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STABILITY AND COMPACTNESS
FOR COMPLETE f-MINIMAL SURFACES

XU CHENG, TITO MEJIA, AND DETANG ZHOU

ABSTRACT. Let (M,q,e~fdu) be a complete metric measure space with Bakry-
Emcry Ricci curvature bounded below by a positive constant. We prove that
in M there is no complete two-sided L g-stable immersed f-minimal hypersur-
face with finite weighted volume. Further, if M is a 3-manifold, we prove a
smooth compactness theorem for the space of complete embedded f-minimal
surfaces in M with the uniform upper bounds of genus and weighted volume,
which generalizes the compactness theorem for complete self-shrinkers in R3
by Colding-Minicozzi.

1. INTRODUCTION

Recall that a self-shrinker (for mean curvature flow in R"*1!) is a hypersurface
¥ immersed in the Euclidean space (R, g..,,) satisfying that

1
H= 5 (x,v),
where z is the position vector in R™*!, v is the unit normal at z, and H is the mean
curvature of ¥ at x. Self-shrinkers play an important role in the study of singularity
of mean curvature flow and have been studied by many people in recent years. We
refer to [], [5] and the references therein. In particular, Colding-Minicozzi [4]
proved the following compactness theorem for self-shrinkers in R3.

Theorem 1 ([]). Given an integer g > 0 and a constant V > 0, the space S(g,V)
of smooth complete embedded self-shrinkers ¥ C R3 with

e genus at most g,
e 0Y. =10,
o Area(Br(zo)NY) < VR? for all zg € R® and R > 0

is compact. Namely, any sequence of these has a subsequence that converges in the
topology of C™ convergence on compact subsets for any m > 2.

In this paper, we extend Theorem [ to the space of complete embedded f-
minimal surfaces in a 3-manifold. A hypersurface ¥ immersed in a Riemannian
manifold (M, g) is called an f-minimal hypersurface if its mean curvature H satisfies
that, for any p € X,

H = (Vf,v),
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where f is a smooth function defined on M and Vf denotes the gradient of f on
M. Here are some examples of f-minimal hypersurfaces:

e f=C, an f-minimal hypersurface is just a minimal hypersurface.
2
e sclf-shrinker ¥ in R**1. f = _‘I4| )

e Let (M,g, f) be a shrinking gradient Ricci solitons; i after a normal-

€.

. . . . 5 o2 .

ization, (M,g, f) satisfies the equation Ric + V' f = %y or equivalently
the Bakry—Emery Ricci curvature mf := Ric + VQf = % We may con-
sider f-minimal hypersurfaces in (M, g, f). In particular, the previous ex-
ample: a self-shrinker ¥ in R™*! is f-minimal in Gauss shrinking soliton

2
(R™, gean, 15-).

e M = H"*!(—1), the hyperbolic space. Let r denote the distance function
from a fixed point p € M and f(x) = nar?(z), where a > 0 is a constant.
Now Ricy > n(2a — 1). The geodesic sphere of radius r centered at p is an
f-minimal hypersurface if the radius r satisfies 2ar = cothr.

An f-minimal hypersurface ¥ can be viewed in two ways. One is that X is
f-minimal if and only if ¥ is a critical point of the weighted volume functional
e~fdo, where do is the volume element of ¥. The other one is that ¥ is f-minimal
if and only if ¥ is minimal in the new conformal metric g = e_%g (see Section
and Appendix). f-minimal hypersurfaces have been studied before as even more
general stationary hypersurfaces for parametric elliptic functionals; see for instance
the work of White [I4] and Colding-Minicozzi [7].

We prove the following compactness result:

Theorem 2. Let (M3,g, e~ Fdu) be a complete smooth metric measure space and
mf > k, where k is a positive constant. Given an integer g > 0 and a constant
V > 0, the space Sy v of smooth complete embedded f-minimal surfaces ¥ C M
with

e genus at most g,

o OX =10,

. fz e fdo <V

is compact in the C™ topology, for any m > 2. Namely, any sequence of Sq v has
a subsequence that converges in the C™ topology on compact subsets to a surface in
Sg.v, for any m > 2.

Since the existence of the uniform scale-invariant area bound is equivalent to the
existence of the uniform bound of the weighted area for self-shrinkers (see Remark
M in Section Bl), Theorem [ implies Theorem [Il Also, in [2], we will apply Theorem
to obtain a compactness theorem for the space of closed embedded f-minimal
surfaces with the upper bounds of genus and diameter.

To prove Theorem [2] we need to prove a nonexistence result on Lj-stable f-
minimal hypersurfaces, which is of independent interest.

