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Abstract

In this paper, based on Lyapunov functions candidates, a new approach in the stability analysis of homogeneous non-
linear systems is proposed in which instead of concentrating on the positive definiteness of the Lyapunov candidate 
functions, we stress on the negative definiteness of its derivative. Having ensured of negative definiteness of the deriva-
tive function, based on sign assignment of the primitive function, the stability of the equilibrium is analyzed wherein the 
necessary and sufficient conditions are declared simultaneously. Selecting the trend of the Lyapunov candidate func-
tion is primarily performed in the form of a linear combination of some simple functions whose unknown coefficients 
in the candidate function structure are computed based on negative definiteness of the derivative function. Afterward, 
using these determined coefficients in the Lyapunov function, the sign of the primitive function in the state space is 
argued. Therefore, the triple sign attitudes of the candidate function can be used to deduce the stability/instability of 
the equilibrium point. Moreover, in the process of the negative definiteness of the derivative function, the coefficients 
are obtained using two independent methods. Numerical simulations support the proposed theoretical results and 
show their effectiveness.

Keywords Stability analysis · Lyapunov function · Homogeneous nonlinear dynamical systems · Least squares method

1 Introduction

Today, the importance of the issue of stability in control 
systems, both linear and nonlinear, is clear to everyone, 
so many researchers’ efforts in the field of control systems 
have devised appropriate methods for analyzing the sta-
bility of control systems [1]. One of the applications of the 
stability analysis is in cyber-physical systems (CPS) [2], 
so the stability analysis for these systems is more critical 
because, as mentioned in [3–5], these systems exposure 
with many attacks. In other industrial systems also, stability 
is a vital factor such as breakwater [6], structural reliability 
analysis [7], inverter-based nonlinear power systems [8], 
also some new advances in this field as [9], and so on. As 

we know, the main idea behind the stability analysis of 
dynamical systems is the Lyapunov methods. Given that 
the first method of Lyapunov, utmost opines on the local 
stability of an equilibrium point, in practice, for extremely 
nonlinear systems, such as chaotic systems, is not so 
practical.

On the other hand, the second or direct Lyapunov 
method, although presenting a sufficient condition for the 
stability of the equilibrium point of a nonlinear system but 
finding a candidate function is not systematic or cumula-
tive to meet the conditions of Lyapunov and depending 
on the type of problem, some functions are offered using 
trial and error.
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So far, many attempts have been made to provide 
a method for selecting the Lyapunov function, each of 
which has disadvantages and advantages. For example, 
we can mention the following: In [10], the method of form-
ing a Lyapunov function with the aid of linear program-
ming for autonomous systems is provided. The mentioned 
method also provides a lower bound for the absorption 
region. Establishing a Lyapunov function in the square 
form for polynomial systems of positive dimensions has 
taken in [11]. The square Lyapunov function defined in this 
method is such that some coefficients are unknown, which 
was calculated using the Homotopy continuation algo-
rithm. A method to determine the Lyapunov function for 
the desired switching dynamical systems is given in [12]. 
In [11], by using the theory of normal forms, a method for 
determining the Lyapunov function for nonlinear systems 
is presented in the form of normal coordinates.

One of the new ideas in the field of the choice of the 
Lyapunov function for analyzing the stability of the 
point of equilibrium of nonlinear systems is the method 
reported in [13, 14]. This way, called the sum of squares 
method, or SOS, by forming the Lyapunov function as 
a sum of pairwise powers polynomial expressions, con-
structs a certain positive function. Ultimately, by solving 
a convex optimization problem calculates the unknown 
coefficients. Recently, the mentioned method has been 
numerically developed for both types of continuous and 
discrete-time systems in [15].

Also, in [16], a general structure for the stability analysis 
of nonlinear systems is presented based on the Sum Of 
Squared method, which takes place base on the decom-
position of the vector into another system. That system 
is explained in the form of a polynomial vector field with 
feeds with no memory sentences. It should be noted that 
all these methods of calculating the Lyapunov function 
are based on a certain positive function in the sum form 
squares that simultaneously, the derivative of this function 
gives a symmetric representation of a sum of squares.

