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Abstract Recently, ratio-dependent predator–prey systems have been regarded by some researchers
as being more appropriate for predator–prey interactions where predation involves serious searching
processes. Due to the fact that every population goes through some distinct life stages in real-life, one
often introduces time delays in the variables being modelled. The presence of time delay often greatly
complicates the analytical study of such models. In this paper, the qualitative behaviour of a class of
ratio-dependent predator–prey systems with delay at the equilibrium in the interior of the first quadrant
is studied. It is shown that the interior equilibrium cannot be absolutely stable and there exist non-trivial
periodic solutions for the model. Moreover, by choosing delay τ as the bifurcation parameter we study
the Hopf bifurcation and the stability of the periodic solutions.
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1. Introduction

In population dynamics, the models most often used by ecologists to describe interactions
between predator and prey populations are variations of the standard Lotka–Volterra-
type models. The standard Lotka–Volterra model is built by assuming that the per
capita rate of predation depends on the prey numbers only. Recently, the traditional
prey-dependent predator–prey models have been challenged by several biologists (see
[1–3,10] and the references cited therein) based on the fact that functional and numerical
responses over typical ecological time-scales ought to depend on the densities of both
prey and predators, especially when predators have to share or compete for food. Such
a functional response is called ratio-dependent; roughly stated, the per capita predator
growth rate should be a function of the ratio of prey to predator abundance. Thus an
alternative assumption is that, as the numbers of predators change slowly (relative to

∗ Present address: Department of Mathematics, Shanghai Jiaotong University, Shanghai 200030,
People’s Republic of China (xiaodm@sjtu.edu.cn).

† Present address: Department of Mathematics, East China Normal University, Shanghai 200062,
People’s Republic of China (wxli@math.ecnu.edu.cn).

205



206 D. Xiao and W. Li

prey change), the per capita rate of predation depends on the numbers of both prey
and predator, most probably and simply on their ratio, since there is often competition
among the predators. Based on the Michaelis–Menten or Holling type II function, Arditi
and Ginzburg [2] proposed a ratio-dependent function of the form

p

(
x

y

)
=

c(x/y)
m + (x/y)

=
cx

my + x

and the following ratio-dependent predator–prey model:

ẋ = x(a − bx) − cxy

my + x
,

ẏ = y

(
−d +

fx

my + x

)
.


 (1.1)

Here x(t) and y(t) represent the population densities of prey and predator at time t,
respectively; (a/b) > 0 is the carrying capacity of the prey, d > 0 is the death rate of the
predator, and a, c, m and f are positive constants that stand for prey intrinsic growth
rate, capturing rate, half saturation constant and conversion rate, respectively.

As is typical for predator–prey systems, the x-axis, y-axis and the interior of the first
quadrant are all invariant under system (1.1), and solutions with positive initial values
are positive and bounded. However, differing from the prey-dependent predator–prey
models, the ratio-dependent predator–prey systems have two principal predictions:

(a) equilibrium abundances are positively correlated along a gradient of enrichment
(see Arditi and Gurzburg [2]); and

(b) the ‘paradox of enrichment’ (see Rosenzweig [16]) either completely disappears or
enrichment is linked to stability in a more complex way.

The ratio-dependent predator–prey model (1.1) has been studied by many researchers
recently and very rich dynamics have been observed (see, for example, [10–13,15,17]).
On the other hand, both ecologists and mathematicians often introduce time delays in
the variables being modelled due to the fact that every population goes through some
distinct life stages in real-life problems. In [4] Beretta and Kuang proposed a ratio-
dependent model with a single discrete positive delay τ :

ẋ(t) = x(t)(a − bx(t)) − cx(t)y(t)
my(t) + x(t)

,

ẏ(t) = y(t)
(

−d +
fx(t − τ)

my(t − τ) + x(t − τ)

)
.


 (1.2)

The system (1.2) satisfies the theorem of existence and uniqueness of solutions under the
initial-value condition

x0(θ) = φ1(θ) � 0, y0(θ) = φ2(θ) � 0, θ ∈ [−τ, 0], x0(0) > 0, y0(0) > 0, (1.3)
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where φ = (φ1, φ2) ∈ C([−τ, 0], R2
+), R2

+ = {(x, y) : x � 0, y � 0} and ‖φ‖ =
max{|φ(θ)| : θ ∈ [−τ, 0]} with |φ| any norm in R2.

Beretta and Kuang in [4] made use of a rather novel and non-trivial way of constructing
proper Lyapunov functions to obtain some new and significant global stability or conver-
gence results for (1.2). However, some subtle mathematical questions on the behaviour
of solutions of the model are far from completely answered: for example, the existence of
periodic solutions for the model.

