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Dot enumeration (DE) and number comparison (NC) abilities are considered markers of core number
competence. Differences in DE/NC reaction time (RT) signatures are thought to distinguish between
typical and atypical number development. Whether a child’s DE and NC signatures change or remain
stable over time, relative to other developmental signatures, is unknown. To investigate these issues, the
DE and NC RT signatures of 159 children were assessed 7 times over 6 years. Cluster analyses identified
within-task and across-age subgroups. DE signatures comprised 4 parameters: (a) the RT slope within the
subitizing range, (b) the RT slope for the counting range, (c) the subitizing range (indicated by the point
of slope discontinuity), and (d) the overall average DE RT response. NC RT signatures comprised 2
parameters (NC intercept and slope) derived from RTs comparing numbers 1 to 9. Analyses yielded 3
distinct DE and NC profiles at each age. Within-age subgroup profiles reflected differences in 3 of the
4 DE parameters and only 1 NC parameter. Systematic changes in parameters were observed across ages
for both tasks, and both tasks broadly identified the same subgroups. Sixty-nine percent of children were
assigned to the same subgroup across age, even though parameters themselves changed across age.
Subgroups did not differ in processing speed or nonverbal reasoning, suggesting that DE and NC do not
tap general cognitive abilities but reflect individual differences specific to the domain of numbers.
Indeed, both DE and NC subgroup membership at 6 years predicted computation ability at 6 years, 9.5
years, and 10 years.
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The abilities to identify, order, and compare numerical quanti-
ties are core aspects of number competence (Berch, 2005; Butter-
worth, 1999, 2005a, 2005b, 2010; Dehaene, 1997; Desoete, Ro-
eyers, & De Clercq, 2004; Fuson, 1998; Gersten, Jordan, & Flojo,
2005; Laski & Siegler, 2007). Object enumeration, typically visual
arrays of dots, and number comparison (NC) tasks are used to
study these abilities. NC studies assess the speed and accuracy
with which the relative magnitude of two numerical values is
identified (e.g., “which number is larger”). Numbers that are closer
in magnitude are judged more slowly than those that are more
distant in magnitude (often referred to as the symbolic distance
effect; Moyer & Landauer, 1967). It has been found that perfor-
mance on NC, using either or both number symbols (e.g., digits) or
arrays of dots are associated with arithmetic competence (Hollo-
way & Ansari, 2009; Mazzocco, Feigenson, & Halberda, 2011).
For example, Halberda, Mazzocco, and Feigenson (2008) have
found that accuracy in comparing two arrays of large numbers of

dots correlates with measures of school arithmetic; and Piazza et
al. (2010) found that children identified as dyscalculic, a congen-
ital difficulty in learning arithmetic, were significantly less accu-
rate than age-matched controls. Koontz and Berch (1996) and
Landerl, Bevan, and Butterworth (2004) have found that a disabil-
ity in reporting accurately the number of dots in an array is a
marker of dyscalculia. These studies suggest that both NC and
enumeration require access to representations of numerical mag-
nitude that form the basis of arithmetic. Digit comparison involves
accessing two magnitude representations from the digit symbols,
whereas dot enumeration (DE) involves matching a magnitude
representation to a word symbol. Both matching tasks thus involve
a common core representation of numerical magnitude. In this
article we consider symbolic number judgments and enumeration
as indices of core number abilities.

Object enumeration and NC can thus be used as simple markers
of the capacity to acquire arithmetic that are relatively independent
of school experiences. These markers have the potential to be
diagnostically valuable in identifying learners who are likely to
have trouble with arithmetic in school. However, for this to be the
case, it is necessary to establish whether they are stable over time
for individual children relative to other children.

Items on standardized tests of math ability tend to reflect nor-
mative, age-related performance criteria and ipso facto differ
across age (Butterworth, 2005a). They also frequently depend on
knowledge of formal mathematical procedures. Even easy items
may involve formal calculation skills. Similarly, performance on
some well-studied indices of math competence (e.g., single-digit
addition) requires practice, and for many children, ceiling perfor-
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mance is achieved relatively young. This is not to say that the
acquisition process itself is uninteresting. However, both standard-
ized and single-digit tests depend on formal schooling, and typical
and atypical performances likely reflect a complex mix of expe-
riential and cognitive factors. Disentangling the impact of these
factors on children’s numerical abilities has proved challenging,
and identifying age-independent indices of math abilities would
provide a framework for investigating the development of math-
ematical competence.

To evaluate the theoretical and practical value of a marker of a
cognitive capacity, it is important to track its developmental tra-
jectory (Ansari, 2010; Ansari & Karmiloff-Smith, 2002). Although
NC and object enumeration are often included in screening tests
designed to identify math learning difficulties in children (Butter-
worth, 2005a, 2005b; Chard et al., 2005; Desoete, Ceulemans,
Roeyers, & Huylebroeck, 2009; Stock, Desoete, & Roeyers, 2010),
little work has investigated the relative stability or change over
time of within-task parameters (e.g., reaction times [RTs]) in these
two tasks. Indeed, most previous longitudinal work has reported
global measures of performance (usually RT or correct perfor-
mances) and has paid little attention to the stability or otherwise of
within-task parameters. Here we report patterns of stability and
change in both abilities in a large sample of children over a 6-year
period. Our aim is to explore the consistency of within-task indices
associated with subitizing and NC performances.

Dot Enumeration and Subitizing

In DE tasks, the aim is to assess the speed and accuracy with
which different numbers of dots are identified. Small numbers of
dots (n � 4) are typically enumerated rapidly and accurately,
whereas larger numbers of dots (n � 4) are enumerated more
slowly and less accurately. These behavioral differences, along
with associated neurological data, are regarded as evidence for two
distinct enumeration systems (Vetter, Butterworth, & Bahrami,
2011). The ability to rapidly and accurately identify small numbers
of dots is described as subitizing and is distinct from the slower
sequential process of counting (Butterworth, 1999; Schleifer &
Landerl, 2011). Surprisingly, little attention has been paid to
individual differences in subitizing or how subitizing abilities
change over time. Characterizing the developmental nature of
subitizing may provide valuable information for assessing the
cognitive basis of subitizing abilities.

Four DE RT parameters may be important: (a) the RT slope
within the subitizing range, (b) the RT slope for the counting
range, (c) the subitizing range (indicated by the point of slope
discontinuity), and (d) the overall average DE RT response. For
items in the subitizing range (typically one to four) the slope
function is typically shallow (increments of 40–120 ms per item;
in the counting range the increment tends to be 250–350 ms per
item; Trick & Pylyshyn, 1993). Surprisingly, researchers have
rarely investigated the nature of changes in these parameters with
age. Trick and Pylyshyn (1994) speculated that children’s growing
familiarity with the number system should aid the association of
number names with discrete quantities and lead to flatter slopes in
the subitizing range. Trick, Enns, and Brodeur (1996) and Basak
and Verhaeghen (2003) found that with age, children displayed
shallower slopes in the subitizing range but not the counting range.
Currently, it is unclear how the four DE parameters are related.

The apparent failure to subitize small numerosities (counting
them instead) has been implicated in several cognitive disorders
and is associated with dyscalculia. Subitizing deficits have mostly
been associated with right parietal disruptions, particularly the
intraparietal sulcus. These deficits have been shown in adults with
Turner’s syndrome (Bruandet, Molko, Cohen, & Dehaene, 2004),
children with cerebral palsy (Arp & Fagard, 2005; Arp, Taranne,
& Fagard, 2006), velocardiofacial syndrome (a.k.a., chromosome
22q11.2 deletion syndrome, or DS22q11.2; De Smedt et al., 2007;
Simon, Bearden, McDonald-McGinn, & Zackai, 2005; Simon et
al., 2008), fragile X syndrome, and Williams syndrome (Mazzocco
& Hanich, 2010; Paterson, Girelli, Butterworth, & Karmiloff-
Smith, 2006). Subitizing impairments have also been observed in
adult individuals with acquired Gerstmann’s syndrome (Cipolotti,
Butterworth, & Denes, 1991; Lemer, Dehaene, Spelke, & Cohen,
2003), who appear to count individual items in arrays of less than
four and are poor calculators. Similarly, children who show a
constant linear RT increase with no point of discontinuity when
enumerating successive numerosities (i.e., who are not subitizing
small numerosities) are also very poor at arithmetic (Arp & Fa-
gard, 2005; Arp et al., 2006; Koontz & Berch, 1996; Landerl,
Bevan, & Butterworth, 2004).

