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STABILITY AND ASYMPTOTIC ESTIMATES IN
NONAUTONOMOUS LINEAR DIFFERENTIAL SYSTEMS*

GUSTAF SODERLINDy AND ROBERT M. M. MATTHEIJ :

Abstract. A new theory is presented, in which a generalized kinematic similarity transformation is used
to diagonalize linear differential systems. No matrices of Jordan form are needed. The relation to Lyapunov’s
classical stability theory is explored, and asymptotic estimates of fundamental solutions are given. Finally,
some possible numerical applications of the presented theory are suggested.

1. Introduction. In this paper, we consider linear systems of ordinary differential
equations

(1.1) 2=A(t)x + g(t), XC:-R

to model the propagation of perturbations in a general nonlinear system

(1.2) y=f(t,y),

where y R and f: I ". If z satisfies the perturbed equation

(1.2’) .=f(t,z)+g(t),

we note that the difference x= z-y satisfies (1.1), where A(t) is the "average Jacobian"

A(t) =f01J(t,y + Ox ) dO.

Here the m rn matrix J(., ) is the partial derivative off with respect to its second
argument. Although a linearization is not necessary in order to establish (1.1), the
matrix A (t) depends, by construction, not only on but also upon x and y. This limits
the validity of (1.1) as a model for the error propagation in (1.2), since A(t) may not be
uniformly bounded with respect to x. However, with the additional requirement that f
satisfies the Lipschitz condition

IIf(t,z)-f(t,y)ll<-tllz-Yll Vt,y,z

one easily shows that

(1.3) II-d(t)llL
We note that the Lipschitz condition can be relaxed; it is sufficient that the

condition holds over a convex domain D c R m, i.e. whenever y, z D.
Under mild conditions, the homogeneous problem 2=A(t)x has a continuously

differentiable fundamental solution matrix , i.e.

(1.4)
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Using this operator, the solution of (1.1) can, in terms of some given initial condition
x(0), be written

(1.5) x(t) (t)-(0)x(0)+(t)f0t-( ’)g(’) d’.

We remark that if is a fundamental matrix over the semi-infinite interval [0, m),
then- exists on any finite subinterval of [0, z).

The object of the paper is to estimate the solution x given by (1.5). In particular,
we are interested in asymptotic estimates and stability, i.e. we want to find estimates of
IIx(t)ll as well as of II(t)-(0)ll. We will derive these estimates for a monotonic but
otherwise unspecified norm. In particular cases we will consider the HOlder norms.

The estimates for global error propagation that we obtain are similar to corre-
sponding results derived by using the logarithmic norm, [6], [8] and [20]. Although the
latter estimates are sharp for "short-range" error propagation, our estimates are gener-
ally better for large t. Thus, they can be viewed as a complement to the traditional
logarithmic norm bounds on the error.

In 2, basic concepts will be introduced and classical results reviewed. In 3 we
consider various choices of a fundamental solution. The fundamental solution will then
be decomposed into a normalized direction matrix and a size matrix which satisfies a
differential equation kinematically similar to (1,1) [11]. We also prove a new diagonali-
zation theorem, demonstrating that any matrix can be brought to diagonal form using a
(time-dependent) transformation of Lyapunov type. This result is of fundamental
importance since it allows a unified treatment of all linear systems, whether A be
constant, defective Or time-dependent. It is particularly useful in the latter case, when a
Jordan form no longer has a clear meaning. It should be noted that the techniques
presented here are of equal importance to initial value problems and boundary value
problems.

In 4 we derive the asymptotic error estimates for IVP’s by considering the
Lyapunov transformation and its adjoint equation. Finally, in 5 we consider some
applications of the presented theory.

2. Differential inequalities and logarithmic norms. "Classical" estimates of the
solution to (1.1) are obtained from the differential inequality

d

Due to the Lipschitz constant IIAII being positive, these estimates are in practice useless,
since they fail to provide information about the actual growth or decay rate in (1.1).
The situation was greatly improved by the introduction of logarithmic norms [8], [6],
[20]. In terms of the logarithmic norm of the matrix A, defined by

III+ hAll-1(2.1) /[A] lim
h--,0+ h

solutions to (1.1) can be estimated from
d(2.2) Ilxl[-< a (t)] Ilxll/ Ilgll,

More precisely, we can state the following lemma [20].

XSince Ilxll may be only piecewise differentiable, the derivative of Ilxll is to be interpreted as a right-hand
derivative.
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LEMMA 1. Let x(t) be a solution of +/-=A(t)x + g(t). Then iIx()ll6(t), where the
scalar function satisfies the differential equation

(2.2’) 6=t[A(t)l+ Ilg(t)ll

with the initial condition j(0)= Ilx(0)l I.
While the Lipschitz constant is always positive, the logarithmic norm may be

negative. This implies that sufficient conditions for classical stability notions can easily
be expressed in terms of/[A], see e.g. [6]. Instead of going into details, we shall only
summarize some useful basic properties of the logarithmic norm that can be found
elsewhere in the literature (see [8] and [20]).

We define the spectral abscissa of a matrix A by

(2.3) a[ A] max Re(

where X 1," ",m are the eigenvalues of A.
LEMMA 2. Let A and B be square matrices. Let be a nonnegative real number and z

be a complex number. Then
a) a[A]</[A];
b)/[vA]= v[A ],
c)/[A + zll #[A]+ Re(z);
d) -IIAII-< #[A]-< IIAII;
e) t[A +B]<_#[A]+#[B].

Furthermore, ifA is a diagonal matrix and the norm [1" [I is monotonic, [1]; then
f) [a]=a[a].
LEMMA 3. Let A be a constant quadratic matrix. Then
a) Ile’ll_< CiliA]t;
b)/[A]= limb_.0+ loglleAhll/h.
If A depends on t, we can derive nonautonomous counterparts to the statements in

Lemma 3’
LEMMA 3’. Let d be a continuously differentiable fundamental solution satisfying

(1.4). Then
a) 11(t)-(,)11_< expftl[A(s)]ds;
b)/[A(t)] limb_.0+ logll(t + h)-l(t)ll/h.
Proof. Part a) follows immediately from (1.5) and Lemma 1. In part b), note that

d(t + h)=d(t)+hd(t)+o(h)=(I+ hA(t))e(t)+o(h). Hence d(t + h)d-(t)=I+
hA(t)+o(h), and, as a consequence of (2.1),

(2.4) lim
IId(t+h)O-l(t)ll-1

.-.0+ h =.[A(t)I.