In this paper, we pay attention to the interior equilibrium of (1.2). First we study
the effect of time delay on local stability of the interior equilibrium, then we investigate
conditions on the delay and parameters of (1.2) so that the interior equilibrium is con-
ditionally stable or unstable. It will also be shown that the interior equilibrium of (1.2)
cannot be absolutely stable for all parameters.

We then apply the method in [9] to analyse Hopf bifurcation of (1.2) by choosing delay
τ as a bifurcation parameter, and show the existence and stability of periodic solutions
to (1.2).

This paper is organized as follows. In the next section we show that delay does cause
instability, and we present results on non-occurrence of absolute stability and on condi-
tional stability of the interior equilibrium. In § 3, the analysis of singularities is performed
by using the normal form theory for functional differential equations in [9] and choosing
delay τ as a bifurcation parameter. We show that when the delay takes some critical val-
ues the interior equilibrium becomes unstable and Hopf bifurcation occurs, i.e. periodic
solutions bifurcate from the interior equilibrium as delay τ passes through the critical
values. We give the conditions which guarantee the stability of the periodic solution and
use an example to illustrate the result. The paper ends with a brief discussion.

2. Local stability analysis

In this section, we focus on investigating the local stability of the interior equilibrium of
the system (1.2). As shown in [14], (1.2) (or (1.1)) has a unique interior equilibrium if
and only if any one of the following two conditions is true:

(1) d < f and c � ma; or

(2) d < f < (cd/(c − am)) and am < c.

We denote this unique interior equilibrium by E∗ = (x∗, y∗) and use this notation
throughout this paper, here

x∗ =
a

b
− c(f − d)

bmf
, y∗ =

f − d

dm
x∗.

To study the local stability of the interior equilibrium E∗, we consider linearization
of (1.2) at E∗(x∗, y∗):

Ẋ(t) = α1X(t) + α2Y (t),

Ẏ (t) = β1X(t − τ) + β2Y (t − τ),

}
(2.1)
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where

α1 = −bx∗ +
cx∗y∗

(my∗ + x∗)2
, α2 = − cx∗2

(my∗ + x∗)2
,

β1 =
fmy∗2

(my∗ + x∗)2
, β2 = − fmx∗y∗

(my∗ + x∗)2
.

The characteristic equation for (2.1) takes the form

λ2 − α1λ − β2λe−λτ + (α1β2 − α2β1)e−λτ = 0, (2.2)

where α1β2 − α2β1 > 0.
We recall some definitions (see [5–7,12]). The equilibrium (x∗, y∗) is called asymptot-

ically stable if there exists a δ > 0 such that

sup
−τ�θ�0

[|φ1(θ) − x∗| + |φ2(θ) − y∗|] < δ

implies that

lim
t→∞

(x(t), y(t)) = (x∗, y∗),

where (x(t), y(t)) is the solution of (1.2) which satisfies the condition (1.3). The equi-
librium (x∗, y∗) is absolutely stable if it is asymptotically stable for all delays τ � 0
and is conditionally stable if it is asymptotically stable for τ in some finite interval. The
equilibrium (x∗, y∗) is absolutely unstable if it is unstable for all delay τ � 0.

It is known that the equilibrium is asymptotically stable if all roots of the correspond-
ing characteristic equation have negative real parts. For the equilibrium E∗ of (1.2) there
are two types of stability: absolute stability (independent of the delay) and conditional
stability (depending on the delay). We know that the time delay cannot change the
number and location of equilibria of (1.2). Hence (1.2) has the same equilibria as the
corresponding ordinary differential equation (ODE) system (i.e. the system (1.1)). The
equilibrium E∗ of (1.2) is absolutely stable if and only if the equilibrium E∗ of the corre-
sponding ODE system (i.e. system (1.1)) is asymptotically stable and the characteristic
equation (2.2) has no purely imaginary roots for any τ > 0. Thus if all roots of the
characteristic equation (2.2) have negative real parts at τ = 0 and there exist some pos-
itive values τ such that the characteristic equation (2.2) has a pair of purely imaginary
roots, say ±iω0, then the equilibrium E∗ of (1.2) is not absolutely stable but could be
conditionally stable. Suppose that ω0 is obtained when the delay reaches a positive value
τ0, where τ0 satisfies the condition that when 0 < τ < τ0 the real parts of all roots
of the characteristic equation still remain negative, and when τ = τ0 the characteristic
equation (2.2) has a pair of purely imaginary roots ±iω0. If, moreover, the transversal
condition holds at τ = τ0, then when τ > τ0 the characteristic equation (2.2) will have at
least one root with positive real part and the equilibrium E∗ of (1.2) becomes unstable
by Rouché’s theorem [8]. Hence, the equilibrium E∗ of (1.2) is conditionally stable.

In order to study the local stability of (1.2), we have to recall some results of the
corresponding ODE system (i.e. (1.1)) on stability of the interior equilibrium E∗. The
proof of the following lemma can be found in [17].



