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Abstract— The source of the vertical instability in tokamaks 

is relatively well understood, and stabilizing controllers have 

been successfully implemented in numerous tokamaks. Usually 

these controllers are designed based on a plasma model that 

assumes the plasma has zero mass. In reality the plasma mass is 

small but positive, so that some of the controller designs yield 

an unstable closed loop. 

In this work we expand on [1], further investigating the 

discrepancy between the massless plasma model and the 

plasma with mass model. It turns out that conclusions about 

closed loop behavior depend on the controller’s asymptotic 

behavior at infinite frequency. Simulations on models of 

KSTAR and ITER are performed with varying presence of 

passive stabilizing structures, including the possibility of 

superconductive control coils. It is shown that erroneous 

conclusions regarding asymptotic stabilization only result from 

non proper controllers. The results confirm that neither pure 

velocity feedback nor a proper or strictly proper form of 

velocity feedback can asymptotically stabilize the vertical 

instability. 

I. INTRODUCTION 

UCLEAR fusion is the source of virtually all of the 

energy of the universe. The sun and stars shine due to 

fusion, supporting all life on earth. Our fossil fuels, 

including coal, oil and gas, are stored sunshine, that is, 

stored fusion energy. 

Achieving controlled fusion on earth is one of the great 

challenges of science, but it has a large potential as a source 

of sustainable energy. The fuels needed for fusion, 

deuterium and tritium, can be obtained from water and from 

lithium respectively, which are abundantly present on earth. 

Without the emission of greenhouse gasses, the low amount 

of nuclear waste in terms of volume and half-life, and its 

non-explosive character due to the absence of chain 

reactions (in contrast to fission), a fusion-power reactor 

would offer significant advantages over existing energy 

sources. 

To initiate and sustain fusion reactions, a gas comprised 

of ionized hydrogen isotopes, called a plasma, has to be 

heated and confined. Three known ways to confine the 

plasma are gravitational confinement (like the sun), inertial 

confinement (controlled implosions) and magnetic 

confinement. Magnetic confinement uses magnetic fields 
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exerting forces on the moving ionized particles. 

The most promising of several magnetic confinement 

devices are tokamaks, devices constructed in the shape of a 

torus. The plasma in a tokamak is confined by means of an 

external helical magnetic field generated by a set of coils 

distributed around the vacuum vessel and the plasma 

currents. The two main components of this field are the 

toroidal field ��, generated by toroidal field (TF) coils, and 

the poloidal field �� , generated by the plasma current, which 

is induced by a transformer action. Moreover, a strong 

vertical field ��  is needed to counteract the plasma hoop 

force. This force is directed radially outward, and is caused 

by plasma pressure trying to expand the plasma ring, and the 

self exerted Lorentz force. The vertical field is generated by 

a set of poloidal field (PF) coils. These coils have the 

additional purpose of changing the shape and position of the 

plasma. 

A. Plasma Vertical Instability 

Although the first tokamaks allowed only for plasmas 

having a circular cross-section, modern advanced machines 

usually operate with plasmas which have a vertically 

elongated (D-shaped) cross-section; this is important to 

assure better fusion performance and it allows better filling 

of the vacuum chamber. To achieve a vertically elongated 

plasma, a radial component has to be added to the vertical 

magnetic field distribution (see Fig. 1), using the PF 

(shaping) coils. This component is directed inward above the 

midplane, and directed outward below the midplane which 

causes an upward force acting on the top of the plasma and a 

downward force acting on the bottom of the plasma. But the 

equilibrium among these forces that elongate the plasma is 

unstable. When a disturbance shifts the plasma up slightly, 

more current moves above the midplane and the net force is 

directed upward. This imbalance causes the plasma to move 

up, thereby further increasing the upward force. This 

behavior causes the appearance of a vertical unstable mode. 

When no corrective action would be taken, the hot plasma 

column would move vertically in a fraction of a second until 

it reaches the protecting tiles and it would terminate rapidly. 

The growth time of the vertical instability would be on the 

Alfvén time scale (a few microseconds or less), were it not 

for the stabilizing influence of induced currents in passive 

conducting structures. These currents generate forces that 

oppose the plasma movement. The resistance of the passive 

structures determines the time needed for the induced 

currents to decay away. This time scale, called the resistive 

wall time, governs the growth time of the vertical instability, 
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Fig. 1.    Cross-section of the KSTAR tokamak in Daejon, South-

Korea, containing a vertically elongated plasma, the vertical 

magnetic field distribution and Poloidal Field (PF) coils system. 
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and is in the order of a few milliseconds. Theoretically, the 

instability can be (marginally) stabilized when the plasma is 

surrounded with a structure that is superconductive. But 

standard conductive walls with positive electrical resistance 

can only reduce the growth time of the unstable mode. As a 

consequence, to stabilize the plasma, an active feedback 

system is required that produces a radial magnetic field 

across the plasma in response to some measure of the plasma 

vertical position. 

 

B. Objectives 

In [1] the authors illustrate how analyses using a plasma 

model that assumes the plasma has zero mass can reach 

erroneous conclusions. This model can lead to feedback 

gains of the wrong sign, making the growth rate of the 

closed loop system even larger than the original open loop 

growth rate. In [2] the characteristic polynomials of a 

massless plasma model and a plasma with mass model were 

used to derive necessary and sufficient multivariable 

conditions for stabilization of a plasma model that 

incorporates the plasma mass, by feedback based on a 

massless plasma analysis. These results are based on PD-

feedback as a prototype controller. The paper [1] also 

addresses the issue of pure velocity feedback and shows that 

this form of feedback cannot asymptotically stabilize the 

vertical instability. 

When external control circuits and power supplies are 

accounted for, controllers that are implemented generally are 

strictly proper. Therefore, the pure PD form does not provide 

a representative simplification of practical controllers [2]. 

This work verifies the conclusions of [2] about closed loop 

behavior are dependent on the controller’s asymptote at high 

frequencies. From this the question arises what will happen 

with a derivative controller that is proper, or strictly proper. 

In this work, stabilization by velocity feedback is further 

investigated. The results of [2] are examined in the context 

of a (strictly) proper derivative controller. Simulations are 

performed on different KSTAR and ITER plasma-coil-

vessel configurations to investigate closed loop stabilization 

of different controllers, including the possibility of super 

conductive control coils. Both the massless plasma model 

and the plasma with mass model are considered, to 

investigate the erroneous conclusions of the massless plasma 

analysis described in [2], and a link is made with the 

conditions for stabilization of [1]. Throughout the analyses, 

excursions to the frequency domain are made whenever 

convenient. 

In section II, two closely related models of the tokamak-

and-plasma system are established. One model assumes 

massless plasma, the other model includes the mass in the 

analysis. The difference between the two models is 

investigated in section III, using a theoretical approach of a 

single coil model (section III-B) with a general form of 

controllers, a two circuit model (section III-C) and a �-

conductor model (section III-D). The findings are verified by 

simulations in section V. In section V also simulation results 

from more complex multivariable tokamak plasma models 

are presented. From the acquired insight hypotheses are 

distilled that lead to some future work propositions. 

II. MODELING 

The plasma is modeled as a constant spatial distribution of 

plasma current, free to move vertically and radially, and is 

assumed to be axisymmetric. The various current-carrying 

elements (conductors) of a tokamak can interact 

mechanically with the plasma through the magnetic fields 

produced by these currents. The force equations describing 

these interactions are combined with linearized coil circuit 

equations that describe the electrical interactions, to form the 

dynamical model plant of the plasma-vessel-coils system 

used for control development [5] 

 

 �	
 + �	 + Ψ��
� + Ψ��
� = ��  , (1)

 

where the state vector 	 contains the currents in the toroidal 

conductors, while 	 = 	 − 	��  represents a perturbation 

from the nominal plasma equilibrium 	��. The � conductors 

include the ��  PF active control coils, consisting of shaping 

coils and central solenoid (CS) coils, and the ��  passive 

structures such as vessel elements, which are indicated in 

Fig. 1. The perturbation of the toroidal voltages on the 

conductors is represented by � = � − ��� . To make a 

distinction between the passive and active circuits the 

mapping matrix �� = �� ! " !#  $% is used [3]. The 

identity matrix � !  corresponds to the voltages that are 
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applied to the active control coils provided by external 

voltage sources. The zero matrix " $#  !  corresponds to the 

passive circuits (vessel elements) in which the voltage 

source term is zero. The current vector 	� = �	� 	�% is 

partitioned accordingly. The symmetric mutual inductance 

matrix � represents the electrical influence the before 

mentioned conductors have on one another and the diagonal 

matrix � represents the resistance of the conductors. The 

column matrices Ψ� and Ψ�  are the partial derivatives of the 

magnetic flux at the conductors, with respect to the vertical 

(��) and radial (��) motion of the plasma. 