We also obtain

d(2.5)
t’--ft’

=t[A()l.

It follows that II(t / h)-x(t)ll 1 + hl[A(t)]+o(h) as h0+. The result then fol-
lows by taking logarithms and letting h 0 +. []

The significance of Lemma 3b) and 3’b) is that error bounds obtained by using
Lemma 1 are sharp (with respect to the particular choice of norm) for short term error
propagation. However, over long intervals, the logarithmic norm may sometimes give
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gross overestimates. We illustrate these matters by considering the nonautonomous
homogeneous equation

(2.6)
c=A ( )x,
[]x(O)ll 1 (unit initial error).

By Lemma 1,

IIx(h)ll<_(h)--exp t[A(s)] ds.

Since x(h)= (I)(h)(I)- l(0)x(0), (h) must clearly majorize II(h)(I)- l(0)ll, which is the
largest possible value of IIx(h)ll given that IIx(0)ll-1. By (2.5), the Maclaurin expan-
sions of (h) and II(I)(h)(I)-X(0)[I agree to first-order terms in h. The minimal margin is
therefore

h h ) -1(0)II o (h)

as h--+0+, showing that Lemma 1 indeed yields sharp results for short-term error
propagation.

Estimates of the asymptotic behavior based on the logarithmic norm give useful
results only if the vector norm has been chosen with extreme care. Consider, for
example, the constant coefficient system

-1(2.7) :t=
0

with the matrix exponential

10

(2.8) eAt-- [ e-tO lO(e-t--e-2t) ]-2t

It is immediately clear that for any choice of norm and initial condition, the asymptotic
behavior of the solution is IIx(t)ll-" e -t. Yet, if we choose the maximum norm, we find

that/xoc[A]= 9. Thus Lemma 1 yields t(t)=e 9t, whereas

(2.8’) Iletllo lie-t- lOe-2t.

These bounds are illustrated in Fig. 1.

et[ A]t

t

FIG. 1.

In a constant coefficient system it is a fairly straightforward task to construct a
norm giving useful asymptotic estimates. Thus if T-IAT is diagonal, we can define
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Ilxllr=llT-xll, from which we can derive Ir[A]=a[A]. We now generalize this
technique to defective and time-dependent systems by using a local nonsingular coordi-
nate transformation

(2.9) x(t)=T(t)y(t).

We want to estimate the solution in terms of a given monotonic norm II’llp, the global
norm of the solution. We define a local (time-dependent) norm II’llr by

(2.10) llx(t)ll = IIz-l(t)x(l)ll = llY(t)ll -
We first estimate Ilxllr, then these results are transformed back to estimates with
respect to the fixed global norm. The following inequalities are readily established:

(2.11) Ilx lip -<

From the definition of the logarithmic norm (2.1) it follows that

(2.12.) r[a]= p[T-laT ].

When (2.9) is applied to (1.1), we obtain the differential equation

(2.13) =(T-1AT T-l)y + T-lg,

from which we derive the differential inequality

d
(2.14) llyIlp Ne T-AT

While (2.2) still remains valid for the fixed time-independent global norm, (2.14) clearly
shows that for the local norm (cf. (2.12)),

d(2.14’) llxllrNr[A T-1]][XIT+ Ilgllr-

Note the term T-1, wNch accounts for the time-dependence of the local norm.
Estimates of Ilxllr can now be obtained by applying Lemma 1 to (2.13), and then
transformed back to estimates of Ilxllp by means of (2.11). We shall see that we can
choose the coordinate transformation (2.9) in such a way that r[A-T-1] is signifi-
cantly smaller than p[A], thereby pertting estimates with better asymptotic proper-
ties. The price to be paid for tNs advantage is that we lose shaness for short-term
error propagation.

Before concluding tNs section, we point out that the following inequality,

d ]IITII ,(2.15)  IlTll    [T-
which follows directly from the identities = TT-I T-1T, is sometimes useful in
deriving the asymptotic estimates.

3. Kinematic eigenvalues and the Lyapunov anstormation. Throughout the paper
we shall assume that the matrix function A(t) satisfies the following assumptions:

Assumption A1. A(t) is uniformly bounded with respect to t, i.e. IIA(t)lp L, Vt.
Assumption A2. There exists a continuously differentiable fundamental solution

matrix satisfying A, Vt.
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It follows from A1 that no solution to the homogeneous problem : Ax can grow
faster than exp(Lt). Similarly, no homogeneous solution can decay faster than
exp(-Lt). In order to measure the asymptotic behavior of solutions, it is therefore
convenient to use the concept of characteristic exponents or type numbers, [4, p. 50],
[11] and [17, p. 165].

DEFINITION. The generalized Euclidean characteristic exponent of a vector function
f(t) is defined by

(3.1) X (f) li---- lgllf( )ll 2.
to

If f and g are vector functions and 3’ is a scalar function of t, then it is clear from
the definition that the generalized characteristic exponent satisfies the following rules:

(3.2) X (f+ g ) < max(X (f), X ( g ))

with equality if X (f) 4: X (g), and

(3.3) x(YU) < X(Y) + x(f).
DElqYITIOrq. Let X(f) x(g)= X0. If for some nonzero constants , and y2 we have

X(ef+e2g)<Xo,

we call f and g exponentially linearly dependent. Otherwise they are exponentially
linearly independent.

Example. Consider the constant coefficient system

1 0
x,

with fundamental solutions

e e- sinh cosh

xI, serves well as a fundamental solution when is small, but away from the origin its
columns rapidly become almost linearly dependent. In fact, they are exponentially
linearly dependent. The columns of , on the other hand, are orthogonal for all t. We
remark that given a fundamental matrix , one can construct a new fundamental
solution by postmultiplying by any constant nonsingular matrix M. It should also be
noted that since -1 exists for all t, the columns of are linearly independent in such
a way that every time-dependent linear combination (t)y(t)4:0 if y(t)4:0 for all t.
This "spatial" linear independence is much stronger than the "functional" linear
independence q(t)y 0 for every constant vector y.

DEFINITION. Let (qh, q2,-. ",t/)m) where q: .....) m, be a fundamental matrix.
is said to be normal in the sense of Lyapunov [17, p. 169], [4, p. 52] if

m

E X(q’2) is minimal.
j=l

Clearly, in the previous example, is normal with EX(2)= 0, whereas xI,, with Zx(b2)
2 is not normal.
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In the following analysis we shall be concerned with the following particular
choice of"Assumption A3. is normal, and its columns have been permuted so that can be
partitioned columnwise into

(3.4) (I) II)l, (I)2, (I)q l<_q<m,

where for every j, each column in the submatrix j has the same generalized character-
istic exponent Xj. The characteristic exponents are assumed to be arranged in descend-
ing order, i.e. X>X+ 1.