Stability and bifurcation in a predator–prey system 209

Lemma 2.1. Suppose that (1.1) has a unique interior equilibrium (x∗, y∗), i.e. either
one of conditions (1) and (2) holds. Denote ∆ = m2d4 + 4cd2(c − am − dm). Then there
are only three possibilities.

(1) The equilibrium (x∗, y∗) of (1.1) is locally asymptotically stable if any of the fol-
lowing conditions hold:

(i) d < f and c � ma;

(ii) d < f < (cd/(c − am)) and am < c � am + dm;

(iii) d < f < [(−md2 +
√

∆)/(2(c − am − dm))] and 0 < c − am − dm.

(2) The equilibrium (x∗, y∗) is unstable if

(iv) [(−md2 +
√

∆)/(2(c− am− dm))] < f < (cd/(c− am)) and 0 < c− am− dm.

(3) The equilibrium (x∗, y∗) is non-hyperbolic if

(v) f = [(−md2 +
√

∆)/(2(c − am − dm))] and 0 < c − am − dm.

Remark 2.2. According to the results in [14], the limit cycle of (1.1) is unique and
stable if it exists. We find that the non-hyperbolic equilibrium (x∗, y∗) in case (3) is
stable if a non-trivial periodic orbit can be bifurcated by (x∗, y∗).

By applying the theorem from Kuang [12], we see that if (x∗, y∗) is unstable for (1.1),
then it will remain so for all τ > 0. Hence, from Lemma 2.1 we have the following
theorem.

Theorem 2.3. When [(−md2 +
√

∆)/(2(c − am − dm))] < f < (cd/(c − am)) and
0 < c − am − dm with ∆ = m2d4 + 4cd2(c − am − dm), the interior equilibrium (x∗, y∗)
of (1.2) is absolutely unstable.

We now turn to an investigation of the roots of the characteristic equation (2.2).
Obviously, these roots depend on τ . In the following we explore the case when (2.2) has
a pair of purely imaginary roots. Assume that for some τ � 0, iω with ω > 0 is a root
of (2.2). We then have

−ω2 − α1ωi − β2ωie−ωτ i + (α1β2 − α2β1)e−ωτ i = 0.

Separating the real and imaginary parts, we obtain

−ω2 − β2ω sin ωτ + (α1β2 − α2β1) cos ωτ = 0,

−α1ω − β2ω cos ωτ − (α1β2 − α2β1) sin ωτ = 0.

}
(2.3)

Equations (2.3) are equivalent to

cos ωτ = − α2β1ω
2

β2
2ω2 + (α1β2 − α2β1)2

,

sin ωτ = −β2ω
3 + α1ω(α1β2 − α2β1)

β2
2ω2 + (α1β2 − α2β1)2

.




(2.4)
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From Equations (2.4) we have

(
− α2β1ω

2

β2
2ω2 + (α1β2 − α2β1)2

)2

+
(

−β2ω
3 + α1ω(α1β2 − α2β1)

β2
2ω2 + (α1β2 − α2β1)2

)2

= 1. (2.5)

Thus if (2.5) has positive real solutions, then we can get the corresponding τ � 0
from (2.4) such that the characteristic equation (2.2) has purely imaginary roots. It
is not difficult to check that (2.5) does have positive real roots by letting s = ω2 to
change (2.5) into a polynomial equation in s. Furthermore, in order to determine the
exact value of ω, by (2.3) we have

ω4 + (α2
1 − β2

2)ω2 − (α1β2 − α2β1)2 = 0,

which has a unique positive real root

ω0 =

√
1
2

(
− (α2

1 − β2
2) +

√
(α2

1 − β2
2)2 + 4(α1β2 − α2β1)2

)
. (2.6)

Therefore, we have the following lemma.

Lemma 2.4. Let ∆ = m2d4 + 4cd2(c − am − dm).

(1) Suppose that any one of the following conditions hold:

(i) d < f and c � ma;

(ii) d < f < (cd/(c − am)) and am < c � am + dm;

(iii) d < f < [(−md2 +
√

∆)/(2(c − am − dm))] and 0 < c − am − dm.

Then, only when

τ = τk = ω−1
0 arcsin

(
−β2ω

3
0 + α1ω0(α1β2 − α2β1)

β2
2ω2

0 + (α1β2 − α2β1)2

)
+ 2kπ

for some k = 0, 1, 2, . . . (or some k = 1, 2, . . . ) if τ0 > 0 (respectively, τ0 < 0), does
the characteristic equation (2.2) have a unique pair of purely imaginary roots ±iω0,
where ω0 is given by (2.6).

(2) If f = [(−md2 +
√

∆)/(2(c − am − dm))] and 0 < c − am − dm, then only when
τ = τ∗

k = 2kπ/ω0 for some k = 0, 1, 2, . . . , does the characteristic equation (2.2)
have a unique pair of purely imaginary roots ±iω0, where ω0 =

√
α1β2 − α2β1.