The most obvious feature of the RT function for DE is the
change in enumeration latency as a function of array size, a
discontinuity claimed to represent the boundary between subitizing
and counting (Trick & Pylyshyn, 1993). A recent neuroimaging
study has identified activations specific for enumerations in the
subitizing range in an area in the right temporoparietal junction
(Vetter et al., 2011). The point of discontinuity is claimed to be
around either three (Logan & Zbrodoff, 2003; Trick et al., 1996;
Watson, Maylor, & Bruce, 2005; Wender & Rothkegel, 2000) or
four (Piazza, Mechelli, Butterworth, & Price, 2002). It is usually
determined statistically as the point at which successive RT in-
creases in the enumeration of numerosities change from a linear to
a nonlinear function (Piazza, Giacomini, Le Bihan, & Dehaene,
2003; Simon et al., 2005; Svenson & Sjoberg, 1983; Trick &
Pylyshyn, 1994; Tuholski, Engle, & Baylis, 2001). Svenson and
Sjoberg (1983) examined the subitizing ranges and differences in
enumeration processes of children and adults (7-year-olds to
adults) and found that, in general, children subitized to three dots
and older children and adults subitized to four, although there was
significant within-age variability. The RT enumeration slope and
intercept for children within the subitizing range decreased with
age, with the greatest decrement occurring at 8 years of age;
however, little change occurred after 10 years of age.

Number Comparison

NC tasks have long been used to examine the nature of magni-
tude representations and the emergence of visuospatial represen-
tations of numbers. They comprise both nonsymbolic and sym-
bolic versions, both of which are considered to be represented in
terms of an ordered, approximate number system (i.e., the mental
number line; Mazzocco et al., 2011). Although the former is
thought to reflect magnitude representation per se, the latter is
claimed to depend on the putative ability to link Arabic symbols to
magnitude representations. Although difficulties making symbolic
NC judgment may reflect symbolic access difficulties, children’s
familiarity with single digit Arabic number is likely to minimize
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this effect. Indeed, differences in both nonsymbolic (e.g., Maz-
zocco et al., 2011) and symbolic (e.g., Landerl et al., 2004) NC
judgment tasks have been shown to predict differences in arith-
metic skills.

Typically, symbolic number tasks have been included in math
screeners for children on the assumption that NC ability is an
important index of math ability (e.g., Butterworth, 2003). NC tasks
are characterized by the slope function and intercept of response
time according to the numerical distance between number pairs.
Developmental studies show that the intercept and linear slope of
numerical difference judgments decreases from kindergarten to
fourth grade, with minor changes occurring thereafter (Duncan &
McFarland, 1980; Sekuler & Mierkiewicz, 1977).

NC abilities have been studied developmentally (Baker et al.,
2002; Chard et al., 2005; Clark & Shinn, 2004; Geary, Hamson, &
Hoard, 2000; Geary, Hoard, & Hamson, 1999; Gersten et al., 2005;
Jordan, Kaplan, Nabors Olah, & Locuniak, 2006; Locuniak &
Jordan, 2008; Mazzocco & Thompson, 2005; Shalev, Manor,
Auerbach, & Gross-Tsur, 1998; Shalev, Manor, & Gross-Tsur,
1997, 2005; Silver, Pennett, Black, Fair, & Balise, 1999). Different
number distance effects (different NC slopes) have been observed
in children with math learning deficits (Mussolin, Mejias, & Noel,
2010; Rousselle & Noël, 2007) and comorbid visuospatial deficits
(Bachot, Gevers, Fias, & Roeyers, 2005). Deficits in accuracy have
only been observed for close large number pairs (Geary et al.,
2000; Rousselle & Noël, 2007), consistent with Sekuler & Mierk-
iewicz’s (1997) suggestion that the analogue representation of
numbers is either compressed and/or displays greater dispersion
around numerical values in early development (Dehaene, 2003;
Gallistel & Gelman, 1992). Faster and more accurate judgments of
numerical magnitude may thus reflect the growing understanding
of cardinal relationships, improvements in transcoding, and auto-
maticity in accessing numerical information (Girelli, Lucangelli, &
Butterworth, 2000; Rubinsten, Henik, Berger, & Shahar-Slavev,
2002). However, patterns of development of slope and intercept in
NC have not been investigated longitudinally. This would help
determine whether differences between individuals are stable over
time or reflect age-related changes.

Factors Affecting Dot Enumeration and Number
Comparison Abilities

General cognitive competencies (e.g., processing speed, execu-
tive function abilities) have been found to be associated with
children’s math learning abilities: processing speed (Kail & Ferrer,
2007; Salthouse & Davis, 2006), executive functions (Bull, John-
son, & Roy, 1999; Geary & Brown, 1991; Geary & Lin, 1996).
However, findings have been inconsistent, and not all studies
report a link between math ability and general cognitive compe-
tence (Butterworth, 2005a). Nevertheless, improvement in pro-
cessing speed and working memory may be lead to increases in
subitizing span, but few studies have investigated this possibility
(however, see Green & Bavelier, 2006; Tuholski et al., 2001).

Characterizing Different Performance Profiles

Researchers tend to focus on age-related changes in competen-
cies on the assumption that developmental differences in abilities
have been identified. Analyses are typically based on aggregate

data, with interindividual variability being regarded as noise. This
practice has been criticized by some researchers who argue that
there might be circumstances where this assumption is unwar-
ranted or misleading (Chochon, Cohen, van de Moortele, & De-
haene, 1999; Dehaene, Piazza, Pinel, & Cohen, 2003; Rueckert et
al., 1996; Weinert & Helmke, 1998). Indeed, the meaning of large
within-age variability in performance on most math tasks is rarely
explicated (Ansari, 2010; Ansari & Karmiloff-Smith, 2002;
Rosengren & Braswell, 2001). Variation in RTs in the subitizing
range in adults, for example, has been regarded as interindividual
noise (Akin & Chase, 1978; Balakrishnan & Ashby, 1991, 1992;
Piazza et al., 2003; Trick & Pylyshyn, 1994). However, Balakrish-
nan and Ashby (1991) conceded that different subitizing profiles
may be embedded within the overall putative interindividual noise
profile.

Research Focus

We ask whether meaningful subgroups are embedded within an
overall response distribution and whether subgroup assignment is
consistent over time. We focus on two general questions: First, do
children remain in the same subgroup over time, independent of
changes that may occur within groups (e.g., speed of responding);
and second, even though subgroup assignment may remain con-
stant, do systematic changes occur within and across subgroups
over time? Moreover, insofar as DE and NC are core markers of
numerical competence, we hypothesize that subgroup membership
will remain constant over time. In particular, it has been assumed,
but not demonstrated, that DE and NC tap the same representations
of numerical magnitude, although not in the same way. In other
words, the two tasks measure the same construct using different
processes. Therefore, it is important to establish the degree to
which both tasks identify the same subgroups over time.

Although the primary analytic focus is on the consistency of DE
and NC subgroup membership over time, we also consider the
relationship between subgroup membership and general cognitive
abilities (basic RT and Ravens Colored Progressive Matrices
[RCPM]; Raven, Court, & Raven, 1986). Insofar as the two
cognitive markers (basic RT and RCPM) are associated with
subgroup membership, it would suggest that DE and NC abilities
reflect general cognitive abilities, rather than domain-specific in-
dices of numerical competence. Finally, we wished to determine
whether subgroup membership predicts arithmetical computation
abilities at 6 years, 9.5 years, and 10 years.

