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Stability Analysis of the Ribosome Flow Model
Michael Margaliot and Tamir Tuller

Abstract—Gene translation is a central process in all living organisms. Developing a better understanding of this complex process may
have ramifications to almost every biomedical discipline. Recently, Reuveni et al. proposed a new computational model of this process
called the ribosome flow model (RFM). In this study, we show that the dynamical behavior of the RFM is relatively simple. There exists
a unique equilibrium point e and every trajectory converges to e. Furthermore, convergence in monotone in the sense that the distance
to e can never increase. This qualitative behavior is maintained for any feasible set of parameter values, suggesting that the RFM is
highly robust. Our analysis is based on a contraction principle and the theory of monotone dynamical systems. These analysis tools
may prove useful in studying other properties of the RFM as well as additional intracellular biological processes.

Index Terms—Gene translation, systems biology, computational models, monotone dynamical systems, tridiagonal cooperative
systems.
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1 INTRODUCTION

The protein coding potential inscribed in a species’ DNA
is converted into proteins through the process of gene
expression. The major steps of this process are transcrip-
tion, translation, and mRNA and protein turnover. Thus,
gene translation is a central cellular process, with ramifi-
cations related to every biomedical discipline including
human health [1], [2], [3], [4], [5], [6], [7], biotechnology
[8], [9], [10], [11], [12], evolution [3], [13], [14], [15], [16],
[17], [18], [19], functional genomics [20], [21], [22], [23],
[24], [25], [26], and systems biology [27], [28], [29], [30],
[31], [23], [5]. Recently, several comprehensive reviews
related to translation have been published in the leading
scientific literature [32], [14], [10].

In the recent years, computational models of trans-
lation have been developed and employed to address
questions in all the disciplines mentioned above (see, for
example, [33], [34], [35], [36], [37], [38]). Mathematical
analysis of these computational models is important for
several reasons. It can deepen our understanding of
the translation process, lead to efficient algorithms for
optimizing gene translation, and assist in improving the
fidelity of computational models.

In this paper we consider a recent computational
model of translation–the ribosome flow model (RFM) [39].
We show that the dynamical behavior of the RFM is sim-
ple. There exists a unique equilibrium point e and every
trajectory converges to e. Furthermore, convergence is
monotone, as the distance to e can never increase. This
qualitative behavior is maintained for any feasible set
of parameter values, suggesting that the RFM is highly
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robust. Our analysis is based on the theory of monotone
dynamical systems [40], [41], [42].

The remainder of this paper is organized as follows.
The next subsection describes the RFM derived in [39].
Section 2 presents our main results. Section 3 reviews
some known results that will be used later on. The proof
of our main result is given in Section 4. The final section
concludes and describes some interesting open problems
that deserve further research.

1.1 The Ribosome Flow Model
The conventional model of translation elongation is the
Totally Asymmetric Simple Exclusion Process (TASEP) [36],
[35], [43]. The TASEP is a general stochastic model for
traffic-like movement, that is, movement that takes place
on some kind of tracks or trails. The tracks are modeled
by a lattice of sites and the moving objects by particles
that can hop, with some probability, from one site to a
neighboring one. The term “simple exclusion” refers to
the fact that hops may take place only to a target site that
is not already occupied by another particle. The motion
is assumed to be asymmetric in the sense that there is
some preferred direction of motion. The term “totally
asymmetric” refers to the case where motion is allowed
only in one direction. The TASEP has been used to model
and study a large number of biological systems, ranging
from extracellular transport to pedestrian dynamics [44].

TASEP models for translation are based on the fol-
lowing assumptions. Initiation time as well as the time
a ribosome spends translating each codon are random
variables (e.g. with an exponential distribution) and
are codon dependent. In addition, ribosomes span over
several codons and if two ribosomes are adjacent, the
trailing one is delayed until the ribosome in front of it
has proceeded onwards (see Fig. 1). Despite its rather
simple description, it seems that rigorous analysis of the
TASEP is non-trivial.