Proof. (1) From the above analysis, we can see that the characteristic equation (2.2)
only has a unique pair of purely imaginary roots ±iω0 when the non-negative real number
τ satisfies Equations (2.4). Noting that −α2β1 > 0, from (2.4) we get

τ = τk = ω−1
0 arcsin

(
−β2ω

3
0 + α1ω0(α1β2 − α2β1)

β2
2ω2

0 + (α1β2 − α2β1)2

)
+ 2kπ.
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Here we would like to point out that τ0 �= 0 when one of the conditions (i)–(iii) holds.
Hence, to guarantee τk > 0 we take k = 0, 1, 2 . . . (or k = 1, 2, . . . ) if τ0 > 0 (respectively,
τ0 < 0).

(2) Note that f = [(−md2 +
√

∆)/(2(c − am − dm))] implies α1 + β2 = 0. So we
have ω0 =

√
α1β2 − α2β1 by (2.6). Correspondingly, from (2.4) we get τ = τ∗

k = 2kπ/ω0,
k = 0, 1, 2, . . . . �

Now we investigate how the real part of the roots of (2.2) varies as τ varies in a small
neighbourhood of τk. Let u + iω be a root of (2.2). Separating the real and imaginary
parts of (2.2) we then have

H1(u, ω, τ) = 0,

H2(u, ω, τ) = 0,

}
(2.7)

where

H1(u, ω, τ) = u2−ω2−α1u−e−uτβ2u cos ωτ −e−uτβ2ω sin ωτ +(α1β2−α2β1)e−uτ cos ωτ

and

H2(u, ω, τ) = 2uω − α1ω − e−uτβ2ω cos ωτ + e−uτβ2u sin ωτ − (α1β2 − α2β1)e−uτ sin ωτ.

By Lemma 2.4 we have H1(0, ω0, τk) = H2(0, ω0, τk) = 0. It is easy to check that the
Jacobian matrix

J =




∂H1

∂u

∂H1

∂ω

∂H2

∂u

∂H2

∂ω




satisfies |J |(0,ω0,τk) > 0. By means of the implicit function theorem we deduce that Equa-
tions (2.7) define u, ω as functions of τ in a neighbourhood of (0, ω0, τk) such that
u(τk) = 0 and ω(τk) = ω0. Moreover, du(τk)/dt > 0. Thus this root of (2.2) crosses
the imaginary axis from the left to the right as τ continuously varies from a number
less than τk to one greater than τk by Rouché’s theorem and Lemma 2.1. The following
theorem is an addition to Theorem 2.3, which can be proven by the above arguments
and Lemma 2.4.

Theorem 2.5. Let ∆ = m2d4 + 4cd2(c − am − dm).

(1) When any one of the following conditions holds,

(i) d < f and c � ma,

(ii) d < f < (cd/(c − am)) and am < c � am + dm,

(iii) d < f < [(−md2 +
√

∆)/(2(c − am − dm))] and 0 < c − am − dm,

the interior equilibrium (x∗, y∗) of (1.2) is conditionally stable. Thus a small vari-
ation of delay does not change the stability of the interior equilibrium.
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(2) When f = [(−md2 +
√

∆)/(2(c − am − dm))] and 0 < c − am − dm, the interior
equilibrium (x∗, y∗) of (1.2) is unstable for all τ > 0.

Remark 2.6. From Remark 2.2 we can see that any small delay can change the
stability of the interior equilibrium in case (2) of Theorem 2.5.

Remark 2.7. Theorems 2.3 and 2.5 imply the non-occurrence of absolute stability of
the interior equilibrium (x∗, y∗) of (1.2).

3. The Hopf bifurcation

In this section we will discuss the Hopf bifurcation of (1.2) where we take τ as a bifurcation
parameter. According to the analysis in § 2, one can see that when the interior equilibrium
(x∗, y∗) of (1.1) is locally asymptotically stable, the characteristic equation (2.2) of (1.2)
has pure imaginary roots ±iω0 if and only if τ = τk, and the transversal condition holds
at τ = τk. Thus the following theorem is implied by Theorem 2.5 (see [12]).

Theorem 3.1. If any one of the following conditions holds,

(i) d < f and c � ma,

(ii) d < f < (cd/(c − am)) and am < c � am + dm,

(iii) d < f < [(−md2 +
√

∆)/(2(c − am − dm))] and 0 < c − am − dm, where ∆ =
m2d4 + 4cd2(c − am − dm),

then a Hopf bifurcation occurs on a two-dimensional centre manifold for (1.2) at the
interior equilibrium (x∗, y∗) for τ = τk (here k ∈ N0 = {0, 1, 2, . . . } or k ∈ N = {1, 2, . . . }
as stated in Lemma 2.4), which is associated with the simple eigenvalues ±iω0. This centre
manifold is locally stable for τ = τ0 (or, respectively, τ = τ1) and unstable for τ = τk,
k = 1, 2, . . . (or, respectively, k = 2, 3, . . . ).