It can be shown that a normal fundamental matrix always exists, and so Assump-
tion A3 is always satisfied for some fundamental matrix. Unless otherwise stated, in the
sequel we will deal exclusively with fundamental matrices satisfying A3.

Remark. Observe that if satisfies A3, then so does =M, where M is a
nonsingular block lower triangular matrix partitioned conformally with (3.4), i.e.

0

detMj 0.

Any result induced by A3 therefore remains qualitatively, but not necessarily quantita-
tively, the same for and .

PROI’OSITION 4. Let b satisfy Assumption A3. Then the columns within each subma-
trix dpj are exponentially linearly independent.

Proof. Suppose there is a nonzero vector , for which X(’) < X- Then we can
construct a new fundamental matrix by replacing an arbitrary column in . by .7.
We then have

m m

j--1 j--1

thus contradicting the assumption that is normal. D
We shall now decompose into a direction matrix T and a diagonal size matrix D,

(3.6) = TD

where T= (t1, t2,. ,tin) has columns of unit Euclidean norm,

(3.7) tft=l.
Then, since q,j= tjdj, we have

(3.8)

The following properties of T and D immediately follow from Assumption A2 and the
differentiability of the Euclidean norm"

PROPOSITION 5. T andD are nonsingular and continuously differentiable.
Now, since=A, we obtain D+ Tb=ATD, or

=AT- T)D -1.
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Denote the diagonal matrix bD-1 by A. Then

(3.9) =AT- TA,

(3.10) b=AD.

Thus we have proved the following diagonalization theorem"
THEOREM 6. For every matrix function A ) satisfying Assumptions A1 and A2 there

exists a continuously differentiable nonsingular matrix T such that A T-1AT- T-lJ" is

diagonal. Moreover, under Assumption A3, a possible choice of T is given by (3.6)-(3.8).
COROLLARY 7. For every matrix function A(t) satisfying Assumptions A1 and A2

there exists a continuously differentiable nonsingular matrix T such that the differential
equation

is decoupled by the coordinate transformation x= Ty into a system of scalar differential
equations

(3.12) p=A(t)y+ T-(t)g(t).

The fundamental solutions and D, associated with (3.11) and (3.12), respectively, are
related by the same transformation, i.e., TD.

A coordinate transformation x= Ty is called a Lyapunov transformation, [10, p.
117], under the conditions that

(i) T is uniformly bounded,
(ii) is continuous and uniformly bounded,
(iii) T-1 is uniformly bounded.

We shall see that the direction matrix T obtained by the decomposition (3.6) satisfies
conditions (i) and (ii) but not always (iii). Thus it is well-known that a defective matrix
cannot be transformed to diagonal form with a transformation T satisfying (iii) over a
semi-infinite interval. However, there are only two reasons for considering condition
(iii). Firstly, T may not become singular for any finite t. By Proposition 5 this cannot
occur in our case. Secondly, if any uniform upper bound of T-1 appears in some
estimate of the solution, it clearly has to be finite. However, such a bound will not be
needed in our estimates. Thus (iii) is unnecessarily restrictive, and unless otherwise
stated, we shall replace that condition by the weaker requirement

(iii’) T- exists on every finite interval,
which, according to Proposition 5 is always satisfied. We call the resulting transforma-
tion, satisfying (i), (ii) and (iii’), a generalized Lyapunov transformation. In particular, we
shall refer to (3.9) as a diagonalizing Lyapunov transformation (boundedness of J" will be
established in Propositions 9 and 10). The systems (3.11) and (3.12) are said to be
kinematically similar (of. [11] and [4, p. 54]), and we call the diagonal elements Xi(t of
A (t) the kinematic eigenvalues ofA with respect to T. Let

(3.13) ST=T-1.

Then S and T provide the left and right kinematic eigenvalues of A. We remark that T
and A are not unique unless we specify exactly which normal fundamental matrix tI) is
to be used for the construction of T. Asymptotic properties, however, are uniquely
determined as we shall see in Propositions 11 and 12.



ESTIMATES IN NONAUTONOMOUS SYSTEMS 77

We,now illustrate our results by considering the defective system

(3.14) 2=
0 -1

x, t>O,

which has a fundamental matrix

dp= e-tO te-t]-t

It is easily verified that

1 -t1
V/i + t,2

(3.14’) T=
1

St=
0

vq+t:
0 vq+t

corresponding to

-1 0 -t 0
(3.14") A 0 1 + D-- 1/1 + 2 e -t

l+t 2

Note that the kinematic eigenvalues are not constant despite the fact that the original
system has constant coefficients. This is a consequence of the diagonalizing Lyapunov
transformation being time-dependent. Also note that the fundamental matrices and
D both exhibit asymptotic growths e-t and re-t.

it is clearly seen that Sr is not uniformly bounded with respect to t. We expressly
state that this is not a deficiency of the presented theory. It merely reflects the fact that
for any choice of fundamental matrix , the space spanned by its columns collapses as

oo. This property is inherited by the kinematic eigensystem T which is aligned with
the directions of the linearly independent solutions sj. Finally, we point out that there
are nonautonomous systems with distinct eigenvalues that behave in a similar way.
Thus, for instance, the system

1 x, t>_O2=
0 -1 +l+t

has a fundamental matrix

dp
e-t t2

0 (l+t)e -t

It is clear that for any choice of , Sr will be O(t) as t--, oo. This "pseudodefective"
behavior is due to the two eigenvalues of A approaching a defective pair as oo.

The kinematic eigenvalues and eigenvectors have a number of interesting proper-
ties:

PROPOSITION 8. The kinematic eigenvalue kj is equal to the Rayleigh quotient formed
by the corresponding kinematic eigenvector tj and A, i.e.

(3.15) X2=tfAt2.
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Proof. Differentiating (3.7), we find that t2rt’2=0. By (3.9), i2=At2- t2h2. Thus,
O= tAt2- Xj.

PROPOSITION 9. All kinematic eigenvalues satisfy the inequalities

(3.16)

Proof. For all x with xrx 1 we have that -ttz[-A]<_xrAx </2[A]. The inequali-
ties then follow from (3.15) and part d) of Lemma 2. []

PROPOSITION 10. ’ is uniformly bounded with respect to t.

