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Abstract

Conventional speech recognition ap-
proaches usually wait until the user
has finished talking before returning a
recognition hypothesis. This results in
spoken dialogue systems that are unable
to react while the user is still speaking.
Incremental Speech Recognition (ISR),
where partial phrase results are returned
during user speech, has been used to
create more reactive systems. However,
ISR output is unstable and so prone to
revision as more speech is decoded. This
paper tackles the problem of stability
in ISR. We first present a method that
increases the stability and accuracy of
ISR output, without adding delay. Given
that some revisions are unavoidable,
we next present a pair of methods for
predicting the stability and accuracy of
ISR results. Taken together, we believe
these approaches give ISR more utility for
real spoken dialogue systems.

1 Introduction

Incremental Speech Recognition (ISR) enables a
spoken dialogue system (SDS) to react quicker
than when using conventional speech recogni-
tion approaches. Where conventional methods
only return a result after some indication of user
completion (for example, a short period of si-
lence), ISR returns partial phrase results while
the user is still speaking. Having access to a real-
time stream of user speech enables more natural
behavior by a SDS, and is a foundation for cre-
ating systems which take a more active role in
conversations.

Research by Fink et al.(1998) and Skantze
& Schlangen (2009), among others, has demon-
strated the efficacy of ISR but has also drawn
attention to a significant obstacle to widespread
use: partial phrase results are generally unsta-
ble and so, as more speech is decoded, are prone
to revision. For example, the ISR component in
a bus information SDS may return the partial
“leaving from Hills”, where “Hills” is a neigh-
borhood name. It may then return the revi-
sion “leaving from Pittsburgh”, which the sys-
tem must handle gracefully. Given this propen-
sity to revise, a Stability Measure (SM) — like-
lihood of a partial result remaining unchanged
compared to the final result — is necessary for
optimal incremental system behavior. Further-
more, since a stable partial may still be inaccu-
rate, a Confidence Measure (CM) — likelihood
of partial correctness — is also necessary.

Effective ISR enables systems to participate in
more dynamic turn-taking. For instance, these
two measures would enable an SDS to identify
inaccurate recognition results while the user is
still speaking. The SDS could then interrupt
and prompt the user to start again. On the
other hand, ISR allows systems to handle pauses
gracefully. If the SDS recognizes that an utter-
ance is incomplete (though stable and accurate),
it could give the user more time to speak before
reacting.

We present two contributions specific to the
use of ISR. First, we characterize three ap-
proaches to ISR which make different trade-offs
between stability and the number of partials
generated. We then present a novel hybrid ap-
proach that combines their strengths to increase



stability without adding latency. However, even
with this method, some partial results are still
later revised. The second contribution of the
paper is to present a pair of methods which pre-
dict the stability and accuracy of each partial
result. These two measures are designed for use
in concert by dialogue systems, which must de-
cide whether to act on each partial result in real
time.

2 Background and Related Work

We now describe modern speech recognition
methodology, the production of partial phrase
results, and the advantages and deficiencies of
ISR. In this we seek only to provide a topical
foundation, and not a comprehensive review.

Most modern speech recognition engines use
Hidden-Markov Models and the Viterbi algo-
rithm to decode words from audio. Decod-
ing employs three models: an acoustic model,
which assigns probabilities to speech audio given
a phone; a lexicon, which specifies phone se-
quences for a word; and a language model, which
specifies the probability of a word sequence. The
aim of the decoding process is to find theN most
probable word sequences given the audio spoken
and these three models.

Two useful but different forms of language
models are commonly used in spoken dialogue
systems. A Rule-based Language Model (RLM)
specifies a list of valid sentences which may be
recognized, usually via expansion rules. By con-
trast, a Statistical Language Model (SLM) spec-
ifies a vocabulary of words, allowing arbitrary
sentences to be formed. Both models specify
probabilities over their respective sets — RLMs
via whole-sentence probabilities, and SLMs via
probabilities of short word sequences called N-
grams. In an SLM, special word symbols are
used to represent the beginning and end of the
phrase, so the probability of beginning or ending
phrases with words can be modeled.