Theorem 3. Let (M"! g,e=fdu) be a complete smooth metric measure space
with %f > k, where k is positive constant. Then there is no complete two-sided
Ly-stable f-minimal hypersurface ¥ immersed in (M,g) without boundary and with
finite weighted volume (i.e. [, e~ldo < o), where do denotes the volume element
on ¥ determined by the induced metric from (M,q).
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Here we explain briefly the meaning of L stability. For an f-minimal hypersur-
face X, the Ly operator is

Ly = Ay + AP + Ricy (v,v),
where Ay = A — (Vf,V:) is the weighted Laplacian on X. In particular, for self-
shrinkers, it is the so-called L operator:
1
5
L y-stability of ¥ means that its weighted volume fz e 1do is locally minimal;
that is, the second variation of its weighted volume is nonnegative for any compactly
supported normal variation. We leave more details about the definition of L -

stability and some of its properties to Section Pl and the Appendix.
For self-shrinkers in R"*!, Colding-Minicozzi [6] proved that

1
L=A+ AP = 5(2,V) +

Theorem 4 ([6]). There are no L-stable smooth complete self-shrinkers without
boundary and with polynomial volume growth in R*+1.

Since the first and third authors [3] of the present paper proved that for self-
shrinkers, properness, the polynomial volume growth, and finite weighted volume
are equivalent, Theorem [ implies Theorem [4]

In this paper, we also discuss the relationship among the properness, polynomial
volume growth and finite weighted volume of f-minimal submanifolds (Propositions
B @ and F]). We obtain their equivalence when the ambient space (M,g, f) is a
shrinking gradient Ricci solitons, i.e. m+v2 f= %g, with the condition that f is
a convex function with |V |2 < f (Corollary [J).

The rest of this paper is organized as follows: In Section Bl some definitions,
notation and facts are given as preliminaries. In Section Bl we prove Propositions
Bl 4 and B In Section @ we prove Theorem Bl In Section Bl we prove Theorem
Bl In the Appendix we calculate the second variation of the volume functional of
f-minimal submanifolds and discuss some properties of L ¢-stability for f-minimal
submanifolds.

2. PRELIMINARIES

In general, a smooth metric measure space, denoted by (M™,g,e~fdu), is an
m-dimensional Riemannian manifold (M™,g) together with a weighted volume
form e fdu on M, where f is a smooth function on M and dp is the volume
element induced by the metric g. In this paper, unless otherwise specified, we
denote by a bar all quantities on (M, g), for instance by V and Ric, the Levi-Civita
connection and the Ricci curvature tensor of (M, g) respectively. For (M,g,e™fdu),
an important and natural tensor is the oo—Bakry—Emery Ricci curvature tensor Ricy
(for simplicity, Bakry—Emery Ricci curvature), which is defined by

Rics := Ric+ V  f,

where V° f is the Hessian of f on M. If f is constant, mf is the Ricci curvature
Ric on M respectively.

A Riemannian manifold with Bakry—Emery Ricci curvature bounded below by a
positive constant has some properties similar to a Riemannian manifold with Ricci
curvature bounded below by a positive constant. For instance, see the work of
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Wei-Wylie [13], Munteanu-Wang [I11[12] and the references therein. In this paper,
we will use the following proposition by Morgan [10] (see also its proof in [13]).

Proposition 1. If a complete smooth metric measure space (M,g, e Tdu) has
mf > k, where k is a positive constant, then M has finite weighted volume (i.e.
fM e~fdu < 00) and finite fundamental group.

Now, let i : X" — M™.,n < m, be an n-dimensional smooth immersion. Then
i:(X";4*g) = (M™,g) is an isometric immersion with the induced metric i*g. For
simplicity, we still denote i*g by g whenever there is no confusion. We will denote
for instance by V, Ric, A and do, the Levi-Civita connection, the Ricci curvature
tensor, the Laplacian, and the volume element of (X, g) respectively.

The function f induces a weighted measure e fdo on ¥. Thus we have an
induced smooth metric measure space (X", g, e~ /do).

The associated weighted Laplacian A on (X,7) is defined by

Aju:=Au— (Vf,Vu).
The second order operator Ay is a self-adjoint operator on the space of square
integrable functions on ¥ with respect to the measure e~/ do (however the Laplacian

operator in general does not have this property).
The second fundamental form A of (X,7) is defined by

AX,Y)=(VxY):, X, YeT,X,pex,
where | denotes the projection to the normal bundle of ¥. The mean curvature

n
vector H of ¥ is defined by H = trA = Z(iiei)%
i=1
Definition 1. The weighted mean curvature vector of ¥ with respect to the metric
g is defined by

(1) H;=H+ (Vf)*

The immersed submanifold (3, g) is called f-minimal if its weighted mean cur-
vature vector Hy vanishes identically, or equivalently if its mean curvature vector
satisfies

(2) H=—(V/)*"
Definition 2. The weighted volume of (X, ) is defined by

(3) Vi(2) ::/Eeffda.

It is well known that ¥ is f-minimal if and only if ¥ is a critical point of the
weighted volume functional. Namely, it holds that

Proposition 2. If T is a compactly supported variational vector field on %, then
the first variation formula of the weighted volume of (X,9) is given by

= —/<TJ‘,Hf>§efde.
t=0 2

On the other hand, an f-minimal submanifold can be viewed as a minimal sub-
manifold under a conformal metric. Precisely, define the new metric g = et g on
M, which is conformal to g. Then the immersion 7 : ¥ — M induces a metric i*§

() LVi5)
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on ¥ from (M,g). In the following, i*¢ is still denoted by § for simplicity. The
volume of (%, g) is

(5) V(%) ::/Zd&:/ze_fdozvf(E).