In [17], the backstepping approach is considered for a 
class of block strict-feedback nonlinear systems. Based on 
the assumption that nonlinear systems are polynomials, 
for each backstepping step, the Lyapunov function can 
be constructed in a polynomial form by Sum Of Square 
(SOS) technique. A specific linear combination of sub-
systems’ energies is proposed as Lyapunov function for 
multi-degree-of-freedom nonlinear stochastic dynamical 
systems, and the corresponding sufficient condition for 
the asymptotic Lyapunov stability with probability one 
is then determined [18]. In [19], they presented a meth-
odology for the algorithmic construction of Lyapunov 
functions for the transient stability analysis of classical 
power system models. The proposed methodology used 
recent advances in the theory of positive polynomials, 

semidefinite programming, and sum of squares decom-
position. In [20] they proposed an approach constructed a 
continuous piecewise affine function given a suitable par-
tition of the state space, called a triangulation, and values 
at the vertices of the triangulation. The vertex values are 
obtained from a Lyapunov function in a classical converse 
Lyapunov theorem.

Recently in [21], we introduced a new approach to con-
structing the Lyapunov function, which was fundamen-
tally different from existing methods. In fact, we began 
with a primary focus on defining the derivative of a func-
tion, and then, in the domain space, we define the sign of 
the candidate function itself. In this way, the result was 
expressed as a necessary and sufficient condition for the 
stability of the equilibrium point. The main distinction of 
this method with the other methods is starting with V̇  and 
then reaching V  , while other methods start from a V  as the 
candidate of Lyapunov’s function and finally, by determin-
ing V̇  opines on the stability of the equilibrium point. In 
addition, another innovation in that paper is to provide 
Lyapunov functions based on the linear combination of 
simple functions whose coefficients were computed ana-
lytically. As a difference with the sum of squares method, 
calculation of V  and V̇  in sum of square method was done 
at the same time to become sure about the proper sym-
bols of each of these two functions.

In this paper, we extend the method of [21] and cal-
culate the coefficients of Lyapunov function numerically, 
so many more problems could be solved. The coefficients 
are determined by using the derivation of the above func-
tion. It is worth noting that our main study in this paper 
deals with standard homogeneous nonlinear systems 
that are used today in many of the science and engineer-
ing branches [22–24]. Our motivation for the use of these 
kinds of systems is the formation of candidate Lyapunov 
function in the form of a linear combination of sentences 
of the same degree. This candidate function structure, 
as we will see, will get a systematic approach to stability 
analysis that will be considered one of the other innova-
tions in this article.

We have to say the method of calculation of unknown 
coefficients in the SOS approach is fundamentally based 
on convex optimization, while in this paper, we use two 
simple algorithms based on Least Squares to calculate the 
unknown coefficients.

The paper structure is as follows: After this brief intro-
duction, in Sect. 2, the theoretical prerequisites provided 
for the homogeneous nonlinear systems are reviewed. 
The main theoretical outcomes of the paper are pre-
sented in Sect. 3. In order to demonstrate the ability of 
the developed theory, some examples are given in Sect. 4, 
whose numerical simulations confirm the validity of the 
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theoretical results. Finally, the conclusion and the overall 
results close the paper in Sect. 5.

2  Homogeneous systems

In this paper, a special class of nonlinear systems, called 
standard homogeneous nonlinear systems, is studied. 
Homogeneous polynomial differential equations appear 
in all fields of science and engineering due to their unique 
features.

In fact, it can be said in a general language that many 
terminology and analytical points in the field of linear sys-
tems can be expanded to nonlinear homogeneous sys-
tems. One of these unique features is the equivalence of 
many local attributes around the equilibrium point and 
globality. For example, if the equilibrium point of a homo-
geneous nonlinear system is locally stable, in this case, it is 
also global stable. This feature and other features have led 
to the widespread use of these systems in the modeling 
and description of physical systems.

Definition 1 ([25]) A polynomial, whose all terms have 
the same degree, is called homogeneous polynomial; in 
other words, a V (X) ∶ ℝ

n
→ ℝ function is homogeneous 

of p degree whenever we hold for all � ∈ ℝ : 

In this case, we write V ∈ H
P
.