As speech frames are received, the recognizer
builds up a lattice which compactly describes the
probable sequences of words decoded from the
audio. In conventional turn-based speech recog-
nition, decoding continues until the user finishes

speaking. Once the user has finished, the engine
searches the lattice for the most probable word
sequence and returns this to the dialogue man-
ager. By contrast, in ISR the engine inspects
the lattice as it is being built, and returns partial
results to the dialogue manager as they become
available. A key issue for ISR is that partial
results may later be revised, because as more
speech is received and the lattice is extended, a
different path may become the most probable.
In other words, partial results are unstable in
the sense that they may later be revised. Note
that stability is not the same as accuracy: a par-
tial result may be accurate (correct so far) but
unstable, because it is later revised. Similarly, a
stable result may not be accurate.

In the literature, ISR has been proposed for
dialogue systems to enable them to engage in
more natural, human-like interactions. Stud-
ies have shown that incremental systems react
faster than non-incremental ones, and are well-
liked by users because of their naturalness (Aist
et al., 2007; Skantze and Schlangen, 2009). Aist
et al. (2007) found that incremental speech
recognition yielded 20% faster task completion.
Moreover, adding ISR improved users’ satisfac-
tion with the interaction; the authors attributed
this improvement to “naturalness”: “incremen-
tal systems are more like human-human con-
versation than their non-incremental counter-
parts.” Skantze & Schlangen (2009) observed a
similar trend, finding that an incremental sys-
tem was “clearly preferred” since it “was ex-
perienced as more pleasant and human-like”,
though it did not actually outperform the non-
incremental system in a number dictation task.

Some recent work has focused on incremen-
tal natural language understanding (NLU). De-
Vault et al. (2009) showed that when using a
relatively small number of semantic possibili-
ties the correct interpretation could be predicted
by early incremental results. Schlangen et al.
(2009) demonstrated that an incremental refer-
ence resolver could identify the correct reference
out of 12 more than 50% of the time. This
type of NLU can use context and other infor-
mation to be somewhat resilient to errors, and
word recognition inaccuracies may not yield a



change in understanding. In this paper we focus
on improving accuracy and stability at the word
level; we belief that improvements at the word
level are likely to improve performance at the
understanding level, although we do not evalu-
ate this here.

A number of researchers have described meth-
ods for evaluating and improving the stability of
ISR results (Baumann et al., 2009; Fink et al.,
1998). Baumann, Atterer, & Schlangen spoke
directly to stability by comparing partial phrase
results against the “final hypothesis produced
by the ASR”. They show that increasing the
amount of “right context” — the amount of
speech after the end of the putative partial result
— increases the stability of the partials. Fink et
al. (1998) also used a right context delay to de-
crease the word error rate of ISR results.

A key limitation of these past efforts to im-
prove stability is that adding right context nec-
essarily incurs delay, which degrades responsive-
ness and erodes the overall benefits of ISR. Fur-
thermore, past work has not addressed the prob-
lem of identifying which partials are likely to be
revised. In this paper, we tackle both of these
problems. We first present a method for im-
proving stability by considering features of the
lattice itself, without incurring the delay asso-
ciated with adding right context. Additionally,
since some partials will still be revised, we then
propose a method of scoring the stability of par-
tial speech recognition results.

3 Three approaches to ISR

We now describe three approaches to ISR: Ba-
sic, Terminal, and Immortal. Basic ISR simply
returns the most likely word sequence observed
after some number of speech frames has been de-
coded (in our case every 3 frames or 30ms). This
is the least restrictive approach, and we believe
is the method used by recent ISR research.

Terminal ISR, a more restrictive approach,
finds a partial result if the most likely path
through the (partially-decoded) lattice ends at
a terminal node in the language model. The in-
tuition is that if a partial result finishes a com-
plete phrase expected by the language model,

it is more likely to be stable. The meaning of
terminal is slightly different for rule-based lan-
guage models (RLMs) and statistical language
models (SLMs). For a rule-based grammar,
the terminal node is simply one that ends a
valid phrase (‘Pittsburgh’ in ‘leaving from Pitts-
burgh’). For an SLM, a terminal node indicates
that the most likely successor state is the spe-
cial end-of-sentence symbol. In other words, in
an SLM Terminal partial result, the language
model assigns the highest probability to ending
the phrase.

