
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 11, NOVEMBER 2010 3685

Stability and Bandwidth Implications of Digitally
Controlled Grid-Connected Parallel Inverters

Robert Turner, Simon Walton, and Richard Duke, Life Member, IEEE

Abstract—The increasing use of grid-connected inverter sys-
tems is resulting in a desire for parallel-connected inverters that
offer greater power capacity while maintaining the high control
bandwidth achieved by individual inverters. This paper demon-
strates that, in addition to the traditional stability and bandwidth
limitations of digitally controlled inverters, further stability and
bandwidth limitations occur when LCL inverters with a common
set point are connected in parallel to a grid. This paper provides
detailed discrete-time derivations for parallel grid-connected in-
verters and uncovers stability and bandwidth limitations that only
occur in grid-connected applications and are not apparent if the
system is studied in continuous time. This paper demonstrates
that, in a typical application, the voltage bandwidth of an LCL

parallel inverter array is 25% lower than a single module or LC

parallel configuration. Both simulations and hardware demonstra-
tions on a 105-kVA parallel three-module grid-connected system
confirm the findings.

Index Terms—Digital control, parallel architectures, stability.

I. INTRODUCTION

ONE OF THE main motivations to use digital controllers

for inverter applications is to achieve a relatively high

level of performance while still achieving a desired level of

robustness. In each application, performance and robustness are

traded off by selecting different control methods and topologies

to achieve an acceptable performance and, at the same time,

robustness to different load types. The performance and robust-

ness criteria vary for different applications. In the application of

grid-connected inverters, the inverter may have to operate either

as a current source (CSI) or, in an island scenario, as a voltage

source (VSI) and frequency setter. LCL converter filters, as

opposed to single L filters, offer lower switching harmonics

(for a given size) and the ability to operate in a voltage sourcing

mode, with the latter being useful for isolated grid systems [1].

As the penetration for grid-connected LCL inverters such as

solar, wind, and battery storage increases, there is a naturally

increasing demand for higher power systems [2]. To be able to

provide the same level of bandwidth by using IGBT-based in-

verters but at ever increasing power levels, the natural tendency
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is toward parallel arrays of inverters. In some large systems, the

number of individual modules can be in excess of hundreds of

modules. A large amount of work has been done in the area of

the stability of parallel grid-connected inverters [1], [3]–[16],

but due to the complexity and the number of continuous com-

ponents, they have only been investigated in continuous time.

Many control methodologies that are used to achieve high

performance have been presented in the literature [17]–[24].

Each of which uses varying forms of state feedback and is

typically either discretized continuous-time controllers or direct

discrete design. Discretized continuous controllers typically

work quite well provided that the sampling frequency (fs) is

well above the control bandwidth (BW ), typically ≈ BW <
(fs/20) for VSIs [17]. The presence of sampling and calcu-

lation delays invalidate the use of discretized continuous con-

trollers where a high bandwidth for a given sampling frequency

is required (BW ≈ fs/10).
Many detailed investigations in discrete time have been

performed on inverters with simple resistive or nonlinear loads

[3]–[6], [25], but there has only been a small number of

discrete analyses of paralleled grid-connected inverters. Most

examples in literature tend to analyze grid-connected inverters

analytically in the continuous-time domain and only provide

discrete small-signal stability for numerical examples. In this

paper, the continuous-time filters and load are discretized from

the start to provide analytical discrete-time transfer functions to

demonstrate small-signal stability.

The complexity of analyzing discrete-time inverters with

low-impedance loads is compounded when independently con-

trolled inverters are connected in parallel [14]–[16]. This paper

discusses the stability issues that arise from digitally controlled

parallel-connected inverters driving into low-impedance loads

as a result of high frequency resonances outside of the inverters

control bandwidth. This paper shows that, although inverters

driving into low impedances are still controllable, in most cases,

the achievable system bandwidth is constrained. The effect can

be quite costly for applications where the maximum achievable

bandwidth is important.