Definition 2 ([25]) A dynamical system �̇ = � (�) is homo-
geneous of k degree if for �(�) =

[

f1(�)f2(�)… fn(�)
]T

 vec-
tor field and � ∈ ℝ we have: 

In this case, we write f ∈ Sk.
It can be seen from Eq. (1) if the homogeneous poly-

nomial V  has the same sign on an arc of the unit circle 

{� ∈ ℝ
n ∶ x = 1} , in this case, that function will be the 

same on the radial part of that arc. This feature is shown 
in Fig. 1. As an example, the yellow sector is, in fact, the 
expansion of a branch of a corresponding arc, in which 
the polynomial does not change its sign on it. Thus, the 
problem of determining the sign of a homogeneous poly-
nomial decreases to its sign on a single circle.

Definition 3 For a vector such as x ∈ ℝ
n and a natural 

number such as p ∈ ℕ , p-form representation is defined 
as follows: 

(1)V (��) = �
pV (�)

(2)� (��) = �
k
�(�)

(3)�
[p] =

(

x
p

1
, x

p−1

1
x2, x

p−1

1
x3,… , x

p1
1
x
p2
2
… x

pn
n ,… , xp

n

)

This p-form representation contains sentences as 

x
P1

1
x
P2

2
,… , x

Pn
n  which 

where ℕ
0
= ℕ

⋃

{0}.
To form the �[P] representation in a standard manner, we 

can use lexicography. For example, for p = 5 and n = 3 , its 
lexicographic arrangement is as follows:

It can be easily shown for integers p, n , there exists 

m =

(

n + p − 1

p

)

 functions of a single sentence of p 

degree in a p-form representation. Below are some useful 
features of the homogeneous dynamic systems that are 
used in the next section. In all of the following, it is 
assumed that the system equilibrium point is at the 
origin.

Lemma 1 [26] Assume that the dynamic system �̇ = � (�) is 

homogeneous. If the vector field � is continuous and the equi-

librium point of the system is stable, then there is a homoge-

neous Lyapunov function to prove the stability of this system.

This lemma actually limits the search scope to the Lya-
punov function for homogeneous functions, which can be 
valuable from the computational point of view. An exhaus-
tive version of this proposition is given in the following 
lemma.

(4)p1 + p2 +⋯ + pn = p, pi ∈ ℕ0

(5)

x
[5] = (x5

1
, x4

1
x2, x

4

1
x3, x

3

1
x
2

2
, x3

1
x2x3, x

3

1
x
2

3
,

x
2

1
x
3

2
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1
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2

2
x3, x

2

1
x2x

2

3
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3

3
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4

2
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3

2
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x1x
2

2
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2
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Fig. 1  Showing the no-sign-change of a homogeneous polynomial 
in a sector expansion
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Lemma 2 [27] For the homogeneous dynamical system 

�̇ = � (�) which � ∈ Sk if V ∈ H
P
 is chosen, then the derivative 

V (�) along the answers of the following system is a homoge-

neous function of degree p + k − 1; that is V̇ ∈ Hp+k−1.

3  Theoretical results

The most famous theorem in analyzing and designing 
nonlinear systems is the Lyapunov theorem (Lyapunov’s 
direct method), which Provides sufficient conditions for 
stability of the equilibrium point. Moreover, in [28], the so-
called instability theory stated that it shows the unstable 
equilibrium point for unstable systems. In this section, the 
concept of equilibrium stability is commented upon by 
starting with a negative definite term for the derivation of 
the Lyapunov candidate function and then determining 
the sign of the function itself.

Theorem 1 The dynamical system �̇ = � (�) is assumed. If 

there is a continuous partial function V (�) with V (0) = 0 and 
V̇ (�) along the system responses is negative definite, in this 

case if V (X ) is topically positive then the equilibrium point of 

the system is asymptotically stable; otherwise, the point of 

equilibrium is unstable.

Proof For the given dynamical system, we first show that 
the function V (�) is never Positive semi definite or negative 
semi definite. With contrary assumption, if V (�) is a posi-
tive semi definite, then at a point out of origin �

0
 , we have 

V
(

�
0

)

= 0,.But because of the assumption of the theorem, 
out of origin,V̇ (�) is always negative, and V (�) chances sign 
by passing that point x

0
 and this contradicts with posi-

tive semi definite of the V (�) function. So the hypothesis 
is invalidated. In the same way, it can be shown that V (�) 
is never negative semi definite.