To determine the direction of the bifurcation and the stability of the periodic solution
created by Hopf bifurcation, the normal form theory for functional differential equations
(FDEs) developed by Faria and Magalhães [9] will be employed for discussing the explicit
expressions of the normal form of (1.2) in terms of the original parameters in a small
neighbourhood of τk. By time scaling t → (t/τ), (1.2) is transformed into

ẋ(t) = τ(x(t)
(

a − bx(t)) − cx(t)y(t)
my(t) + x(t)

)
∆= τf (1)(x(t), y(t)),

ẏ(t) = τy(t)
(

−d +
fx(t − 1)

my(t − 1) + x(t − 1)

)
∆= τf (2)(y(t), x(t − 1), y(t − 1)),




(3.1)

in a fixed phase space C1 = C([−1, 0];R2
+).

Even though the normal form procedure for FDEs is given in [9], it is very difficult to
completely treat (3.1) for all permissible parameters since hard computation is involved.

To simplify computation, we only consider the Hopf bifurcation of (3.1) in the case
that f =

√
cd2/(c − am). In this case, we have α1 = 0 in (2.1).
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Theorem 3.2. Suppose am < c < am + dm and f =
√

cd2/(c − am). Then (3.1) has
a unique interior equilibrium (x0, y0), where

x0 =
a

b
− c −

√
c2 − amc

bm
, y0 =

√
c −

√
c − am

m
√

c − am
x0.

Furthermore, there exists a τ (0) such that (x0, y0) is locally asymptotically stable (unsta-
ble) whenever 0 < τ < τ (0) (respectively, τ > τ (0)). When τ = τ (k), there exists a unique
pair of simple purely imaginary roots ±iωk for the characteristic equation of the linearized
equation of (3.1) around (x0, y0), where

τ (k) =

√
ω2

k(
√

b4
2 + 4a2

2b
2
1 − b2

2)
2a2

2b
2
1

, ωk = arccos
b2
2 −

√
b4
2 + 4a2

2b
2
1

2a2b1
+ 2kπ, k = 0, 1, 2, . . . ,

a2 = − c(x0)2

(my0 + x0)2
, b1 =

m(y0)2

(my0 + x0)2

√
cd2

c − am
, b2 = − mx0y0

(my0 + x0)2

√
cd2

c − am
.

Proof. First of all, letting x1 = x − x0, x2 = y − y0, we move the equilibrium (x0, y0)
of (3.1) to the origin. By noting that f =

√
cd2/(c − am) and separating the linear terms

from the nonlinear terms, (3.1) can be changed into

ẋ1(t) = τ(a2x2(t) + F1(x1(t), x2(t))),

ẋ2(t) = τ(b1x1(t − 1) + b2x2(t − 1) + F2(x2(t), x1(t − 1), x2(t − 1))),

}
(3.2)

where

a2 = − c(x0)2

(my0 + x0)2
, b1 =

m(y0)2

(my0 + x0)2

√
cd2

c − am
, b2 = − mx0y0

(my0 + x0)2

√
cd2

c − am

and

F1(x1(t), x2(t)) = f (1)(x1(t) + x0, x2(t) + y0) − ∂f (1)(x0, y0)
∂x

x1(t) − ∂f (1)(x0, y0)
∂y

x2(t),

F2(x2(t), x1(t − 1), x2(t − 1))

= f (2)(x2(t) + y0, x1(t − 1) + x0, x2(t − 1) + y0) − ∂f (2)(y0, x0, y0)
∂y

x2(t)

− ∂f (2)(y0, x0, y0)
∂x(t − 1)

x1(t − 1) − ∂f (2)(y0, x0, y0)
∂y(t − 1)

x2(t − 1).

To study the local stability of the zero solution of (3.2), we consider the characteristic
equation of the linearized equation

ẋ1(t) = τa2x2(t),

ẋ2(t) = τ(b1x1(t − 1) + b2x2(t − 1)),

}
(3.3)

around the equilibrium (0, 0), which is given by

∆(λ, τ) = λ2 − b2τλe−λ − a2b1τ
2e−λ = 0. (3.4)
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Assume that for some τ > 0, Equation (3.4) has a root iω, ω > 0. Then

−ω2 − b2τω sin ω − a2b1τ
2 cos ω = 0,

−b2τω cos ω + a2b1τ
2 sin ω = 0.

}
(3.5)

It is easy to see that Equations (3.5) are equivalent to

−ω2 cos ω − a2b1τ
2 = 0,

−b2τ − ω sin ω = 0.