The controllers discussed in this paper assume the practical

realities of zero-order hold (ZOH) sampling and calculation

delays. Calculation delays of one sample period are used unless

otherwise specified [18].

Section II is an analytical investigation into the instabilities

that occur with parallel arrays of inverters in a grid-connected

configuration. First, the stability implications of parallel mod-

ules with LC filters are addressed, followed by the addi-

tional effects of using LCL filters. In Section III, simulation

and experimental results on three parallel-connected two-level

0278-0046/$26.00 © 2010 IEEE
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Fig. 1. Indexing example for an n-module system showing module 1 capaci-
tor voltage Vc,1 as a function of each PWM voltage.

Fig. 2. Soft-coupled parallel VSIs.

35-kVA IGBT inverter modules (a total of 105 kVA) confirm

the findings in Section II.

The stability analysis of parallel-connected inverters was

prompted by bandwidth limitations observed in a parallel-

connected system using 2–32 125-kVA modules. The effects

have been further confirmed in the simulation. In addition to

practical confirmation, the derived equations have each been

confirmed numerically using the Simulink Linearization Analy-

sis toolbox.

Throughout this paper, the following convention with respect

to indices is adhered to: For an n-module system, an index i
implies the subject module, and an index j implies each of

the remaining n − 1 identical modules. As an example, Fig. 1

shows the use of indexing for one module in a multimodule con-

figuration. As suggested in Fig. 1, for module one, GVc,iVpwm,i

is the component of the module one capacitor voltage (Vc,1)
contributed by its own PWM voltage (Vpwm,1), and GVc,iVpwm,j

is the component of Vc,1 contributed by the sum of the other

PWM voltages (
∑n

k=2 Vpwm,k).

II. PARALLEL STABILITY ANALYSIS

Fig. 2 shows the typical three-phase single-wire topology for

a soft-coupled parallel grid-connected two-level VSI of interest.

A parallel configuration is herein defined to be hard coupled

when the coupling impedance (also known as the line reactor)

is zero (Lc,i = 0, and capacitors are all tied together) and soft

coupled when there is a real coupling impedance (Lc,i �= 0 and

independent capacitor voltages). To provide modularity, each

three-phase module is considered a separate inverter with its

own six-pulse IGBT stack, digital controller, and state feedback

sensing. All of the modules are considered identical apart from

component value variations, and they all receive the same

voltage reference signal.

To introduce the stability implications encountered with in-

ductively coupled parallel grid-connected systems, a common

continuous-time-derived VSI controller is considered, shown in

Fig. 3(a). The controller is simply a cascaded inductor current

loop and a capacitor voltage loop. Fig. 3(b) shows the inductor

current state feedback removed through model simplification.

In the absence of the load and loop delays, the continuous-

time controller has a clean second-order response1

Vc(s)

Vc,ref(s)
=

ωiωv

s2 + sωi + ωiωv

. (1)

Before being discretized, the unloaded continuous-time con-

troller (1) is unconditionally stable and has a damping ratio and

a natural frequency, given by the following:

ζ =
1

2

√

ωi

ωv

(2)

ωn =
√

ωiωv. (3)

Throughout this paper, a voltage-to-current gain ratio of three

quarters (ωv = (3/4)ωi) is used, which provides a damping

ratio of 0.6 for the continuous-time controller.

The small-signal stability is first investigated for hard-

coupled parallel and then soft-coupled parallel configurations.

Small-signal analysis for the remainder of this paper is per-

formed in the discrete-time domain, where the ADC and PWM

blocks in Fig. 3 are treated as ZOHs. Additional integrators (or

ac resonators) are neglected for stability analysis. For the small-

signal stability analysis of the grid-connected VSI, the grid

is treated as a low-impedance (inductive) load. Typical grid-

connected impedances range from a stiff grid scenario of less

than 1% up to a weak grid of 10%. To achieve results that are

independent of the number of modules, the grid load impedance

Lg in Fig. 2 is scaled by n such that Lg = Lg,permodule/n.