A third method, Immortal ISR, is the most
restrictive method (Spohrer et al., 1980). If all
paths of the lattice come together into a node
— called an immortal node — then the lattice
structure before that node will be unchanged by
any subsequent decoding. This structure guar-
antees that the best word sequence prior to an
immortal node is stable. Immortal ISR operates
identically for both RLMs and SLMs.1

To compare these approaches we evaluate
their performance. Utterances were extracted
from real calls to the Carnegie Mellon “Lets
Go!” bus information system for Pittsburgh,
USA (Raux et al., 2005; Parent and Eskenazi,
2009). We chose this domain because this cor-
pus is publicly available, and this domain has
recently been used as a test bed for dialogue
systems (Black et al. , 2010). The AT&T WAT-
SON speech recognition engine was used, modi-
fied to output partials as described above (Goffin
et al., 2005). We tested these three approaches
to ISR on three different recognition tasks. The
first two tasks used rule-based language models
(RLM), and the third used a statistical language
model (SLM).

The two rule-based language models were de-
veloped for AT&T “Let’s Go” dialogue sys-
tem, prior to its deployment (Williams et al.
, 2010). The first RLM (RLM1) consisted

1The choice of search beam size affects both accuracy
and the number of immortal nodes produced: a smaller
beams yields a sparser lattice with more immortal nodes
and lower accuracy; a larger beam yields a richer lattice
with fewer immortal nodes and higher accuracy. In this
work we used our recognizer’s default beam size, which
allows recognition to run in less than real time and yields
near-asymptotic accuracy for all experiments.



of street and neighborhood names, built from
the bus timetable database. The second RLM
(RLM2) consisted of just neighborhood names.
Utterances to test RLM1 and RLM2 were se-
lected from the corpus provided by Carnegie
Mellon to match the expected distribution of
speech at the dialogue states where RLM1 and
RLM2 would be used. RLM1 was evaluated on
a set of 7722 utterances, and RLM2 on 5411 ut-
terances. To simulate realistic use, both RLM
test sets were built so that 80% of utterances
are in-grammar, and 20% are out-of-grammar.
The SLM was a 3-gram trained on a set of 140K
utterances, and is tested on a set of 42620 ut-
terances.

In past work, Raux et al. (2005) report word
error rates (WERs) of 60-68% on data from the
same dialogue system, though on a different set
of utterances. By comparison, our SLM yields
a WER of 35%, which gives us some confidence
that our overall recognition accuracy is compet-
itive, and that our results are relevant.

Table 1 provides a few statistics of the LMs
and test sets, including whole-utterance accu-
racy, computed using an exact string match.
Results are analyzed in two groups: All, where
all of the utterances are analyzed, and Multi-
Word (MW), where only utterances whose tran-
scribed speech (what was actually said) has
more than one word. Intuitively, these utter-
ances are where ISR would be most effective.
That said, ISR is beneficial for both short and
long utterances — for example, ISR systems
can react faster to users regardless of utterance
length.

ISR was run using each of the three ap-
proaches (Basic, Terminal, Immortal) in each of
the three configurations (RLM1, RLM2, SLM).
The mean number of partials per utterance is
shown in Table 2. For all ISR methods, the more
flexible SLM produces more partials than the
RLMs. Also as expected, multi-word utterances
produce substantially more partials per utter-
ance than when looking at the entire utterance
set. The Basic approach produces nearly dou-
ble the number of partials than Terminal ISR
does, and Immortal ISR production highlights
its primary weakness: in many utterances, no

Table 1: Statistics for Recognition Tasks. In all ta-
bles, All refers to all utterances in a test set, and
MW refers to the subset of multi-word utterances in
a test set.

RLM1 RLM2 SLM

Num. Utts All 7722 5411 42620
Num. Utts MW 3213 1748 20396

Words/Utt All 1.7 1.5 2.3
Words/Utt MW 2.8 2.6 3.8

Utt. Acc. All. 50 % 60 % 62 %
Utt. Acc. MW 53 % 56 % 44 %

immortal nodes are found. Given this however,
immortal node occurrence is directly related to
the number of words, as indicted by the greater
number of immortal partials in multi-word ut-
terances.