Proof. The result immediately follows from equation (3.9) and the boundedness of
A, Tand A. [2]

PROPOSITION 11. The characteristic exponents are preserved by the diagonalizing
Lyapunov transformation, i.e. if ( TD, then X (ok2) X(d2).

Proof.

X((k2) libra 1 l logd22=x(dj).
oo 7 tli-.m 7

PROPOSITION 12. X (ok2) can be expressed as the "infinite average"

7 f0’x’
Proof. By (3.10), dj ,2dj. Integrating yields

dj(t) exp fothj(s ) ds dj(O).

Hence Proposition 11 gives

x(d2)=.iim lfot, (s)ds--x(2)
t’)

J

DEFINITION. The kinematic spectral abscissa ofA with respect to T is defined by

(3.18) ar[A =maxX2.
J

We then have
PROPOSITION 13. Let II’llp be monotonic and let II’IIT be defined by (2.10) where T is a

diagonalizing Lyapunov transformation. Then

OT[A]=IT[A-- "Z-1] p A ].

Proof. From (2.12) we obtain tT[A- T-1]=tp[T-1AT- T-I’]=/p[A] by (3.9).
Since II’llp is monotonic, Lemma 2f) gives/,[A]= ar[A ].

It is clear that ar[A has strong implications as to the stability of (1.1). Not only is
the kinematic spectral abscissa closely related to the characteristic exponents, but it
appears explicitly in (2.14) and (2.14’). Thus we have uniform stability if aT[A]<0 and
uniform asymptotic stability if aT[A]<-a<0 for all t. We note that these results
cannot be concluded from corresponding conditions for the spectral abscissa a[A] if the
system is nonautonomous. These questions will be further discussed in 4.
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An interesting consequence of Theorem 6 is
THEOREM 14 (exponential representation theorem). Every fundamental solution ad-

mits the exponential representation

(3.19) *(t)*-l(’r) T(tlexpf,’A(sldsSr()
whenever Assumptions A1 and A2 are satisfied.

Proof. TakeM so thatM satisfies A3. Then

dp(t)d-l(,r)=*(t)mm-ld#-l( ,) T(t)D(t)D-I( )Sr(,r).
Since b AD, (3.19) follows from

and the representation

D(t) expftA (s) dsD(),

(3.21) (I) (t) T(t)D(t).
Remark. Note that (3,.19) is a generalization to the nonautonomous case of the

corresponding formula in the diagonalizable constam coefficient case. Thus, if there
exists a static similarity transformation that takes A to diagonal form,

O=AT- TA
where T- S v and A TAS r, then

e,4(t-r)= TeA(t-)S T.
It is clearly seen that this formula appears as a special case in Theorem 14. In the
nonautonomous case, however, it is well known that

d ( ) cb ( ) exp f,tA ( s ) ds

if and only if A commutes with its derivative, i.e. whenA A 0. The importance of
Theorem 14 is that we indeed still have an exponential representation, even if the
commutativity condition is not satisfied. It should be noted that this is made possible
by the kinematic similarity transformation to diagonal form, and the Lyapunov-type
relation = TD, where the fundamental solution D associated with the decoupled
system (3.12) always has an exponential representation (3.20). We finally remark that
the kinematic diagonalization is a transformation of global character; the case when A
is defective locally requires no special attention and no matrices of Jordan form are
needed.

We shall now turn to the question of how the matrix T-’x= ST behaves for
increasing t. We have already seen that globally defective or pseudo-defective systems
will (in general) cause an O(t) growth for some power/3>0, due to the inherent
structure of the problem. In Theorem 14, however, we would like to avoid any exponen-
tial growth of S T in (3.19), or any exponential linear dependence in the columns of T,
so that the exponential behavior is due to A only.

Introduce the notation det, - det T, o det ST and 8 = detD.
LEMMA 15 [4. p. 53]. "X(j)>’X()>_. -X(-1).
Proof. Since 1 =qbqb -1, we have 0<X()+X( -x) from which the last inequality

follows. For the first inequality, note that qb 8 X() -< X(z)+X (8). However, the
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normalization of the columns of T gives I,llx(,)0. Since 8-HI1.112, we find
that X (8.)-< EX (.), thus completing the proof. []

In order to show that Sr does not grow exponentially, we have to show that
X(O)_< 0. Since o,= 1, we obtain

(3.22) O<-X(’)+X(o).
However, X(’)_< 0, and it follows that S r does not grow exponentially if and only if
x()=x(o)=0.

DEFINITION. Under Assumption A1, the system +/- Ax is said to be regular if there
exists at least one fundamental solution satisfying

(3.23) EX() -X(O-’)-
It is clear that a fundamental solution satisfying (3.23) must be normal, and,

without loss of generality, we may assume that it has the form described in Assumption
A3. We now have

THEOREM 16. Let the system J dx be regular and let T be a diagonalizing Lyapunov
transformation with inverse S. Let z det T and o det S r. 7hen X() X (o) O. In
other words: the columns of T are exponentially linearly independent and S T does not grow
exponentially as increases.

Proof. Note that o=-x=-lIIIl,jll. Hence

(3.24) X(O) < X (q-) +EX (q.).
Since the system is regular, (3.23) gives X(o)<O. (3.22) together with X()<0 then
yields X(z)=X(o)=O. rq

PROPOSITION 17. The system c Ax is regular only if

(3.25) t-olim It fottrA ( s )ds

exists.

Proof. It is well known [5, p. 67] that q satisfies the differential equation +=
trA (t) q,. Hence

X(q,) lim l__f0ttrA(s)ds.
t--*

Similarly, k q’- satisfies the adjoint equation -trAr(t)p, from which we derive

X(q_l) _1 fot_ trA(s)ds=- lim _1 fottrA(.s)ds.
t--, t--- oQ

Since a regular system has X(q) -X(q,-1), the existence of the limit (3.25) follows.

PROPOSITION 17’. The system .9 Ay is regular ifand only if

(3.26) tolim l__t f0ttrA (s) ds

exists.

Proof. The "if" part follows from the decoupled structure of the system j, A y. It
is clearly seen that a scalar system d ,d is regular if and only if X(d) X(d- 1).
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THEOREM 18./f :t Ax is regular, then so is the transformed system j; A y, and

(3.27) lim -1 fottrA ( s ) trA ( s ) ds O.
t---, o

Proof. From t- l’r and Theorem 16 it follows that X (8 1) < X( 1). Hence,
ifA is regular,

X()EX(fj)=X() -X(b-1). -X(-l).