The small-signal stability of an n-module system is defined

by the pole locations of the closed-loop system. For the sake of

calculation, the transfer function of the first module’s capacitor

voltage (Vc,1) with respect to the voltage reference (Vc,ref)
is used. In the following sections, the systems are disturbed

by altering only the first module’s parameters while using the

specified nominal values for the remaining modules.

The proportional controller in Fig. 3(b) is easily discretized

with a single sample time delay (z−1)

Vpwm =
(

(Vc,ref − Vcz
−1)ωvC − Icz

−1
)

ωiL + Vcz
−1. (4)

For analysis purposes, the controller is separated into a feed-

forward path CFf(z) and the capacitor voltage and current

feedback paths (CFb,Vc
(z) and CFb,Ic

(z), respectively)

Vpwm = Vc,refCFf + VcCFb,Vc
+ IcCFb,Ic

. (5)

1The Laplace variable s should be interpreted as the derivative operator s =
d/dt where appropriate, and the discrete transform variable z−1 should be
interpreted as a unit delay operator.
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Fig. 3. Continuous-time controller.

Fig. 4. Controller and filter system blocks for a single module.

Fig. 4 shows the closed-loop connection of the controller and

filter components. In practical implementations, the capacitor

current can be approximated by differentiating the sampled

voltage, removing the need for a capacitor current sensor.

A. Discrete Model

In order to identify the stability issues, expressions for the

VSI, including the controller and components, must be derived.

Given the discrete nature of the controllers addressed herein,

the continuous-time components of the filter and load must first

be discretized. Each controller’s PWM voltage reference output

(Vpwm,i(z)) and capacitor voltage and current sampling inputs

[Vc,i(z) and Ic,i(z)] are defined as the boundaries for discretiz-

ing the parallel-connected output filters and load. The capacitor

voltage and current (Vc,i(s) and Ic,i(s), respectively) are dis-

cretized with a regular-sampled ZOH, as shown in [18], where

GZOH(z) = Z
{

1 − e−sTs

s
G(s)

}

. (6)

ZOH discretization of a second-order undamped continuous

system (7), such as an inductively loaded LC filter, results in a

second-order discrete system, as in (8), where ωn is the natural

frequency of the filter and Ts is the sample period

H(s) =
k

(

s
ωn

)2

+ 1
(7)

HZOH(z) =ZZOH (H(s)) =
k(z + 1) (1 − cos(ωnTs))

z2 − 2z cos(ωnTs) + 1
. (8)

B. Hard Coupled

To analyze parallel configurations of inverters where each in-

verter has its own controller and filter, the hard or soft parallel-

connected filters and load are discretized as a whole. In the

hard-coupled scenario, all the module capacitors are connected

together, and each controller senses the same voltage. The

sensed capacitor currents are identical for identical capacitor

values.
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Fig. 5. Identical three-module hard-coupled parallel configuration. Module 1
controller unmasked.

Equating the capacitor and load currents in Fig. 2 where

n − 1 of the modules have identical inductors Li and module

one has filter inductance L1

Vpwm,1 −Vc

sL1

+

∑n
k=2 Vpwm,k −Vc

sL
=Vc

(

nsC+
1

sLg

)

. (9)

Solving for Vc

Vc(s) =
(Vpwm,1(s)L +

∑n
k=2 Vpwm,k(s)L1) Lg

s2LL1LgCn + Lg (L + L1(n − 1)) + LL1n
(10)

Vc(s) = GVc,Vpwm,i
Vpwm,i + GVc,Vpwm,i

Vpwm,j . (11)

The capacitor currents become

Ic,i(s) =
Vc,i(s)

Zc

= sCVc,i(s). (12)

Note that, for an identical system, substituting L1 = L and

Vpwm,1 = Vpwm,i in (10), shown in Fig. 5, produces

Vc(s) =

∑n
k=1 Vpwm,k(s)Lg

n(s2LLgC + Lg + L)
. (13)

As each controller samples the same common capacitor

voltage, each controller produces the same PWM reference

(Vpwm), and therefore, Vpwm,i = Vpwm,j .