Now we can say that V (�) has three states: totally 
positive definite, totally negative definite, and indetermi-
nate. Each of these three modes is as follows separately 
reviewed:

1. Situation V (�) > 0 : This condition is exactly the expres-
sion of the Lyapunov theorem, which states that for 
a positive function V (�) , whose derivative is always 
negative definite, the asymptotically stability of the 
equilibrium point is deductible.

2. Situation V (�) < 0 : In this situation, by setting Λ = −V  , 
clearly the hypotheses of the instability theory are 
obtained. In other words, for the dynamical system 
studied, we have: 𝛬 > 0 and �̇� > 0 . Thus, according to 
[28], the instability of the equilibrium point results.

3. V (�) indeterminate situation: The change of sign V (�) 
around the equilibrium point means that there is a 
region around this point, which on that area the sign 
of V (�) is negative. For this situation, this small area 
that is adjacent to the equilibrium point, the sign V (�) 
and V̇ (�) are both negative, which, according to condi-
tion 2, we conclude that the equilibrium point is unsta-
ble.

This completes the proof. □
In the following, by limiting the discussion to homoge-

neous systems, two methods are proposed for the forma-
tion of the Lyapunov function, and hence we conclude the 
globally stability of the equilibrium point by using that 
way. For this purpose, consider the homogeneous nonlin-
ear dynamical system �̇ = � (�) that f ∈ Sk.We consider the 
basic functions V

i(�) in the i  th entry of p-representation 
corresponding to state vector � ∈ ℝ

n as follows:

We now construct the function of the Lyapunov candi-
date in the form of the linear combination of these basic 
functions:

where m =

(

p + k − 1

p

)

 is the representation of the num-

ber of terms in p-form, and a
i
 are also disturbing coeffi-

cients that must be calculated as it goes on in the follow-
ing. It is noteworthy that the p-form exhibitions are 
considered to be linearly independent. In this case, the 
linear composition coefficients in Eq. (7) are unique. On the 
other hand, it is easy to see V (0) = 0 . It is clear that accord-
ing to the symbol introduced in Eq. (7), the vector of coef-
ficients is as follows

Now, by derivation of the proposed Lyapunov Eq. (7) for 
the homogeneous system �̇ = � (�) we have:

where H is an intermediate matrix that can be calcu-
lated depending on the problem. It should be noted that 
according to Lemma 2, we can say that V̇ (X ) is homogene-
ous of degree p + k − 1 , and also the linear combination of 
the base functions V

�

i
(X) according to Eq. (9) is homogene-

ous of the p + k − 1 degree. The method of calculation of 

(6)vi(�) = �
[p]

i

(7)
V (�) =

m
∑

i=1

aivi(�)

= �
T (�[p])T

(8)� =

[

a
1
a
1
⋯ a

m

]T

(9)V̇ (�) =

m
∑

i=1

ai v̇i(�) ≡ �
THT (�[p+k−1])T < 0
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the middle matrix is given in the next section. Therefore, 
the problem becomes the computation of a vector such 
that Eq. (9) holds.

To do this, we set V̇ (�) equal to a definite negative func-
tion and calculate the unknown coefficients. Before pro-
ceeding to demonstrate general methods, the subject is 
explained by an example. In order to this issue, first con-
sider the following dynamic system with the equilibrium 
point of the origin:

In the subsequent lines the status of the stability of the 
equilibrium point is analyzed. It is clear that the mentioned 
system is homogeneous. So we can choose the Lyapunov 
function, as a homogeneous form of degree 4:

and calculate its derivation along the paths of the system:

By putting the above phrase equivalent with a nega-
tive phrase like −12x6

1
− 24x

6

2
 , simply the following unique 

answers are obtained for the coefficients:

Thus, the following Lyapunov function is obtained:

which clearly indicates the asymptotic stability of the equi-
librium point.

In this example, as we have seen, the number of neces-
sary equations was also sufficient from which the unique 
factors of the unknown coefficients were obtained. And 
the Lyapunov function was obtained. But in general, one 
cannot be sure that the equations derived from the uni-
fication of derivative function with a desired negative 
definite phrase give a unique answer. In the following, we 
explain the above example in a more general way; through 
that way, a method for calculating the Lyapunov func-
tion is obtained. The method presented below is simply 
extendible for more general systems.