Method

Participants

The sample comprised one hundred fifty-nine 5.5- to 6.5-year-
olds (overall M � 72.53 months, SD � 4.55 months): 95 boys
(M � 73.15 months, SD � 4.57 months) and 64 girls (M � 71.61
months, SD � 4.57 months). Children attended one of seven
independent schools in middle-class suburbs of a large Australian
city and, at the beginning of the study, were halfway through their
first year of formal schooling. (Approximately 25% of children
attend fee-paying independent schools at the primary level in
Australia, which increases to 38% at the secondary school level.)
The sample was specifically selected to minimize socioeconomic
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class effects, often associated with cognitive competence (Jordan,
Huttenlocher, & Levine, 1992; Sirin, 2005), and to minimize
sample attrition. Although children came from different ethnic/
cultural backgrounds, all spoke English fluently; had normal or
corrected-to-normal vision; and, according to school personnel,
had no known learning difficulties. The ethical requirements of the
authors’ university were followed in conducting the research.

Children were interviewed individually on seven occasions over
a 6-year period as part of a larger study. On each occasion they
completed a series of tests, including those reported here (see
Appendix A in the online supplemental materials for a complete
list of tasks used in this longitudinal study). Times between inter-
views for individual children varied slightly because of the time
taken to interview the entire sample (approximately 3 months).
The mean ages for the test times were (a) 6 years (5.5–6.5 years)
M � 72.15 months; (b) 7 years (6.5–7.5 years) M � 85.51 months;
(c) 8.5 years (8–9 years) M � 104.95 months; (d) 9 years (8.5–9.5
years) M � 110.60 months; (e) 9.5 years (9–10 years) M � 116.77
months; (f) 10 years (9.5–10.5 years) M � 122.77 months; and (g)
11 years (10.5–11.5 years) M � 129.45 months.

Procedures and Materials

Data for the initial phase of the study were collected in two
sessions, approximately 1 week apart. In the first, children were
familiarized with our computer-based, RT methods and practiced
enumerating canonical dot arrays. The RT familiarity task was
always presented first. In the second session, the speed and accu-
racy with which children completed enumerating random dot
arrays and NC judgments were assessed. Both sessions lasted
approximately 20 min. The purpose of the familiarization proce-
dures was to introduce the children to the stimuli presentations and
to allow them to practice recording their NC judgments by press-
ing the appropriate computer key.

Speed and accuracy enumerating random dot arrays and making
NC judgments were collected for all the remaining phases of the
study. It was not considered necessary to run practice tasks again
in later test phases. At 6 years, the speed at which children named
numbers and letters was measured. At 8 and 9.5 years, children
completed a RT task to assess their basic reaction times. At 9.5
years, they completed the Ravens Colored Progressive Matrices
test, a measure of nonverbal reasoning ability. At 6 years, children
completed single-digit addition; at 9.5 years, they completed a
double-digit arithmetic test (addition, subtraction, and multiplica-
tion); and at 10 years, they completed a multidigit computation test
(three-digit subtraction, multiplication, and division) to assess their
arithmetic calculation abilities.

In all tasks in which RT was recorded, stimulus presentation was
controlled by a PC running DMDX (Version 2; Forster & Forster,
2001), and stimuli were presented on a 15-in. (38.1-cm) screen
located at eye level, 30 cm in front of participants. The same
presentation sequence was used in all rounds of data collection. A
brief 50-Hz orienting tone occurred, and an associated fixation
cross appeared in the center of the screen 1,500 ms prior to the
presentation of each stimulus. Stimuli remained on the screen until
children responded. Two seconds after a response, a new orienting
tone occurred, and a fixation cross appeared signaling the impend-
ing appearance of a new stimulus.

The RT familiarity task in the first phase comprised five colored
pictures of familiar animals (e.g., dog, cat) and four familiar fruits
(e.g., banana, apple). The task was used to introduce the stimulus
presentation procedure and the speeded naming requirement. The
interviewer described task requirements, encouraging children to
respond as fast and as accurately as possible by naming the object
that appeared on the screen (fruit or animal). None of the children
exhibited difficulty understanding task requirements. The animals
and the fruit naming tasks were presented separately. Each task
was presented twice, with stimuli presented in a different order on
each occasion.

In the DE practice task at 6 years, stimuli consisted of one to
five dots in arrangements. Children completed 20 trials, compris-
ing four different instances of each of the five dot arrangements.
Children were given frequent reminders to respond as quickly and
as accurately as possible; no other task-related instructions or
feedback were given.

The DE experimental task comprised 40 trials of one to eight
randomly arranged black dots on a white rectangular background
(n � 5 for each numerosity). The dot stimuli presentation sequence
was randomized with the constraint that not more than two trials of
the same dot numerosity could follow each other. Before begin-
ning the task, children were reminded of the procedure used in the
practice session.

In the NC judgment task, children judged which of two single
digit numbers was the larger in numerical magnitude. They pressed
the left shift key (marked with a yellow dot) if the number on the
left side of the screen was larger or the right shift key (marked with
a red dot) if the number on the right side of the screen was larger.
The task comprised 72 trials, representing judgment combinations
of all numbers one to nine, excluding tied pairs. The larger number
appeared equally often on the left side of the screen as on the right
side. Four practice trials were presented initially to familiarize
children with the judgment procedure.

In the naming numbers and naming letters tasks, the numbers
1–9 and the letters A–J (excluding the letter I because of its
similarity to the number 1), respectively, were used. The two tasks
comprised 36 trials, four each for the nine stimuli. The stimuli for
both tasks, all of which were approximately 2 cm high on screen,
were presented in one of four fixed random orders; the only
constraint was that each stimulus should be different to the imme-
diately preceding stimulus. Presentation of the naming numbers
and naming letters tasks was counterbalanced.

In the basic processing speed task, children pressed a computer
key as quickly as possible when a black dot appeared on the
screen. The dot appeared on the screen between 500 ms and 1,000
ms after a fixation point. The task comprised nine trials.

To assess single digit addition abilities, children completed 12
single digit addition problems of the form “a � b.” Addends
comprised the numbers 2–7 presented in both orders (e.g., 2 � 7
and 7 � 2) and excluded tied pairs (e.g., 2 � 2). Overall accuracy
was recorded. In the two-digit computation test, Children’s ability
to solve addition, subtraction, and multiplication problems involv-
ing up to two digits was assessed using a set of 36 problems, 12 for
each operation. Problems appeared centered on a computer screen,
in the form, a � b, a � b, and a � b. For addition, the addends
ranged from 9 to 14; for subtraction, the minuends ranged from 11
to 16, and the subtrahends ranged from 4 to 9. The multiplication
task involved multiplying two single-digit numbers from the 7, 8,
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and 9 times tables. In the multidigit computation test, in a single
class session, children completed 36 three-digit subtraction, mul-
tiplication, and division problems (12 of each type). Three-digit
addition problems were not included, as students were performing
at ceiling for addition.

Measures

DE RTs were recorded by interviewers pressing a response key
as soon as children gave a response. Interviewers also recorded
children’s answers (they were unaware of what had appeared on
the computer screen). In the first phase of the study, an additional
method of recording RT was used: A digital video camera focused
on the computer screen, and the audio data were later analyzed
using Cool Edit Pro (Syntrillium Software). The latter software,
which is accurate to �2 ms, was used to examine time sequences
in the audio wave files (i.e., the onset of children’s verbal re-
sponses). It was used in preference to voice-recognition timing
methods because of the possibility that young children would
verbalize their thinking prior to providing an answer, making
recording accurate RT problematic. The correlation between the
RT measures for the two recording methods was extremely high
(r � .99), so for the remainder of the study, the interviewer key
press was the only method used to record DE RTs (the interviewer
recorded answers but was unaware of the display).

For the NC task, the ratio for each comparison was calculated by
dividing the smaller number by the larger number. For example,
comparing 3 with 6 gives the ratio 0.5, whereas comparing 6 with
1 gives the ratio 0.16 (i.e., 1 divided by 6). For the purpose of
analysis, ratios were divided into eight ranges (i.e., .10–.19, .20–
.29, . . . up to .80–.89). Ratio, rather than number distance, was
used for analyses, as the research literature shows that magnitude
judgments are influenced by both linear distance and the absolute
magnitude of the values compared when distance is held constant
(Brannon, 2006).