The discretized capacitor voltage transfer function for an

identical parallel configuration in (13), as shown in [5], is

GVc,Vpwm
(z) =

Lg(z + 1)
(

1 − cos
(

Ts

√

Lg+L

LLgC

))

n(Lg + L)
(

z2 − 2z cos
(

Ts

√

Lg+L

LLgC

)

+ 1
) .

(14)

Fig. 6. Pole contour of the hard-coupled system with ωi gain sweep from
5 to 20 pu. Ts = (2π/160) pu (i.e., an 8-kHz sampling relative to a 50-Hz
fundamental), L = 4% pu, C = 10% pu, Lg = 5% pu, ωv = (3/4)ωi, and
identical module system.

Discretizing the filter and closing the controller loop

GVc,Vpwm
=GVc,Vpwm,i(z) + GVc,Vpwm,j(z) (15)

GIc,Vpwm
=GIc,Vpwm,i(z) + GIc,Vpwm,j(z) (16)

Vc(z)

Vc,ref(z)
=

CFfCFb,Vc
GVc,Vpwm

1 −
(

CFb,Vc
GVc,Vpwm

+ CFb,Ic
GIc,Vpwm

) . (17)

From (17), it can be seen that, for a hard parallel configura-

tion of identical inverters, there is no longer any dependence on

the number of parallel modules n.

The hard-coupled system with a single sample time delay

(17) has three poles. Fig. 6 shows the pole contours for a

gain sweep of ωi = 5 to 20 pu. The hard-coupled configuration

becomes unstable at ωi = 14.6 pu.

Derivation of a nonidentical configuration is given in the

Appendix. Fig. 7 shows the effect of the component sensitivities

in a three-module system by varying L1. Increasing the number

of modules reduces the effect of component variations. Despite

component sensitivities, no additional unmatched pole-zero

pairs arise inside or outside of the unit circle.

C. Soft Coupled

The soft-coupled configuration now assumes a nonzero cou-

pling impedance Lc,i �= 0 in Fig. 2. With the addition of Lc,

(15) and (16) are no longer valid, and the individual module

capacitor voltages and currents must be resolved. Fig. 8 shows

the closed-loop configuration for a three-module soft-coupled

parallel configuration where each module is identical. Note that

Fig. 8 does not show the equivalent blocks for the capacitor

current feedbacks.
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Fig. 7. Pole map of the hard-coupled system demonstrating component
sensitivities by varying module one inductor. Ts = (2π/160) pu, L = 4%,
C = 10%, Lg = 5%, L1 = L± 10%, ωi = 11 pu, ωv = (3/4)ωi = 8.25,
and three-module system.

The module capacitor voltages are derived in a similar man-

ner to the hard-coupled configuration except that there is no

longer one common capacitor voltage, and as a result, each con-

troller no longer produces the same PWM reference (Vpwm,i).
Continuous transfer functions for the module capacitor voltages

in Fig. 8 are given in (18) and (19), shown at the bottom of the

page. Capacitor currents are obtained by (12).

Closing the loops in Fig. 8 for an n-module parallel config-

uration gives the module one capacitor voltage as a function of

Fig. 8. Soft-coupled parallel system with three modules. Note that the func-
tions for the capacitor currents are not shown but are of the same form as the
capacitor voltage functions.

the reference voltage. Defining

H1 = GVc,iVpwm,i
(z) (20)

H2 = GVc,iVpwm,j
(z) (21)

H1I = GIc,iVpwm,i
(z) (22)

H2I = GIc,iVpwm,j
(z). (23)

The complete transfer function for an individual module Vc,i(z)
as a function of Vc,ref(z) is given by (24), which is shown at the

bottom of the page.