To characterize the plasma position, the centre of the 

plasma current distribution is used. The vertical coordinate 

of this plasma current centroid is defined as �� =&'( ) �*+,-.( , where *+ is the toroidal current density inside 

the plasma region Ω� and 	� is the total plasma current 

which is assumed to be constant in the derivations of the 

plasma response model [4]. 

 

A. Massless plasma model 

In most control analyses, the plasma mass / is neglected 

for convenience of design. Using (1) the massless model 

(/ = 0 model) of the plant dynamics can be written as 

 

 	
 = −�∗2&�	 + �∗2&�� , (2)

 

where �∗ = M + Ψ�45��/5	7 + Ψ�45��/5	7. The row 

vectors 5��/5	 and 5��/5	 are derived from a linearization 

of the plasma response around the chosen nominal plasma 

equilibrium. 

 

B. Plasma with mass model 

The plasma with mass model (/ > 0 model) reflects the 

reality better than (2), therefore this model will also be 

referred to as the physical model. For a plasma having mass / > 0, perturbations in the vertical motion �� = �� − ��,��  

can be represented by the inertial momentum equation  

 

 /�9� = :��� + :'	 , (3) 

 

where :� = 5;�/5�� is the vertical force produced by the 

radial field �<  on a plasma subjected to a unit vertical 

displacement, which is dependent on the magnitude and the 

degree of curvature of the radial field and the total plasma 

current 	�. The row matrix :' = 5;�/5	 contains the vertical 

forces acting on the plasma, produced by unit currents 

flowing in the circuits. ;� is the total (scalar) vertical force 

acting on the plasma. We note that Ψ�� = :' [5][6]. 

Equation (3) represents a vertical force balance when �9� = 0, in which :���  is the destabilizing force (because :� > 0), and :'	 is the stabilizing force. The mass / is 

assumed to be constant, since the changes in mass are slow 

relative to the typical time scale considered in the position 

control design problem. Defining the variables =� = >>? ��, 

and @�� = �=� ��%, we can write (3) as 

 

 A 0 1/ 0C @
� + D−1 00 :�E @� + D 0−:'E 	 = 0. (4) 

 

From (1) we obtain  

 

 �#	
 + �	 + Ψ��
� = �� ,  

 

where �# = M + Ψ�45��/5	7. Combining with (4) and 

increasing the state dimension by two using @� =�=� �� 	�%, we obtain the plasma with mass model 

 

 @
 = −�H2&�I@ + �H2&�H� , (5a) 

 

where 

 

�H = J 0 1 "&# / 0 "&# " #& ΨK �#
L , 

�I = M −1 0 "&# 0 −:� −ΨKN" #& " #& � O,   �H = J"&# !"&# !� L. (5b) 

 

When :� > 0, the state matrix P ≝ −�∗2&� of the 

massless plasma model and the state matrix PR ≝ −�H2&�I of 

the plasma with mass model both possess a single positive 

real eigenvalue, which is shown in [1] using a matrix pencil 

analysis. This positive real eigenvalue is the growth rate S of 

the vertical instability. The accompanying eigenvector is a 

nearly rigid vertical motion of the plasma current 

distribution. 

 

C.  Control Architecture 

To stabilize the vertical instability, an additional voltage � is applied to the control coils, in response to the 

displacement of �� from some reference position ��,��T , in 

the form 

    

 �4U7 = −V4U7 W��4U7 − ��,��T4U7X , (6) 

 

where V4U7 is the transfer function of the SIMO-controller. 

The control coils have the additional purpose of controlling 

the plasma shape and plasma current. However, the control 

objectives can be performed on different time scales. For 

most tokamaks the double loop approach shown in Fig. 2 is 

used. A fast, inner control loop is dedicated to stabilize the 

vertical instability, most often taking a proportional-

derivative (PD) form. Integral action is rarely used, leaving 

possible steady state errors to the plasma shape controller in 

the slower, outer loop. These steady state errors are present 

when no control coils are super conductive, since the system 

has a finite DC gain in this case. 
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Often the reference position ��,��T  is taken to be zero, 

making it possible to write the feedback law (6) in the matrix 

notation 

 

 �4U7 = �Y�Z@1 −V4U7 Y !#�%@ . (7)

 

Substituting (7) in the plasma with mass model (5) and 

replacing the Laplace variable U with [, results in a matrix \�H[ + �I − �H�Y !#& −V4[7 Y !# %] whose determinant  

 

 det a −1 [ Y&#�[/ −:� −b��Y�@1 b�[ + �V4[7 �#[ + �c = 0 , (8)

 

defines the characteristic equation. By adding [ times 

column one to column two and taking the Laplace expansion 

along the first row, (9) can be simplified to 

 

 det d [e/ − :� −b��b�[ + �V4[7 �#[ + �f = 0 . (9)

 

The system has poles where this characteristic equation 

vanishes. 

III. THEORETICAL ANALYSIS 

To obtain an intuitive understanding of the problem, first 

two low dimensional models are analyzed. The model in 

section III-B only has a single control coil circuit dedicated 

to the vertical stabilization task. This model is used to 

investigate the relation between the high frequency 

asymptote of a controller and the validity of the / = 0 

model. The model in section III-C, which also includes a 

state describing the current in the passive conductors, is used 

to investigate under what conditions derivative gain is 

stabilizing for the physical model. In section III-D the 

general problem is addressed. These theoretical models are 

related to the single, two and full- circuit experimental 

models described in section IV. 

A. Definitions and nomenclature 

Because the two low order models only have one control 

circuit, the controller in the feedback law (6) can be written 

as a general SISO LTI-controller V4U7 whose transfer 

function  

 

 V4U7 = g&4U7/ge4U7 ,  (10a)

 

is constructed from a ratio between two polynomial transfer 

functions, expressed in summation form 

 

 g&4U7 = h i�U j2� j
�kl ,   il ≠ 0 , 

ge4U7 = h n�U o2� o
�kl ,    nl = 1 , (10b)

 

where �& and �e are nonzero, positive integers. The 

restriction    nl = 1 is for simplicity but without loss of 

generality (i.e. if nl ≠ 1, rewrite (10) by dividing g& and ge 

by nl). All other coefficients i�, p = 1,2, … , �&, and n�, p = 1,2, … , �e, are gains that can arbitrarily be set to zero to 

construct different controllers forms. Note that n� ≥ 0, ∀p ∈ℕ is a necessary (but not sufficient) condition for having no 

unstable controller roots. 

 

Definition 3.1 

A controller-form is a controller obtained from the general 

form (10) by choosing �& and �e and arbitrarily setting 

coefficients to zero. All other gains can take values in ℝ. For 

instance setting �& = 2, �e = 1 and n& = 0 results in a PID-

controller-form V4U7 = xyzo{xjz{xoU  with il ∈ ℝ, i& ∈ ℝ and ie ∈ ℝ . 

A controller-manifestation of a controller-form is a 

controller with a particular set of gain values, for instance 

the PID-controller-manifestation V4U7 = U2+2U+3z .     � 

 

Definition 3.2 

A controller-form is said to be predictive when asymptotic 

stability of the closed loop of the physical model (5) is 

predicted correctly for all possible manifestations of the 

controller-form, using only a massless plasma analysis (2). 