Reuveni et al. [39] recently introduced a simpler deter-
ministic model called the ribosome flow model (RFM) (see
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Fig. 1. The TASEP and the RFM. Upper-part: The TASEP
model: each codon has an exponentially distributed trans-
lation time; ribosomes have volume and can block each
other. Lower-part: The RFM is a coarse grained mean
field approximation of the TASEP.

Fig. 1). In the RFM, mRNA molecules are coarse-grained
into n sites of codons. Ribosomes reach the first site with
initiation rate λ, but are only able to bind if this site is
not already occupied by another ribosome. In practice,
the initiation rate is a function of physical features such
as the number of available free ribosomes and nucleotide
context surrounding initiation codons [39], [10], [45],
[37], [34]. A ribosome that occupies site i moves, with
transition rate λi > 0, to the consecutive site provided
the latter is not already occupied by another ribosome.

As demonstrated in [39], simulations of the full TASEP
and the simpler RFM yield similar predictions of trans-
lation rates. For example, the correlation between their
predictions of translation rates over the set of endoge-
nous genes of S. cerevisiae is 0.96.

Denoting the probability that site i is occupied at
time t by xi(t), it follows that the rate of ribosome flow
into/out of the system is given by: λ(1 − xi(t)) and
λnxn(t), respectively.

The rate of ribosome flow from site i to site i + 1 is
given by λixi(t)(1− xi+1(t)), so the RFM is given by:

ẋ1 = λ(1− x1)− λ1x1(1− x2),
ẋ2 = λ1x1(1− x2)− λ2x2(1− x3),
ẋ3 = λ2x2(1− x3)− λ3x3(1− x4),

...
ẋn−1 = λn−2xn−2(1− xn−1)− λn−1xn−1(1− xn),

ẋn = λn−1xn−1(1− xn)− λnxn. (1)

The transition rates λ, λ1, . . . , λn are positive numbers.
The exact values are determined by the codon composi-
tion of each site and the tRNA pool of the organism (see

the Methods section in [39]).

The state-variables correspond to occupation probabil-
ities, and so we always consider initial conditions x(0)
in the closed unit cube:

C = {x ∈ Rn : xi ∈ [0, 1], i = 1, . . . , n}.

Suppose that e = (e1, . . . , en)′ is an equilibrium point
of the RFM, i.e. for x = e the right-hand side of all the
equations in (1) is zero, so

λ(1− e1) = λ1e1(1− e2)
= λ2e2(1− e3)

...
= λn−1en−1(1− en)
= λnen. (2)

Denoting
R = λnen (3)

yields

en = R/λn,

en−1 = R/(λn−1(1− en)),
... (4)

e2 = R/(λ2(1− e3)),
e1 = R/(λ1(1− e2)),

and
e1 = 1−R/λ. (5)

Combining (4) and (5) provides a finite continued frac-
tion expression for R:

1−R/λ =
R/λ1

1− R/λ2

1− R/λ3

1− R/λ4

1− R/λ5

. . . 1−R/λn

(6)

Note that if we assume that ei ∈ [0, 1] for any i, then (2)
implies that

R ≤ min{λ, λ1, . . . , λn}. (7)

Reuveni et al. [39] used (6) to consider two extreme
cases. When the ribosome input flux is low, i.e. λ ¿
min{λ1, . . . , λn}, Eq. (7) yields R ¿ λi for any i, and (6)
implies that 1− R/λ ≈ 0, so R ≈ λ. On the other hand,
when λ À max{λ1, . . . , λn} Eq. (7) yields λ À R so we
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may approximate (6) by

1 ≈ R/λ1

1− R/λ2

1− R/λ3

1− R/λ4

1− R/λ5

. . . 1−R/λn

(8)

A solution of this equation has the form R =
R(λ1, . . . , λn), i.e. R (and, therefore, e) will not depend
on λ.

The simulations in [39] indicate that the dynamical
behavior of the RFM is simple.

Example 1 Consider the model (1) with n = 3, λ = λ1 =
1, λ2 = 2, and λ3 = 3, i.e.