}
(3.6)

Solving Equations (3.6) yields the following solutions:

ωk = arccos
b2
2 −

√
b4
2 + 4a2

2b
2
1

2a2b1
+ 2kπ, τ (k) =

√
ω2

k(
√

b4
2 + 4a2

2b
2
1 − b2

2)
2a2

2b
2
1

, k = 0, 1, . . . .

As a result, (3.4) has the root iωk if and only if τ = τ (k).
Now let H1(u, ω, τ) = Re ∆(u + iω, τ), H2(u, ω, τ) = Im ∆(u + iω, τ) and H(u, ω, τ) =

(H1(u, ω, τ), H2(u, ω, τ)). By the implicit function theorem, in a small neighbourhood of
τ (k) the equation H(u, ω, τ) = 0 defines u, ω as functions of τ such that u(τ (k)) = 0,
ω(τ (k)) = ωk and u′(τ (k)) > 0. Thus the root ωki of equation ∆(λ, τ (k)) = 0 is simple.
Using a similar method, we can prove that the root −iωk of ∆(λ, τ (k)) = 0 is simple too.
This completes the proof of the theorem. �

We now introduce some notation. Considering the phase space C1, (3.2) can be written
as an equation in C1

Ẋ(t) = τL(Xt) + τF (Xt), (3.7)

where X(t) is a vector (x1(t), x2(t)), Xt ∈ C1, Xt(θ) = X(t + θ), −1 � θ � 0, and
L : C1 → R2

+, F : C1 → R2
+ are given by

L(ϕ) =

(
a2ϕ2(0)

b1ϕ1(−1) + b2ϕ2(−1)

)
, F (ϕ) =

(
F1(ϕ1(0), ϕ2(0))

F2(ϕ2(0), ϕ1(−1), ϕ2(−1))

)
,

for ϕ = (ϕ1, ϕ2) ∈ C1.
Let A be the generator of the linear semigroup corresponding to (3.3). When τ = τ (k), A

has a pair of simple purely imaginary characteristic roots ±iωk and no other characteristic
roots with zero real part. Hence, Hopf bifurcation may occur at τ = τ (k).

For a fixed k ∈ N0, define Λ = {−iωk, iωk} and introduce a new parameter ν = τ − τ (k).
The system (3.7) can be written as

Ẋ(t) = τ (k)L(Xt) + F0(Xt, ν), (3.8)

where F0(ϕ, ν) = νL(ϕ) + (τ (k) + ν)F (ϕ).
To describe the Hopf bifurcation occurring at τ (k) and the stability of the periodic

solutions by Hopf bifurcation, we will apply the normal form theory for FDEs in [9]
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to (3.8). Let the phase space C1 be decomposed by Λ as C1 = P ⊕ Q, where P is the
generalized eigenspace associated with Λ. Consider the adjoint bilinear form (·, ·) on
C∗

1 × C1 associated with the linear equation Ẋ(t) = τkL(Xt):

(ψ, φ) = ψ(0)φ(0) −
∫ 0

−r

∫ θ

0
ψ(ξ − θ) dη(θ)φ(ξ) dξ.

Assume that Φ = (φ1, φ2) is a basis for P and Ψ = col(ψ1, ψ2) is a basis for the dual
space P ∗ in C∗

1 associated with the eigenvalues ±iωk of the adjoint equations. Then it
can be normalized so that (Φ, Ψ) = I. Here it is convenient to combine one complex
coordinate and two complex conjugate basis vectors to describe a two-dimensional real
subspace P . Consider (3.8) in C([−1, 0]; C), still denoted by C1. Note that Φ̇ = ΦB,
where B = diag(iωk,−iωk) is a diagonal matrix. Therefore, Φ and Ψ are 2 × 2 matrices
of the form

Φ(θ) = [φ1(θ), φ2(θ)], φ1(θ) = eiωkθv, φ2(θ) = φ1(θ), −1 � θ � 0,

Ψ(s) =

(
ψ1(s)
ψ2(s)

)
, ψ1(s) = e−iωksuT, ψ2(s) = ψ1(s), 0 � s � 1,

where the bar means complex conjugation, uT is the transpose of u,

u =

(
u1

u2

)
=


 u1

iωkeiωku1

b1τ (k)


 ∈ C

2, v =

(
v1

v2

)
=


 1

iωk

a2τ (k)


 ∈ C

2,

with

u1 =
a2b1τ

(k)

(2a2b1τ (k) − b2ω2
k) + (a2b1ωkτ (k) + b2ωk)i

.

Enlarge the phase space C1 by considering the space BC and using the decomposition
Xt = Φz(t) + yt, z ∈ C

2, yt ∈ Q′. We decompose (3.8) as follows:

ż = Bz + Ψ(0)F0(Φz + y, ν),

ẏ = AQ′y + (I − π)X0F0(Φz + y, ν).