By Lemma 15 we must have X()> X (8-1), and so the regularity of the transformed
system follows. Thus we have X()=X(8), where (cf. Proposition 12) X() and X(8)
are given by the limits (3.25) and (3.26) respectively. Alternatively, (3.27) may be
derived from the two adjoint differential equations

"/’= (trA trA),, 6=(trA-trA)o
together with X() X(o) 0. ra

Remark. Note that trA is equal to the sum of the eigenvalues of A. Thus (3.27)
states that the kinematic eigenvalues of A are "close" to the eigenvalues in the infinite
average.

If A is permitted to grow exponentially, it is simple to construct problems where
Sr grows exponentially, see e.g. [7, p. 12]. However, under Assumption A1, we have
found that regularity is a sufficient condition for S r to grow at most at a polynomial
rate. Necessary conditions are still an open question, and at present we are not aware of
any system where S r does grow exponentially. Indeed, in Lyapunov’s classical, example
of an irregular system, [4, pp. 53-54], we actually have a uniformlybounded S r. "One
should note, however, that the class of regular systems is very wide. Thus, for instance,
all systems with constant or periodic coefficients fall in this class. Irregular systems
have fundamental solutions containing elements with a quite odd behavior, e.g. like
exp(t sin log t).

4. Asymptotic estimates and condition numbers. We shall derive asymptotic esti-
mates by applying the theory of [}3 to the differential inequalities in [}2. We begin by
giving an estimate for I[(t)tI)-1(0)lip, i.e. we consider the homogeneous problem (2.6).

LEMMA 19. Let II’llp and II’llq be dual Hilder norms (i.e. 1.//p + l/q= 1) and assume
that A is a rank one matrix, A uvT. Then

(4.1) IIA --Ilull, llollq-

Proof.

sup Ilaxll --sup Ilu  xllp=,llul[ sup IoTxl.

By H61der’s inequality, IvTxlllVllq[lXllp with equality for some x. Hence IlAllp--
IlUllpllVllq.

THEOREM 20. Let I1" lip and [[.[[q be dual HOlder norms. In addition to Assumptions A1
and A2, assume that X(I)> X(qj) forj> 2. Then, as

(4.2) 11,I, (t),-1(0)lip ][tl(t)llpl[s(O)[[q exp fotkl(S ) ds,

where ands are the first column and row, respectively, of the matrices T and S r.
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Proof. From the exponential representation in Theorem 14, we see that (t)-l(0)
can be written as a sum of rank one matrices,

m

(4.3) (t)--l(0) E tj(t)sf(O)exp fotk (s)dsj
j"l

If X(q,)>X(qj) for j>2, then by Proposition 12, the terms 2 through m will be
exponentially small compared to the first term of the sum in the right-hand side of
(4.3). Hence, for large t,

(t)-(O)-t(t)s(O)exp fot.l(S)ds,
and the result follows by application of Lemma 19. rn

Remark. The most important application of Theorem 20 is to systems satisfying

(4.4) )kl(t) > X(t), t>O, 2<j<m.

We then have X(ql)> X(q2) forj> 2 if and only if (4.4) holds uniformly with respect to
t. It is worth noting, however, that Theorem 20 and its proof remain valid for systems
satisfying the weaker requirement

(4.5) m ft,l(S)--kj(S)dS= +X), 2<j<m,
"0

although the dominated terms may no longer be exponentially small. Thus (4.4) does
not have to hold uniformly in t, and Theorem 20 can also be applied in the defective
case. Also note that if (4.4)-(4.5) hold, then the asymptotic behavior is determined
(sharply) by the kinematic spectral abscissa, ar[A]=)t 1. Finally, note that sr is only
evaluated at 0 in the estimate (4.2), showing that a uniform upper bound of Sr is
not needed.

We now illustrate Theorem 20 by returning to the problem (2.7). A can be brought
to diagonal form by a static similarity transformation 0=AT- TA, with

1 s’= (1 10)X=-I, tl= 0

Thus (4.2) yields the asymptotic estimate

Iletll --IItllllSrlllext- lle -t

in agreement with (2.8’). For the defective system (3.14), we obtain kinematic eigenval-
ues (3.14") that (after permutation) satisfy (4.5). The kinematic spectral abscissa is

1 + t/(1 + t-), corresponding to the left kinematic eigenvector (0 V/i- ) appearing
in the second row of Sr in (3.14’). Evaluating this vector at t--0, we obtain (0 1).
Hence, for the Euclidean norm we have

Ile/ll= 1,1. v/1 / e-’= v/1 / e-’ te -t,

a result which is asymptotically sharp for large t.
Next, we turn to estimates of Ilxllp. if x Ty is a diagonalizing Lyapunov transfor-

mation, then by Corollary 7 we have

(4.6) y=Ay+ Srg.
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Ilyllp can be estimated from (2.14) or by application of Lemma 1, i.e. Ilyllp_<, where

(4.7) il ar[A]r/+

with the initial condition r/(0)-- [[y(0)llp. Integration of (4.7) yields

(4.8) Ily(t)llp<-[[y(O)ll exPfota [A(s)] ds

+ f0t{exp ftoT[a(s)]ds)llsT(’r)g(’r)llpd’r.
Using (2.11) to transform this estimate into an estimate for IIx(t)llp, we get

(4.9) IIx(t)ll  IIz(t)ll [la (O)x(O)llpexP

+ [[T(t)llPfot{exp ftotT[A(s)] ds)llsT(’r)g(’r)llpd’r
whereas direct application of Lemma I to (1.1) gives

(4.9’) Ilx(t)l[p_< [[x(0)[[pexp fotp[A(s)] dS+ fot(exp ftp[A(s)] ds)llg(’r)llpd’r.
Note that in (4.9), Sr(,)g(,) is the kinematic spectral projection of g(,) onto the

local coordinate system at time ’, having the columns of T(,) as basis vectors. By
applying (4.9) to the homogeneous case, we readily establish the following (usually
cruder) alternative to the result of Theorem 20,

(4.10) [l(t)-l(0)llp < [IT(t)llpllST(O)[lpexp fotOtr[A(s)] ds

whereas (4.9’) or Lemma 3’a) yields

(4.10’) [[(/)-x(0)l[p_.< exp fotp[A(s)] ds.