The first observation to be made in (24) is that further

pole-zero cancellations can be made. The two factors in the

denominator (25) and (26), which are shown at the bottom of

the page, each contribute a complex pole pair and a single real

pole. A further cancellation of (25) produces (27), which is

shown at the bottom of the page, with a single pole-pair and a

GVc,iVpwm,i
(s) =

Vc,i(s)

Vpwm,i(s)
=

s2nLcLC(Lc + Lg) + nLc(L + Lc + Lg) + LLg

n(s2LCLc + L + Lc) (s2LC(Lc + Lg) + L + Lc + Lg)
(18)

GVc,iVpwm,j
(s) =

Vc,i(s)

Vpwm,j(s)
=

LLg

n(s2LCLc + L + Lc) (s2LC(Lc + Lg) + L + Lc + Lg)
(19)

Vc,i(z)

Vc,ref(z)

=
−CFf (H1+(n−1)H2) (CFb,Vc

(H1−H2)+CFb,Ic
(H1I−H2I)−1)

(CFb,Vc
(H1−H2)+CFb,Ic

(H1I−H2I)−1) (CFb,Vc
(H1−H2)+CFb,Ic

(H1I−H2I)−1+n(CFb,Vc
H2+CFb,Ic

H2I)

(24)

Factor1 = (CFb,Vc
(H1 − H2) + CFb,Ic

(H1I − H2I) − 1) (25)

Factor2 = (CFb,Vc
(H1 − H2) + CFb,Ic

(H1I − H2I) − 1 + n(CFb,Vc
H2 + CFb,Ic

H2I) (26)

Vc,i(z)

Vc,ref(z)
=

−CFf (H1 + (n − 1)H2)

(CFb,Vc
(H1 − H2) + CFb,Ic

(H1I − H2I) − 1 + n(CFb,Vc
H2 + CFb,Ic

H2I)
(27)
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Fig. 9. Pole-zero map of the soft-coupled system varying module one
coupling impedance Lc,1. Ts = (2π/160), L = 4%, C = 10%, Lc = 2%,
Lc,1 = 0.95Lc, Lg = 3%, ωi = 11, ωv = (3/4)ωi = 8.25, and three-
module system.

single real pole. For a purely ideal system where all the modules

are identical, (25) may be safely cancelled, but for any real

system, this is where the stability issues for parallel coupled

systems appear.

For a purely identical hard-coupled system whose load

(Lg,hard) is the sum of the coupling impedance and load of

a soft-coupled system (Lg,hard = Lg,soft + Lc), the responses

are exactly the same.

Fig. 9 shows the effect when the modules are not identical.

The coupling impedance and load impedance sum are the same

as Fig. 7. When the modules are not exactly identical, the factor

(25) of (24) no longer perfectly cancels and manifests as the

pole-zero pairs just outside of the unit circle. Not only do the

pole-zero pairs not cancel, but the same gains in a hard-coupled

system have a lower stability margin than in a soft-coupled

system. Fig. 9 shows that the additional pole-zero pair are

outside the unit circle, causing the system to become unstable.

Fig. 9 is unstable with the same gains as the hard-coupled

system in Fig. 7.

Fig. 10 shows the pole contour of a nonidentical parallel

configuration with a load impedance. The same contours ex-

ist, which are in the hard-coupled system in Fig. 6, but the

additional complex pole-pair lowers the soft-coupled system’s

stability margin. Table I shows the stability margin gains for a

hard-coupled system against a soft-coupled system. The hard-

coupled system achieves a 37% higher maximum gain than the

soft-coupled system.

The soft-coupled instability requires a minimum of two

parallel modules (by definition). The system gain margin ap-

proaches a limit as the number of parallel modules approaches

infinity. The greatest change in gain margin is between a system

with two and three modules. Displaying the effect of varying

Fig. 10. Pole contour of the soft-coupled system with ωi gain sweep from 5
to 20 pu. Ts = (2π/160), L = 4%, C = 10%, Lc = 2%, Lc,1 = 0.95Lc,
Lg = 3%, ωv = (3/4)ωi, and three-module system.

TABLE I
HARD- AND SOFT-COUPLED PARALLEL STABILITY MARGINS

the number of modules is difficult as the stability margin

only varies by approximately 3% (between two and an infinite

number of modules and with module parameters specified

in Fig. 10).