A controller-form is said to be artifactual when there exist 

manifestations of this controller-form that asymptotically 

stabilize (2), but do not stabilize (5).         � 

 

For predictive controller-forms, only a massless plasma 

analysis is sufficient. All manifestations of this form will 

also stabilize the plasma with mass model when they 

stabilize the massless plasma model, so automated controller 

design methods can be used carefree to find appropriate 

controller gains and parameters. 

For controllers that are artifactual however, the massless 

plasma analysis is only usable in combination with a-priori 

knowledge from physical properties. When advanced control 

techniques are used, a positive mass test that contains this 

knowledge, like the positivity conditions for PD-controllers 

in [1], has to be used to detect artifactual behavior due to the 

massless plasma assumption.  
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Fig. 2.    A simplified scheme of the tokamak feedback system 

 



5 

 

B. Single circuit systems 

Define a low dimensional model with only one control 

circuit, and where no passive structures are present. The 

matrices �#, � and the vector Ψ�� = :' reduce to scalars, 

enabling us to write the scalar characteristic equation using 

(9) 

 /�#[} + /�[e + 4Ψ�e − :��#7[ + Ψ�V4[7 − :�� = 0 (11)

 

Substituting the general SISO controller form (10) for the 

controller V4[7 into the characteristic equation and 

multiplying by the controller denominator ge4[7 we get 

 ~/�#[} + /�[e + 4Ψ�e − :��#7[ − :��� h n�[ o2� o
�kl  

+Ψ� h i�[ j2� j
�kl = 0  . 

 

After expanding we obtain the characteristic equation in 

summation form 

 

 h /�#n�[ o{}2� o
�kl  

+ h /�n�2&[ o{}2� o{&
�k&  

+ h 4Ψ�e − :��#7n�2e[ o{}2� o{e
�ke  

− h :��n�2}[ o{}2� o{}
�k}  

+ h Ψ�i�2}2 �[ o{}2� = 0 , j{}{ �
�k}{ �  

(12)

 

where �> = �e − �& is defined as the relative degree of the 

controller. The closed loop poles of the single circuit system 

example are found by setting (12) to zero. All coefficients 

are strictly real, therefore Descartes’ rule of signs [7] 

provides necessary (but not sufficient) conditions for closed 

loop stability demanding that all coefficients of (12) have the 

same sign. Comparing these signs for / > 0 and / = 0 in 

(12) reveals some controller properties that are related to the 

existence of the artifactual behavior (definition 3.2). An 

interpretation of (12) is provided in the remainder of this 

section, while making a distinction between (strictly) proper 

controllers (�> ≥ 0) and non-proper controllers (�> < 0). 

 

1) Proper and strictly proper controllers 

For all proper and strictly proper controllers, the highest 

order coefficient in the characteristic polynomial, found by 

evaluating (12) for p = 0, corresponds to [ o{} and equals /�#. For a plasma having mass / > 0, /�# is strictly 

positive. For the same sign condition to hold, all other 

coefficients in (12) also have to be positive, i.e. the leading 

coefficient puts a positivity constraint on all other 

coefficients. In the massless plasma analysis, the first two 

sums in (12) drop out. The highest order coefficient Ψ�e −

:��# is positive when :� < ��o�#. The multivariable analogue 

of this inequality, :� < Ψ���#2&Ψ�, is characteristic for 

systems that are not ideal unstable. The so called ideal 

unstable systems have instabilities so fast they cannot be 

practically feedback stabilized [2]. Ideal instability will be 

further discussed in section IV-A. When the inequality is 

satisfied, the 3
rd

 term in (12) is positive, and therefore both 

(2) and (5) have a positivity constraint on their closed loop 

characteristic polynomial coefficients. 

A set of sufficient conditions can be obtained by 

application of the Routh-Hurwitz (RH) test [8]. This test also 

provides a set of coefficients, and requires these to have the 

same sign. Because the two highest order RH coefficients 

are always equal to the two highest order coefficients from 

the polynomial to which the RH test is applied, the sign 

constraint on the coefficients of the RH test is inherited from 

the characteristic polynomial coefficients. 

The artifactual behavior only occurs when the sign of 

these coefficients in the / = 0 model are all negative while 

they have sign differences in the / > 0 model. Therefore a 

controller-form (10) is predictive for the scalar single circuit 

model, if the controller satisfies �> > 0 (strictly proper) and 

the system satisfies :� < ��o�#. 

 

2) Non-proper controllers 

For non-proper controllers satisfying −2 ≤ �> ≤ −1, the 

highest order coefficient /�# in (12) puts a positivity 

constraint on the other coefficients. Setting the mass to zero 

to obtain the / = 0 model is essentially a bifurcation, since 

the /�# coefficient vanishes, and the new highest order 

coefficient, Ψ�e − :��# + Ψ�i�, (where � = −1 − n�) 

contains the gain value i� ∈ ℝ, preventing a sign conclusion 

(assuming Ψ� ≠ 0) since the gain value can adopt all 

possible values. There could exist a set of gain values for 

which this coefficient and all other coefficients of the closed 

loop characteristic polynomial of (12) can become negative, 

which also satisfies the same sign condition. The negative 

sign of the two leading coefficients is inherited into the 

coefficients following from the Routh-Hurwitz test, which 

also could become negative for these gain values, 

concluding that the closed loop of the massless plasma 

model is stable, while the closed loop for a system having a 

small positive mass is unstable. Hence, these non-proper 

controllers are artifactual: A controller-form (10) can be 

artifactual for the scalar single circuit model, if it satisfies −2 ≤ �> ≤ −1, i& ≠ 0, and n� ≠ 0,  � = 1,2, … , �e.    
When the controller is highly non-proper, i.e. �& ≥ �e +3, terms with gain values of the numerator are added to the 

coefficients that were responsible for the positivity 

constraint in the / > 0 model, but that were absent in the / = 0 model. They now equal /�# + Ψ�i2}2 � and /� + Ψ�i2e2 � (obtained from the first two sums). When 

their gain values are nonzero, the positivity constraint caused 
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by the positive mass in the / > 0 model is lost. Setting / to 

zero in these coefficients does not have a big impact, 

assuming / to be negligible small, i.e. the mass / is not a 

bifurcation parameter anymore. Therefore, any artifactual 

behavior for this set of controllers can be ruled out: A 

controller-form (10) is predictive for the scalar single circuit 

model, if the controller satisfies �> ≤ −3 and i� ≠0, k=−3 − �> , −2 − �>. 

 

Example 3.3 

To illustrate what happens with an artifactual controller, 

we choose a controller of the PD-form V4U7 = ilU + i&, by 

setting �& = 1 and �e = 0 in (10) and (12), to obtain the 

characteristic polynomial for this controller  

 /�#[} + /�λe + 4Ψ�e + Ψ�al − fKM#7λ + Ψ�a& − fKR = 0 (13)

 

When the derivative gain il < T��� �# − Ψ�  and the 

proportional gain i& < T��� �, the sign of the coefficients of 

the characteristic polynomial of the massless plasma analysis 

is not consistent with the sign constraint in the / > 0 

model. This artifactual behavior of the PD-controller is 

visualized in Fig. 3. The / > 0 model has the additional 

necessary condition il > �#< i& − b�, which results from the 

entry 
��< 4�il + �Ψ� − �#i&7 in the Routh-Hurwitz table 

belonging to (13).                 �  
C. Two circuit systems 

The scalar analysis of section III-A is extended to a 

system with one circuit for the control coil(s) and one circuit 

for the passive conductor(s). This system is more 

representative of the general problem because it has all of 

the key characteristics. It is used to investigate under what 

condition derivative gain is stabilizing for the physical 

model. Therefore, only the / > 0 case is considered in this 

section. Using the notations for this two circuit system 

 :'� = b� = �Ψ& Ψe%� , 
�# = D�&& �&e�&e �eeE , 

� = D�& 00 �eE , 
� = �1 0%� , 

(14)

 

where ��#� > 0, �& ≥ 0 and �e > 0, the determinant (9) 

reduces to the determinant of a 3x3 system 

det a [e/ − :� −Ψ& −ΨeΨ&[ + V4[7 �&&[ + �& �&e[Ψe[ �&e[ �ee[ + �e
c = 0 .  (15)

 

1) Pure derivative control 

Implementing the pure derivative controller V4U7 = ilU in 

(15) yields the characteristic polynomial for the closed loop 

/��#�[�  +/4�&&�e + �ee�&7[} +~/�&�e + ��#�4Ψ���#2&Ψ� − :�7� �    +i04�eeΨ& − �&eΨe7�[e  +4�&Ψee + �eΨ&e − :�4�&&�e + �ee�&7 + i0Ψ&Re7[ −�&�e:� = 0 . 
(16)

 

The highest order coefficient /��#� in (16) is strictly 

positive. The lowest order coefficient – �&�e:� is strictly 

negative when the control coil has a positive resistance. In 

this case, due to the sign difference between the lowest and 

highest order coefficient, it is concluded that pure derivative 

gain is not stabilizing. 