Stability is assessed by comparing the partial
to the final recognition result. For simplicity, we
restrict our analysis to 1-Best hypotheses. If the
partial 1-Best hypothesis is a prefix (or full ex-
act match) of the final 1-Best hypothesis then it
is considered stable. For instance, if the partial
1-Best hypothesis is “leaving from Forbes” then
it would be stable if the final 1-Best is “leaving
from Forbes” or “leaving from Forbes and Mur-
ray” but not if it is “from Forbes and Murray” or
“leaving”. Accuracy is assessed similarly except
that the transcribed reference is used instead of
the final recognition result.

We report stability and accuracy in Table 3.
Immortal partials are excluded from stability
since they are guaranteed to be stable. The first
four rows report stability, and the second six
report accuracy. The results show that Termi-
nal Partials are relatively unstable, with 23%-

Table 2: Average Number of Partials per utterance

ISR Group RLM1 RLM2 SLM

Basic
All 12.0 9.9 11.6
MW 14.6 12.3 29.7

Terminal
All 5.4 3.3 6.2
MW 6.4 4.1 8.8

Immortal
All 0.22 0.32 0.55
MW 0.42 0.67 0.63



Table 3: Stability and Accuracy Percentages

ISR Group RLM1 RLM2 SLM

Stability

Basic
All 10 % 11 % 7 %
MW 14 % 15 % 9 %

Terminal
All 23 % 31 % 37 %
MW 20 % 28 % 36 %

Accuracy

Basic
All 9 % 1 % 5 %
MW 11 % 13 % 6 %

Terminal
All 13 % 21 % 24 %
MW 12 % 17 % 21 %

Immortal
All 91 % 93 % 55 %
MW 90 % 90 % 56 %

37% of partials being stable, and that their sta-
bility drops off when looking at multi-word ut-
terances. SLM stability seems to be somewhat
higher than that of the RLM. Basic partials
are even more unstable (about 10% of partials
are stable), with extremely low stability for the
SLM. Unlike Terminal ISR, their stability grows
when only multi-word utterances are analyzed,
though the maximum is still quite low.

The results also show that partials are always
less accurate than they are stable, indicating
that not all stable partials are accurate. Immor-
tal partials are rare, but when they are found,
they are much more accurate than Terminal or
Basic partials. The RLM accuracy is very high,
and we suspect that immortal nodes are corre-
lated with utterances which are easier to recog-
nize. Terminal ISR is far more accurate than
Basic ISR for all of the utterances, but its im-
provement declines for multi-word RLMs.

We have shown three types of ISR: Basic, Ter-
minal and Immortal ISR. While Basic and Ter-
minal ISR are both highly productive, Terminal
ISR is far more stable and accurate than Basic.
Furthermore, there are far more Basic partials
than Terminal partials, implying that the dia-
logue manager would have to handle more un-
stable and inaccurate partials more often. Given
this, Terminal ISR is a far better “productive
ISR” than the Basic method. Taking produc-
tion and stability together, there is a double dis-

Table 4: Lattice-Aware ISR (LAISR) Example

1-best Partial Type

yew Terminal
sarah Terminal
baum Terminal
dallas Terminal
downtown Terminal
downtown Immortal
downtown pittsburgh Terminal
downtown pittsburgh Immortal

sociation between Terminal and Immortal ISR.
Terminal partials are over produced and rela-
tively unstable. Furthermore, they are even less
stable when the transcribed reference is greater
than one word. On the other hand, Immortal
partials are stable and quite accurate, but too
rare for use alone. By integrating the Immortal
Partials with the Terminal ones, we may be able
to increase the stability and accuracy overall.

4 Lattice-Aware ISR (LAISR)

We introduce Lattice-Aware ISR (LAISR —
pronounced “laser”), that integrates Terminal
and Immortal ISR by allowing both types of par-
tials to be found. The selection procedure works
by first checking for an Immortal partial. If one
is not found then it looks for a Terminal. Re-
dundant partials are returned when the partial
type changes. An example recognition is shown
in Table 4. Notice how the first four partials
are completely unstable. This is very common,
and suppressing this noise is one of the primary
benefits of using more right context. Basic ISR
has even more of this type of noise.