Note that the bound (4.10) holds without the special assumptions of Theorem 20 or
restrictions like (4.4)-(4.5). Although for a given norm it is usually superior to (4.10’)
for asymptotic purposes, it should be clear that (4.10) does not necessarily give the
optimal exponential behavior unless some restrictions of the mentioned type are im-
posed. Thus,

lim lfotX(s)dsX ( ll ( ) dp- l(o) llp ) maxx(i)= mixa

l for (s)ds= lim
l for [A(s)] ds_< lim maxi - ar

The advantage, however, is that ar[A is, in principle, a computable quantity; the
characteristic exponents, on the other hand, are in practice virtually impossible to
compute.

As for the stability properties of the homogeneous problem, we can state the
following theorems. We leave the first theorem without proof since the uniform
boundedness of T implies that the bounds (4.10) and (4.10’) have the same generic
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structure, and the corresponding results are well known in the case of the logarithmic
norm, [6, p. 59].

THEOREM 21. Let ar[A be the kinematic spectral abscissa ofA with respect to the
diagonalizing Lyapunov transformation T. Then the zero solution of +/- A(t)x is

a) stable iflimt__, far[A(s)]ds<;
b) asymptotically stable if limt__, fdotT[a (s )] ds x
c) uniformly stable ifar[A(t)]<O for t>0;
d) uniformly asymptotically stable if aT[A (t)] < a < 0 for > O.
THEOREM 22. Let T be a diagonalizing Lyapunov transformation, and assume that

at[A] < 0 for all > O. Then the quadratic form xT(TTT)-lx is a Lyapunov function for
the system Jc=A(t)x provided that T-1 is uniformly boundedfor > O.

Proof. Note that x= Ty givesp= A(t)y. Define

V( y ) yry Ilyll.
By assumption, ar[A]=/2[A]<0, implying that V(y) is a Lyapunov function for the
y-system, i.e. l?< 0. Transforming back, y T- ix now gives

V(y) xrT-rT-Ix xr(TTr) -1
X,,

and the theorem is proved. [3

Remark. A time-dependent function V(t,x) is a Lyapunov function if 17< 0 along
the solution under consideration, and if there are positive definite time-invariant func-
tions U(x), W(x) such that U(x) < V(t, x) < W(x). Therefore, we have to require that
T- be uniformly bounded in this application.

Quantitatively, (4.10) is superior to (4.10’) for large enough to make

Ilz(t)llp[Isr(o)l[pexp Ltar[a(s)] -tp [a(s)] ds <_ 1

or, equivalently, when

(4.11) logllT(t)ll[lsY(o)[lp <_L [A(s)]-,[A(s)] ds.

In the constant coefficient diagonalizable case, (4.11) reduces to

log Xp T] _< (p[A]-o[A ])t
where p[T] is the condition number of the eigenvector matrix with respect to I[’[[p- In
2 we saw that the logarithmic norm gives sharp estimates initially, but in this case

(4.10) is preferable for >_ t*, where

logxp[T]
Ip[Al--a[Al

The quantity in the denominator is called the logarithmic inefficiency of the norm I1" lip,
[20]. In the general case we may, because of the normalization of the columns of T,
think of IIsl12 as a condition number of the corresponding column tj in T. It follows
that [ISrllp is an indication of the local conditioning of the Lyapunov transformation.
We therefore suggest that the matrix (3.5) be taken to minimize xp[T] in a suitable way.
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The significance of this is clearly seen in the problem

[1 0 ]1 x, t>O,
l-t+ 1

which has fundamental solutions

1 xT/--- 1 t"0 ----e 0 t+l e

Although both matrices satisfy Assumption A3, the first one gives T= Sr= 1, whereas
the latter choice yields a matrix Sr which grows like O(t) as t--, o.

It is possible to derive differential inequalities where the condition number does
appear explicitly. Indeed, in a closely related context, albeit with somewhat different
aims, it has been proposed by Dahlquist (private communication) to consider the
quantity =llTIIpllYllp directly. Thus if x= Ty, then IlXllp_< . Upon differentiation of ,
one obtains

d dIly lip Zllp+ [1Zi[p "- Ily lip.

The derivatives are, as usual, interpreted as right-hand derivatives. Using (2.15) for the
first term and (2.14) for the second, we find

(4.12) <-- (lip[z- laz- z- lt }- llp Z- lJ" ) -]- ":, T Ilgll,,

with the initial condition f(0)= p[T(O)]llx(O)llp. Thus, if T is a diagonalizing Lyapunov
transformation,

(4.12’) 4 _< ( a]+ + Z Ilgll .

In general, the term #e[T-12/"] will prevent us from obtaining estimates with the
desired exponential behavior, and so (4.12) is best suited for transformations other than
the diagonalizing Lyapunov transformation considered in this paper. Comparing (4.12’)
and (4.7), we see that in both cases, a small re[T is needed in order to avoid a too
large amplification of the forcing term g(t) when it is projected onto the columns of T.
In the case of a diagonalizing Lyapunov transformation suitably chosen to minimize

Op[T], a large or growing xe[T (such as in the defective case) merely reflects an
inherent "ill-conditioning" of the differential system that is inevitable. We repeat that
this is not a consequence of our transformation technique; the equations (3.11) and
(3.12) appearing in Corollary 7 are completely equivalent. Thus nothing can be gained
by forcing Sr to be uniformly bounded at the price of transforming the system to a
rather artificial time-dependent Jordan form. Instead we suggest that one interpret
xe[T as a condition number indicating how well one can distinguish different homoge-
neous solutions asymptotically as oz. Formally, one may impose conditions that
would define T and A uniquely, but at present it is not clear what additional properties
the "best possible" diagonalizing Lyapunov transformation should possess. Knowing
that any transformation of this type does give the optimal exponential behavior in
terms of the generalized characteristic exponents, we leave this question open.
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5. Applications. In this final section, we shall hint at some possible areas of
application of the presented theory. First, we shall briefly discuss how the kinematic
spectral abscissa can be computed.

The practical computation of ar[A] is based on the matrix differential equation
(3.9). Note that the structure of (3.9) admits a convenient incorporation of a shift.
Thus, if

(5.1) =A+flI, =A+flI,
then

(5.2)
In order to compute at[A], we have to compute the maximum kinematic eigen-

value and the corresponding kinematic eigenvector (X and t say). By (5.2) these
quantities satisfy

(5.3) il=(-XlI)t
together with the normalization requirement (3.7), i.e.

(5.4) tt= l.

An approximation to )tl= X fl is obtained by discretizing (5.3), for instance by
the backward Euler method, in which case one gets

(5.5) tl,n+l-tl,n---h(n+l-Xl,n+ll)tl,n+l.
Here h is the time-step, and the subscript n indicates an approximation at time t. Next,
we rearrange (5.5) to obtain

hXl,n+ltl,n+l -(I-hzn+l)tl,n+X + 11, n.