3.1  Algebraic method

Consider the following nonlinear homogeneous system 
of degree 3

(10)

{

ẋ
1
= −x

3

1
− 2x

3

2

ẋ
2
= 3x

3

1
− 3x

3

2

(11)V (�) = a
1
x
4

1
+ a

2
x
3

1
x
2
+ a

3
x
2

1
x
2

2
+ a

4
x
1
x
3

2
+ a

5
x
4

2

(12)

V̇ (�) = (− 4a
1
+ 3a

2
)x6

1
+ (− 3a

2
+ 6a

3
)x5

1
x
2

+ (−2a
3
+ 9a

2
)x4

1
x
2

2
+ (− 8a

1
− 3a

2
− a

4

+ 12a
5
)x3

1
x
3

2
+ (− 6a

2
− 6a

3
)x2

1
x
4

2

+ (− 4a
3
− 9a

4
)x

1
x
5

2
+ (−2a

4
− 12a

5
)x6

2

(13)a1 = 3, a2 = a3 = a4 = 0, a5 = 2

(14)V (x) = 3x
4

1
+ 2x

4

2

Initially, by choosing a homogeneous Lyapunov candi-
date function of degree 4, as follows:

By taking time derivative of this function one can get:

Now, inserting the dynamics of Eq. (15) in V  , the above 
statement reduces to:

which is retrieved in the following matrix form:

where

Now we equalize the Eq. (19) with a certain negative 
function, such as ZT (�[p+k−1])T :

For example, in the two-variable mode n = 2 , the choice 
for Z can be as follows:

(15)

{

ẋ
1
= b

11
x3
1
+ b

12
x3
2

ẋ
2
= b

21
x3
1
+ b

22
x3
2

(16)
V (�) = a

1
x
4

1
+ a

2
x
3

1
x
2
+ a

3
x
2

1
x
2

2
+ a

4
x
1
x
3

2
+ a

5
x
4

2

= �
T (�[4])T

(17)

V̇ (�) = 4ẋ
1
x
3

1
a
1
+ (3ẋ

1
x
2

1
x
2
+ x

3

1
ẋ
2
)a

2

+ (2ẋ
1
x
1
x
2

2
+ 2x

2

1
ẋ
2
x
2
)a

3

+ (ẋ
1
x
3

2
+ 3x

1
ẋ
2
x
2

2
)a

4
+ 4ẋ

2
x
3

2
a
5

(18)

V̇ (�) = (4b
11
a
1
+ b

21
a
2
)x6

1
+ (3b

11
a
2
+ 2b

21
a
3
)x5

1
x
2

+ (2b
11
a
3
+ 3b

21
a
2
)x4

1
x
2

2
+ (4b

12
a
1
+ b

22
a
2
+ b

11
a
4

+ 4b
21
a
5
)x3

1
x
3

2
+ (3b

12
a
2
+ 2b

22
a
3
)x2

1
x
4

2

+ (2b
12
a
3
+ 3b

22
a
4
)x

1
x
5

2
+ (b

12
a
4
+ 4b

22
a
5
)x6

2

(19)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a
1

a
2

a
3

a
4

a
5

⎤
⎥
⎥
⎥
⎥
⎥
⎦

T

⎡
⎢
⎢
⎢
⎢
⎢
⎣

4b
11

0 0 4b
12

0 0 0

b
21

3b
11

0 b
22

3b
12

0 0

0 2b
21

2b
11

0 2b
22

2b
12

0

0 0 3b
21

b
11

0 2b
22

b
12

0 0 0 4b
21

0 0 4b
22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x6
1

x5
1
x
2

x
4

1
x
2

2

x3
1
x3
2

x2
1
x4
2

x
1
x5
2

x6
2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= �
T
H
T (�[6])T

(20)H =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4b
11

b
21

0 0 0

0 3b
11

2b
21

0 0

0 0 2b
11

3b
21

0

4b
12

b
22

0 b
11

4b
21

0 3b
12

2b
22

0 0

0 0 2b
12

2b
22

0

0 0 0 b
12

4b
22

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)V̇ (�) ≡ ZT (�[p+k−1])T

(22)Z =

[

−1 0 −1 0 ⋯ 0 −1
]T
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Therefore, by comparing Eq.  (19) with Eq.  (21), the 
unknown coefficients a are obtained by solving the fol-
lowing equation.