Hence Proposition 2l and (@) imply that
(©) [ R RN

where dé = e /do and H denote the volume element and the mean curvature
vector of ¥ with respect to the conformal metric g respectively.

Identity (6]) implies that H-= einﬁHf. Therefore (3,9) is f-minimal in (M, g) if
and only if (3, g) is minimal in (M, g).

Now suppose that X" is a hypersurface immersed in M"*!. Let p € ¥ and v be
a unit normal at p. The second fundamental form A and the mean curvature H of
(3,9) are as follows:

A:T,Y = T,%,A(X) =Vxr, X €T,%,

n

H=trA=—- Z(ﬁeieiﬂ/).

i=1

Hence the mean curvature vector H of (X,g) satisfies H = —Hv. Define the
weighted mean curvature Hy of (X,9) by Hy := —Hv. Then

Hf:H—<vf,l/>.

Definition 3. A hypersurface ¥ immersed in (M"*+! G, e~ /du) with the induced
metric g is called an f-minimal hypersurface if it satisfies

(7) H=(Vfv).
For a hypersurface (X,9), the L; operator is defined by
L= Af + ‘A|2 +mf(l/, v),

where |A|? denotes the square of the norm of the second fundamental form A of X.
The L ¢-stability of ¥ is defined as follows:

Definition 4. A two-sided f-minimal hypersurface X is said to be L s-stable if for
any compactly supported smooth function ¢ € C2°(X), it holds that

(8) —/ ¢oLpe do = / [[Vo>=(|A]* + Rics (v, v))p?*|e T do > 0.
b )

It is known that an f-minimal hypersurface (X,7) is Ly-stable if and only if
(%, §) is stable as a minimal surface with respect to the conformal metric § = e~/g.
See more details in the Appendix of this paper.

In this paper, for closed hypersurfaces, we choose v to be the outer unit normal.
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3. PROPERNESS, POLYNOMIAL VOLUME GROWTH
AND FINITE WEIGHTED VOLUME OF f—MINIMAL HYPERSURFACES

In [3], the first and third authors of the present paper proved that the finite
weighted volume of a self-shrinker X" immersed in R™ implies it is properly im-
mersed. In [9], Ding-Xin proved that a properly immersed self-shrinker must have
the Euclidean volume growth. Combining these two results, it was proved in [3]
that for immersed self-shrinkers, properness, polynomial volume growth and finite
weighted volume are equivalent.

In this section we study the relationship among the properness, polynomial vol-
ume growth and finite weighted volume of f-minimal submaifolds, some of which
will be used later in this paper.

Let X be an n-dimensional submanifold in a complete manifold M, n < m. X is
said to have polynomial volume growth if, for a p € M fixed, there exist constants
C and d so that for all r > 1,

(9) Vol(BY (p) N %) < Cr,

where BM (p) is the extrinsic ball of radius r centered at p and Vol(B* (p)) denotes
the volume of BM (p) NX. When d = n in [{@), ¥ is said to be of Euclidean volume
growth.

Before proving the following Proposition Bl we recall an estimate implied by the
Hessian comparison theorem (cf., for instance, [6], Lemma 7.1).

Lemma 1. Let (M,g) be a complete Riemannian manifold with bounded geometry,
that is, M has sectional curvature bounded by k (|Kp| < k), and injectivity radius
bounded below by ig > 0. Then the distance function r(x) satisfies

[VPHV V)~ |V - (v, TR < VR,

for r < min{io, ﬁ} and any unit vector V€ T, M.
Using this estimate we will prove

Proposition 3. Let X" be a complete noncompact f-minimal submanifold im-
mersed in a complete Riemannian manifold M™. If ¥ has finite weighted volume,
then X is properly immersed.

Proof. We argue by contradiction. Since the argument is local, we may assume
that (M, g) has bounded geometry. Suppose that ¥ is not properly immersed.

Then there exist a numzfr 2R < min{ig, ﬁ} and o € M so that E%(o) N X is not
compact in ¥, where B (0) denotes the closure of the (open) ball B (o) in M of

radius R centered at o. Then for any a > 0, there is a sequence {py} of points in
BM(0) N S with dists(pk, pj) > a > 0 for any k # j. So B%(pk) N Bg(pj) = () for

any k # j, where Bg(pk) and B% (p;) denote the intrinsic balls in ¥ of the radius
5, centered at pp and p; respectively. Choose a < 2R. Then Bg(pj) C BM(0). If
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pE B%(pj), the extrinsic distance function r;(p) = distas(p, p;) from p; satisfies

ATj = szrj(ei, 61') + (H,Vrﬁ
=1

1 — =
> 92— vk — (V4 V)
Tj Tj
n 1 9
> - |V e
’I"j ’I”j

where ¢ = nvVk + Sup g (o) |V f|. Lemma[I]is used above. Hence
2
Arj > 2n — 2cr;y.
Choosing a < min{g;, 2R}, we have for 0 < u < §,

(10) / (2n — 2crj)do < / Ar?da
B (p;)

B3 (p;)

= / (Vr2,v)do
9B} (p))
< 2uA(n),

where v denotes the outward unit normal vector of dB7 (p;) and A(u) denotes the
area of OB (p;). Using the co-area formula in (I0), we have

(11) /Oﬂ(n — es)A(s)ds < /O“ /dE(p,,,j)_s(" — orj)do < pA(p).

