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Abstract

This paper is concerned with a two-neurons network model with two
discrete delays. By regarding the sum of two discrete time delay as the
bifurcation parameter, the stability of the equilibrium and Hopf bifur-
cations are investigated. Finally, to verify our theoretical predictions,
some numerical simulations are also included.

Mathematics Subject Classification: 34K18; 34K20; 92B20

Keywords: Time delay; Neuron network; Stability; Hopf bifurcation

1 Introduction

Recently, a large number of neural networks models have been proposed and
studied extensively since Hopfield constructed a simplified neural network. In
most networks however, it is usually expected that time delays exist during the
processing and transmission of signals. In general, delay-differential equations
exhibit much more complicated dynamics than ordinary differential equations
since a time delay could cause a stable equilibrium to become unstable [1].
Recently, time delays have been incorporated into neural network models by
many authors [1, 2, 4, 5, 6], there has been great interest in dynamical char-
acteristics of neural network model with delay.

In present paper, we consider a simplified Hopfield-type neural network
model with two delays

{

u̇1 (t) = −u1(t) + a11f(u1(t)) + a12f(u2(t − τ1)),

u̇2 (t) = −u2(t) + a21f(u1(t − τ2)) + a22f(u2(t)),
(1)

where τi (i = 1, 2) are non-negative constants, and f(x) is C2 function.
Throughout this paper we also assume that f(0) = 0.
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In general, the delays appearing in different terms of a neural network
model are not equal each other. Therefore, it is more realistic to consider the
dynamics of a dynamical system with different delays. Based on this idea,
in this paper, we consider the dynamical behaviors of system (1), that is, by
taking τ1 + τ2 as the bifurcation parameter, we investigate the stability and
Hopf bifurcations of system (1) induced by the delays.

This paper is organized as follows. In Section 2, we shall consider the
stability of the zero equilibrium and the existence of local Hopf bifurcation.
In order to verify our theoretical prediction, some numerical simulations are
included in Section 3.

2 Stability analysis and Hopf bifurcation

Taking the following variable change: v1 (t) = u1(t − τ2), v2 (t) = u2(t), then
the system (1) can be rewritten as

{

v̇1 (t) = −v1(t) + a11f(v1(t)) + a12f(v2(t − τ)),

v̇2 (t) = −v2(t) + a21f(v1(t)) + a22f(v2(t)),
(2)

where τ = τ1 + τ2.
It is obvious that the origin (0, 0) is an equilibrium of system (2). Lineariz-

ing system (2) about the origin (0, 0) yields the following linear system
{

v̇1 (t) = −v1(t) + α11v1(t) + α12v2(t − τ),
v̇2 (t) = −v2(t) + α21v1(t) + α22v2(t),

(3)

where αij = aijf
′(0), i, j=1,2. The associated characteristic equation of system

(3) is

λ2 + pλ + q − α12α21e
−λτ = 0, (4)

where
p = 2 − α11 − α22, q = (1 − α11)(1 − α22).

The stability of the origin (0, 0) of system (2) depends on the locations on
the complex plane of the roots of the characteristic equation (3). When all
roots of Eq. (3) locate on the left half-plane of complex plane, the origin (0, 0)
of system (2) is stable; otherwise, it is unstable.

Note that when τ = 0, (4) becomes

λ2 + pλ + q − α12α21 = 0, (5)

solve Eq. (5), then the roots of (5) are given by

λ1,2 =
−p ±

√

p2 − 4(q − α12α21)

2
.

Thus, one can immediately obtain the following result.
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Lemma 2.1 Assume that (H1) p > 0, q − α12α21 < 0. Then all the roots

of Eq. (2) with τ = 0 have always negative real parts.

Next, we shall investigate the distribution of roots of Eq.(4) with τ > 0.
First note that, under condition (H1), Eq.(4) has no zero root. Next we shall
look for the possibility of occurrence of a pair pure imaginary roots. Obviously,
iω(ω > 0) is a root of (4) if and only if ω satisfies the following equation

−ω2 + ωpi + q − α12α21(cos ωτ − i sinωτ) = 0. (6)

Separating the real and imaginary parts of (6) gives the following equations

{

−ω2 + q = α12α21 cosωτ,

−ωp = α12α21 sinωτ.
(7)

By some simple calculations, it is easy to obtain

ω4 + (p2
− 2q)ω2 + q2

− (α12α21)
2 = 0, (8)

and

tanωτ =
pω

q − ω2
. (9)

It is easy to see that the first equation of (8) has only one positive root

ω0 =

[

2q − p2 +
√

(2q − p2)2 − 4 [q2 − (α12α21)2]

2

]
1

2

(10)

provided that the following assumption (H2) 2q − p2 < 0, q2
− (α12α21)

2 < 0
is satisfied.

From equation (9), we define

τ j = 1

ω0

(

arctan pω0

q−ω2

0

+ πj
)

, j = 0, 1, 2, · · · , (11)

then Eq. (4) with τ = τ j has a pair of purely imaginary roots ±iω0.
Since the roots of Eq. (4) continuously depend on the parameter τ , sum-

marizing the above remarks and combining Lemma 2.1, the following result
holds.