According to the coefficients of the basic functions, 
since in the resulting Eq. (23) the number of unknowns 

(a
i
) (the vector length of x[p] ) is less than the number of 

equations (that is, the vector length of x[p+k−1] ) and the 
coefficients are not exactly determined, one way to deter-
mine the optimal of these abnormalities is to use The 
least squares method [29], which proposes the following 
response from Eq. (23)

After calculating the a′s coefficients a sign for V̇ (�) 
should be checked out. In case of failure to get the neces-
sary signs two ways are suggested:

1. Reselection the Z vector and then check the necessary 
sign for the V̇ (�) and assign the V (�) sign.

2. Increase the degree of Lyapunov’s function and then 
repeat the steps of the above algorithm.

3.2  Geometric method

In the following, another method is presented for calculat-
ing the unknown coefficients of the Lyapunov candidate 
function, based on Theorem 1. For this purpose, consider 

V (�) to the form of the Eq. (7), we set the value of the func-
tion V̇ (�) on the unit sphere to a given value. According to 
the homogeneity of this function, we consider the value of 
V̇ (�) = −1 . Now, by choosing the number of N points on the 
surface of the unit sphere, we form the following equations:

where �j is the j-point on a unit sphere, and we have N 
number of equations and m unknown parameters, which 
always must N ≥ m that the set of Equations be solvable. 
Note that these N points are selected in the form of an 
equal align on the sphere that by increasing their num-
ber, points location becomes closer together, and then the 
precision of the answer gets better. On the other hand, 
increasing of N will result in heavier computing. That it 
will slow down the program. The set of Eq. (25) can be 
retrieved in the following matrix:

(23)H� = Z

(24)� =

(

H
T
H
)

−1
H
T
Z

(25)

m
∑

i=1

ai v̇i(x
j) = −1, j = 1, 2, 3,… ,N

where G matrix is a N ×m matrix. Given that in this device, 
the number of equations is greater than the number of 
unknowns, one method of calculating the missing vector 
is using the Least Squares method. Simply the answer is 
as following:

After calculating � , vector of the coefficients, by insert-
ing them in the V̇ (�) expression again, we must check the 
sign V̇ (�) and V (�) . After assurance of the negative making 
of V̇ (�) , by using the calculated coefficients a of Eq. (27) 
and their replacement in Eq. (7), function V (�) forms that 
by determining its sign and using Theorem 1, we can ana-
lyze the stability of the equilibrium point of the studied 
system.

4  Examples and simulations

In this section, examples are presented to illustrate the 
theoretical results obtained in the preceding sections. In 
fact, we will investigate all three modes that are expressed 
in theory 1 with three different examples using the pro-
posed solution methods.

Example 1 Consider the system introduced in Eq. (10) once 
again. By choosing the Lyapunov function as in Eq. (16) 
which is homogeneous of degree 4, its derivative is cal-

culated as follow: 

To solve the problem using the algebraic method, we 
select the vector Z as follows:

Then, by using the Eq. (24), we obtain the following 
coefficients:

(26)G� =

⎡
⎢
⎢
⎢
⎣

v̇
1
(�1) v̇

2
(�1) ⋯ v̇

m
(�1)

v̇
1
(�2) v̇

2
(�2) ⋯ v̇

m
(�2)

⋮ ⋮ ⋱ ⋮

v̇
1
(�N) v̇

2
(�N) ⋯ v̇

m
(�N)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

a
1

a
2

⋮

a
m

⎤
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎣

−1

−1

⋮

−1

⎤
⎥
⎥
⎥
⎦

(27)� =

�
G
T
G
�
−1
G
T

⎛⎜⎜⎜⎝

−1

−1

⋮

−1

⎞⎟⎟⎟⎠

(28)