This implies
(n =)V (p) < V'(p),
where V(1) denotes the volume of B} (p;). So

Vi) on

Vi) ~ p
Integrating (I2)) from £ > 0 to p, we have

(12)

V(W) o Bn —e(u—c
V(e) = (E) e,

. . V(s)
Since lim = Wn,
s—=0t 8™

(13) V(1) 2 wapt"e "

Thus we conclude

-f -f f (et
e ldo > / e /do> inf (e77) /
/E ; Bg (i) BJ%(0) J; B

This contradicts the assumption of the finite weighted volume of X. ]

do = oco.
é(l’j)

Proposition 4. Let (M™,g,e/du) be a complete smooth metric measure space
with %f =k, where k is a positive constant. Assume that f is a convex function.
If X" is a complete noncompact properly immersed f-minimal submanifold in M,
then ¥ has finite weighted volume and Euclidean (hence polynomial) volume growth.
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Proof. Since (M, 7, f) is a gradient shrinking Ricci soliton, it is well known that, by
a scaling of the metric g and a translating of f, still denoted by g and f respectively,
we may normalize the metric so that k = % and the following identities hold:

F+|vf|2—f:(),
R+Af=",

2
R

Vv
o

From these equations, we have that

Af-VfP+f=% ad  [VIP<F

It was proved by Cao and the third author [I] that there is a positive constant ¢ so
that

(r(x) — 0% < f(x) < ~(r(x) + 0)?

(14 <3

I

for any x € M with r(z) = disty(p, x) > 1o, where p is a fixed point in M and ¢, 7
are positive constants that depend only on m and f(p).

By (I4), we know that f is a proper function on M. Since ¥ is properly immersed
in M and f is proper in M, f|x is also a proper smooth function on . Note that
with the scaling metric and translating f, 3 is still f-minimal. Hence

Af—|Vf\2—|—f:(Zf— Z faa_|vfl|2)_|vf—r|2+f

a=n-+1

Af=ViP+f= > foa

a=n+1

IN
SE

Also we have
VP =[VfTP<IVIP< S

By Theorem 1.1 of [3], ¥ has finite weighted volume and the Euclidean volume
growth of the sub-level set of f with respect to the scaling metric and the translating
f, and hence with respect to the original metric and f. Moreover, by the estimate
(), we have that ¥ has the Euclidean volume growth. ]

Next we prove the following:

Proposition 5. Let (M™,g, e /du) be a complete smooth metric measure space
with Ricy > k, where k is a positive constant. Assume that |V f|?> < 2kf. If X" is a
complete submanifold (not necessarily f-minimal) with polynomial volume growth,
then X has finite weighted volume.

Proof. By a scaling of the metric, we may assume that k = % The proof fol-
lows from an estimate of f. Munteanu-Wang [11] extended the estimate (1) to
(M™,g,e ¥dp) with Ricy > $ and [Vf|? < f. Combining the assumption that %

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABILITY AND COMPACTNESS FOR COMPLETE f-MINIMAL SURFACES 4049

has polynomial volume growth with the estimate (I4]), we have

/e_fdaz/ e_fda—i—Z/ e fdo
) EﬂBr{%(?) =0 Zm(BJW 1(p)\B7jyé+i(p))

ro+it

< CyVol(E N BM (p)) + CZ e~ Hroti=el ol B, ()
=0

<Clrg+ Z e i (roti=e) (o 4 4 1)4]
i=0
< 00. ]

By Propositions [3 @] and [Bl, we have the following.

Corollary 1. Let (M™,g, f) be a complete shrinking gradient Ricci soliton with

mf = % Assume that f is a convex function. If ¥ is a complete f-minimal
submanifold immersed in M, then for ¥ the properness, polynomial volume growth,

and finite weighted volume are equivalent.

4. NONEXISTENCE OF Lf STABLE f—MINIMAL HYPERSURFACES

In this section, we prove Theorem Bl which is a key to proving the compactness
theorem in Section [l

Theorem 5 (Theorem[)). Let (M,g,e fdu) be a complete smooth metric measure
space with Mf > k, where k is a positive constant. Then there is no two-sitded
L-stable complete f-minimal hypersurface ¥ immersed in (M, g) without boundary
and with finite weighted volume (i.e. [ye™fdo < o0).

Proof. We argue by contradiction. Suppose that X is an L-stable complete f-
minimal hypersurface immersed in (M,g) without boundary and with finite
weighted volume. Recall that a two-sided hypersurface ¥ is L¢-stable if the fol-
lowing inequality holds, that is, for any compactly supported smooth function

peCr(Y),
(15) /E[V@|2—(|A|2 + Ricy(v, V))L,OQ:| e fdo > 0.

Observe that any closed hypersurface cannot be L-stable. This is because the
assumption mlf > k > 0 implies that (I3 cannot hold for ¢ = ¢ on ¥. Hence, X
must be noncompact.