At each of the seven test ages, DE and NC RT data were
subjected to separate Latent GOLD cluster analyses (Vermunt &
Magidson, 2000, 2003). In the case of DE data, we analyzed RTs
(for correct responses) for one, two, three, four, and five dots and
the average of six to eight dots. For the NC data, all eight ratios
were included in the analysis. Latent class cluster modeling has

advantages over traditional clustering techniques in that it does not
rely on traditional modeling assumptions (i.e., linear relationships,
normal distributions, homogeneity), which are often violated in
practice. The technique identifies subgroups by grouping people
who share similar characteristics via probability-based classifica-
tion. The relationship between latent classes and variables of
interest can be assessed simultaneously with the identification of
the clusters. This eliminates the need for the usual second stage
discriminant analysis. Latent class models have recently been
extended to include variables of mixed scale types (nominal,
ordinal, continuous, and/or count variables) in the same analysis
(Magidson & Vermunt, 2003).

For other measures (a) the simple RT measure was based on the
average RT for nine problems, (b) Ravens scores were based on
published norms, and (c) multidigit computation ability was based
on problems solved correctly for each of the different tests: sub-
traction, multiplication, and division.

Results

We present findings by (a) describing general changes in DE
and NC profiles over age, (b) identifying subgroups within DE and
NC profiles, (c) characterizing changes over age in DE and NC
subgroups, and (d) examining some relationships between DE and
NC subgroups and other measures (i.e., basic processing speed,
Ravens, and math ability).

Description of General DE and NC Profiles Over Age

Differences in DE RTs as a function of age and array
numerosity. At all ages, children enumerated one to four dots
correctly. They made more errors enumerating five or more dots at
6 years (15% overall) than at 11 years (5% overall); however, the
relative error pattern remained constant across age. No RT differ-
ences were found between correct and error responses, possibly
because children were allowed as long as needed to enumerate.
Nevertheless, analyses reported herein were based on correct RTs
only. As expected, DE RTs increased as a function of increases in
dot array size and decreased as a function of age (see Table 1 for
mean RTs as function of dot array numerosity and age; mean
rather than median RTs are reported because they were almost

Table 1
Dot Enumeration Response Time Means and Standard Deviations as a Function of Array Numerosity and Test Age

Arraya

Test age (in years)

6 7 8.5 9 9.5 10 11

M SD M SD M SD M SD M SD M SD M SD

1 1,401 342 1,251 192 1,088 186 1,109 246 1,073 193 1,020 175 1,012 152
2 1,585 389 1,337 289 1,080 169 1,125 251 1,068 179 1,036 205 1,007 161
3 1,919 530 1,611 349 1,267 222 1,245 228 1,170 191 1,186 229 1,181 213
4 2,660 1,070 2,030 687 1,453 374 1,424 303 1,534 364 1,547 400 1,418 300
5 3,363 1,052 2,491 680 1,901 415 2,406 656 2,093 502 1,991 586 2,070 467
6 4,907 1,723 4,259 1,457 2,129 533 2,828 672 2,855 618 2,801 811 2,574 562
7 5,519 1,850 4,886 1,702 3,376 963 3,664 998 3,477 785 3,281 670 3,205 725
8 5,572 1,829 4,510 1,316 3,037 679 3,841 905 3,654 680 3,477 877 3,458 677

a Number of dots in array.
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identical). It is worth noting there was substantial RT variability at
younger ages (see Table 1).

To assess changes in the speed of enumerating dot arrays across
age, differences in RT were assessed for (a) successive numerosi-
ties at each age (e.g., three dots vs. four dots) and (b) the same dot
array at contiguous test ages (e.g., 6 years vs. 7 years). The time
taken to enumerate identical dot arrays decreased between 6 years
and 7 years and between 7 years and 8.5 years (paired-sample t
tests, p � .05 for all comparisons). However, after 8.5 years,
decreases were smaller and often nonsignificant. Analysis of
within-age changes showed that, with some exceptions (e.g., RT
differences enumerating one and two dots after 8.5 years), in-
creases in the time taken to enumerate successive dot array nu-
merosities persisted across age, although the relative increase was
less for smaller than larger dot arrays (paired-sample t tests for
successive array sizes, p � .05 for all comparisons). These find-
ings are consistent with previous research showing that small
arrays are enumerated quickly and without error (Piazza et al.,
2002; Watson et al., 2005).

Characterizing DE profiles algebraically. Relatively
smaller increases in RTs occurred in the so-called subitizing range
(n � 4) than in the counting range (n � 4). The change from
subitizing to counting is referred to as the point of discontinuity
(see Figures 1A and 1B). In Figure 1A, the subitizing and counting
ranges are represented by separate linear functions. Figure 1B,
shows the point of discontinuity represented by the change from a
linear to an exponential function. A linear equation represents the
best fitting RT function for one to four dots and an exponential

function for one to five dots. In the latter representation, the
subitizing range may be considered four dots. For linear and
exponential equations, the higher the coefficient of x, the steeper
the slope, and the higher the constant term (intercept), the slower
the RT. We used this algebraic approach to characterize DE
profiles.

The DE RT algebraic functions for age and dot numerosity are
presented in Table 2. Several points are worth noting. The table
shows an exponential function at 6 years for one to three dots,
which suggests these children subitized two dots (i.e., RT changed
in form after two dots). The table also shows an exponential
function for one to four dots at 9 years, which suggests that
9-year-olds subitized three dots. The latter algebraic pattern did not
change thereafter. These findings are the first to show an apparent
change in the subitizing range at 7 and 9 years.

Differences in NC RTs as function of age and dot numeros-
ity. Children made more errors and took longer to judge the
larger of two Arabic numbers when they were relatively close in
magnitude (e.g., 4 and 5) than when farther apart (e.g., 4 and 9).
Children’s accuracy was above 95% for ratios 0.10 to 0.49 (small
ratios) at all ages but decreased to as low as 84% for ratios 0.50 to
0.89 (large ratios). All NC analyses reported herein were based on
RTs for correct responses only.

The NC RTs for the different ratios and ages are presented in
Table 3. It shows a decrease in RT for decreasing ratios and
increasing age. To assess changes in the speed of NC judgments
across age, differences in RT were assessed for the same ratio at
contiguous test ages (e.g., 6 years vs. 7 years). The time taken to

Figure 1. Example algebraic components of two 7-year-olds’ dot enumeration response time (RT) profiles.
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judge each ratio decreased at successive ages between 6 years and
9 years and between 9 years and 11 years (paired-sample t tests,
p � .001 for all comparisons). It should be noted that the RT
standard deviations at 6 years are large but decreased with age.
Changes in NC RT at each test age are expressed in terms of a
function representing slope and overall speed across the ratios (see
Table 4). A linear equation represents the best fitting function at all
ages. It is apparent from the decreasing coefficients of x that the
time effect of increasing ratio decreased across age. Also, succes-
sive decreases in the constant term shows that children became
faster in making judgments with age.

Two points may be made about the outcomes of initial DE and
NC analyses. As expected, age-related decreases in RTs were
observed on both tasks; however, substantial within-age variability
was also evident (see standard deviations in Tables 1 and 3).
Although the algebraic equations represent these age-related
changes (see Tables 2 and 4), they do not capture the variability in
RTs. To determine whether the variability reflects different sub-
groups embedded within the overall sample, we partitioned RT
data using Latent GOLD’s cluster analysis program.

Identifying DE and NC Subgroups

We used Latent GOLD’s cluster analysis program to identify
possible subgroups embedded within the overall sample (Vermunt
& Magidson, 2000, 2003; see also Notelaers, Einarsen, De Witte,
and Vermunt, 2006, for use of this technique in empirical re-

search). To determine the optimum number of clusters, three
cluster models (two-, three- and four-cluster) were first identified,
and the Bayesian information criteria (BIC) goodness-of-fit statis-
tic and L2 evaluated for each solution. If the p value for the
four-cluster solution does not reach significance, further cluster
solutions are examined. The BIC statistic is calculated by the
equation 2log-likelihood � K log n, where K is the number of
estimable parameters, and n is the sample size. If increasing the
number of clusters results in an insignificant increase in the BIC,
the smaller number of clusters is chosen. The L2 statistic indicates
the amount of association among variables that remains unex-
plained after estimating the model: the lower the value, the better
the fit of the model to the data. One criterion for determining the
number of clusters is to examine the p value for each model.
Generally, among models in which the p value is greater than .05
(i.e., providing adequate fit), the one that is most parsimonious
(fewest number of parameters) is selected. Alternatively, a boot-
strap procedure may be used to estimate whether there is a signif-
icant difference between goodness of fit for successive cluster
solutions. The latter procedure generates log-likelihood ratios and
p values for the improvement in model fit. A nonsignificant result
suggests that the subsequent model does not improve the fit of the
model to the data. (We selected the Latent GOLD’s cluster anal-
ysis procedure over growth curve modeling because of nonlinear
changes in relationships among DE parameters over time, which
would have been ignored by the latter analysis.)