LAISR was evaluated on the three recogni-
tion tasks described above (see Table 5). The
first two rows show the average number of par-
tials per utterance for each task and utterance
group. Unsurprisingly, these numbers are quite
similar to Terminal ISR. The stability percent-
age of LAISR is shown in the second two rows.
For all the utterances, there appears to be a very
slight improvement when compared to Termi-
nal ISR in Table 3. The improvement increases
for MW utterances, with LAISR improving over



Table 5: Lattice-Aware ISR Stats

Partials per Utterance

RLM1 RLM2 SLM

All 5.6 3.5 6.7
MW 6.7 4.5 9.6

Stability Percentage

All 24 % 33 % 40 %
MW 24 % 35 % 41 %

Accuracy Percentage

All 15 % 23 % 26 %
MW 16 % 22 % 24 %

Terminal ISR by 4–7 percentage points. This
is primarily because there is a higher occur-
rence of Immortal partials as the utterance gets
longer. Accuracy is reported in the final two
rows. Like the previous ISR methods described,
the accuracy percentage is lower than the sta-
bility percentage. When compared to Terminal
ISR, LAISR accuracy is slightly higher, which
confirms the benefit of incorporating immortal
partials with their relatively high accuracy. To
be useful in practice, it is important to exam-
ine when in the utterance ISR results are be-
ing produced. For example, if most of the par-
tials are returned towards the end of utterances,
than ISR is of little value over standard turn-
based recognition. Figure 1 shows the percent
of partials returned from the start of speech to
the final partial for MW utterances using the
SLM. This figure shows that partials are re-
turned rather evenly over the duration of ut-
terances. For example, in the first 10% of dura-
tion of each utterance, about 10% of all partial
results are returned. Figure 1 also reports the
stability and accuracy of the partials returned.
These numbers grow as decoding progresses, but
shows that mid-utterance results do yield rea-
sonable accuracy: partials returned in the mid-
dle of utterances (50%-60% duration) have an
accuracy of near 30%, compared to final partials
47% percent.

For use in a real-time dialogue system, it is
also important to assess latency. Here we define
latency as the difference in (real-world) time be-
tween (1) when the recognizer receives the last

Figure 1: Percent of LAISR partials returned from
the start of detected speech to the final partial using
the SLM. The percentage of partials returned that
are stable/accurate are also shown.

frame of audio for a segment of speech, and (2)
when the partial that covers that segment of
speech is returned from the recognizer. Mea-
suring latencies of LAISR on each task, we find
that RLM1 has a median of 0.26 seconds and a
mean of 0.41s; RLM2 has a median of 0.60s and
a mean of 1.48s; and SLM has a median of 1.04s
and a mean of 2.10s. Since reducing latency
was not the focus on this work, no speed opti-
mizations have been made, and we believe that
straightforward optimization can reduce these
latencies. For example, on the SLM, simply
turning off N-Best processing reduces the me-
dian latency to 0.55s and the mean to 0.79s.
Human reaction time to speech is roughly 0.20
seconds (Fry, 1975), so even without optimiza-
tion the RLM latencies are not far off human
performance.

In sum, LAISR produces a steady stream
of partials with relatively low latency over the
course of recognition. LAISR has higher stabil-
ity and accuracy than Terminal ISR, but its par-
tials are still quite unstable and inaccurate. This
means that in practice, dialogue systems will
need to make important decisions about which
partials to use, and which to discard. This need
motivated us to devise techniques for predicting
when a partial is stable, and when it is accurate,
which we address next.



Table 6: Equal Error Rates: Significant improvements in bold. Basic at p < 0.016, Terminal at p < 0.002,
and LAISR at p < 0.00001