When the control coil is super conductive, i.e. �& = 0, the 

lowest order coefficient is zero and one root of (15) will 

consequently be at the origin in the complex plane. The 

system can be marginally stabilized if and only if there 

exists a gain il for which the three remaining roots are in 

the left half plane (LHP) or on the imaginary axis. The first 

two RH coefficients are equal to the first two coefficients in 

(16) and therefore strictly positive. None of the poles of (16) 

are in the RHP iff all RH coefficients are nonnegative. The 

remaining RH coefficients provide conditions on the 

derivative gain, il ≤ �jj�jo Ψe − Ψ& and il ≥ �jj�j :� − Ψ&, 

which will be satisfied iff 

 

 Ψ&ΨeM&e ≥ :� .  (17)

 

This inequality will under normal conditions be satisfied 

for tokamak-plasma models. Thus, pure derivative gain can 

never asymptotically stabilize the two circuit plasma-coil-

vessel model, but it can marginally stabilize the model iff the 

control coil is super conductive and (17) is satisfied.  

 

2) Proper derivative control 

To investigate proper derivative control, the transfer 

function V4U7 = xyzz{�j is substituted in (15) and the 

characteristic polynomial is recalculated. The highest 

coefficient of this polynomial is /��#� > 0 while the lowest 

order coefficient equals – �&�e:�n&. The implemented 

controller is stable by itself, i.e. n& > 0, and therefore the 

lowest order coefficient is negative when the control coil has 

a nonzero electrical resistance. Hence also this proper 

derivative controller is not asymptotically stabilizing, but 

marginally stabilizing iff the control coil is super conductive 

and all RH coefficients are nonnegative. This set of 

sufficient conditions for marginal stabilization is a rather 

complicated set of polynomial-in-gain inequalities and very 

difficult to interpret physically. One such condition, 

 

 b& ≤ il Ψ&4fK − Ψ&M&&2&Ψ&7M&& , (18)
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is useful however in showing the relative simple relationship 

between the derivative gain and the location of controller 

pole −n& which may not be too far in the LHP. 

 

D. Multi circuit systems 

In this section, the tokamak-model has � = �� + ��  

conductors, consisting of ��  control coils and ��  passive 

structures. All conductors are assumed to be resistive. Again, 

the general form for SISO controllers (10) is used. This 

control action is mapped into multiple control coils by 

multiplying the controller with �#. This mapping array �# of 

size ��x1 multiplies the entire SISO controller with a 

nonzero factor for each active control coil, and with zeros in 

the case of inactive control coils. To calculate the 

determinant from the multivariable system matrix (9), a 

decomposition of the matrix pencil [�# + � is necessary. 

Hereto, define Λ and � as the eigenvalue and eigenvector 

matrices respectively, in order to satisfy the eigenvalue 

problem �#�Λ + �� = 0, with the eigenvectors normalized 

on �, i.e. ���� = 	. Multiplying (9) on the left by A1 00 ��C 
and on the right by A1 00 �ΛC we obtain 

 

det � [e/ − :� −b���Λ��\b�[ + ��#V4[7] [���#�Λ + ����Λ� = 0 . 

 

Using that �# is positive definite and symmetric and � is 

diagonal (known from physical principles [5]), and defining 

the objects � = ��Ψ� and Δ = ����# the determinant is 

simplified to 

 

det d [e/ − :� −��Λ�[ + ΔV4[7 Λ − [	f = 0 , 
 

and further simplified using a block matrix calculation to 

 det4Λ − [	7det W[e/ − :� + ��Λ4Λ − [	72&\�[ + ΔV4[7]X = 0 . 
 

After expanding this product, the determinant is given by 

the expression 

 

4[e/ − :�7 �4λ� − λ7�
�k&

+ h [�
 

�k& W��e[ + ��Δ�V4[7X �4λ� − λ7 = 0 �
�k&���

, 
which contains products that are expanded using the 

identities  

� 4λ� − λ7 = 4−17� h λ�2�s� ,�
�kl

�
�k&  

� 4λ� − λ7 = 4−17�{& h λ�2�s�2&,�2 ,�
�k&

�
�k&���  

where U� is defined as the sum of products of the 

eigenvalues [� of the pencil [�# + � taken � at a time, 

multiplied by 4−17�, e.g. U& = −   λ���k& , Ue =   [¡[� ¡,�k&¡¢� , 

U = 4−17   [� �k&  and Ul ≝ 1. Note that U� > 0, ∀� ∈ ℕ 

since all eigenvalues of [�# + � are strictly negative [1]. 

Substituting the identities into the characteristic 

polynomial and omitting the sign 4−17  of the polynomial, 

we obtain 

 

4[e/ − :�7 h [ 2�U�
 

�kl
+ h [ 2�4[�� + V4[7ΔN7£�2&� 

�k&
= 0 , 

 

where £� = −Λ diag~U�,&2 U�,e2 … U�, 2� is built from 

the objects U�,¦2 that are based on the objects U�, but with 

eigenvalue [¦ removed, and Ul,¦2 ≝ 1. We note that £l =−Λ, £ 2& = U 	 and £� > 0, ∀� ∈ ℕ. 

Expanding and multiplying the polynomial by the 

controller denominator ge4[7 results in 

 

[e/ h [ 2�U�ge4[7 
�kl − :� h [ 2�U�

 
�kl ge4[7 

+ h [ 2�[��£�2&�ge4[7 + h [ 2� 
�k& ΔN£�2&� 

�k& g&4[7 = 0 . 
 

After inserting the controller polynomials and equalizing 

all powers of [, the resulting closed loop characteristic 

polynomial of the multivariable plasma-coil-vessel model is 

 

/ h h [ { o{e2�2�n�U�
 o

�kl
 

�kl  
−:� h h [ { o{e2�2�n�U�2e

 o

�kl
 {e
�ke  

+ h h [ { o{e2�2�n���£�2e� o

�kl
 {&
�ke  

+ h h [ { o{e2�2� j

�kl ΔNi�£�2}2 �� = 0 {e{ �

�k}{ �
 . 

(19)

 

Note that this polynomial-in-gains consists of scalar 

coefficients. It is easily seen that the only difference between 

the / = 0 and the / > 0 model is contained in the first line. 

When the relative degree of the controller �> ≥ −2, the 

leading coefficient in (19) for the / > 0 model, is found by 

evaluating the double sum on the first line for 4�, p7 =40,07. This coefficient, corresponding to [ { o{e equals /nlUl = / > 0 since nl = 1 and Ul = 1 by definition. For 

the / = 0 model, the highest coefficient in the case of �> ≥ 0 equals −:� – ��Λ� = −:� − Ψ���Λ��Ψ� = −:� +Ψ���#2&Ψ� which is larger than zero for systems that are not 

ideal unstable. Therefore, for strictly proper controllers, due 

to the positivity constraint provided by the leading 

coefficient, both the / = 0 and the / > 0 model require all  



8 

 

UNSTABLE 

UNSTABLE UNSTABLE 

     (a)             (b) 

 

Fig. 3.    Indication of stable closed loop 4S�§ < 07 and unstable 

closed loop 4S�§ > 07 areas for a PD-controller for the massless 

plasma model (a) and the plasma with mass model (b). 