Table 2
Dot Enumeration Response Time Equations for Dot Numerosities and Age

Age (in years)

Dot array range

1–3 dots 1–4 dots 1–5 dots 6–8 dots

6 y � 1,184e0.157x y � 1,082e0.212x y � 1,049e0.227x y � 724x � 3,031
7 y � 180x � 1,040 y � 1,015e0.164x y � 984e0.180x y � 668x � 2,366
8.5 y � 90x � 966 y � 938e0.103x y � 868e0.141x y � 766x � 1,273
9 y � 68x � 1,024 y � 107x � 960 y � 818e0.179x y � 507x � 2,431
9.5 y � 79x � 1,007 y � 148x � 840 y � 804e0.170x y � 531x � 1,694

10 y � 83x � 915 y � 173x � 765 y � 778e0.174x y � 494x � 1,653
11 y � 85x � 898 y � 139x � 807 y � 756e0.177x y � 480x � 1,628

Note. Boldface indicates the point at which function changes from linear to exponential, indicating the point of discontinuity (i.e., a shift from subitizing
to counting range).

Table 3
Number Comparison Response Time Means and Standard Deviations as a Function of Ratio and Test Age

Ratio

Test age (in years)

6 7 8.5 9 9.5 10 11

M SD M SD M SD M SD M SD M SD M SD

.10–.19 1,837 704 1,264 487 926 276 803 198 744 181 778 215 675 163

.20–.29 1,831 541 1,365 416 972 284 889 267 796 218 801 246 720 220

.30–.39 1,985 683 1,401 395 980 287 908 302 813 233 794 216 704 191

.40–.49 2,055 858 1,413 413 1,015 326 906 273 861 322 825 216 760 226

.50–.59 2,079 696 1,512 462 1,069 273 952 245 890 282 874 236 770 179

.60–.69 2,260 761 1,620 451 1,162 324 1,066 337 973 331 931 229 836 238

.70–.79 2,395 965 1,602 552 1,115 279 1,041 343 976 312 979 368 844 208

.80–.89 2,562 793 1,640 492 1,153 274 1,057 297 940 238 955 212 859 206

7MARKERS OF CORE NUMERICAL COMPETENCIES



At each age, separate cluster analyses were conducted on the DE
and NC RT data. Specifically, for DE, we analyzed RTs for one,
two, three, four, and five dots (i.e., possible subitizing range) and
the average of six to eight dots (counting range). Because previous
studies have shown little differentiation in enumeration in the
so-called counting range (i.e., �5, see Schleifer & Landerl, 2011),
we thought it prudent to average performance in this range.

In the analysis of the NC data, all eight ratios were included in
the analysis. On all occasions, three cluster models (two-, three-
and four-cluster groups) were evaluated using the BIC (goodness-
of-fit statistic and the L2 statistics). At all seven ages, a three-
cluster solution fit the DE and NC data. On the basis of changes in
the BIC goodness-of-fit statistics from three- to four-cluster solu-
tions, we are confident that a three-cluster solution best represents
the age and task data (p � .05 in all cases). DE BIC statistics are
as follows: 6 years � 1,272; 7 years � 1,210; 8.5 years � 861; 9
years � 963; 9.5 years � 934; 10 years � 864; 11 years � 855.
NC BIC statistics are as follows: 6 years � 908; 7 years � 881; 8.5
years � 831; 9 years � 805; 9.5 years � 738; 10 years � 744; 11
years � 713. The variance accounted by each model in all cases
was between 50% and 60%, and the best start seed was identical
in replication analyses, indicating that the three-group solution was
a robust representation of the data and did not represent a local
maximum. Tables B1–B7 in Appendix B (see the online supple-
mental materials) detail the statistical measures (log-likelihood,

BIC, number of parameters, and p values) for two-, three-, and
four-cluster solutions for each phase for DE and NC.

Analyses of variance (ANOVAs) showed that the three sub-
groups differed in response speed profiles (described here as the
fast, medium, and slow subgroups; p � .001 in all cases; �2 ranged
from .53 to .71). Specifically, for DE RTs at each age, the fast
subgroup was faster than the medium subgroup, which, in turn,
was faster than the slow subgroup (p � .001). The three NC
subgroups were similarly systematically different from each other
from 7 years onward (p � .001 in all cases; �2 ranged from .55 to
.75), but there were no speed differences between the subgroups at
6 years.

These findings show that similar subgroup patterns emerged
from separate cluster analysis of DE and NC tasks at all ages.
However, they do not show whether children remained in the same
subgroup (fast, medium, or slow) across the 6 years of the study.
There is no a priori reason for subgroup membership to remain
stable across time.

Understanding the degree to which children’s initial DE and NC
cluster group assignment remained constant over time has impli-
cations for theory and practice. The next analyses examine this
issue.

Consistency of DE and NC Subgroup Profiles Across
Age

To characterize consistency of subgroup membership precisely,
we examined membership across time in two ways. First, we
computed the ordinal correlations (gamma statistics) for the DE
and NC tasks. Second, we conducted a discrete factor analysis
based on cluster membership assignments at each age to determine
the optimum number of factors that characterize cluster solutions
over time. In other words, the latter analysis assessed whether
cluster membership across age aligns with factors representing
distinct RT profiles.

The across-time correlations (gamma statistics) for the DE and
NC subgroups are presented in Table 5.

Table 4
Number Comparison Equations as a Function of Age

Age (in years) Number comparison slope

6 y � 104x � 1,657
7 y � 54x � 1,232
8.5 y � 35x � 893
9 y � 36x � 789
9.5 y � 33x � 725

10 y � 31x � 728
11 y � 28x � 647

Table 5
Ordinal Correlations (	) for Dot Enumeration and Number Comparison Subgroups Across Age

Age (in years) 6 7 8.5 9 9.5 10 11

Dot enumeration
6 1.00
7 .46�� 1.00
8.5 .48�� .59�� 1.00
9 .52�� .55�� .56�� 1.00
9.5 .57�� .55�� .64�� .59�� 1.00

10 .54�� .66�� .62�� .64�� .91�� 1.00
11 .43�� .60�� .67�� .59�� .79�� .77�� 1.00

Number comparison
6 1.00
7 .16 1.00
8.5 .08 .52�� 1.00
9 .18 .53�� .53�� 1.00
9.5 .06 .43�� .69�� .61�� 1.00

10 .01 .50�� .74�� .69�� .76�� 1.00
11 .11 .53�� .47�� .50�� .54�� .54�� 1.00

�� p � .01.
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It is evident from Table 5 that there is a significant ordered
correlation between groupings taken at different ages. In other
words, the rank ordering of subgroup membership assignment is
constant across age. Unsurprisingly, the across-age DE-NC task
ordinal correlations were slightly lower than the within-task cor-
relations but were nevertheless significant (see Table 6). However,
of interest is whether there is one solution for each of DE and NC
that characterizes group assignment based on RT across all ages.

We used Latent GOLD discrete factor analysis to identify a
solution representing group membership across time (for an ex-
ample of this form of factor analysis, see Rasmussen et al., 2004).
In traditional factor analysis continuous variables are expressed as
a linear function of one or more continuous latent factors. Discrete
factor analysis differs in several respects to traditional factor
analysis: (a) Observed variables may include mixed scale types,
including nominal, ordinal, continuous, and count types; (b) the
latent variables are not continuous but discrete, representing two or
more ordered categories; (c) the model is not linear; and (d)
solutions need not be rotated to be interpreted.