Lemma 2.2 Suppose that (H1) and (H2) hold, then

(i) If τ ∈ [0, τ 0), then all roots of Eq. (4) have strictly negative real parts.

(ii) If τ = τ 0, then Eq. (4) has a pair of purely imaginary roots ±iω0 and

other roots have strictly negative real parts.
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(iii) If τ = τ j, then Eq. (4) has a simple pair of purely imaginary root ±iω0,

where τ j are defined by (11) and ω0 is defined by (10).

Let λ(τ) = α(τ) + iω(τ) be the roots of Eq. (4) satisfying

α(τ j) = 0, ω(τ j) = ω0, j = 0, 1, 2, · · · .

Lemma 2.3 The following transversality condition is satisfied

dReλ (τ)

dτ

∣

∣

∣

∣

τ=τ j

> 0. (12)

In fact, differentiating the two sides of (4) with respect to τ , we can obtain

2λλ′ + pλ′ + α12α21λe−λτ = 0,

which implies
dλ

dτ
=

−α12α21λe−λτ

2λ + p
.

We can directly compute that

dReλ(τ)

dτ

∣

∣

∣

∣

τ=τ j

=
α12α21(−pω0 sin ω0τ

j
− 2ω2

0 cosω0τ
j)

p2 + 4ω2
0

.

Under the condition (H2), by the equation (7), we have

dReλ(τ)

dτ

∣

∣

∣

∣

τ=τ j

=
ω2

0(p
2
− 2q + 2ω2

0)

p2 + 4ω2
0

> 0.

As the multiplicities of roots with positive real parts of Eq. (4) can change
only if a root appears on or crosses the imaginary axis as time delay τ varies,
similar to the proof of the lemma of Wei and Ruan [6], by Lemma 2.3, we have
the following result.

Lemma 2.4 If τ ∈ (τ j , τ j+1), then Eq. (4) has 2(j +1)(j = 0, 1, 2, · · · · · · )
roots with positive real part.

By Lemmas 2.1-2.4, we have the following result on stability and bifurcation
for system (2).

Theorem 2.5 Assume that (H1) and (H2) hold.

(i) If τ ∈ [0, τ 0), then the zero solution of system (2) is asymptotically stable.

(ii) If τ > τ 0, then the zero solution of system (2) is unstable.

(iii) τ = τ j(j = 0, 1, 2, · · · ) are Hopf bifurcation values for system (2).
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3 A numerical example

In this section, we give some numerical simulations to illustrate our results.
As an example, we consider system (1) with f(·) = tanh(·), a11 = −0.5, a12 =
−1.8, a21 = 1.3, a22 = 1.7, then (1) becomes the following system

{

u̇1 (t) = −u1(t) − 0.5 tanhu1(t) − 1.8 tanh(u2(t − τ1)),
u̇2 (t) = −u2(t) + 1.3 tanh(u1(t − τ2)) + 1.7 tanhu2(t).

(13)
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Fig. 1. The trajectory graph of (13) with τ1 = 0.03, τ2 = 0.08

and u1(t) = u2(t) = 0.2, t ∈ [−0.11,0].

By directly calculating, we may verify that hypotheses (H1) and (H2) hold,
and τ0 = 0.12. Thus from Theorem 2.5 we know that the zero solution of
system (13) is asymptotically stable when 0 < τ < τ0 = 0.12, (see Fig.1-Fig.2).
The system (13) also undergoes a Hopf bifurcation at the origin (0, 0) when τ

crosses through increasingly the critical value τ0 = 0.12 (see Fig.3-Fig.5).
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Fig. 2. The phase graph of (13) with τ1 = 0.03, τ2 = 0.08 and

u1(t) = u2(t) = 0.2, t ∈ [−0.11,0] .
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Fig. 3. The trajectory graph of (13) with τ1 = 0.04, τ2 = 0.09

and u1(t) = u2(t) = 0.2, t ∈ [−0.13,0].
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Fig. 4. The trajectory graph of (13) with τ1 = 0.04, τ2 = 0.09

and u1(t) = u2(t) = 0.03, t ∈ [−0.13,0].
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Fig. 5. The phase graph of system (13) with τ1 = 0.04, τ2 = 0.09.

4 Conclusions

In present paper, we have already obtained that, under certain conditions,
the system (1) can undergo a Hopf bifurcation at the zero equilibrium when
τ1 + τ2 takes some critical values τ j(j = 0, 1, 2, . . . ). The dynamics of systems
similar to (1) have been investigated extensively and many interesting results
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have been obtained (e.g. [3, 5, 7, 8, 9]). Differ from these papers mentioned,
our result in this paper is general since we do not limit the values of τ1 and
τ2. In fact, for the system (1), the change of the values of τ1 and τ2 will not
affect its topological structure. For example, the phase graph of (13) with
τ1 = 0.01, τ2 = 0.10 and τ1 = 0.07, τ2 = 0.06 are same as Fig. 2 and Fig. 5
respectively.
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