V̇ (�) = (3a
2
− 4a

1
)x6

1
+ (6a

3
− 3a

2
)x5

1
x
2

+ (9a
4
− 2a

3
)x4

1
x
2

2
+ (12a

5
− 3a

2
− a

4
− 8a

1
)x3

1
x
3

2

+ (− 6a
2
− 6a

3
)x2

1
x
4

2
+ (− 4a

3
− 9a

4
)x

1
x
5

2
− (2a

4
− 12a

5
)x6

2

(29)Z =

[

−1 0 −1 0 −1 0 −1
]T

(30)a1 = 0.184, a2 = 0.054, a3 = 0.090, a4 = − 0.069, a5 = 0.113
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So the V̇ (X ) form will be obtained as follows:

In Fig. 2, the value of V̇ (�) for, � = [sin �, cos �] is plotted 
on the unit circle. As is evident from the Fig. 2, V̇ (�) is nega-
tive definite. Also, the V (�) function is obtained as follows:

As shown in Fig. 2, V (X ) is a certain positive function, 
and therefore, by referring to the theory 1, the asymp-
totic stability of equilibrium point of the system Eq. (10) 
is proved.

Example 2 Consider the homogeneous system described 
in Eq. (15) with the following parameters values: 

To analyze the stability of the equilibrium point of the 
system by using the algebraic method, by choosing the 
Lyapunov function presented in Eq. (16) and using Eq. (20) 
for the H matrix, and taking into account the Eq. (29) for 
the Z vector, the following value is obtained for the vector 
of unknown coefficients through the Eq. (24): 

By plotting V (�) and V̇ (�) functions on the unit circle 
around the origin on the phase space page, as shown in 
Fig. 3, while V̇ (�) is negative definite, V (�) is also a nega-
tive definite function. By using the Theorem 1, we can con-
clude that the equilibrium point of the studied system is 
unstable.

(31)

V̇ (�) = − 0.5722x
6

1
+ 0.3753x

5

1
x
2
− 0.8052x

4

1
x
2

2

− 0.2138x
3

1
x
3

2
− 0.867x

2

1
x
4

2
+ 0.266x

1
x
5

2
− 1.2138x

6

2

(32)

V = 0.184x
4

1
+ 0.0546x

3

1
x
2
+ 0.0899x

2

1
x
2

2
− 0.0695x

1
x
3

2
+ 0.1127x

4

2

(33)b11 = 2, b12 = 5, b21 = − 4, b22 = 1

(34)a1 = − 0.054, a2 = − 0.063, a3 = − 0.032, a4 = 0.064, a5 = − 0.006

Example 3 Consider the following homogeneous system 
of degree 2: 

By selecting the Lyapunov candidate function as 
follows:

And calculating its derivative along the system’s 
answers, the following expressions are obtained for V (�) 
and V̇ (�):

where the algebraic method is used with the following Z

-vector.

By drawing the functions V (�) and V̇ (�) on a circle 
around the origin as it is clear in Fig. 4, while V̇ (�) is nega-
tive definite, V (�) changes sign. By using Theorem 1, we 
find the instability of the equilibrium point of system 
Eq. (33).

Example 4 In this example, we reconsider the system pre-
sented in Eq. (10) and use the geometric method and in 
the case of the Theorem 1, we analyze the stability of its 
equilibrium point. We consider the initial Lyapunov func-
tion as the Eq. (16), whose derivative along the solution 
system, is as follows: 

(35)

{

ẋ
1
= x

2

1
+ x

2

2

ẋ
2
= 2x

1
x
2

(36)V (x) = a
1
x
3

1
+ a

2
x
2

1
x
2
+ a

3
x
1

1
x
2

2
+ a

4
x
3

2

(37)
V̇ (�) = − 0.8148x4

1
− 1.185x2

1
x
2

2
− 0.0741x4

2
,

V (�) = − 0.2716x3
1
− 0.0741x1x

2

2

(38)Z =

[

−1 0 −1 0 −1
]T

Fig. 2  The value of V (X ) and V̇ (X ) on the interval � ∈ (0, 2�) Fig. 3  The value of V (X ) and V̇ (X ) on the interval � ∈ (0, 2�)
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To use the geometric method, we select 6 points on the 
unit circle in the form of 

(

a
1
… a

5

)

 , there will be an equa-
tion with five unknowns which, by means of Eq. (27), the 
amount of the coefficients are as follows:

By placing these coefficients in V (�) and V̇ (�) and draw-
ing the obtained functions in the distance � ∈ (0, 2�) , 
Fig. 5 will be obtained, where N = 6.