A discrete factor analysis was conducted using each individual’s
cluster group assignment on each of the seven test occasions. A
three-factor model provided the best fit for these data. For both DE
and NC, the BIC statistic for each of the three-factor models was
significant and the change from a three-factor to a four-factor
solution did result in a better fitting model (p � .05 in each case;
DE BIC � 2,243; NC BIC � 1,869). Moreover, the factors aligned
with the RT signatures determined from cluster analyses. This
result suggests that a three-factor solution provides an accurate
characterization of DE and NC subgroup membership within and
across age.

The subgroup solutions for DE and NC (ns � 30, 80, and 49 and
ns � 39, 86, and 34, respectively) accounted for 54% and 49% of
the variance in DE and NC membership. For the DE solution, the
percentage of the data from each of the seven occasions contrib-
uting to the overall models ranged from 40% to 60%; and for NC,
it ranged from 40% to 75%. These findings show that responses
from all ages made a substantial and equal contribution to sub-
group membership. Cross-classification shows a strong association
between DE and NC subgroup membership, 
2 (N � 159) �
63.05, p � .001; 	 � 0.76, p � .001.

It is evident that DE and NC subgroup membership is robust
over time and that overall RTs decrease over time. Of interest is
whether subgroup RT changes are similar or different over time.
This is issue is examined next.

Characterizing DE and NC Subgroup Changes Across
Age Algebraically

Differences in DE RTs for the three cluster groups across age as
a function of dot numerosity are presented in Figure 2. It is evident
from Figure 2 that RTs progressively decreased across age and
subgroups for each array numerosity. ANOVA of overall RT at
each age revealed significant differences between the three sub-
groups (p � .001, �2 from .42 to .60). Post hoc analyses showed
that the fast subgroup enumerated all dot array numerosities faster
at all ages than the medium subgroup, which, in turn, was faster
than the slow subgroup. Figure 2 also illustrates that the subitizing
range increases at different ages for the three subgroups.

NC RT ratio signatures for the three subgroups across age are
presented in Figure 3. RT decreases across age as a function of
increases in judgment ratios for each subgroup are illustrated by
decreasing slopes. The average RT for the three groups systematically
differed at each age from 7 years on (i.e., slow � medium � fast; p �
.001, �2 from .30 to .51); however, linear contrasts in repeated-
measures ANOVAs showed that the gradient of the function did not
differ, either within or between subgroups, across age (p � .05).

To characterize similarities/differences in DE and NC subgroup
changes across age, we computed the same equations as reported
for the overall DE and NC group equations (see Tables 2 and 4,
respectively). The subgroup equations for DE and NC RTs are
reported in Tables 7 and 8, respectively.

On the basis of the point at which functions change from
exponential to linear (see Table 7), it is apparent that (a) the slow
subgroup subitizes two dots at 6 years, three dots at 8.5 years, and
four dots at 9 years; (b) the medium subgroup subitizes three dots
at 6 years and four dots at 8.5 years; and (c) the fast subgroup
subitizes three dots at 6 years and four dots at 7 years. The fast
subgroup is consistently faster than the other two subgroups, and the
medium subgroup is faster than the slow subgroup (i.e., the constant
in the linear equations is greater for the slow subgroup than the other
two subgroups). The slope for the subitizing range (represented by the
coefficient of x) differs between the three groups at all test ages but
does not differ in the counting range. Table 8 shows that changes in
NC RTs are best described by changes in linear functions. Changes in
constant terms show a decrease in RT across group and age, as do
changes in the coefficient of x. Linear contrasts using repeated mea-
sures analysis of variance reveal no within-age differences in slope
between groups at any age.

Table 6
Ordinal Correlations (	) Between Dot Enumeration and Number Comparison Subgroups Across
Age

Age (in years) 6 7 8.5 9 9.5 10 11

6 .09 .44�� .25� .40�� .30� .35�� .26�

7 .02 .60�� .25� .37�� .29� .31�� .33�

8.5 .22 .68�� .62�� .51�� .57�� .60�� .30�

9 .31� .57�� .62�� .50�� .58�� .59�� .46��

9.5 .17 .56�� .55�� .45�� .55�� .62�� .30�

10 .29 .65�� .45�� .37�� .44�� .62�� .34�

11 .09 .54�� .47�� .36� .41�� .43�� .48��

� p � .05. �� p � .01.
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Differences in DE Stable Subgroups Across Age

We focused on subgroup changes across age in DE only, be-
cause, as noted above, NC equations showed differences in RT
over time but no within-age slope differences. Of interest is
whether differences in the DE RT subgroup patterns represent a
possible delayed or a different developmental pattern. To assess
whether the slow and medium groups differed to the fast DE
group, we analyzed the performance of children who were as-
signed to the slow, medium, or fast groups on all occasions.

Sixty-nine percent of children remained in the same subgroup
across the 6 years of the study (see Figure 4).

The pattern of equations for the 109 children (see Table 11) is
identical to the pattern observed for all 159 children (see Table 9).

ANOVA of the average RT across all dot array numerosities
(represented by the constant term in the linear functions) revealed
that the slow subgroup was slower than the medium subgroup
(p � .05); the medium subgroup was slower than the fast subgroup
(p � .05) at all ages. Effect sizes (�2) ranged from .40 to .57.
Paired-sample t tests of successive ages showed that the RTs for
each group decreased over time (p � .05).

As is evident in Table 9, the ages at which changes from
exponential to linear functions occur were as follows: The slow
subgroup subitized two dots at 6 years, three dots at 8.5 years, and
four dots at 9 years. The medium subgroup subitized three dots
initially and four dots at 8.5 years. The fast subgroup subitized
three dots initially and four dots at 7 years.

Figure 2. Mean response time (RT) dot enumeration subgroup profiles as a function of age and dot numerosity.
A. Slow group. B. Medium group. C. Fast group.
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To characterize changes in DE subgroup parameters over age,
we analyzed performance at 6, 9, and 11 years (6 years � begin-
ning of assessment, 9 years � all groups subitized to three dots, 11
years � all groups subitized to four dots). (It should be noted that
no RT differences were observed in the within-age counting range
gradients for the three groups.)

Repeated-measures analyses contrasting the subitizing range
equations for the slow and medium subgroups indicated that the
gradient of the slow subgroup was always significantly different at
the three test times to the gradient of the medium subgroup: linear
contrasts F(1, 61) � 6.62, p � .01, �2 � .21 at 6 years; F(1, 61) �
13.93, p � .01, �2 � .33 at 9 years; and F(1, 61) � 10.54, p � .01,
�2 � .29 at 11 years. However, the medium and fast subgroups did
not differ in their subitizing slopes on any occasion (linear con-
trasts ns). These differences suggest that the slow DE subgroup
exhibited a different subitizing pattern. Moreover, an analysis of

the equations for the subitizing range of the medium and fast
subgroups show that the subitizing performance of medium chil-
dren at 11 years was equivalent to that of fast children at 9 years,
suggesting a delay in performance.

Subgroup Differences in Simple RT, Symbol Naming
RT and Nonverbal Reasoning

Because DE and NC analyses were based on RTs, it is possible
that findings reflected differences in basic processing speed, sym-
bolic access and/or general cognitive ability. To investigate these
possibilities, separate one-way ANOVAs were conducted using
the basic speed at 8 years and 9.5 years, RT for naming numbers
and letters, and RCPM to analyze differences between the overall
DE and NC subgroups (see Table 10 for values).

Figure 3. Mean response time (RT) number comparison subgroup profiles as a function of age and judgment
ratio. A. Slow group. B. Medium group. C. Fast group.
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Neither the analysis of RCPM—DE F(2, 156) � 0.61, ns; NC
F(2, 156) � 2.00, ns—nor simple RT—DE 8 years F(2, 156) �
2.32, ns; DE 9.5 years F(2, 156) � 1.44, ns; NC 8 years F(2,
156) � 2.47, ns; NC 9.5 years F(2, 156) � 1.97, ns—revealed
group effects. These findings are important because they show that
the DE and NC profiles, which are based on response speeds, do
not depend on differences in individuals’ simple RT. In addition,
one-way ANOVAs showed that neither the DE nor the NC groups
differed for naming numbers or letters: DE naming numbers F(2,
156) � 0.66, ns; DE naming letters F(2, 156) � 0.15, ns; NC
naming numbers F(2, 156) � 1.23, ns; NC naming letters F(2,
156) � 2.49, ns.