This formula is the basis for the iteration

(5.6) hkl+1 tk+l
,n+ 11,n+ (I-- hn+ x)t/ q- tl,1,n+l n"

In each iteration, 5,e/ and /

"l,n+l l,n+ are defined by imposing (5.4). Under mild assump-
tions, the iteration converges with an appropriate shift ft. Note that (5.6) is essentially a
power iteration, but with an inhomogeneous term taking the time-dependence of the
kinematic eigenvector into account. Several other discretizations and iterations are also
possible. This is currently being investigated and will be reported elsewhere. Finally, we
point out that the mentioned technique is good only for the computation of approxima-
tions to the dominant kinematic eigenpair, i.e., we cannot compute the whole T matrix
this way. However, this is not the purpose of our analysis. Moreover, if a full transfor-
mation were to be computed, one might expect some numerical difficulties. As an
alternative, one may consider the possibility of using orthogonal transformation
matrices. Thus, if

(5.7) b= OR
is the QR factorization of a fundamental matrix , it is easily verified that

(5.8) O=AQ QU, JR= UR,
where R and U are upper triangular matrices. (5.8) can then be regarded as a kinematic
Schur form of the matrix A, but note that the diagonal elements of U are, in general,
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not equal to our kinematic eigenvalues. We remark that the existence of the transforma-
tion (5.8) is a classical result, cf. [4, p. 54].

Because of the strong relation between ar[A and the stability of the system, one
of the most important numerical applications of the presented theory is to monitor the
mathematical stability of the problem when it is solved numerically. It is well known,
[9] and [14], that frequently used numerical methods for solving stiff initial value
problems may sometimes produce erroneous results. This is a consequence of the
difference between mathematical stability on the one hand and numerical stability on
the other hand. Thus most methods for stiff problems are numerically stable also in
large portions of the right half-plane. As a result, the numerical method sometimes
follows a (mathematicially) unstable particular solution without ever detecting this
instability. However, by numerically computing ar[A] along the approximate particular
solution, such instabilities are easily detected. We therefore propose that ar[A be
computed so as to implement a stability check in stiff codes that would increase their
reliability. Also note that once ar[A is computed, it is simple to find an approximation
to the integral

which gives information about the global stability properties, cf. Theorem 21.
A second possible application is to estimate the global truncation error in the

numerical integration. Instead of solving a variational equation of the type (3.11), we
consider a kinematically similar system (3.12). If av[A]= kl, then

(5.9) 9)1 av[A]y + slg

defines the asymptotically dominant component in the y-system. Since

m

x= E
j=l

we see that tly is the global error component in the direction with the least damping in
the x-system. This component can be estimated from the scalar equation

(5.10)

If the global error components in the other directions can be neglected, then

and, in particular, Ilxll=-. It is clear, however, that / is neither a bound nor an
estimate of the global error, but rather a "global error indicator" which is not very
robust. In some preliminary computations we have, nevertheless, obtained some fairly
reasonable results by solving

(5.10’)

instead of (5.10). The norms are dual HOlder norms, and (5.10’) corresponds to project-
ing the local error vector g entirely onto the direction. While (5.10’) still does not give
more than an indication of the global error, it is more robust and only involves
quantities associated with kl (sl satisfies the adjoint of (5.3)). To obtain a global error
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bound, we need maxillsirllq or IlSrllp, and at present we have not been able to compute
these quantities (cf. (4.7)).

We would finally like to give an example showing that the presented theory is also
useful for problems not satisfying Assumption A1, i.e. when the matrix A is no longer
uniformly bounded with respect to or other parameters. The application of our
technique to such problems can be justified, although the theory is considerably more
complicated. Thus the limits defining the characteristic exponents may not exist, and it
is also questionable whether one may consider a linear equation (1.1) as a model for the
error propagation in a nonlinear equation (1.2).

We consider the following very simple turning point problem

(5.11) eu" + 2u’ + 0. u=0

over the interval (-oo, o). We are especially interested in how well it is possible to
distinguish the two linearly independent solutions of (5.11). In particular, we would like
to compute the condition number of the transformation matrix T as , + and
at the turning point t=0. To this end, we rewrite (5.11) as the first-order system

(5.12) ’f-u" 0 -2t/e u’"
Introduce

lft(5.13) E(t)=e-t=/, I(t)= oE(r)dr"
The factor - appears in (5.13) to normalize I so that I(o)=1. It is now easily
verified that (5.12) has a fundamental solution matrix

(5.14)

Since E--+0 as o, we see that the T matrix associated with (5.14) has a rapidly
growing inverse S r. We therefore try to improve this behavior by considering another
fundamental matrix M. Indeed, for

1 0]
we obtain

a fundamental solution having much better properties. Thus, when (5.14’) is decom-
posed into its direction matrix T and size matrix D, we get

1-I I

(1-I)2+E 2 V/I2+ E 2

r=
-E E

(1-I)2+E 2 1/I2+ E 2
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and

(5.16) D=[(,l_I)2+E20 VlI2+E20 ].
After some limit calculations, one obtains Table 1, valid uniformly with respect to e.

ST

TABLE
-c

10] Vf 10[0 1 --[ 2 2

o] o
1 3 1

The size functions dll and d22 in (5.16) are illustrated in Fig. 2.

dll

FG. 2

In Fig. 2 we see that our turning point problem has a dichotomy, [7], in a very
general sense. From the table it is clear that the direction matrix T is well behaved. At
the turning point this local coordinate system rapidly flips an angle of rr/2 from one
orthogonal system to another. This change takes place quicker as e0, and conse-
quently is not uniformly bounded with respect to e. The kinematic eigenvalues with
respect to T are 0(e-1/2) in a neighborhood of the turning point 0.

We remark that the special scaling with respect to e used to derive the first-order
system (5.12) is necessary to obtain these good results (an alternative would be to
choose a linear combinationM that depends in a nonuniform way on e). Our interpre-
tation of this is that a proper minimization of x[T] implies a proper scaling with respect
to the perturbation parameter.