Let 1 be a nonnegative smooth function on [0, co) satisfying

1 if selo1)
n(8>:{0 if se2,00)

and |n/| < 2.
Fix a point p € ¥ and let r(z) = distx(p,z) denote the (intrinsic) distance
function on ¥. Define a sequence of functions ¢;(z) = n(@), j > 1. Then
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|Vp;]? <1 for j > 2. Substituting ¢;,7 > 2 for ¢ in ([H):
L[ vet = 142 + Ries w2 | e

< / (IVe;l? —kpl)e /o
5
= / IV;|%e ! do — / k(p?effda
B3 (p)\B} (p) B3 (p)
/ e ldo — k/ ap?e_fdo
B3 (»)\ B (p) B3 (p)

< / e fdo — k/ e fdo,
B3 (p)\ B} (p) B3 (p)

where BJZ (p) is the intrinsic geodesic ball in M of radius j centered at p. Since ¥
has finite weighted volume, we have, when j — oo,

<

/ e ldo — 0.
B3;(p)\B} (p)

Choosing j large enough, we have that ¢; satisfies
— , k
/ (IVe;* = (JA]* + Ricg (v, V))(p?)effda < ——/ e ldo <0.
= 2 /B2 ()
This contradicts the fact that ¥ is L y-stable. (]

5. COMPACTNESS OF COMPLETE f—MINIMAL SURFACES

Before proving Theorem 2] we give some facts.

Wei-Wylie ([I3], Theorem 7.3) used the mean curvature comparison theorem to
give a distance estimate for two compact hypersurfaces ¥; and ¥5 in a smooth
metric measure space (M, g, e~ /du) with mf > k, where k is a positive constant.
Observe that for two complete properly immersed hypersurfaces 37 and Yo, if at
least one of them is compact, there is a minimizing geodesic segment joining ¥4
and Y3 and realizing their distance. Hence the proof of Theorem 7.3 [13] can be
applied to obtain the following.

Proposition 6. Let (M, g, e~ 'du) be an (n+1)-dimensional complete smooth met-
ric measure space with Ricy > k, where k is a positive constant. If ¥1 and o are
two complete properly immersed hypersurfaces, at least one of which is compact,
then the distance d(X1,%2) satisfies

1 b b
1 ¥1,39) < —(max |H7* H:?
(16) d(¥1,%2) < £ (max [H}* (z)] + max [H}* ()]),
where H?,z = 1,2, denotes the weighted mean curvatures of 3; respectively.

Corollary 2. Let (M,g,e fdu) be as in Proposition[8. Then there is a closed ball

B of M satisfying that any complete properly immersed f-minimal hypersurface
Y must intersect it.

Proof. Fix p € M and a geodesic sphere S (p) of M. By Proposition Bl

1 M
d(s} (p),2) < ¢ max|[H;" P (2)] = C,
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where C' is independent of . Therefore there is a closed ball B™ of M with radius
big enough so that any > must intersect it. |

We need the following fact:

Proposition 7. Let M be a simply connected Riemannian manifold. If a hyper-
surface ¥ is complete, not necessarily connected, properly embedded, and has no
boundary, then every component of ¥ separates M into two components and thus
is two-sided. Therefore ¥ has a globally defined unit normal.

Proof. Suppose ¥; is a component of ¥. By contrast, M\X, has one component.
Since ¥ is a properly embedded f-minimal hypersurface, for any p € 3; there is a
neighborhood W of p in M so that W NX,; = WNX only has one piece (i.e. it is a
graph above a connected domain in the tangent plane of p). Thus we have a simply
closed curve v passing p, transversal to ¥; at p, and X; Ny = p. Since M is simply
connected, we have a disk D with the boundary . Again since ¥ is proper, the
intersection of ¥; with 0D = 7 cannot be one point, which is a contradiction. O

Combining Proposition Bl in Section Bl with Proposition [, we obtain

Proposition 8. Let (M,g,e~/du) be a simply connected complete smooth metric
measure space. If a complete f-minimal hypersurface has finite weighted volume,
then every component of 3 separates M into two components and thus is two-sided.
Therefore ¥ has a globally defined unit normal.

We will take the same approach as in Colding-Minicozzi’s paper [] to prove
Theorem 2] a smooth compactness theorem for complete f-minimal surfaces. First
we recall a well known local singular compactness theorem for embedded minimal
surfaces in a Riemannian 3-manifold.

Proposition 9 (cf. [], Proposition 2.1). Given a point p in a Riemannian 3-
manifold M, there exists an R > 0 such that the following holds: Let ¥; be embedded
minimal surfaces in Bar(p) C M with 0%; C 0Bagr(p). If each ¥; has area at most
V' and genus at most g for some fixed V,g, then there exist a finite collection of
points xx, a smooth embedded minimal surface ¥ C Bg(p) with 0¥ C O0Br(p) and
a subsequence of {¥;} that converges in Br(p) (with finite multiplicity) to ¥ away
from the set {xy}.

Here and in the following, we denote by Bg the ball BY in M for simplicity.

It is known that ¥ is f-minimal with respect to metric g if and only if ¥ is
minimal with the conformal metric § = e~ /g (see Appendix). Using this fact and
applying Proposition @l we may prove a global singular compactness theorem for
f-minimal surfaces.