 

STABLE 

i& = :�Ψ� � il = �#< i& − b�   
 

STABLE 

STABLE 

il = :�Ψ� �# − Ψ� 

 

coefficients of (19) to be positive in order to satisfy 

Descartes’ rule of signs. No set of gains exists that can make 

all coefficients of (19) negative for the / = 0 model, 

concluding that strictly proper controllers are predictive for 

model (19). In Table 1 an overview is provided of the 

leading coefficient of (19) for different cases of the 

controller’s relative degree. The same behavior as described 

in III-B is recognized.  

 
Table 1: Highest order coefficient from (19) �>  / > 0 model  / = 0 model  Predictive  > 0  /  −:�  – ��

��  Yes1
    0  /  

−:�  – ��
��  Undetermined2 −1  −:�  – 4� + il�7N

��  Undetermined2 −2  −il��
��  

Undetermined2 

−3  / − il��
��  Yes3 

≤ −4  −il��
��  Yes3 

1 Assuming the system is not ideal unstable, i.e. Ψ���#2&Ψ� > :� 
2  The controller can be either artifactual or predictive

 

3 Assuming / is negligible small and requiring that i2}2 � ≠ 0 

 

For controllers satisfying �> ≤ −3 the artifactual 

behavior is prevented since the term that was responsible for 

the positivity constraint in the / > 0 model and that was 

absent in the / = 0 model, now equals / − i2}2 ���
�� 

and hence, / is not a bifurcation parameter anymore: A 

controller-form (10) is predictive for the multi circuit model 

(19), if the controller satisfies �> ≥ 0 and the model satisfies Ψ���#2&Ψ� > :� or when the controller satisfies �> ≤ −3 and i2}2 � ≠0. 

 

The lowest order coefficient follows from evaluating the 

second sum in (19) for 4p, �7 = 4�e, � + 27 and the fourth 

sum for 4p, �7 = 4�&, � + 2 + �>7 and equals i jΔ�£ 2&� −:�n oU = \i jΔ�� − :�n o]U  which should be positive for 

an asymptotically stable closed loop (assuming �> ≥ −2). 

From this we derive a necessary condition 

 i jΔ�� > :�n o  , 
 

that describes the relation between the lowest order 

controller coefficients. All multiplication factors in U# 

corresponding to control coils positioned above (below) the 

plasma will be chosen positive (negative). The same holds 

for the entries of ΨK, which are positive (negative) for 

conductors above (below) the plasma, since positive � refers 

to an upward perturbation in the position of the plasma. 

Therefore the product Δ�� = 4��#7��2&ΨK is strictly 

positive. For derivative controllers, the gain i j  is zero, and 

therefore these controller forms cannot asymptotically 

stabilize the system with all conductors having a positive 

electrical resistance. 

IV. SIMULATION RESULTS 

Simulations are performed on dynamic models for 

tokamak and plasma poloidal field systems, generated using 

a collection of MATLAB functions and scripts, known 

collectively as TokSys. [9]. More extensive simulation 

results belonging to this analysis are documented in [10]. 

 

A. Single circuit model of KSTAR 

For this testcase we take a simple model of the KSTAR 

tokamak. All control coils and passive stabilizing structures 

are removed from the full model (Fig. 1), except for the 

internal control coils ICVU and ICVL that are connected in 

anti-series to the same power supply, hence (2) has one state 

and (5) has three states. This model corresponds to the single 

circuit system analyzed in III-B. The vertical force :� ≈ 4 ∙10¬ /2& elongates the plasma, introducing the vertical 

instability. No passive conductors are present that can reduce 

the growth time of this instability. When the system is 

analyzed using the model that uses a small positive mass (5), 

the growth rate S ≈ 8.2 ∙ 10¯ �i,/U. The massless plasma 

analysis results in a growth rate of S ≈ −21 �i,/U, 

declaring the open loop (incorrectly) to be stable. This 

behavior is characteristic of systems having :� > Ψ���#2&Ψ� 

[2]. These so called ideal unstable systems have instabilities 

so fast they cannot be feedback stabilized. Therefore for this 

first testcase the control coils are moved slightly inwards. 

Putting them closer to the plasma provides more passive 

stabilization, resulting in a growth rate of S ≈ 4.12 �i, U2& 

for both the plasma with mass and the massless plasma 

model; the system is not ideal unstable anymore. 

 

1) PD-controller 

A PD-controller V4U7 = ilU + i& is used as prototype. 

The closed loop stability is analyzed for a range of 

proportional gain values i& and derivative gain values il.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The stability boundaries on these gain values (see Fig. 3) 

agree with the conditions found in example 3.3. 
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UNSTABLE UNSTABLE 

     (a)             (b) 

 

Fig. 6.    Indication of stable closed loop 4S�§ < 07 and unstable 

closed loop 4S�§ > 07 areas for a PD-controller for the massless 

plasma model (a) and the plasma with mass model (b) of the full 

KSTAR model. Not visible in this picture is the upper limit on the 

proportional gain  (around 1.6E5) for the stable region. 

STABLE 

STABLE 

Setting the proportional gain to zero, the closed loop 

growth rate is investigated against varying derivative gain 

(see Fig. 4). The / = 0 model has an artifactual branch for 

derivative gain sufficiently negative. This result confirms the 

findings of section III-B2. 

 

1) D-controllers with high frequency roll off 

When using a proper controller of the form V4U7 = xyzz{�j 

this single circuit model (2) and (5) cannot be marginally 

stabilized. When the pole of this controller is placed at a 

high frequency, this controller acts as a pure derivative 

controller on the normal frequency band. Since the controller 

is proper, the artifactual branch is not present. Similar results 

are obtained using the strictly proper controller-form V4U7 = xyzzo{�jz{�o with two high frequency poles. This result 

confirms the findings of section III-B1. 

B. 

Full KSTAR model 

In the full KSTAR model (Fig. 1) all structures are 

modeled. The model consists of 103 circuits, built from 86 

passive conductors, 16 inactive control coils and the in anti-

series connected control coils ICVU and ICVL to the power 

source (in this case the mapping array �# from section III-D 

would have a +1 entry corresponding to ICVU and a −1 

/ > 0 / > 0 

/ = 0 S �° 4 �
i,/U

7  

Derivative gain Derivative gain 

Fig. 4.    Closed loop growth rate S�§ of the single circuit model, 

as a function of derivative gain (zero proportional gain). The 

growth rate of the / > 0 model becomes negative when the 

derivative gain decreases below -32, whereas the / > 0 model 

becomes more unstable. 

Fig. 5.    Bode plot of the with mass model and massless model 
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entry corresponding to ICVL). The plasma with mass model 

and the massless plasma model are compared in Fig. 5. The / > 0 model has a high frequency resonance due to the 

additional pole pair from the inertial momentum equation. 

Both models have a growth rate of S ≈ 1.46 �i,/U. Because 

the RHP-zero (303 �i,/U) is sufficiently faster than the 

RHP-pole (1.46 �i,/U), a controller can be designed with 

an acceptable phase margin. For instance the controller V&4U7 = 200U + 500 achieves a bandwidth of 8.3 �i,/U 

which is faster than the RHP-pole, and slower than the RHP-

zero. The regions of closed loop stability are analyzed for 

this high order model, and displayed in Fig. 6. The stable 

region of the / = 0 model is much larger than the stable 

region of the / > 0 model. When the derivative gain is 

increased above 349, for instance with Ve = 500U + 500, 

the / > 0 closed loop becomes unstable, while the / = 0 

closed loop remains stable. The discrepancy between the 

models is explained using Nyquist plots (Fig. 7 and 8). 

V. CONCLUSION 

The difference between (2) and (5) is caused by small 

perturbations in the bifurcation parameter /, that sometimes 

results in totally different closed loop behavior. In the 

theoretical section the closed loop characteristic polynomials 

of three different systems were established. These all 

showed that this difference can be related to the relative 

degree of the controller. Erroneous conclusions about 

marginal stability only happen when the controller is non-

proper, with the degree of the numerator one or two orders 

higher than the degree of the denominator. So only in these 

cases care has to be taken when the massless model is used 

to predict stability of the physical model. 

To address the question whether velocity feedback will 

ever stabilize the physical system, three different controllers 

were evaluated. It turns out that neither the pure derivative 

controller, nor the proper or strictly proper derivative 

controller can asymptotically stabilize the physical system. 