ẋ1 = 1− x1 − x1(1− x2),
ẋ2 = x1(1− x2)− 2x2(1− x3),
ẋ3 = 2x2(1− x3)− 3x3. (9)

In this case, (6) becomes

1−R =
R

1− R/2
1−R/3

,

or
7R2 − 17R + 6 = 0.

This equation admits two solutions: R = 2, correspond-
ing to (−1, 3, 2/3)′ (that is not in C), and R = 3/7
corresponding to

e = (4/7, 1/4, 1/7)′. (10)

Fig. 2 depicts the trajectories of (9) for several initial con-
ditions in C. It may be seen that each trajectory remains
in C, and converges to the equilibrium point e. ¤

The next section details our main results. Let

Int(C) = {x ∈ Rn : xi ∈ (0, 1), i = 1, . . . , n},
i.e. the interior of C.

2 MAIN RESULT

Our first result shows that any trajectory of the RFM
emanating from C converges to a unique equilibrium
point.

Theorem 1 Consider the RFM (1) with λ, λi > 0. The RFM
admits a single equilibrium point e ∈ Int(C). For any initial
condition x(0) ∈ C, x(t) ∈ C for any t ≥ 0, and

lim
t→∞

x(t) = e.

From the biophysical point of view, this result means
that perturbations in the distribution of ribosomes on a
mRNA will not change the asymptotic behavior of the
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Fig. 2. Trajectories of (9) for four different initial conditions
in the unit cube. The equilibrium point e in (10) is marked
with a circle.

dynamics. It will still converge to the same unique steady
state e, that is, to the same distribution of ribosomes and
the same translation rates. In particular, a simulation
of the RFM from any initial condition will converge
to the same final state. This agrees of course with the
simulation results reported in [39]. Changing the values
of the positive paraments λ, λi will not change this
qualitative behavior; however, it will change the exact
location of e in Int(C), that is, the distributions and the
translation rates at the steady state.

Theorem 1 does not provide any information on what
happens until convergence. Our second result considers
the robustness of an entire trajectory of the RFM with
respect to perturbations of the initial condition.

Let x(t; x0) denote the solution of the RFM at time t for
the initial condition x(0) = x0. Recall that the L1 norm
of a vector x ∈ Rn is |x|1 =

∑n
i=1 |xi|.

Theorem 2 Fix arbitrary a, b ∈ C. Then

|x(t; a)− x(t; b)|1 ≤ |a− b|1, (11)

for any t ≥ 0.

In other words, the L1 distance between trajectories is
always bounded by the L1 distance between their initial
conditions. In particular, two trajectories that emanate
from close initial conditions will remain close for any t ≥
0. From the biological point of view, this result suggests
that the difference between two ribosomal density pro-
files can never increase.

Note that taking b = e in (11) yields

|x(t; a)− e|1 ≤ |a− e|1, for all t ≥ 0.

In other words, the convergence to e is monotone, as
the L1 distance to e can never increase.
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The proof of our results is based on a contraction
principle and on the theory of monotone dynamical systems
(see, e.g. the monograph [40]). In particular, we use
Smillie’s theorem on tridiagonal monotone systems [42].
In the next section, we review some known results that
will be used later on.

3 PRELIMINARIES

3.1 Monotone systems
Let Ω ⊂ Rn be an open set. Consider a system of n
ordinary differential equations

ẋ = f(x), (12)

where f : Ω → Rn is continuously differentiable. For t ≥
0 and x0 ∈ Ω, let x(t; x0) denote the solution of (12) at
time t for the initial condition x(0) = x0. For the sake of
simplicity, we assume from here on that x(t;x0) exists
for any t ≥ 0.

For two vectors a, b ∈ Rn, we write a ≤ b if ai ≤ bi

for i = 1, . . . , n. We write a < b if a ≤ b and ai < bi for
some i, and we write a ¿ b if ai < bi for any i.

Definition 1 The vector field f : Ω → Rn is said to
satisfy the Kamke condition if for any two vectors a, b ∈ Ω
satisfying a ≤ b and ai = bi we have

fi(a) ≤ fi(b).

The Kamke condition implies that the flow of (12) is
monotone in the following sense.