III. RESULTS

The stability implications of soft-coupled parallel config-

urations were tested both numerically in simulation and in

practice on a three-module 4-kHz-switching 105-kVA system.

MATLAB Simulink was used to simulate the soft- and hard-

coupled parallel configurations. The Simulink Linearization

Toolbox was used throughout the development of the simula-

tions to derive numerical transfer functions to ensure the system

matched the equations discussed previously. Independent alpha

and beta controllers (in the stationary reference frame) are used

in both simulation and hardware.

Tight control of the simulations and hardware experiments

has achieved a very close correlation of results. This was

achieved by ensuring that the same sampling rates, loop delays,

and component values were closely matched. In both simula-

tion and hardware, a whole sample time delay was used with

symmetric sampling at 8 kHz (4-kHz switching).

Due to hardware constraints, the capacitor current state feed-

back was instead approximated by using an observer (discrete

lead) on the capacitor voltage rather than sensing the actual

current. An additional real pole is created, but stability effects

are similar to actual current sensing. Fig. 11 shows the poles
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Fig. 11. Pole-zero map of the soft-coupled system varying module one
coupling impedance Lc,1. Ts = (2π/160), L = 4%, C = 10%, Lc = 2%,
Lc,1 = 0.95Lc, Lg = 3%, ωi = 11, ωv = (3/4)ωi = 8.25, and three-
module system.

and zeros of the system in Fig. 9 but with a capacitor current

observer. In all scenarios, a lead filter cutoff frequency of 25 pu

is used as it provides a similar stability margin as the actual

capacitor current feedback method.

To ensure current sharing between modules, conventional

voltage droop that operates on the individual module’s output

current is used. In both simulation and hardware tests, a droop

of 1% is used. Simulations demonstrated that the droop has

almost no effect on the parallel module stability margin being

demonstrated. Both the simulation and hardware have internal

current limits of ±2 pu, implemented in the controller inductor

current loop.

A. Simulations

Fig. 12 shows the output currents of both hard- and soft-

coupled three-module parallel systems in a grid-connected con-

figuration. The controller gains were varied to find the point that

the soft-coupled system was marginally unstable. The onset of

instability is clearly visible in the soft-coupled output current

waveform. The simulation results produce the same result with

or without a PWM modulator. Small but realistic values of

parasitic damping were added to the simulation to better match

the hardware setup but had negligible effect on the stability

margin of the system.

Instability of the parallel configuration was also confirmed,

and it matches with the theoretical expected stability margin.

A confirmation that the simulation instability is a result of

the unstable poles is confirmed by measuring the instability

oscillation frequency. In Fig. 12, the soft-coupled instability

oscillation frequency is measured as 29 pu. The pole-zero

pair that is outside of the unit circle in Fig. 11 has a natural

frequency of 29.6 pu.

Fig. 12. Simulation output currents of hard- and soft-coupled parallel
systems working against a grid. Ts = (2π/160), L = 4%, C = 10%,
Lc = 2%, Lc,1 = 0.99Lc, Lg = 5%, ωi = 10.6, ωv = (3/4)ωi = 7.9,
and three-module system. Grid resistance = 1%, capacitor ESR = 0.1%, and
inductor parallel resistance = 1/0.1%.

In Fig. 12, the nonlinearity of the unstable soft-coupled

inverter currents is due to the ±2 pu inductor current software

limits.

B. Practical Results

Practical results were attained on a three-module 105-kVA

(50 A at 400 V per module) parallel system, shown in Fig. 13.

Each module has its own controller and receives the same

alpha–beta voltage reference signal from a master controller.

The master controller generates the module reference from

a phase locked loop synchronized to the grid voltage [26],

[27]. An SCR static switch provides local rapid grid connect/

disconnect. The inverters share a common isolation dc supply.

The isolated supply permits direct connection of the inverter

output to the grid, negating the need for an isolation trans-

former, as shown in Fig. 2.