Marginal stabilization is possible, but if and only if all 

control coils are super conductive. 

In the simulation section a complete set of testcases was 

used. The single circuit model, the two circuit model and the 

full circuit model from the theoretical section were evaluated 

using models from KSTAR and ITER. The strictly proper 

controller was predictive in all testcases. The proper 

controller was predictive in all testcases where control coils 

with positive electrical resistance were used, but showed 

artifactual behavior in some cases with super conductive 

control coils. In section III-C-2 the two circuit model was 

addressed. By application of the Routh-Hurwitz test a set of 

polynomial-in-gains inequalities was established for the 

proper derivative controller. A simplification of these 

expressions is needed to formulate under what conditions 

this controller can marginally stabilize the physical system. 

A similar set of complex conditions was found by 

implementing the strictly proper derivative controller, and 

these also need simplification and interpretation. 

A set of easy to check necessary and sufficient conditions 

for stabilization of the general model, like the positive mass 

test in [1], could be developed for other, more complex 

controllers. 
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Abstract— The discrepancy between the massless plasma model and the plasma with mass model, with respect to the vertical 

instability, is investigated using simulations. These simulations are performed on tokamak and plasma poloidal field models of 

KSTAR and ITER, with varying magnitudes of instability, including the possibility of super conductive control coils. Also 

stabilization using velocity feedback is investigated. The results confirm that neither pure velocity feedback nor a proper of strictly 

proper form of velocity feedback can asymptotically stabilize the vertical instability. This document is inextricably linked to [1]. 

 

I. SIMULATION NOMENCLATURE 

 

To investigate the plasma vertical instability, simulations are performed on dynamic models for tokamak and plasma 

poloidal field systems, generated using a collection of MATLAB functions and scripts, known collectively as TokSys [2]. 

The most unstable eigenvalue is used to characterize stability, which is the growth rate � for the tokamak plasma system, 

and the growth rate ��� for the closed loop system. The purpose of the simulations is to compare two models, the plasma with 

mass model (� > 0 model) and the massless plasma model (� = 0 model). The � > 0 model (equation (2) in [1]), assumes 

the plasma has a small positive mass and consists of the circuit equations and a second order inertial momentum equation, 

while the � = 0 model (equation (5) in [1]), assumes the plasma is massless and consists of only the circuit equations. 

Because the � > 0 model reflects the reality better, this model will also be referred to as the physical model. 

To stabilize the vertical instability, an additional voltage 	
 is applied to the control coils, in response to the displacement 

of 	�� from some reference position 	��,�� , in the form 

   

 	
��� = −���� �	����� − 	��,������ , (1)

 

where ���� is the transfer function of the SIMO-controller. Four different controller forms are defined to investigate 

stability of the closed loop. A proportional - derivative (PD) controller ��, a pure derivative controller ��, a proper derivative 

controller ��, with one pole far in LHP and a strictly proper derivative controller, with two poles placed far in LHP (at 

locations − �
� �� and − �

� ��): 

 

 ����� = ��� + �� , 
����� = ��� , 
����� = ��

�
� + ��

 ,                                       �� > 0 , 

����� = ��
�

�� + 2��� + 3
4 ��

�
 ,                  �� > 0 . 

(2) 

 

These controllers contain one or two gain vectors which map the scalar error of the vertical position to the active control 

coils. These gains are varied over a wide range to investigate the performance of the controller forms, and to check whether 

the positive mass test is satisfied. The positive mass test is derived in [3]. It provides necessary and sufficient conditions for a 

massless plasma analysis to predict the vertical stability of a plasma with small mass: 

 

Positive Mass Test 

Consider the tokamak plasma system with a controller (2) rewritten in the form ���� = �"� + �# + $���  where $��� is a 

strictly proper rational function. Suppose the controller asymptotically stabilizes a massless plasma. The equivalent 

plasma with small positive mass is also asymptotically stabilized if and only if the following inequalities hold: 
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 % = −&' + &()#
+�,Ψ' + ."/ > 0 

0 = &()#
+�.# − &()#

+�1)#
+�,Ψ' + ."/ < 0 

(3) 

                                                � 
 

The lower case ." and .# are controller gain vectors that are defined to contain zeros in entries corresponding to the 

passive (vessel) conductors and are equal to �" and �# in entries corresponding to the active control coils. Note that 

rewriting �� in the form results in �# = �� and �" = 0. Rewriting �� results in �# = 0 and �" = 0. 

 

To classify the properties of a controller, different sets are defined to which a controller can belong. A notation with three 

subscripts is used. The first subscript is the sign of ��3  for the � = 0 model and the second subscript is the sign of ��3  of the 

� > 0 model. This sign can be negative, zero or positive, corresponding to an asymptotically stable, a marginally stable and 

an unstable system respectively. The third subscript will be an � or an 4, denoting whether the positive mass test is satisfied 

or not satisfied respectively, see table 1. Remark: In the sequel, when only the word ‘stability’ is used, it will denote 

asymptotic stability. When marginal stability is meant, this will be mentioned explicitly. 

 

 
Table 1: Definition of controller sets 

  Positive mass test 

satisfied 

 Positive mass test  

not satisfied 

 

  � > 0 model � > 0 model 

  ��3 < 0 ��3 = 0 ��3 > 0 ��3 < 0 ��3 = 0 ��3 > 0 

�
=

0 
m

o
d

e
l ��3 < 0 5++6 5+76 5+86 5++9 5+79 5+89 

��3 = 0 57+6 5776 5786 57+: 5779 5789 

��3 > 0 58+6 5876 5886 58+: 5879 588: 

 

 

E.g. controllers that are designed to stabilize the massless plasma model and that are predictive for the physical model, 

belong to set 5++6. Controllers that belong to set 5+89 stabilize the � = 0 model, but do not stabilize the � > 0 model. 

These are the erroneous controllers that have to be disregarded using the positive mass test. The grey shading in the table 

marks the sets for which can be reasoned on beforehand that no controllers will belong to these sets in the simulation results. 

Directly from the positive mass test it follows that set 5+76 and set 5+8; will not exist because when a controller 

asymptotically stabilizes the � = 0 model and the positive mass test is satisfied, the � > 0 model will also be 

asymptotically stabilized. Because of the if and only if condition, the reverse of the positive mass test is also true; when the 

positive mass test is not satisfied, and the � = 0 is stabilized, it can be ruled out that the � > 0 is stabilized, hence no 

controllers can belong to set 5++9 or 5+79. Controllers belonging to sets 58+: and 57+: cannot exist because when the 

� > 0 model is stabilized, the positivity conditions always hold (Corollary 1 in [4]). 

 

The main purpose of the simulations is to answer the following questions for different tokamak plasma systems: 

1. For what controllers is stability of the physical system correctly predicted when using only the � = 0 model? 

i.e. what controllers are predictive or artifactual? (See definition 3.2 in [1]) 

2. Under what conditions can velocity feedback stabilize the physical system? 

 

Velocity feedback can be represented using the pure derivative controller �� but also using the proper and strictly proper 

derivative controller, �� and �� respectively. When �� and �� have poles very far in LHP, they act as a derivative controller 

on the normal frequency band while their roll off is at a much higher frequency. 

 

To obtain a complete set of testcases, three models of KSTAR, called A1, C1 and F1 (see fig. 1), and three models of 

ITER, called A2, C2 and F2 (see fig. 2) are used. Model F1 and F2 are the full, unreduced models of these tokamaks, 

containing all passive vessel elements and control coils (corresponding to the theoretical analysis in [1] section III-D). This 

results in a 103 circuit model for KSTAR, consisting of 86 vessel elements and 18 control coils, of which ICVU and ICVL 

are connected to the same power source, in anti-series. Therefore the � = 0 model of F1 has 103 states, and the � > 0 

model has 105 states because the inertial momentum equations increase the state dimension by two. The full ITER model has 
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ICVU 

ICVL 
ICVL 

ICVU 
ICVU 

ICVL 

a)   Model F1. Full 103 circuit model of KSTAR b)   Model C1. Two circuit model of KSTAR c)   Model A1. One circuit model of KSTAR 

Two internal control coils are connected to 

the same power source 

Fig. 1.    KSTAR models used in TokSys 

IC2 

PF2 

IC1 

PF5 

a)   Model F2. Full 126 circuit model of ITER b)   Model C2. Two circuit model of ITER c)   Model A2. One circuit model of  ITER 

Fig. 2.    ITER models used in TokSys 

IC1 

IC2 

In-vessel 

coils 

13 circuits devoted to the control coils and 113 circuits for the passive structures. 