Proposition 1 [40, Chapter 3] Let <r denote any of the
relations ≤, <, or ¿. Suppose that the vector field f in (12)
satisfies the Kamke condition. Then for any x0 <r y0,

x(t;x0) <r x(t; y0) for all t ≥ 0.

The easiest way to verify that the Kamke condition
holds is based on the sign structure of the Jacobian
matrix ∂f

∂x : Ω → Rn×n, i.e. the matrix whose ij entry
is ∂fi

∂xj
. If Ω is convex and

∂fi

∂xj
(x) ≥ 0, for any i 6= j and any x ∈ Ω, (13)

then the Kamke condition holds. Indeed, by the fun-
damental theorem of calculus for line integrals (see,
e.g., [46]),

fi(b)− fi(a) =
∫ 1

0

n∑

j=1

∂fi

∂xj
(a + (b− a)r)(bj − aj)dr.

If ai = bi then this simplifies to

fi(b)− fi(a) =
∫ 1

0

n∑

j=1
j 6=i

∂fi

∂xj
(a + (b− a)r)(bj − aj)dr,

and if a ≤ b then (13) yields fi(b)− fi(a) ≥ 0.
Intuitively speaking, (13) implies that a positive

change in xj increases fi(x). Since ẋi = fi(x), this

implies that different state variables reinforce each other.
A system (12) that satisfies (13) is called a cooperative
system.

If a cooperative system satisfies ∂fi

∂xj
= 0 for any |i −

j| > 1, then the system is said to be a tridiagonal cooper-
ative system [42]. If, furthermore, ∂fi

∂xj
> 0 for |i− j| = 1,

then the system is called a strongly cooperative tridiagonal
system (SCTS).

Recall that a set in Rn is called compact if it is closed
and bounded. The next result shows that the dynamical
behavior of any bounded trajectory of a SCTS is relatively
simple.

Theorem 3 [42] Let ẋ = f(x) be a SCTS defined on an open
set Ω ⊂ Rn. Assume that the functions fi are n − 1 times
differentiable. Let x : [0, a) → Rn be a solution of the system
defined on some maximal interval of time [0, a) with 0 < a ≤
∞. Then either: (1) limt→a x(t) exists and is an equilibrium
point of the dynamics; or (2) as t → a, x(t) eventually leaves
any compact set.

3.2 Contraction principle

We now briefly review a contraction principle that will be
used in the proof of Theorem 2. For more details, see [47,
Chapter 3], [48], [49]. Given a vector norm |·| : Rn → R+,
the induced matrix norm || · || : Rn×n → R+ is

||A|| = max
|x|=1

|Ax|,

and the induced matrix measure µ : Rn×n → R is

µ(A) = lim
ε↓0

1
ε
(||I + εA|| − 1).

To gain an intuitive interpretation of µ(A), consider
the linear equation ẏ = Ay. Then, up to a first-order
approximation

y(t + ε) = y(t) + εAy

= (I + εA)y(t),

so |y(t + ε)| ≤ ||I + εA|||y(t)|, and

1
ε
(|y(t + ε)| − |y(t)|) ≤ 1

ε
(||I + εA|| − 1)|y(t)|.

Hence,
d+

dt
|y(t)| ≤ µ(A)|y(t)|,

where d+/dt denotes the right-hand derivative.

Theorem 4 (Contraction principle) Consider the equation

ẋ = f(x), (14)

with f continuously differentiable. Let J : Rn → Rn×n denote
the Jacobian of f . Suppose that a convex set K ⊆ Rn is an
invariant set for (14), and that there exists a vector norm | · | :
Rn → R for which the induced matrix measure satisfies

µ(J(x)) ≤ r,
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for any x ∈ K. Then for any a, b ∈ K and any t ≥ 0,

|x(t; a)− x(t; b)| ≤ ert|a− b|.
For a self-contained proof of this result, see [48].