It should be noted that none of the RT measures were signifi-
cantly associated with DE or NC group membership at any age
(median F value for DE � 2.14, p � .1; NC � 2.35, p � .1).

Subgroups at 6 Years and Mathematical Competence
at 6, 9.5, and 11 Years

To assess whether the DE and NC subgroups were associated
with math abilities, we investigated subgroup performance on
single-digit addition accuracy at 6 years, two-digit arithmetic tasks
at 9.5 years, and three-digit calculation tasks at 10 years (see Table
11). Only main effects were observed. The three DE subgroups all
differed from each other (slow � medium � fast, p � .05) on
single-digit addition, F(2, 156) � 27.66, p � .001, �2 � .26.
Similarly, the three NC subgroups all differed from each other
(slow � medium � fast, p � .05) on single-digit addition, two-
digit subtraction, and two-digit multiplication, F(2, 156) � 6.95,
p � .01, �2 � .08.

Figure 4. Consistency of dot enumeration cluster assignment from kin-
dergarten to Year 5.

Table 7
Dot Enumeration Equations as a Function of Dot Numerosity, Subgroup, and Age

Group

Dot array range

1–3 dots 1–4 dots 1–5 dots 6–8 Dots

6 years

Slow y � 1,344.e0.183x y � 1,165.e0.268x y � 1,227.e0.242x y � 851x � 3,508
Medium y � 265x � 1,116 y � 1,082.e0.214x y � 1,037.e0.235x y � 746x � 3,164
Fast y � 212x � 1,073 y � 1,058.e0.175x y � 996.e0.205x y � 647x � 2,684

7 years

Slow y � 1,157.e0.157x y � 1,036.e0.223x y � 1,013.e0.234x y � 673x � 3,732
Medium y � 185x � 1,035 y � 1,022.e0.161x y � 991.e0.169x y � 741x � 2,195
Fast y � 145x � 1,028 y � 201x � 934 y � 972.e0.154x y � 577x � 2,059

8.5 years

Slow y � 101x � 1,180 y � 1,093.e0.125x y � 1,037.e0.151x y � 667x � 1,715
Medium y � 96x � 967 y � 135x � 901 y � 859.e0.152x y � 476x � 1,517
Fast y � 77x � 885 y � 93x � 858 y � 819.e0.119x y � 376x � 1,258

9 years

Slow y � 106x � 1,145 y � 112x � 1,136 y � 903.e0.203x y � 523x � 2,678
Medium y � 62x � 1,064 y � 119x � 969 y � 833.e0.183x y � 535x � 1,965
Fast y � 61x � 929 y � 89x � 882 y � 771.e0.157x y � 485x � 1,523

11 years

Slow y � 131x � 985 y � 226x � 827 y � 816.e0.218x y � 534x � 2,293
Medium y � 83x � 927 y � 134x � 843 y � 778.e0.174x y � 484x � 1,682
Fast y � 69x � 829 y � 113x � 755 y � 710.e0.159x y � 455x � 1,308

Note. Boldface indicates the point at which the function changes from exponential to linear. An exponential function from one to four dots indicates
linearity to a maximum of three dots; and an exponential function from one to three dots indicates linearity to a maximum of two dots.

Table 8
Number Comparison Equations as a Function of Ratio,
Subgroup, and Age

Age (in years) Slow group Medium group Fast group

6 y � 81x � 1,870 y � 97x � 1,609 y � 66x � 1,798
7 y � 66x � 1,610 y � 42x � 1,186 y � 41x � 977
8.5 y � 34x � 1,180 y � 33x � 843 y � 19x � 713
9 y � 44x � 968 y � 34x � 775 y � 29x � 622

11 y � 28x � 792 y � 25x � 617 y � 19x � 554
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DE subgroups all differed from each other (slow � medium �
fast, p � .05) on two-digit addition, two-digit subtraction, and
two-digit multiplication, F(2, 156) � 19.06, p � .001, �2 � .20;
F(2, 156) � 14.63, p � .001, �2 � .16; and F(2, 156) � 13.40,
p � .001, �2 � .15, respectively. Similarly, the three NC sub-

groups all differed from each other (slow � medium � fast, p �
.05) on two-digit addition, two-digit subtraction, and two-digit
multiplication, F(2, 156) � 2.95, p � .05, �2 � .04; F(2, 156) �
3.62, p � .05, �2 � .04; and F(2, 156) � 4.53, p � .05, �2 � .06,
respectively.

Table 9
Dot Enumeration Equations as a Function of Dot Numerosity, Stable Subgroup, and Age

Groupa

Dot numerosity

1–3 dots 1–4 dots 1–5 dots 6–8 dots

6 years

Slow y � 1,482.e0.208x y � 1,257.e0.306x y � 1,395.e0.254x y � 858x � 4,548
Medium y � 255x � 1,221 y � 1,143.e0.215x y � 1,085.e0.241x y � 753x � 3,375
Fast y � 200x � 1,042 y � 1,040.e0.164x y � 945.e0.212x y � 611x � 2,711

7 years

Slow y � 997.e0.219x y � 1,000.e0.217x y � 924.e0.257x y � 768x � 3,839
Medium y � 162x � 1,067 y � 1024e0.158x y � 994.e0.173x y � 788x � 2,098
Fast y � 136x � 1,040 y � 193x � 946 y � 971.e0.153x y � 567x � 2,029

8.5 years

Slow y � 154x � 1,080 y � 1,018.e0.161x y � 1,024.e0.158x y � 652x � 1,726
Medium y � 89x � 975 y � 123x � 918 y � 859e0.149x y � 449x � 1,524
Fast y � 80x � 862 y � 90x � 845 y � 804.e0.119x y � 373x � 1,233

9 years

Slow y � 124x � 1,335 y � 160x � 1,309 y � 982.e0.186x y � 565x � 2,714
Medium y � 86x � 1,061 y � 115x � 946 y � 821.e0.178x y � 492x � 1,917
Fast y � 78x � 909 y � 87x � 856 y � 750.e0.157x y � 520x � 1,414

11 years

Slow y � 105x � 987 y � 230x � 862 y � 871.e0.202x y � 595x � 2,117
Medium y � 83x � 9,041 y � 134x � 820 y � 758.e0.177x y � 461x � 1,662
Fast y � 70x � 805 y � 113x � 734 y � 694.e0.159x y � 458x � 1,259

Note. Boldface indicates the point at which the function changes from exponential to linear.
a Based on children who remained assigned to the same group across age.

Table 10
Simple RT, Symbol Naming RT and Nonverbal Reasoning Ability (RPCM) as a Function of Dot Enumeration and Number
Comparison Subgroup Membership

Variable

Slow Medium Fast

M SD M SD M SD

Dot enumeration

Simple RT 8 years 596.34 37.14 504.02 17.86 507.04 33.16
Simple RT 9.5 years 529.76 24.55 521.65 23.95 462.93 15.11
Name 1–9 RT 1,107.63 29.27 1,129.00 16.67 1,106.17 11.71
Name A–Ja RT 1,458.01 55.62 1,479.34 46.92 1,452.30 28.19
RPCM 53.17 4.98 59.00 3.13 58.88 3.83

Number comparison

Simple RT 8 years 592.64 34.27 493.47 16.99 514.85 41.02
Simple RT 9.5 years 539.09 27.33 478.52 16.49 503.46 24.56
Name 1–9 RT 1,119.63 16.02 1,127.45 17.62 1,094.24 13.46
Name A–Ja RT 1,457.71 31.64 1,524.27 48.31 1,402.78 33.89
RPCM 51.49 4.66 56.34 3.03 62.50 4.38

Note. RT � response time; RPCM � Ravens Colored Progressive Matrices (Raven, Court, & Raven, 1986).
a Excluding “I.”