The lower order models, C1, C2, A1 and A2, are reduced models, based on the full model but with some circuits omitted 

or grouped. In models C1 and C2 the vacuum vessel acts as one circuit, i.e. the upper half and lower half of the vessel 

elements are grouped and connected in anti-series. The second circuit in these models consists of one upper and one lower 

control coil that are connected in anti-series (corresponding to the model described in [1] section III-C). Models A1 and A2 

are single circuit models, where the entire vacuum vessel is also removed, remaining only with the two active internal control 

coils (see also section III-B in [1]). 

The output from simulations on other testcases like B1, B2, D1, D2, E1 and E2, which are also reduced tokamak models, is 

omitted in this report because the before mentioned testcases already provide a complete set of testcases. These extra 

testcases were used to validate the other simulations. 
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a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 3.    Testcase A1 with controller �� 

II. SIMULATION RESULTS 

 

A. Testcase A1 

1) Controller �� 

 

The results obtained from the first testcase using tokamak model A1 and controller �� are displayed in fig. 3, for both the 

� = 0 model and the � > 0 model. The gains are varied over a wide range, and the closed loop eigenvalues are calculated. 

A blue dot indicates stability of the closed loop, i.e. ��3 < 0, whereas a red x-mark denotes ��3 > 0. Fig. 3c contains the 

results from the positive mass test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Overlaying the contours of the above figures and distinguishing the various controller sets results in Fig. 4. 

 

 
Observations: 

• The set of gain values that stabilizes the � = 0 model is much larger than the set of gain values that stabilizes the 

� > 0 model. Also set 58+6 does not appear. It seems that the � > 0 model is stricter than the � = 0 model. 

• For all gain values that stabilize the � = 0 model and do not stabilize the � > 0 model, the positive mass test is not 

satisfied, so these values belong to set 5+8:. The result confirms the validity of the positive mass test. 

• Set 5886 exists. So even though the positive mass test is satisfied, both models are not stabilized.  
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Fig. 4.    Indication of sets belonging to testcase A1 
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The diagonal matrix 1#� represents the resistance of the conductors, corresponding only to the (PF) control coils. The 

reduced resistance matrix 1#�
∗  is obtained by scaling the original resistance of the control coils using a factor between zero 

and one. When 1#�
∗  is a zero matrix, the control coils are super conductive. Fig. 5 displays what happens with the sets when 

this factor is decreased from zero to one.  

 

 

 
 

 

• In fig. 5d, where the control coil is super conductive, set 5++6  is absent. The physical system is not 

asymptotically stabilizable anymore using the PD controller. 

• The positive mass test in the super conductive case is not valid, since 0 = 0, as can be seen in (3xx), by setting 

�# = 0 and 1 = 0. 

 

2) Controller �� 

 

• On the line of zero proportional gain, sets 577:  and 578: appear. This means that when the control coil in this 

single conductor system is super conductive, pure derivative gain marginally stabilizes the � = 0 model. When 

�" > −32, it also marginally stabilizes the � > 0 model. 

• When the single control coil has positive electrical resistance, pure derivative gain cannot stabilize the physical 

model, see also fig. 5 in [1].  

Fig. 5.    Decreasing the control coil resistance 
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a)   � = 0 model b)   � > 0 model 

Fig. 6.    Testcase A1 with controller �� 

Control coil super conductive 

> 10?  > 10?  > 10?  

c)   Positive mass test 

Fig. 7.    Testcase A1 with controller �� 

Control coil super conductive 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

3) Controller �� 

 

For the case with a control coil that has a positive resistance, the proper derivative controller cannot stabilize the system, but 

for the case of a super conductive control coil, the system can be marginally stabilized, see fig. 6. Marginal stability, ��3 = 0, 

is denoted by a black dot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Fig. 6 shows that the �� can marginally stabilize both models when the control coil is super conductive. 

• Sets 588;,  577; ,  588:, 577:  and 578: are present. 

• For controller ��, the results of the positive mass test are only dependant on the gain �". 

• The vertical axis corresponds to the negative of the controller pole, and this position is varied over a wide range. 

 

4) Controller �� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Sets 577:  and  588: are present. Set 578 is not present. 

• The positive mass test is independent of the gains �" and ��. It is satisfied for 1∗ > 0, but in the case of the control 

coil super conductive, 0 = 0, see equation (3xx) 

• The vertical axis corresponds to the value of �� in ��, see equation (2). 

 

 

 

  



7 

 

B. Testcase C1 

1) Controller �� 

 

This KSTAR model also includes one circuit representing the passive conductors. 

 

 
• The results are similar to the results from testcase A1. The same sets are present: 5886, 5889, 5+89 and 5++6.   

 

Fig. 9 compares the stability areas for the case of a resistive control coil with the case of a super conductive control coil. 

 

 
 

• The set 5++6 moves to the left when decreasing the resistance, so less proportional gain is necessary to stabilize the 

system. 

• Decreasing the resistance of the control coil doesn’t influence the stability areas as much as it did in testcase A1, due 

to the presence of the passive conductor of which the is resistance unchanged. Set 5++6 stays present, so the � > 0 

model of this system with one super conductive coil can be stabilized using the PD-controller. 

 

 

2) Controller �� 

• Using only pure derivative gain, the system can be marginally stabilized if and only if the control coil is SC. 
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Fig. 9.    Influence of the control coil resistance on the sets belonging to testcase C1. 
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a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 8.    Testcase C1 with controller �� 
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Fig. 10.    Testcase C1 with controller �� 

Control coil super conductive 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 11.    Testcase C1 with controller �� 

Control coil super conductive 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

 

 

3) Controller �� 

 

The proper derivative controller can only marginally stabilize the models, if and only if the control coil is super conductive, 

see fig. 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Set 577;, 588;, 588: and 578: are present. 

• There is an upper limit on the value of ��. This means the controller �� cannot be used as intended, with the pole 

very far in LHP, i.e. �� ≫ 0 in (2). 

 

 

4) Controller �� 

 

The strictly proper derivative controller can only marginally stabilize the models, if and only if the control coil is super 

conductive, see fig. 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The positive mass test satisfied, and independent of the gains. Set 577; , and 588; and present. 

• A difference with the results from controller ��, there the value of �� can be increased when the gain �" is also 

increased. 
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C. Testcase F1 

1) Controller �� 

 

The results for testcase F1 are displayed in fig. 12. Note that the gain values on the axis of this plot are very large, this is to 

show the boundaries of the sets with stable points. 

 

 

 
 

• Unlike testcase A1 and C1, there is an upper limit to both the proportional and the derivative gain. 

• The derivative gain has an upper limit because too high derivative gain values cause the bandwidth to be higher 

than the open loop RHP zero (303 rad/s), see fig. 6 in [1]. 

 

Fig. 13 shows the results when all control coils are super conductive. 

 

 

 
 

• Set 577;, 588;, 588: and 578: are present. 

 

 

2) Controller �� 

• All control coils resistive (fig. 12): Pure derivative gain (controller ��) cannot stabilize the � = 0 model. This is 

another difference with previous testcases. 

• All control coils super conductive (fig. 13): The � = 0 model can be marginally stabilized by using only 

derivative gain.  

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 13.    Testcase F1 with controller ��, with control coils super conductive 

 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 12.    Testcase F1 with controller �� 
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Fig. 14.    Testcase F1 with controller �� 

All control coils super conductive 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

> 10?  > 10?  > 10?  

Fig. 15.    Testcase F1 with controller �� 

All control coils super conductive 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

3) Controller �� 

 

For the case with all control coils resistive, the proper derivative controller cannot stabilize any of the models. Fig. 14 shows 

the results for all control coils super conductive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Sets 588;, 577;, 588:, 577: and 578: are present. 