4 PROOFS

An immediate yet crucial observation is that the RFM (1)
is a SCTS on the open unit cube Int(C). For example,
since ẋ2 = f2(x), with f2(x) = λ1x1(1−x2)−λ2x2(1−x3),
we have ∂f2

∂xi
(x) 6= 0 only for i = 1, 2, 3. Also ,for any x ∈

Int(C),

∂f2

∂x1
(x) = λ1(1− x2) > 0,

and
∂f2

∂x3
(x) = λ2x2 > 0.

The biological interpretation of this property is simple.
First, the chain–like structure of the RFM (see Fig. 1)
implies that the dynamics f2(x) at site 2 can depend
only on {x1, x2, x3}. Second, if more ribosomes occupy
site 1, then more ribosomes will proceed to site 2. Also,
If more ribosomes occupy site 3, then more ribosomes in
site 2 are delayed, so in both cases there exists a positive
feedback effect on the change in the concentration of
ribosomes in site 2.

Let ∂C = C \ Int(C), i.e. the boundary of C. To prove
Theorem 1 we require the following result.

Proposition 2 For any x(0) ∈ Int(C), the solution of (1)
satisfies x(t) ∈ Int(C) for any t ≥ 0.

In other words, the open unit cube is an invariant set
of (1).

Proof. Seeking a contradiction, assume that x(0) ∈
Int(C) yet there exists a (first) time T > 0 such
that x(T ) 6∈ Int(C). Then x(T ) ∈ ∂C, so xk(T ) ∈ {0, 1}
for at least one index k. This implies that at least one of
the following two cases holds.
Case 1. There exists a (minimal) index i such that

xi(T ) = 0, (15)

and xj(T ) > 0 for any j < i. If i = 1, Eq. (1) implies
that ẋ1(T ) = λ > 0. Since x1(t) ∈ (0, 1) for any t < T , this
implies that x1(T ) > 0. We conclude that the case i = 1
is not possible, so i > 1. Now (1) implies that ẋi(T ) =
λi−1xi−1(T ). Since xj(T ) > 0 for any j < i, this implies
that ẋi(T ) > 0, so xi(T ) > 0. This contradicts (15), so we
conclude that Case 1 is not possible.
Case 2. There exists a (maximal) index i such that

xi(T ) = 1,

and xj(T ) < 1 for any j > i. If i = n, Eq. (1) implies
that ẋn(T ) = −λn < 0. Since xn(t) ∈ (0, 1) for any t < T ,
this implies that xn(T ) < 1. We conclude that the case i =
n is not possible, so i < n. Now (1) implies that ẋi(T ) =
−λi+1(1 − xi+1(T )). Since xj(T ) < 1 for any j > i, this

implies that ẋi(T ) < 0, so xi(T ) < 1. We conclude that
Case 2 is also not possible. This contradiction implies
that Int(C) is an invariant set of the RFM. ¤

The next result shows that a trajectory emanating from
the boundary of the unit cube enters the unit cube.

Proposition 3 For any x(0) ∈ ∂C there exists a time t > 0
such that x(t) ∈ Int(C).

Proof. Assume that x(0) ∈ ∂C, i.e. xk(0) ∈ {0, 1} for at
least one index k. Again, this implies at least one of two
cases.
Case 1. There exists a (minimal) index i such that xi(0) =
0 and for any j < i, xj(0) > 0. We will show that

xi(τ) ∈ (0, 1) for some τ > 0. (16)

If i = 1, then (1) yields ẋ1(0) = λ > 0, so (16) indeed
holds. If i > 1, then

ẋi(0) = λi−1xi−1(0),

and since xi−1(0) > 0, this implies that ẋi(0) > 0 so
again (16) holds. Note that it follows from the proof
of Proposition 2 that for any j < i, xj(t) ∈ (0, 1) for
any t ≥ 0. Thus, xk(τ) ∈ (0, 1) for any k ∈ {1, . . . , i}, and
then xk(t) ∈ (0, 1) for any k ∈ {1, . . . , i} and any t ≥ τ .
Case 2. There exists a (maximal) index i such that xi(0) =
1 and for any j > i, xj(0) < 1. A similar argument shows
that xi(τ) ∈ (0, 1) for some τ > 0.