Proposition 10. Let M be a complete 3-manifold and (M,g,e Fdu) a smooth
metric measure space. Suppose that ¥; C M is a sequence of smooth complete
embedded f-minimal surfaces with genus at most g, without boundary, and with
weighted area at most V', i.e.

(17) / e ldo <V < .
P

Then there are a subsequence, still denoted by ¥;, a smooth embedded complete non-
trivial f-minimal surface ¥ C M without boundary, and a locally finite collection
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of points S C X so that 3; converges smoothly (possibly with multiplicity) to ¥ off
of §. Moreover, ¥ satisfies fz e Tdo <V and is properly embedded.

Here a set S C M is said to be locally finite if Br(p) NS is finite for every p € M
and for all R > 0.

Proof. Consider the conformal metric g = e~fg on M. For a point p € M, let
Bar(p) C M denote the ball in (M, §) of radius 2R centered at p. Then the area
of Bor(p) N X, satisfies

(18) fx?/ea(ém(p)mzj)g/ d&:/ e fdo <V.
2 Ej

Also, it is clear that the genus of By r(p)NY,; remains at most g. Then by Proposi-
tion[d there exist an R > 0 and a finite collection of points x, a smooth embedded
minimal surface ¥ C Bg(p), with 8% C dBg and a subsequence of {¥;} that
converges in Br(p) (with finite multiplicity) to ¥ away from the set {x}}.

Let {Bg, (p;)} be a countable cover of (M, ) of small balls such that {Bsg, (p;)}
is still a cover of (M, §). On each By r; (pi), applying the previous local convergence
and then passing to a diagonal subsequence, we obtain that there are a subsequence
of ¥;, still denoted by ¥;, a smooth embedded minimal surface ¥ (with respect to
the metric §) without boundary, and a locally finite collection of points S C ¥ so
that X; converges smoothly (possibly with multiplicity) to X off of S. Since ¥ has
no boundary, it is complete in the original metric g. Thus we obtain the smooth
convergence of the subsequence to the smooth embedded complete f-minimal sur-
face X off of S.

By Corollary [2I ¥ is nontrivial. The convergence of ¥; to ¥ and ([1) imply
fz e fdo < V. By Proposition 3 ¥ is properly embedded. O

We need to show that the convergence is smooth across the points in S. To prove
this, we need the following.

Proposition 11. Assume that the ambient manifold M in Proposition [10l is simply
connected. If the convergence of the sequence {¥;} has multiplicity greater than one,
then X is L¢-stable.

Proof. By Proposition B we know that ¥; and ¥ are orientable. We may have
two ways to prove the proposition. The first is to use the known fact on minimal
surfaces. It is known that (cf. [6], Appendix A) if the multiplicity of the convergence
of a sequence of embedded orientable minimal surfaces in a simply connected 3-
manifold is not one, then the limit minimal surface is stable. Under the conformal
metric g, a sequence {X;} of minimal surfaces converges to a smooth embedded
orientable minimal surface ¥ and thus X is stable. Also, the conclusion that X
is stable with respect to the conformal metric g is equivalent to saying that ¥ is
L 4-stable under the original metric § (see Appendix).

The second way is to prove it directly. We may prove that L is the linearization
of the f-minimal equation by a proof similar to the one in [4], Appendix A. By
arguing as in Proposition 3.2 in [4], we can find a smooth positive function u on X
satisfying

(19) Lyu=0.
This implies that X is L ¢-stable. O
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Proof of Theorem 2l By the assumption on Ricy and Proposition [ M has finite
fundamental group. After passing to the universal covering, we may assume that
M is simply connected. Given a sequence of smooth complete embedded f-minimal
surfaces {3;} with genus g, 9%; = 0, and the weighted area at most V', by Proposi-
tion [0l there is a subsequence, still denoted by {X;}, that converges in the topology
of smooth convergence on compact subsets to a smooth embedded complete f-
minimal surface ¥ away from a locally finite set S C ¥ (possibly with multiplicity).
Moreover, the limit surface ¥ C M is complete, properly embedded, fz e fdo <V,
has no boundary and has a well-defined unit normal v. We also have the equivalent
convergence under the conformal metric g.

If S is not empty, Allard’s regularity theorem implies that the convergence has
multiplicity greater than one. Then by Proposition [T we conclude that ¥ is L -
stable. But Proposition [l says that there is no such 3. This contradiction implies
that S must be empty. We complete the proof of the theorem. O

Remark 1. For self-shrinkers, the condition that the scale-invariant uniform area
bound exists (i.e. there is a uniform bound V;: Area(Bgr(zo) NX) < V4 R? for
all zo € R? and R > 0) implies that the uniform bound V of weighted area (i.e.
Jx e 7do < V) exists (cf. the proof of Proposition El). The converse is also true by
the conclusion that the entropy of a self-shrinker can be achieved by Fj ; for self-
shrinkers with polynomial volume growth (see Section 7 of [5]). Therefore Theorem
generalizes the result of Colding-Minicozzi (Theorem [ for self-shrinkers.