As is shown in Fig. 5, the value V̇ (�) is always negative 
and V (�) is always positive, according to the Theorem 1, the 

(39)

V̇ (�) = (− 8x
3

1
x
3

2
− 4x

6

1
)a

1
+ (3x6

1
− 3x

5

1
x
2
− 3x

3

1
x
3

2
− 6x

2

1
x
4

2
)a

2

+ (6x5
1
x
2
− 2x

4

1
x
2

2
− 6x

2

1
x
4

2
− 4x

1
x
5

2
)a

3

+ (9x4
1
x
2

2
− x

3

1
x
3

2
− 9x

1
x
5

2
− 2x

6

2
)a

4
+ (12x3

1
x
3

2
+ 12x

6

2
)a

5

(40)

a1 = 0.452, a2 = 0.269, a3 = 0.377,

a4 = −0.200, a5 = 0.109

equilibrium point of the system is asymptotically stable. As 
indicated, Fig. 5 is plotted for N = 6 . Now by increasing the 
N by 25 , Fig. 6 shows that a significant change in the values 
of V (�) will not be achieved, while the shape V̇ (�) around 
− 1 is getting smoother that this is also due to the increase 
in the number of selected points in calculating the coef-
ficient vector in the geometric method.

So far, assuming p = 4 has been worked out. Now, we 
want to see the effect of increasing p on the V̇ (�) oscilla-
tion range around − 1 . So we repeat the problem again 
for p = 8 , which leads to the definition of the following 
function: 

By using the geometric method we will have:

As shown in Fig. 7, the oscillation in V̇ (�) is reduced, 
which means V̇ (�) is nearer to the optimal value − 1.

Thus, we can say by increasing the degree of the initial 
Lyapunov function, can more accurately obtain a certain 
negative V̇ (X ).

(41)
V (�) = a

1
x
8

1
+ a

2
x
7

1
x
2
+ a

3
x
6

1
x
2

2
+ a

4
x
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1
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3

2
+ a

5
x
4

1
x
4

2
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6
x
3
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x
5

2
+ ax

2

1
x
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2
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8
x
1
x
7

2
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9
x
8

2

(42)
V̇ (x) = − 1.015x
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1
+ 0.03x

9

1
3x

2
− 4.249x

8

1
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2

2
− 0.41x

7

1
x
3

2
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6

1
x
4

2

+ 1.044x
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x
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2
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4

1
x
6

2
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1
x
7

2
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2

1
x
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2
+ 0.059x

1
x
9

2
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2

Fig. 4  The value of v(x) and V̇ (X ) on the interval � ∈ (0, 2�)

Fig. 5  The value of V (X ) and V̇ (X ) on the interval � ∈ (0, 2�) for 
N = 6

Fig. 6  The value of V (X ) and V̇ (X ) on the interval � ∈ (0, 2�) for 
N = 25
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5  Conclusion and further directions

The Lyapunov stability and instability theorems present a 
standard method for analyzing the stability of nonlinear 
systems. This article by considering the common part of 
the previous theorems, which is being negative definite 
of the derivative of the Lyapunov candidate function, 
presented these cases in the form of a theorem, which 
is based on determining the sign of the initial function. 
Therefore, the approach of this paper emphasizes on the 
being negative definite of its derivative in the analysis of 
the stability of nonlinear systems, rather than focusing on 
the being positive definite on the significance of the Lya-
punov candidate function. This method forms the Lyapu-
nov candidate function as a linear combination of some 
base functions a p-form with unknown coefficients. The 
coefficients of this linear composition must be found in 
such a way as derivative of the candidate function Lyapu-
nov be a negative definite function. For this purpose, two 
methods, called algebraic and geometric methods, were 
presented to calculate the unknown coefficients in homo-
geneous systems, based on the least squares method.

Although we have shown progress to find unknown 
coefficients for the Lyapunov function in the homogenous 
system, we can expand it to other nonlinear systems, and 
it could be an open question. Further work should include 
the development of stability analysis for a new nonlinear 
system. Besides, we can implement this solution in any 
branch of science.
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