Summarizing, the state-variable with minimal index i
such that xi(0) = 0 enters C at some time t > 0.
Inductively, this implies that there exists a time η > 0
such that xi(η) > 0 for any i ∈ {1, . . . , n}. Similarly,
there exists a time ζ > 0 such that xi(ζ) < 1 for
any i ∈ {1, . . . , n} and any t ≥ ζ. This completes the
proof of Proposition 3. ¤

We can now prove Theorem 1. Since the RFM is a
SCTS and Int(C) is an invariant set, Theorem 3 implies
the existence of at least one equilibrium point e ∈ Int(C).
We will show that there exists a single equilibrium point
in Int(C). Seeking a contradiction, assume that e, ẽ ∈
Int(C) are two different equilibrium points. Then (4)
implies that (6) admits at least two different real so-
lutions R, R̃ corresponding to e and ẽ, respectively.
Without loss of generality, assume that

R < R̃. (17)

The first equation in (4) implies that en < ẽn. Then
the second equation implies that en−1 < ẽn−1, and
proceeding in this fashion yields e1 < ẽ1. Combining this
with (5) and the fact that R, R̃ > 0 (this follows from (3))
yields R > R̃. This contradicts (17). We conclude that
there exists a single equilibrium point e ∈ Int(C). Ap-
plying Theorem 3 implies that for any x(0) ∈ Int(C),
the trajectory x(t) converges to e. For any x(0) ∈ ∂C, the
trajectory goes inside C and then again x(t) converges
to e. This completes the proof of Theorem 1. ¤

We now turn to the proof of Theorem 2. Recall that
for the L1 vector norm | · |1, the induced matrix measure
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of a matrix A ∈ Rn×n is

µ1(A) = max
1≤j≤n

(Ajj +
∑

1≤i≤n
i6=j

|Aij |), (18)

i.e. the maximum of the column sums, with non diagonal
elements replaced by their absolute values [47, Chap-
ter 3].

Proposition 4 For the RFM (1),

µ1(J(x)) = 0, for any x ∈ C. (19)

Proof. It is straightforward to verify that for any i 6=
j, Jij(x) ≥ 0 for any x ∈ C. Thus, we can ignore
the absolute value in the column sums in (18). The
first column of J contains only two non-zero entries,
namely, J11 = −λ − λ1(1 − x2) and J21 = λ1(1 − x2),
so J11 + J21 = −λ < 0. Similarly, the sum of elements
in the nth column of J is Jn−1 n + Jnn = λn−1xn−1 −
λn − λn−1xn−1 = −λn < 0. For any 1 < i < n, column i
of J contains three non-zero elements: Ji−1 i = λi−1xi−1,
Jii = −λi−1xi−1−λi(1−xi+1), and Ji+1 i = λi(1−xi+1),
so the column sum is zero.

Combining Theorem 4 with (19) yields (11). This com-
pletes the proof of Theorem 2. .

5 DISCUSSION

Our results show that the RFM has several nice prop-
erties. There exists a unique equilibrium point e and
any trajectory emanating from a feasible initial condi-
tion converges to e. Also, the L1 distance between two
trajectories can never increase.

From the biophysical point of view, this means that
perturbations in the distribution of ribosomes on a
mRNA will not change the asymptotic behavior of the
dynamics. It will still converge to the same distribution
of ribosomes and the same translation rates. In particu-
lar, a simulation of the RFM from any initial condition
will converge to the same final state. This provides a
rigorous explanation for the simulation results reported
in [39]. Also, the difference between two profiles of
ribosome densities is a non-increasing function of time.

Changing the values of the paraments λ, λi will not
change this qualitative behavior, but it will change the
distributions and the translation rates at the steady state.

Our analysis is based on the theory of monotone
dynamical systems. These systems proved be to a useful
tool for modeling a variety of biochemical networks.
Sontag [41] provides several explanations for the appli-
cability of monotone systems in this context: (1) the be-
havior of monotone systems is ordered and predictable;
(2) the quantitative behavior is highly robust with re-
spect to changes in parameter values (this is particulary
important in biological networks where exact parameter
values are often hard to determine); and (3) it is often
useful to model large systems as interconnections of
monotone subsystems.