}
(3.9)

Here and below we refer to [9] for results and explanations of some notation involved.
Following the procedure of reducing normal form in [9], we consider the Taylor formula

Ψ(0)F0(Φz + y, ν) = 1
2g

(1)
2 (z, y, ν) +

1
3!

g
(1)
3 (z, y, ν) + h. o. t.,

(I − π)X0F0(Φz + y, ν) = 1
2g

(2)
2 (z, y, ν) +

1
3!

g
(2)
3 (z, y, ν) + h. o. t.,

where g
(1)
j (z, y, ν), g

(2)
j (z, y, ν) (j = 2, 3) are homogeneous polynomials in (z, y, ν) of

degree j with coefficients in C
2 and Kerπ, respectively, and h. o. t. stands for higher-order
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terms. Thus in a finite-dimensional locally invariant manifold tangent to the invariant
subspace P of (3.9) at x = 0, ν = 0, the normal form of (3.9) is given by

ż = Bz + 1
2 ḡ

(1)
2 (z, 0, ν) +

1
3!

ḡ
(1)
3 (z, 0, ν) + h. o. t., (3.10)

where ḡ
(1)
2 , ḡ

(1)
3 are the second- and third-order terms in (z, ν), respectively. Using the

notations in [9], we have

ḡ
(1)
2 (z, 0, ν) = ProjKer(M ′

2)
g
(1)
2 (z, 0, ν),

where

Ker(M ′
2) = span

{(
z1ν

0

)
,

(
0

z2ν

)}
,

g
(1)
2 (z, 0, ν) =


 2i

ωk

τ (k) u
Tvz1ν + a20z

2
1 + a11z1z2 + a02z

2
2

−2i
ωk

τ (k) ū
Tv̄z2ν + ā02z

2
1 + ā11z1z2 + ā20z

2
2


 .

We would like to point out that the coefficients a20, a11 and a02 can be expressed in
terms of the parameters in the original equations (3.8) by the algorithm of normal form.
However, the explicit formulae for a20, a11 and a02 are tediously long, since both Φ and
Ψ have quite complicated expressions, as shown above. Therefore, for the sake of conve-
nience we prefer to use the notation a20, a11 and a02 instead of their exact expressions
in the following context.

To eliminate the non-resonant terms in the quadratic expressions g
(1)
2 (z, 0, ν) we have

to make a series of transformations of variables, which may change the coefficients of the
cubic terms of g

(1)
3 (z, 0, ν). From the canonical basis for Ker(M ′

2), we have

1
2 ḡ

(1)
2 (z, 0, ν) =


 i

ωk

τ (k) u
Tvz1ν

−i
ωk

τ (k) ū
Tv̄z2ν


 .

Furthermore, recalling the operator M ′
3, we know that

Ker(M ′
3) = span

{(
z2
1z2

0

)
,

(
z1ν

2

0

)
,

(
0

z1z
2
2

)
,

(
0

z2ν
2

)}
.

However, the terms O(|z|ν2) are irrelevant to determining the generic Hopf bifurcation.
Hence we only need to compute the coefficient of z2

1z2. After some computations we find
that the coefficient of z2

1z2 is

c =
i

2ωk
(a20a11 − 2|a11|2 − 1

3 |a02|2) + 1
2a21,
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where 1
2a21 is the coefficient of the term z2

1z2 in g
(1)
3 (z, 0, ν). Thus

1
3!

ḡ
(1)
3 (z, 0, ν) =

(
cz2

1z2

c̄z1z
2
2

)
+ O(|z|ν2).

The normal form (3.10) relative to P can be written in real coordinates (x, y), through
the change of variables z1 = x − iy, z2 = x + iy. Then, using the polar coordinates (r, θ),
x = r cos θ, y = r sin θ, this normal form becomes

ṙ = c1νr + c2r
3 + O(ν2r + |(r, ν)|4),

θ̇ = −ωk + O(|(r, ν)|),

where

c1 = Re
(

i
ωk

τ (k) u
Tv

)
, c2 = Re(c).

Therefore, these arguments lead to the following theorem.

Theorem 3.3. If c2 �= 0 and τ (k) > 0, then (3.8) exhibits a generic Hopf bifurcation.
The periodic orbits of (3.8) bifurcating from the origin and ν = 0 satisfy

r(t, ν) =
√

−c1ν

c2
+ O(ν), θ(t, ν) = −2ωkt + O(|ν|1/2),

so that

(i) if c1c2 < 0 (respectively, c1c2 > 0), there exists a unique non-trivial periodic orbit
in a neighbourhood of r = 0 for ν > 0 (respectively, ν < 0) and no non-trivial
periodic orbits for ν < 0 (ν > 0, respectively); and

(ii) the non-trivial periodic solutions in the centre manifold are stable if c2 < 0 and
unstable if c2 > 0.