We shall now demonstrate the importance of directional well-conditioning for
boundary value problems, and apply some results from [15] to this turning point
problem. Consider the BVP

(5.17) 3=Ax + g, a < <b,

(5.18) Max ( a ) +Max (b) c,
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where c is a vector and Ma, Mb are square matrices which are normalized such that
max(llMallp, llMllp)= 1. It was shown in [15] that the sensitivity of the solution x with
respect to the boundary condition (5.18) can be quantified by the following condition
number (ll’llp is a HOlder norm)

(5.19) CN max[l(t)O-[l,
where

(5.20) Q= MaP( a) +Mb( b ).
One should realize that CNp is independent of the actual choice for and that CNI
does not have to be greater than 1. In order to have a more workable quantity, it was
suggested in [15] to use the following estimate for CNp,

(5.21)

This estimate is meaningful only if we make the following (not restrictive) assumption.
Let (t) T(t)D(t) be such that

(i) maxa<_,<_blldg(t)lll-maXa<_<_blldz(s)lll, j, l;
(ii) max<_t<_bll(t)llp- 1.

We obtain
THEOmM 23.

1 1 (1)/_maxa<_t<_bllsr(t)llp maxa<_t<_bllr(t)llp n yp< CNp<_ yp.

Proof. The second inequality is an immediate consequence of our normalization
assumption and the fact that II(t)O-Xllp<_ll(t)llpllQ-Xllp. To show the first inequal-
ity, let z be a maximizing vector of Q-1, i.e. IIO-Xzllp=’/pllzllp. Definey:= Q-lz; then

(5.22) II(t)Q- zll, IlT(t)D(t) yllp glbp(T(t))ll(t) yllp.

Now we have

(5.23) maxllD(t)Yl]P>t max]d"(t)[’llYll>t maxldi’(t)l[
l )1let/\ IlYll o

(where is arbitrary). Finally, from D(t)= T-l(t)cb(t), we derive

(5.24) mtax Idii(t)[ > mtax {glbp(Z-(t))ll(t)[Ip }.
Substituting (5.24) into (5.23) and this into (5.22) where we now take the max over all
yields

CNp> [m}tnglbp(T-X(t))][rn}tnglbp(T(t)) 1) 1/ Ilzlle- VPllzllp’
since glbp(T-1)= 1/llTllp and glbp(T) l/llT-llp the result immediately follows, ul

Note that whereas CNI is independent of the choice of , ’e is not. It appears that
,p is a sharper estimate the less "skew" the direction matrix T is. For a useful estimate
3’p, we therefore have to choose a such that the basis solutions have fairly well
separated directions (if this is at all possible). The preceding turning point problem
provides a nice example to demonstrate this. To this end, let a, b] 1,1] and assume
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that e is sufficiently small to let the asymptotic behavior (t + o) be valid already for
+ 1. As boundary condition we consider

1 0(0
(here x (u, u’), cf. (5.12)).

Choosing according to (5.14) results in

(5.26) Q--(0 0 1 1 1 1

Hence 3% = 2. Although this bound seems small, it may not be a sharp estimate for
CN, for as we can see from (5.14) we have maxtllS(t)ll--ex/e, implying that the
lower bound in Theorem 23 tends to zero as e 0. On the other hand, if we chooseM
as in (5.14’), we obtain

10)(5.26) Q--(0 0

Hence 3% = 1. Moreover, it follows from (5.15) (see also Table 1) that maxtllSr(t)ll
maxtl[T(t)[[ = 3. Hence

1
(5.27) - <_CN Z 1.

Acknowledgments. Much of this work was carried out while the authors were
visitors at the Mathematical Sciences Department of Rensselaer Polytechnic Institute,
Troy, New York. We are grateful to Professor R. E. O’Malley, Jr. for providing
excellent working conditions during this time. The financial support given by the
Catholic University of Nijmegen, when the first author visited the second, is also
gratefully acknowledged.

REFERENCES

[1] F. BAUER, J. STOER, AND C. WITZGALL, Absolute and monotonic norms, Numer. Math., 3 (1961), pp.
257-264.

[2] R. BELLMAN, Stability Theory of Differential Equations, McGraw-Hill, New York, 1965.
[3] R. BULIRSCH AND J. STOER, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.
[4] L. CESARI, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Academic

Press, New York, 1963.
[5] E. A. CODDINGTON AND N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New

York, 1955.
[6] W. A. COPPEL, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
[7] Dichotomies in Stability Theory, Springer-Verlag, New York, 1978.
[8] G. DAHLQUIST, Stability and error bounds in the numerical integration of ordinary differential equations,

Trans. Royal Inst. of Tech., Stockholm, 1959.
[9] G. DAHLQUIST, L. EDSBERG, G. SKOLLERMO AND G. SODERLIND, Are the numerical methods and software

satisfactory for chemical kinematics? in Numerical Integration of Differential Equations and Large
Linear Systems, J. Hinze, ed., Proceedings, Bielefeld 1980, Springer-Verlag, New York, 1982.

[10] F. R. GaNTMCHWR, The Theory of Matrices, Vol. 2, Che.lqea, New York, 1959.
[11] E. J. HaxIS anD J. F. MILES, Stability of Linear Systems: Some Aspects of Kinematic Similarity,

Academic Press, New York, 1980.
[12] B. KAGSTR/bM, Bounds andperturbations bounds for the matrix exponential, BIT, 17 (1977), pp. 39-57.



92 GUSTAF SODERLIND AND ROBERT M. M. MATTHEIJ

[13] H. B. KELLER AND J. B. KELLER, Exponential-like solution of systems of linear ordinary differential
equations, J. Soc. Ind. Appl. Math, 10 (1962), pp. 246-259.

[14] B. LINDBERG, A dangerous property of methods for stiff differential equations, BIT, 14 (1974), pp. 430-436.
[15] R. M. M. MATTI-IEIJ, The conditioning of linear boundary value problems, SIAM J. Numer. Anal., 19

(1982), pp. 963-978.
[16] Estimates for the errors in the solutions of linear boundary value problems, due to perturbations,

Computing, 27 (1981), pp. 299-318.
[17] V. V. NEMYTSKIJ AND V. V. STEPANOV, Qualitative Theory of Differential Equations, Princeton Univ.

Press, Princeton, NJ, 1960.
[18] A. VaN DER SLUIS, Estimating the solutions of slowly varying differential equations, Preprint 152, Dept.

Mathematics, Univ. Utrecht, 1980.
[19] G. S6DERLIND, On nonlinear difference and differential equations, BIT, 24 (1984), to appear.
[20] T. STg6M, On logarithmic norms, SIAM J. Numer. Anal., 2" (1975), pp. 741-753.
[21] W. W,sow, Asymptotic Expansions for Ordinary Differential Equations, Wiley Interscience, New York,

1965.
[22] J. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.