 

4) Controller �� 

 

For the case with all control coils resistive, the strictly proper derivative controller cannot stabilize any of the models. Fig. 15 

shows the results for all control coils super conductive. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

• Sets 588; and 577; are present. 
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a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 16.    Testcase A2 with controller �� 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 17.    Testcase C2 with controller �� 

with resistive control coils 

D. Testcase A2 

 

The results for the single conductor testcase of ITER (fig. 16) are very similar to the results obtained from the single 

conductor testcase of KSTAR (fig. 3). 

 

 

 

 

 

E. Testcase C2 

 

The results from testcase C2 with the control coil resistive are displayed in fig. 17. 
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a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 18.    Testcase C2 with controller �� 

with super conductive control coils 

a)   1#�
∗ = 0.81#� b)   1#�

∗ = 0.51#� c)   1#�
∗ = 0.11#� 

Fig. 19.    Testcase C2 with controller �� 
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When the control coils are super conductive, the resulting stability areas have a totally different shape, see fig. 18. 

 

 

 

Fig. 19 shows how the areas deform when decreasing the control coil resistance. 

 

 

 

 

• The right boundary of set 5++6 rotates while decreasing the control coil resistance. For 1#�
∗ < 0.41#�  this 

boundary becomes the upper limit of the derivative gain. 
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a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 20.    Testcase F2 with controller �� 

a)   � = 0 model b)   � > 0 model c)   Positive mass test 

Fig. 21.    Testcase F2 with controller �� 

With all control coils super conductive 

F. Testcase F2 

 

The results for testcase F2, with resistive control coils, are displayed in fig. 20. 

 

 

 

 

Fig. 21 displays the grid for super conductive control coils. 

 

 

 

• The � = 0 and � > 0 model can only be marginally stabilized. 

 

 

 

 

 

  



14 

 

G. Summary testcases 

 

Table 2 provides an overview of all simulation results, both for resistive and for super conductive control coils, and for the 

four different controllers. Throughout all testcases, a total of eight different sets appear. The �–sign marks which sets were 

found in the simulations by varying the controller gains over a large domain.  

 

 
Table 2: Summary results from all testcases 

 KSTAR ITER 

 Testcase A1 

 

Testcase A2 

 0 < 1∗ ≤ 1 1∗ = 0 0 < 1∗ ≤ 1 1∗ = 0 

 ��  ��  ��  ��  ��  ��  ��  ��  ��  ��  ��  ��  ��  ��  ��  ��  

5++6  �        �        

5886  � � � � �  �  � � � � �  �  

5776        �        �  

5+89  � �   �    � �   �    

5889  �  �  �  � � �  �  �   � 

5779      � � � �     � � � � 

5789    �  � � �    �  � � �  

 

 

 

Testcase C1 

 

Testcase C2 

 0 < 1∗ ≤ 1 1∗ = 0 0 < 1∗ ≤ 1 1∗ = 0 

 ��  ��  ��  ��  ��  ��  ��  ��  �� �� ��  ��  �� �� ��  ��  

5++6 �    �    �    �    

5886 � � � � � � � � � � � � � � � � 

5776     � � � �     � � � � 

5+89 � �   �    � �   �    

5889 � � �  �  �  �  �  �  �  

5779                 

5789   �  � � �    �  � � �  

 

 

Testcase F1 

 

Testcase F2 

 0 < 1∗ ≤ 1 1∗ = 0 0 < 1∗ ≤ 1 1∗ = 0 

 ��  ��  ��  ��  ��  ��   ��  ��  �� �� ��  ��  �� �� ��  ��  

5++6  �        �        

5886  � � � � � � � � � � � � � � � � 

5776      � � � �     � � � � 

5+89  �        � �       

5889  � � �  �  �  � � �  �  �  

5779        �          

5789      � � �    �  � � �  
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For all testcases the growth rate of the tokamak plasma system is calculated and listed in table 3. 

 

 
Table 3: The growth rate � for the different testcases 

Testcase 1∗ = 1  1∗ = 10+�1  1∗ = 0  

A1 4.12 4.12 ∙ 10+�  0 

C1 73.8 55.218 55.216 

F1 1.47 1.8 ∙ 10+�  5.4 ∙ 10+��  

A2 11.3 11.3 ∙ 10+�  0 

C2 8.49 3.336 3.335 

F2 3.98 1.286 1.284 

 

 

Observations: 

• Super conductive control coils provide more passive stabilization then resistive control coils. 

• The higher order systems are less unstable then the low order systems, because they have more passive stabilizing 

structures. 

• One exception is testcase A1, it is less unstable than C1. This is because the control coil for this testcase was 

shifted inwards slightly, to provide more stabilization, to get the system out of Ideal Instability (section IV-A in 

[1]). 

 

III. OBSERVATIONS AND CONCLUSIONS 

 

The controller sets are listed once more in table 4. The colored highlighting provides information about the existence of the 

different sets. 

 

 
Table 4: Existence of controller sets 

  Positive mass test 

satisfied 

 Positive mass test  

not satisfied 

 

  � > 0 model � > 0 model 

  ��3 < 0 ��3 = 0 ��3 > 0 ��3 < 0 ��3 = 0 ��3 > 0 

�
=

0 
m

o
d

e
l ��3 < 0 5++6 5+76 5+86 5++9 5+79 5+89 

��3 = 0 57+6 5776 5786 57+: 5779 5789 

��3 > 0 58+6 5876 5886 58+: 5879 588: 

 

 

• The light-gray highlighting marks the sets for which was reasoned on beforehand that no controllers will belong to 

these sets (see Table 1). 

• The gray shading marks the sets that appeared in one or more simulations, so from observations it is concluded that 

these sets are nonempty. 

• The sets marked by dark-gray are the remaining sets in the lower triangle of the table. These sets were empty in all 

testcases. It seems that the � > 0 model is always more ‘strict’ than the � = 0 model, i.e. there were never 

controllers that only stabilized the � > 0 model. 

Comparing the form of the characteristic equation of the � > 0 model (3a) with the characteristic equation form of 

the � = 0 model (3b) explains this behavior.  

 

 �E7F: + �E�F:+� + E�F:+� + ⋯ + E:+�F + E: 
E�F:+� + ⋯ + E:+�F + E: 

(3a) 

(3b) 

 

The only difference between these equations is that (3b) does not contain the two highest order terms. These terms 
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from (3a) are very small compared to the other terms because they contain the small mass �. Therefore the roots 

following from equation (3b) are almost identical to the roots following from equation (3a). Due to the extra two 

terms, (3a) has two more poles than (3b). Only this extra pole pair can be responsible for the differences between the 

two models. So it is known on beforehand that if the � = 0 model has an unstable pole, the � > 0 model will also 

contain this unstable pole. So what is happening in sets from the upper triangle of the table is that no poles shared by 

(3a) and (3b) are in the RHP, only one of the additional poles of (3a) is preventing the � > 0 from being 

asymptotically stable. 

The additional pole pair of (3a) provides the same information that results from using the positive mass test. Plotting 

the sign of the most unstable pole of this additional pole pair, on a grid over different gains, results in exactly the 

same figures that resulted from evaluating the positive mass test.  

 

 

Using the above observations, the two question form section I can be answered. 

1. For what controllers is stability of the physical system correctly predicted when using only the � = 0 model? i.e. 

what controllers are predictive or artifactual? (See definition 3.2 in [1]) 

- The artifactual behavior occurring in the simulations is represented by the sets 5+89,  5789 and 578;. When 

the control coils are not super conductive, these sets only appear while using the non proper controllers �� 

and ��, the (strictly) proper controllers �� and �� are predictive. Only when the control coils are super 

conductive, set 578 appears for controller ��, never for ��. 

2. Does velocity feedback stabilize the physical system? 

- Controllers ��, �� and �� can only marginally stabilize � > 0 model when all control coils are super 

conductive. When the control coils are not super conductive, �� , �� and �� cannot stabilize the � > 0 model. 

Controller �� could only marginally stabilize the single circuit model, not the two and full circuit models. 
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