The grid impedance was measured to be approximately 4%

relative to a single-module current rating. The inverter nominal

passive component values are the same or similar as the val-

ues used in the simulation (Ts = 2π/160, L = 4%, C = 10%,
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Fig. 13. Test hardware. Three pairs of reconfigurable active rectifiers and
output inverters.

Fig. 14. Marginally unstable soft-coupled output current. ωi = 10.5.
ωv = 7.9.

and Lc = 2.3%). Component tolerance variations of up to 5%

provided adequate difference between module inductances to

induce soft-coupled instability.

Fig. 14 shows the soft-coupled output current for marginally

unstable gains and that the instability point matches the ex-

pected gains as derived in Section II. Table II shows that both

the simulation and hardware stability margin gains match the

theoretical gains and oscillation frequency to within 2%.

Fig. 15 shows the hard-coupled output voltage for marginally

unstable gains. Similar to the soft-coupled configuration, the

TABLE II
SOFT-COUPLED STABILITY MARGIN

Fig. 15. Marginally unstable hard-coupled configuration output voltage.
ωi = 14.4. ωv = 10.8.

hard-coupled stability margin gains match the theoretical and

simulation results to within 2%.

IV. CONCLUSION

Detailed discrete-time derivations for digitally controlled

grid-connected parallel inverters have been derived. The deriva-

tions and numerical evaluation show that the stability of hard-

coupled parallel systems where each module’s capacitors are

tied together is purely limited by the typical stability con-

straints of discrete-time controllers. This is further confirmed

by demonstrating that identical hard-coupled parallel systems

reduce down and perform exactly the same as one large single

module.

Given the stability of hard-coupled configurations, deriva-

tions are then provided for soft-coupled parallel systems where

each module has its own independent LCL filter. The deriva-

tions and numerical analysis show that the stability of soft-

coupled systems are not just limited by the typical stability

constraints, but additional poles arise, further limiting the con-

troller bandwidth.

Numerical results indicate that the bandwidth limitation of

soft-coupled grid-connected systems can be up to 25%. The

numerical example given for a 50-Hz system with a 8-kHz

sample time shows a voltage bandwidth reduction from the 11th

down to the 8th harmonic.

The analytical derivations and numerical results are further

confirmed with both three-phase simulations and in a 105-kVA

three-module hardware test setup. Stability margins of the

simulations and hardware show a close correlation with the

numerical results to within 2%.
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APPENDIX

NONIDENTICAL HARD-COUPLED DERIVATION

Continuing from (10)–(12) for unique module one and n − 1
identical modules in parallel

GVc,Vpwm,1
(s)

=
LLg

s2LL1LgCn + Lg (L + L1(n − 1)) + LL1n
(28)

GVc,Vpwm,j
(s)

=
(n − 1)L1Lg

s2LL1LgCn + Lg (L + L1(n − 1)) + LL1n
. (29)

Capacitor currents

GIc,Vpwm,1
(s) = sCGVc,Vpwm,1

(s) (30)

GIc,Vpwm,j
(s) = sCGVc,Vpwm,j

(s). (31)

Discretizing voltages and currents

GVc,Vpwm,1
(z) =ZZOH

(

GVc,Vpwm,1
(s)

)

(32)

GVc,Vpwm,1
(z) =ZZOH

(

GVc,Vpwm,1
(s)

)

(33)

GIc,Vpwm,j
(z) =ZZOH

(

GIc,Vpwm,j
(s)

)

(34)

GIc,Vpwm,j
(z) =ZZOH

(

GIc,Vpwm,j
(s)

)

. (35)

Closing loops on all modules

GVc,Vpwm
= GVc,Vpwm,1

+ GVc,Vpwm,j
(36)

GIc,Vpwm
= GIc,Vpwm,1

+ GVc,Vpwm,j
(37)

Vpwm,1

Vc,ref

=
CFf

1 − CFb,Vc
GVc,Vpwm

+ CFb,Ic
GIc,Vpwm

(38)

Vc,1

Vc,ref

=
Vpwm,1

Vref

GVc,Vpwm
. (39)
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