All Multi-Word

Stability Measure (SM) Equal Error Rate

RLM 1 RLM 2 SLM RLM 1 RLM 2 SLM

Basic
WATSON Score 13.3 13.3 12.8 15.6 16.4 15.2

Regression 10.7 11.3 12.3 13.2 15.2 15.1

Terminal
WATSON Score 24.3 29.1 34.4 26.6 26.0 34.1

Regression 19.7 26.5 26.5 23.0 24.3 24.7

LAISR
WATSON Score 24.7 29.3 35.0 24.0 27.0 35.3

Regression 19.2 25.6 25.0 18.4 23.3 22.7

Confidence Measure (CM) Equal Error Rate

Basic
WATSON Score 11.3 11.7 9.9 14.1 14.0 11.6

Regression 9.8 9.8 9.7 12.3 12.9 11.0

Terminal
WATSON Score 15.1 21.1 30.6 15.7 17.4 29.3

Regression 11.7 16.8 20.8 12.1 14.5 18.4

LAISR
WATSON Score 15.8 21.8 32.3 18.4 19.5 31.8

Regression 11.6 16.6 21.0 11.6 14.2 18.7

5 Stability and Confidence Measures

As seen in the previous section, partial speech
recognition results are often revised and inaccu-
rate. In order for a dialogue system to make
use of partial results, measures of both stability
and confidence are crucial. A Stability Measure
(SM) predicts whether the current partial is a
prefix or complete match of the final recogni-
tion result (regardless of whether the final result
is accurate). A Confidence Measure (CM) pre-
dicts whether the current partial is a prefix or
complete match of what the user actually said.
Both are useful in real systems: for example, if
a partial is likely stable but unlikely correct, the
system might interrupt the user and ask them
to start again.

We use logistic regression to learn separate
classifiers for SM and CM. Logistic regression is
appealing because it is well-calibrated, and has
shown good performance for whole-utterance
confidence measures (Williams and Balakrish-
nan, 2009). For this, we use the BXR pack-
age with default settings (Genkin et al., 2011).
For Terminal and Basic ISR we use 11 features:
the raw WATSON confidence score, the individ-
ual features which affect the confidence score,
the normalized cost, the normalized speech like-

lihood, the likelihoods of competing models,
the best path score of word confusion network
(WCN), the length of WCN, the worst probabil-
ity in the WCN, and the length of N-best list.
For LAISR, four additional features are used:
three binary indicators of whether the partial is
Terminal, Immortal or a Terminal following an
Immortal, and one which gives the percentage
of words in the hypothesis that are immortal.

We built stability and confidence measures for
Basic ISR, Terminal ISR, and LAISR. Each of
the three corpora (RLM1, RLM2, SLM) was di-
vided in half to form a train set and test set.
Regression models were trained on all utter-
ances in the train set. The resulting models were
then evaluated on both All and MW utterances.
As a baseline for both measures, we compare
to AT&T WATSON’s existing confidence score.
This score is used in numerous deployed com-
mercial applications, so we believe it is a fair
baseline. Although the existing confidence score
is designed to predict accuracy (not stability),
there is no other existing mechanism for pre-
dicting stability.

We first report “equal error rate” for the mea-
sures (Table 6). Equal error rate (EER) is the
sum of false accepts and false rejects at the rejec-



Figure 2: True accept percentages for stability measure (a) and confidence measure (b), using a fixed false
accept rate of 5%. LAISR yields highest true accept rates, with p < 0.0001 in all cases.

(a) Stability measure (b) Confidence measure

tion threshold for which false accepts and false
rejects are equal. Equal error rate is a widely
used metric to evaluate the quality of scoring
models used for accept/reject decisions. A per-
fect scoring model would yield an EER of 0. For
statistical significance we use χ2 contingency ta-
bles with 1 degree of freedom. It is inappropri-
ate to compare EER across ISR methods, since
the total percentage of stable or accurate par-
tials significantly effects the EER. For example,
Basic ISR has relatively low EER, but this is
because it also has a relatively low number of
stable or accurate partials.

The top six rows of Table 6 show EER for the
Stability Measure (SM). The left three columns
show results on the entire test set (all utterances,
of any length). On the whole, the SM outper-
forms the WATSON confidence scores, and the
greatest improvement is a 10.0 point reduction
in EER for LAISR on the SLM task. The right
three columns show results on only multi-word
(MW) utterances. Performance is similar to the
entire test set, with a maximum EER reduction
of 12.6 percent. The SLM MW performance is
interesting, suggesting that it is easier to pre-
dict stability after at least one word has been
decoded, possibly due to higher probability of
immortal nodes occurring. This suggests there
would be benefit in combining our method with
past work that adds right-context, perhaps us-

ing more context early in the utterance. This
idea is left for future work.