The RFM has been used for describing translation
elongation. However, it can be used (with a different
set of parameter values and some additional changes)
for describing other intracellular processes. One such
process is transcription elongation [50]. In this process
the DNA molecule is transcribed by RNA polymerases
to mRNA molecules. More than one RNA polymerase
can transcribe the same DNA molecule simultaneity,
polymerases have volume, they can block each other,
and their local speed is determine by DNA sequence
near them. However, in the case of transcription, the
RNA polymerases may also move backwards, leaving
a newly synthesized 3’-end of nascent RNA hanging
out and available for exonucleases [51]. Thus, in order
to model the transcription process the RFM should be
modified accordingly. Another relevant process is intra-
cellular trafficking of motor proteins along the micro-
tubule or microfilament network. As each microtubule is
a relatively long rope-like polymer, all the major features
of the translation process also appear here. Thus, the
results reported here may be relevant also to these cases.

Several open questions deserve further research. First,
the rate of convergence to e is of importance. One tool for
deriving bounds on the rate of convergence is a Lyapunov
function (see, e.g., the very readable presentation in [52]).
Roughly speaking, a Lyapunov function is a function V :
Rn → R+ that satisfies

V̇ (x(t)) ≤ 0

along any trajectory of the dynamic system. One may
think of V as associating to each state x the “energy” of
the system when in state x. If this energy is continuously
decreasing then the state must converge to the point cor-
responding to minimal energy. Fiedler and Gedeon [53]
derived an iterative procedure for constructing a Lya-
punov function V for a SCTS. The resulting Lyapunov
function has the form

V (x) = −
n−1∑

i=1

gi(xi, xi+1)− gn(xn),

and along trajectories of the SCTS,

V̇ (x(t)) = −
n∑

i=1

ai(x(t))(ẋi(t))2.

The ais here are positive functions, so V̇ (x(t)) ≤ 0 with
equality if and only if ẋi(t) = 0 for any i, that is, if and
only if x(t) is an equilibrium point. An interesting feature
of V is that it is the sum of “local” functions gi(xi, xi+1)
that take into account the interaction between two con-
secutive state-variables only. This approach is applicable
of course for the RFM. However, it leads to a rather
contrived V ,1 and it is not clear yet if this V can be
used to derive information on the convergence rate.

1. For example, for the RFM with n = 2, V (x1, x2) = g1(x1, x2) +

g2(x2), with g1 = λ(x1− x2
1
2

)−λ1
x2
1
2

(1−x2), and g2 = − λ2
2

2λ1
(2 ln(1−

x2) + x2 + 1
1−x2

− 1).
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Another interesting question is the sensitivity of e
to changes in the RFM parameters λ,λi specifically in
comparison to the phase transitions in the TASEP [43],
[54]. In real biological systems, one usually analyzes
thousands of genes in multiple organisms corresponding
to different sets of parameter values. Understanding the
dependence of the steady state on the parameter values
may be used to considerably accelerate the simulations
by initiating the trajectory in the vicinity of the steady
state.

In addition, it is reasonable to assume that the trans-
lation process is controlled by some form of feedback,
so the analysis of an extended version of the RFM that
includes a suitable feedback loop may be of interest.
Note that there are several interesting analytic results
on the behavior of monotone systems under a feedback
connection (see, e.g. [55], [56]).

The RFM, as all mathematical models, provides a
trade-off between simplicity and realism. In particular,
the RFM is an efficient approximation of the TASEP [43]
yet it does not take into account several aspects of
the translation process. These include: (1) the existence
of multiple initiation sites or programmed frameshift-
ing [57]; (2) the effect of strong RNA secondary struc-
tures that may delay ribosomes; and (3) recoding–
encoding Selenocysteine in a special way by a UGA
codon [58] (see, for example, [59] for additional read-
ing about datasets and a statistical approach to such
translation events). The RFM may serve as the basis
for developing a more sophisticated and more realistic
mathematical model of translation.
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