigenvalues A are of the form: 

A= a+ico, 	 (26) 
where a is the damping coefficient, to the damped natural 
frequency or whirl speed. 

Instability occurs if one of the eigenvalues has a positive real 
part. Thus, the problem of determining the limit of stability of 
the rotor is reduced to finding the shaft speed g (stability 
threshold speed) at which the greatest real part of all 
eigenvalues A, equals zero. The corresponding imaginary 
part ac is the whirling speed. 

To find the possible limit 12, we substitute the eigenvalue of 
the form 

= ito 	 (27) 
into equation (25), which after_premultiplying it by the 
complex conjugate eigenvector P r  leads to the following 
complex scalar equation: 

(-dm+ co.12,g+k,)+itik,(0-12) =0. 	(28) 
By using equation (22) and inequalities (21), (23) it can be 

seen that the scalars m,k„k, and g in equation (28) are in 
all positive real quantities defined by 

FISIP = m > 0, FrK,P = k, > 0, FrK,P = k. >0, 
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Fr GP = ig, 	(g > 0). 	 (29-32) 

From equation (28) we get 
= 12 	(12>0), 	 (33) 

and 

(34) 

By substituting equations (27) and (33) into equation (25), 
we obtain 

(-17M - is22G + K, )P =0, 	 (35) 
which is identical with the eigenvalue problem for the forward 
(undamped) bending critical speeds of the rotor system. Thus, 
the possible limit of stability of the rotor coincides with one of 
its forward critical speeds. 

Now we shall prove that the rotor is unstable at all speeds 
above the first forward critical speeds 14,, that is the stability 
threshold speed coincides with 4,. To this end, we apply the 
eigenvalue sensitivity analysis. Let us consider the rotor speed 
12 as a system parameter, and differentiate equation (25) with 
respect to 12: 

[22a M + —( rrIC, - QG) - A G- iqKJP  
a? 812 

c7P 
+P.'M + (tIK - I2G) + K, - 	1— = 0. 	(36) 

012 

The quantity 021 en in the above equation is referred to as 
an eigenvalue sensitivity coefficient (Rajan et. al., 1986), 
which can be written, with the aid of equation (26), in the 
form: 

02 act . 0w 
r. 

6712 63'2 4912 
To calculate the real part Oct/OP from equation (36) at any 

value 12 of the forward critical speeds. we substitute again 
equation (27) into equation (36), and premultiply it by Ir 
We then obtain the following expression for the damping 
sensitivity coefficient ea I (912: 

ea 	2 t7.12k b (m - g)  

en 07k, y + s-Y (2m- g) 2  

Here we have applied the premultiplication of equation (25) 
by the term dr.  / 012 and also the properties of the system 
matrices M, K, and G as presented below: 

Mr = m, K= K,, 	= -G. 	(39) 

By using equations (31) and (34), it is clear from equation 
(38) that the damping sensitivity coefficient ea /012 is positive 
at each forward critical speed. Consequently, there is a sign-
change in the real part of the corresponding eigenvalue from  

negative (stable) to positive (unstable). If we assume that the 
rotor has n, forward critical speeds, then any k th forward 
whirl mode of the rotor (k n,) becomes unstable at the k th 
forward critical speed 14 regardless of the magnitude of the 
internal damping, and remains unstable for higher speeds. 

As can be seen, the stability threshold speed R of the rotor 
system coincides with f4,. 

In addition, as follows from equation (33), the whirling 
speed co, of the rotor is also equal to 4, regardless of the 
magnitude of internal damping. Furthermore, from equations 
(24) and (35) we see that the whirl mode induced at the 
stability threshold always occurs in the first forward whirl 
mode of the undamped rotor. 

It is noteworthy that all backward whirl modes are stable for 
any rotational speed. 

CONCLUDING REMARKS 
In this paper a finite element stability analysis of general 

symmetric rotor systems supported by undamped isotropic 
bearings with internal viscous has been presented using 
complex coordinates and the sensitivity analysis. It is proved 
theoretically that the stability threshold speed and the whirling 
speed coincide with the first forward critical speed regardless 
of the magnitude of the internal damping. 
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