The bottom six rows show results for the Con-
fidence Measure (CM). We see that that even
when comparing our CM against the WATSON
confidence scores, there is significant improve-
ment, with a maximum of 13.1 for LAISR in the
MW SLM task.

The consistent improvement shows that logis-
tic regression is an effective technique for learn-
ing confidence and stability measures. It is most
powerful when combined with LAISR, and only
slightly less so with Terminal. Furthermore,
though the gains are slight, it is also useful with
Basic ISR, which speaks to the generality of the
approach.

While equal error rate is useful for evaluating
discriminative ability, when building an actual
system a designer would be interested to know
how often the correct partial is accepted. To
evaluate this, we assumed a fixed false-accept
rate of 5%, and report the resulting percentage
of partials which are correctly accepted (true-
accepts). Results are shown in Figure 1. LAISR
accepts substantially more correct partials than
other methods, indicating that LAISR would be
more useful in practice. This result also shows
a synergy between LAISR and our regression-
based stability and confidence measures: not
only does LAISR improve the fraction of stable



and correct partials, but the regression is able
to identify them better than for Terminal ISR.
We believe this shows the usefulness of the ad-
ditional lattice features used by the regression
model built on LAISR results.

6 Discussion and Conclusion

The adoption of ISR is hindered by the num-
ber of revisions that most partials undergo. A
number of researchers have proposed the use of
right context to increase the stability of par-
tials. While this does increase stability, it mit-
igates the primary gain of ISR: getting a rela-
tively real-time stream of the user’s utterance.
We offer two methods to improve ISR function-
ality: the integration of low-occurring Immortal
partials with higher occurring Terminal partials
(LAISR), and the use of logistic regression to
learn stability and confidence measures.

We find that the integrative approach,
LAISR, outperforms Terminal ISR on three
recognition tasks for a bus timetable spoken dia-
logue system. When looking at utterances with
more than one word this difference becomes even
greater, and this performance increase is due to
the addition of immortal partials, which have
a higher occurrence in longer utterances. This
suggests that as dialogue systems are used to
process multi-phrasal utterances and have more
dynamic turn-taking interactions, immortal par-
tials will play an even larger roll in ISR and par-
tial stability will further improve.

The Stability and Confidence measures both
have lower Equal Error Rates than raw recog-
nition scores when classifying partials. The im-
provement is greatest for LAISR, which benefits
from additional features describing lattice struc-
ture. It also suggests that other incremental fea-
tures such as the length of right context could be
useful for predicting stability. The higher num-
ber of True Accept partials by LAISR indicates
that this method is more useful to a dialogue
manager than Basic or Terminal ISR. Even so,
for all ISR methods there are still more use-
ful stable partials than there are accurate ones.
This suggests that both of these measures are
important to the downstream dialogue manager.

For example, if the partial is predicted to be sta-
ble but not correct, than the agent could possi-
bly interrupt the user and ask them to begin
again.

There are a number of avenues for future
work. First, this paper has examined the word
level; however dialogue systems generally oper-
ate at the intention level. Not all changes at
the word level yield a change in the resulting
intention, so it would be interesting to apply
the confidence measure and stability measures
developed here to the (partial) intention level.
These measures could also be applied to later
stages of the pipeline – for example, tracking
stability and confidence in the dialogue state re-
sulting from the current partial intention. Fea-
tures from the intention level and dialogue state
could be useful for these measures – for instance,
indicating whether the current partial intention
is incompatible with the current dialogue state.

Another avenue for future work would be to
apply these techniques to non-dialogue real-time
ASR tasks, such as transcription of broadcast
news. Confidence and stability measures could
be used to determine whether/when/how to dis-
play recognized text to a viewer, or to inform
down-stream processes such as named entity ex-
traction or machine translation.

Of course, an important objective is to eval-
uate our Stability and Confidence Measures
with LAISR in an actual spoken dialogue sys-
tem. ISR completely restructures the conven-
tional turn-based dialogue manager, giving the
agent the opportunity to speak at any mo-
ment. The use of reinforcement learning to make
these turn-taking decisions has been shown in a
small simulated domain by Selfridge and Hee-
man (2010), and we believe this paper builds
a foundation for pursuing these ideas in a real
system.
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