13MARKERS OF CORE NUMERICAL COMPETENCIES



DE subgroups all differed from each other (slow � medium �
fast, p � .05) on three-digit subtraction, three-digit multiplica-
tion, and three-digit division, F(2, 156) � 25.55, p � .001,
�2 � .25; F(2, 156) � 25.55, p � .001, �2 � .14; and F(2,
156) � 25.55, p � .001, �2 � .24, respectively. Similarly, the
three NC groups differed from each other (slow � medium �
fast, p � .05) in three-digit subtraction, three-digit multiplica-
tion, and three-digit division abilities, F(2, 156) � 9.18, p �
.01, �2 � .22; F(2, 156) � 3.55, p � .05, �2 � .13; and F(2,
156) � 13.22, p � .001, �2 � .36, respectively. In combination,
these findings suggest that differences in the DE and NC RT
subgroups across age are related to math ability (but not to
processing speed, symbol access, or nonverbal reasoning). It is
evident that subgroup membership, which is consistent across
time, predicts mathematical precocity at 9.5 and 11 years. These
findings highlight the applied relevance of the identified sub-
group profiles.

Discussion

This is the first longitudinal study of core numerical competen-
cies that tracks children’s arithmetic development across the entire
elementary school years. Other longitudinal studies have focused
on the relationship between arithmetic and cognitive abilities (e.g.,
Geary, 2011) or have focused on a narrower age range and more
specific abilities (e.g., relationship between nonsymbolic and sym-
bolic comparison abilities and computation between 6 and 8 years
(see Desoete, Ceulemans, De Weerdt & Pieters, 2010; Stock et al.,
2010). The study reported here focuses on the core indices of
numerical competence of DE and NC, because these had been
previously identified as cognitive markers of developmental dys-
calculia (Ansari, Price, & Holloway, 2010; Bruandet et al., 2004;
Butterworth, 2005a; Landerl et al., 2004; Piazza et al., 2010; Price,
Holloway, Räsänen, Vesterinen, & Ansari, 2007). It was critical to

establish whether these markers were stable over time and, there-
fore, whether they could be used in long-term prediction of chil-
dren who were likely to have arithmetic learning difficulties in
school. We also wished to see how these two markers were
correlated, to assess the extent to which they measured the same
underlying cognitive competence. Moreover, it has been argued
that in DD, the principal deficit is not in understanding numerosi-
ties but, rather, linking them to their symbolic expression in words
or digits (Rousselle & Noël, 2007). Thus, learners may be able to
assess and compare nonsymbolic numerosities but still fail to
perform normally on digit comparison (Rousselle & Noël, 2007;
cf. Iuculano, Tang, Hall, & Butterworth, 2008).

Our first task was to establish in a nonarbitrary way that some
children fell into distinct categories of competence. Using cluster
analysis of the RTs in the DE task across the 6 years, we found that
the children formed three groups (with no significant change in
BIC for further groups): slow (n � 30), medium (n � 80) and fast
(n � 49). We have been able to demonstrate that these groupings
were stable from age 6 to age 11. Moreover, these groupings were
significantly associated with further analyses of the RT data,
including detailed analyses of slope of the RT by number of dots
to be enumerated—both slope gradient and the point of disconti-
nuity where subitizing gives way to counting. Although enumer-
ation RTs and accuracy improved for all groups, these measures
discriminate groups of children in a nonarbitrary and stable
manner.

The proportion of children in the slow group at 6 years was
18%. This is higher than the modal prevalence for dyscalculia,
which is around 6% (see von Aster and Shalev, 2007, for a review;
see also Butterworth, 2005a; Gross-Tsur, Manor, & Shalev, 1996;
Kosc, 1974). It is possible that the slow group comprises children
with math learning deficit as well as those with dyscalculia (Maz-
zocco, 2007). However, it should be noted that the sample was not

Table 11
Mean Percentage Correct Single-Digit Addition at 6 Years; Two-Digit Addition, Two-Digit Subtraction, and Two-Digit Multiplication
at 9.5 Years; and Three-Digit Subtraction, Three-Digit Multiplication, and Three-Digit Division at 10 years as a Function of Dot
Enumeration and Number Comparison Subgroup Membership

Variable

Slow Medium Fast

M SD M SD M SD

Dot enumeration

Single-digit addition 32.22 5.84 62.50 3.56 82.14 2.99
2-digit addition 71.94 5.01 90.94 1.20 92.18 1.73
2-digit subtraction 71.39 5.19 88.85 1.40 91.33 1.97
2-digit multiplication 44.44 5.08 66.67 2.72 73.64 3.39
3-digit subtraction 46.67 7.38 81.25 2.90 90.65 2.58
3-digit multiplication 60.56 6.53 85.10 2.15 87.07 3.57
3-digit division 41.67 7.02 75.62 2.88 84.86 2.97

Number comparison

Single-digit addition 46.37 5.77 66.96 3.40 71.32 5.08
2-digit addition 82.26 3.45 88.76 1.70 91.42 2.42
2-digit subtraction 79.91 3.78 87.50 1.81 90.69 2.27
2-digit multiplication 53.85 4.53 67.34 2.66 70.10 4.66
3-digit subtraction 61.97 5.99 80.52 3.19 88.24 3.38
3-digit multiplication 73.50 5.05 82.66 2.72 85.78 3.88
3-digit division 54.06 6.02 76.16 3.07 82.35 3.37
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selected to be representative of the total population, because it was
selected from private schools in a large city.

We used the same cluster analysis techniques in analyzing NC
performance. Here we looked at both average RTs and the ratio
difference between the numbers to be compared. Again we found
a stable three-cluster solution characterized performance over the
6 years: slow (n � 39), medium (n � 86), and fast (n � 34)
groups. Furthermore, the groupings for the two core competence
tasks, enumeration and NC, were highly associated across all data
collection rounds from 7 years onward. (It is likely that at 6 years,
some children were not able to do the NC task, which would
account for the high variability in RTs and accuracy in the young-
est children.)

Thus, DE and NC appear to be assessing core numerical com-
petence, which appears to be a stable individual difference. The
results of this study are consistent with the hypothesis that there
are stable core numerical competences (Butterworth, 1999, 2005b;
Dehaene, 1997; Dehaene, Molko, & Cohen, 2004; Feigenson,
Dehaene, & Spelke, 2004).

Measures of these competences were broadly stable across the 6
years of the study, even though the performance improved in all
clusters, as would be expected on the basis of maturation and life
experience. The finding that cluster membership remained rela-
tively stable over time is important, given that the parameters used
to identify cluster membership changed over time. In fact, 69% of
children remained in the same cluster subgroup across the study,
and no children changed from the medium or fast groups into the
slow group. Moreover, on the basis of differences in DE parameter
profiles, we suggest that the slow group differs from the medium
and fast groups in processing capabilities. In particular, the RT
slopes and subitizing ranges of the slow group (see Table 10) differ
from those of the other two groups.

This suggestion contrasts with proposals that mathematics learn-
ing difficulties are the consequence of more general cognitive
difficulties. It has been argued that a large number of “generalist
genes” contribute to cognitive performance, such that a proportion
of individuals will necessarily fall in the lower tail of a normal
distribution on a range of educationally relevant tasks, including
reading and mathematics (Kovas, Harlaar, Petrill, & Plomin,
2005). Other research has proposed that components of general
cognitive ability, such as working memory, are key drivers of
differences in mathematical attainment (e.g., Geary, 1993; Geary,
Hoard, Nugent, & Byrd-Craven, 2007; Raghubar, Barnes, &
Hecht, 2010). Rousselle and Noël (2007) have suggested that the
core problem underlying arithmetical learning difficulties is an
inability to link intact numerical concepts to their symbolic repre-
sentations in number words or in digits. It should be noted in the
present study that children in all subgroups were able to name
single-digit numbers with equivalent speed and accuracy. In
other words, differences in the DE and NC groups are not
related to the speed of naming numbers per se. These various
approaches imply that the core numerical competences mea-
sured by enumeration and comparison will bear little relation-
ship to mathematical attainment. However, in the present re-
search, we find that core numerical competences are related to
arithmetical attainment, as has been proposed by Ansari et al.
(2010); Bruandet et al. (2004); Butterworth (2003, 2005a,
2010); Butterworth, Varma, and Laurillard (2011); Koontz and
Berch (1996); Landerl et al. (2004); and Piazza et al. (2010),

among others. In summary, we show that DE and NC abilities
are stable across age, are not related to general cognitive
abilities, but are related to computation abilities.
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