As an example of the preceding results, we now consider

ẋ(t) = τ(x(t)
(

1 − x(t)) − 2x(t)y(t)
y(t) + x(t)

)
,

ẏ(t) = τy(t)
(

−
√

2 +
2x(t − 1)

y(t − 1) + x(t − 1)

)

 (3.11)

in a fixed phase space C1 = C([−1, 0];R2
+).

The system (3.11) has a unique interior equilibrium E∗ = (
√

2 − 1, (
√

2 − 1)2). The
purpose here is to consider the dynamics of (3.11) in a neighbourhood of E∗ at a bifur-
cation point of the parameter τ . In the following, we shall apply Theorems 3.2 and 3.3
to (3.11) and obtain the following theorem.

Theorem 3.4. Let ω1 ∈ (2π, 3π) and τ1 be defined by

ω1 = arccos
√

5 − 1
2

+ 2π, τ1 = ω1

√√
5 − 1

2 −
√

2
.
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Then for τ = τ1, ±iω1 are simple roots of the characteristic equation of (3.11) at E∗

and the remaining roots have non-zero real parts. Furthermore, for (3.11) there is a
subcritical Hopf bifurcation at τ = τ1, with the non-trivial periodic orbit being unstable
in the centre manifold, and the centre manifold is unstable.

Proof. According to Theorem 3.2, we get immediately, when

τ = τk = ωk

√√
5 − 1

2 −
√

2
,

that ±iωk are simple roots of the characteristic equation of (3.11) at E∗ and the remaining
roots have non-zero real parts, where ωk = arccos 1

2 (
√

5 − 1) + 2kπ, k = 0, 1, 2, . . . . More
precisely, when τ ∈ (0, τ0), all roots of the characteristic equation of (3.11) at E∗ have
negative real parts, (3.11) then has a locally asymptotically stable equilibrium E∗; when
τ = τ0, ±iω0 are simple roots of the characteristic equation of (3.11) at E∗ and the
remaining roots have negative real parts, (3.11) then has a stable centre manifold; when
τ = τk, ±iωk are simple roots of the characteristic equation of (3.11) and the remaining
roots have non-zero real parts, (3.11) then has an unstable centre manifold for k =
1, 2, . . . .

We are interested in studying the behaviour of periodic solutions bifurcating from
τ = τ1. Taking ν = τ − τ1, the system (3.11), in the notation introduced prior to
Theorem 3.3, becomes

Ẋ(t) = τ1L(Xt) + F0(Xt, ν), (3.12)

where F0(ϕ, ν) = νL(ϕ) + (τ1 + ν)F (ϕ) for ϕ = (ϕ1, ϕ2) ∈ C1,

L(ϕ) =

(
−ϕ2(0)

(
√

2 − 1)2ϕ1(−1) + (−
√

2 + 1)ϕ2(−1)

)
,

F (ϕ) =

(
F1(ϕ1(0), ϕ2(0))

F2(ϕ2(0), ϕ1(−1), ϕ2(−1))

)
.

We can compute the vectors u and v according to their expressions given before Theo-
rem 3.3. Omitting these complicated expressions, we obtain the numerical results directly
by means of the software Mathematica:

u =

(
u1

u2

)
=

(
−0.058 27 − 0.069 01i
0.271 64 + 0.056 01i

)
, v =

(
v1

v2

)
=

(
1

−0.526 89i

)
.

Following the procedure of reducing normal form, we can get the coefficients in the case
when ν = 0 by means of the software Mathematica:

a20 = 0.765 562 − 0.380 496i, a11 = 0.345 173 − 0.291 445i,

a02 = 0.184 747 − 1.418 51i, a21 = 0.288 28 + 0.859 34i.
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Recalling some expressions introduced before Theorem 3.3,

c =
i

2ωk
(a20a11 − 2|a11|2 − 1

3 |a02|2) + 1
2a21, c1 = Re

(
i

ωk

τ (k) u
Tv

)
, c2 = Re(c),

we have
c1 = 0.111 771, c2 = 0.168 797.

Therefore, Theorem 3.3 implies the occurrence of a subcritical Hopf bifurcation at the
point τ = τ1 from equilibrium E∗ with the associated periodic solution being unstable
in the centre manifold. �

4. Discussion

It is interesting to compare our local stability results with the global results in [4].
We make the local stable analysis of the interior equilibrium depending on all parame-
ters and bifurcation analysis by choosing time delay τ as a bifurcation parameter. Our
analysis supports their results (i.e. the global stability of the interior equilibrium must
require conditions on τ) and also complements their results in the sense that we give
all conditions depending on all parameters in (1.2) such that the interior equilibrium
is not globally stable, and show the sufficient conditions which guarantee the existence
and stability of the non-trivial periodic solution of (1.2). Our analysis indicates that the
dynamics of the ratio-dependent predator–prey system with time delay can be much
more complicated than we may have expected. It is still interesting and challenging to
systematically describe the global dynamics of the model for all parameters by means of
the local properties of the interior equilibrium.
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