Remark 2. Combining Theorem 2] with the upper bound estimate of weighted area
for closed embedded f-minimal surfaces of fixed genus in a complete 3-manifold
with mf > k > 0, we may obtain the smooth compactness theorem for the space
of closed embedded f-minimal surfaces of fixed topological type and with diameter
bound. We discuss it in [2].

APPENDIX

In this appendix, we discuss the L ¢-stability properties of f-submanifolds. With
the same notation as in Section [ let (M™,g) be an m-dimensional Riemannian
manifold and ¢ : ¥ — M"™,n < m, be an immersion. Let g = e’%fg denote the
new conformal metric on M. Therefore i may induce two isometric immersions of
¥: (%,9) = (M,g) and (X,3) — (M, g) respectively.

When (%, §) is minimal, it is well known that the second variation of the volume
of (3, g) is given by

Proposition 12 (cf. [0]). Let (X,§) be a minimal submanifold in (M,g). If T is
a normal compactly supported variational vector field on ¥ (that is, T = T+ ), then
the second variational formula of the volume V of (X, §) is given by

(20) V(%)

— =— [ (T,JT);ds,
dt? o /E g

where the stability operator (or Jacobi operator) J is defined on a normal vector
field T to X by

(21) JT = A§ 5T + trs gy [Rm(-, T) 1+ + B(T).
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Here A T Z VJ‘ VJ‘T VJ‘ .T) is the Laplacian determined by the normal

connection V+ of(E, J), Rm is the curvature tensor on (M, g), tres ) [%(, T)]t=

Z[ﬁn(éi,T)éi]L, A denotes the second fundamental form of (%,3), B(T) =

i=1

(A(éi,éj),T>fl(éi,éj), and {&;}, i = 1,--- ,n, is a local orthonormal base of

7,7=1
2,9).

Recall that the weighted volume of (3,7) is defined by
(22) Vi(Z) = /Ee_fda.

By a direct computation similar to that of ([20)), we may prove the second varia-
tion formula of the weighted volume of f-minimal submanifold (X, ).

Definition 5. For any normal vector field 7' on (¥,7), the second order operator
Aj; is defined by

AT = AT — 2]V f @ VET(-, )]

-3 (TEVET -V ) - Y (D)

i=1
The operator Ly on (X,7) is defined by
(23) LiT = AyT + R(T) + B(T) + F(T).
In the above, V+ denotes the normal connection of (¥,7); {e;}, i = 1,...,n,

is a local orthonormal base of (X,9); B(T) = Z (A(es,e;), TYA(e;, e5), where
ij=1
A denotes the second fundamental form of (3,7); R(T) = tris g [Rm(-, T)]* =

n
Z[Rm(ei, T)e;) ", where Rm denotes the Riemannian curvature tensor of (M, 3);
i=1

and F(T) = [V f(T) Z VfTea)ea,Where{ea}a—n—l—l < ,myis a
a=n+1

local orthonormal normal vector field on (%, 7).

Proposition 13. Let (X,9) be an f-minimal submanifold in (M,g). If T is a

normal compactly supported variational vector field on ¥ (that is, T = T+), then

the second variation of the weighted volume of (3,9) is given by

d2
= —/(T, L;T)ze ' do.
t=0 2

at?
Proof. Let ¢(-,t),t € (—¢,e) be a compactly supported variation of ¥ so that
T= di/}(%) is the variational vector field, ¥; = (X%, t), X9 = X. Choose a normal

(24) —5 Vi (Ze)

coordinate system {z1,...,z,} at a point p € ¥. We can consider {z1,...,z,,t}
to be a coordinate system of ¥ x (—¢, ¢) near the point (p,0). Denote e; = dw(%)
for i = 1,...,n. The induced metric on ¥; from (M,7) is given for g;; = (e;, e;).
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Hence g;;(p,0) = 6;; and V.,e;(p,0) = 0. Denote by do; the volume element of ¥;.
Then doy = J(x,t)dog, where dog = do and the function J(x,t) is given by

with G(z,t) = det(g;;(x,t)). Denote by d(oy); the weighted volume element of ¥;.
Then d(os); = J;(,t)dog, where Jy(z,t) = J(z,t)e 7@ f(z,t) = f(b(z,t)).
. i o aJs i S =
Since 37 = 3201 99 (Ve Tyej) . S =( 02197 (Ve,Toeg) = (V£,T)) Jy
Note that T is a normal vector field. A direct computation gives, at (p,0),

Iyl _
92t —o —|:_2ljzl lju (ewT)Ty ei>
+ Z(VEIVTT, €i> + Z(V T,V T>
=1 i=1
VAT, T) - (Vf,VeT)
+(Z<veiT7 62‘> - <vf7 T>)(Z<ve]T7 ej> - <vf7 T>):| Jf
i=1 j=1
By
> VeIV, T) =Y (Ve T,e;)? +Z > (Ve T ed)’
i=1 i,j=1 =1 a=n+1
=) (4y,1)° +Z (ViT,VET)
ij=1 i=1

= [(A(, ), D) + V=T
and Y1 (Ve, V1T, e;) = div(VeT) T — (Vo T)L, H) we have that, at p,

9275
o

= |: - |<A(’ ')7T>|2 - zn:<ﬁ(eiaT)ei,T> + |VJ'T|2 + div(VTT)T

i=1

t=0

— (VD) HY =N f(T,T) = (Vf, VT + (T, Hy)2 e 7.

Using div(e ™/ (VoT) ") = e /div(VeT) " — e H((V1T) ",V [), we have at p:

n

- [WLTP AL TP — S (Bler, Thei T) — V2 £(T,T)

t=0 i=1

927,

(25) 52

—((VrT)* Hy) + (T, Hf>2] e +div(e  (VrT) ).
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Observe that the right-hand side of (25) is independent of the choice of coordinates.
Hence (25) holds on ¥. By integrating (28] and using the fact that ¥ is f-minimal
(i.e. Hy =0), we obtain

d2

va@t)

:/Z(IVLTP— (A, ), T)? = (R(T),T) = V" £(T,T))e ' do

t=0

_ /E (T, ALT + A(T) + R(T) + F(T))e ¥ do

=- / (T, L;T)e ' do.

. .
Substituting /T for T in the identity [, [V*T|*do = — [(T, A*T)do, we have
/ VAT 2 T do = — / (T, A¢T)e ' do.
b b
Thus we have the second variation formula of the weighted volume of X:
d2

ﬁvf@t)

=— / (T,A+T + A(T) + R(T) + F(T))e ' do
t=0 =

= —/<T, LiTYe f do.
b
0

Definition 6. An f-minimal submanifold (£,9) is called L-stable if the second
variation of the weighted volume of ¥ given by (24)) is nonnegative for any normal
compactly supported variational vector field T on X.

Observe that for an f-minimal submanifold ¥ and its normal compactly sup-

ported variation, it holds that Vy(X;) = V(X;). Then

d? - d?
(26) a2V (%) o 22V (Ee) .
By @0), @4), and (26]), we have
(27) /Z (T, JT)5d6 = /E (T, L{T)ge ' do.
This implies that
(28) /E e~ (T, JT)ge ! do = /E (T, L;T)ze ! do.

By ([28)), the following equality holds.
Corollary 3. For any normal vector field T on %,
JT = e L;T.

The operator Ly corresponds to a symmetric bilinear form By (T, T') for the space
of normal compactly supported vector fields on X:

(29) By(T,T) = — /}S (T, L;T)ge ' do.
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We define the Lj-index, denoted by Lj-ind, of (X,7) by the maximum of the
dimensions of negative definite subspaces of By. Hence (X,7) is Ly-stable if and
only if its Ly-ind = 0.

On the other hand, for minimal (3, §), it is well known that the stability operator
J also defines a symmetric bilinear form B(T,T),

(30) BT, T) = — /E (T, JT),ds.

There are also the concepts of index and stability of (2, g). In particular, (%,9) is
stable if and only if the index ind(X, §) = 0. Since B¢(T,T) = B(T,T), it holds
that

Proposition 14. L-ind of (2,7) is equal to the index of (£,§). In particular,
(X,9) is Lyg-stable if and only if (X, §) is stable in (M, g).

Now if ¥ is a two-sided hypersurface, that is, if there is a globally-defined unit
normal v on (X,9), take T'= pv. Then the second variation (24 implies that

Proposition 15. Let ¥ be a two-sided f-minimal hypersurface in (M"1,g). If
w 1s a compactly supported smooth function on X, then the second variation of the
weighted volume of (£,9) is given by

T Vi)

(31) a2t

= —/ @Ly(p)e ! do,
t=0 %

where v denotes the unit normal of (X,g) and the operator Ly is defined by Ly =
Ay + |A]Z + Ricg(v,v).

Definition 7. The operator Ly = Ay + |A[Z+ Rics(v,v) is called the Lg-stability
operator of hypersurface(3,g).

A bilinear form on space C2°(X) of compactly supported smooth functions on ¥
is defined by

By(p, ) :—/ oLpe ldo
(32) =
:/E[va\z—(\A|§+Ricf(u, v))*le ! do.

The L;-index, denoted by L-ind, of (X,9) is defined to be the maximum of the di-
mensions of negative definite subspaces of By. Hence (3, ) is Ls-stable if and only
if Ly-ind = 0. Clearly the definition of L y-index is equivalent to the corresponding
definition using the variational vector field T as before.

Also, for minimal hypersurface i : (,3) — (M"1,§), it is well known that if 1
is a compactly supported smooth function on ¥, then the second variation of the
volume V of (£,i*j) is given by

d* -

(33 V()

/E b ()d,

t=0
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where A denotes the second fundamental form of (%,3), 7 denotes the unit normal
of (3,9), and J = Ag + |/1|§ + Ric(7,7) is the stability operator (or the Jacobi
operator) of (%, g).

The following holds, from (28]).

Proposition 16. Let (X", g) be an f-minimal hypersurface immersed in (M,g).
Then for all p € C° (),

(34) Lt toetar = [ oLyerear

Corollary 4. For ¢ € C™(%), J(e_%go) = e%Lf(np).

is equal to the index of (X,§). In particular, (%,7)

Corollary 5. L¢-ind of (£,9)
(3, g) is stable in (M, g).

is L¢-stable if and only if
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