TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 367, Number 6, June 2015, Pages 4041–4059 S 0002-9947(2015)06207-2 Article electronically published on February 18, 2015

STABILITY AND COMPACTNESS FOR COMPLETE f-MINIMAL SURFACES

XU CHENG, TITO MEJIA, AND DETANG ZHOU

ABSTRACT. Let $(M, \overline{g}, e^{-f}d\mu)$ be a complete metric measure space with Bakry-Émery Ricci curvature bounded below by a positive constant. We prove that in M there is no complete two-sided L_f -stable immersed f-minimal hypersurface with finite weighted volume. Further, if M is a 3-manifold, we prove a smooth compactness theorem for the space of complete embedded f-minimal surfaces in M with the uniform upper bounds of genus and weighted volume, which generalizes the compactness theorem for complete self-shrinkers in \mathbb{R}^3 by Colding-Minicozzi.

1. Introduction

Recall that a self-shrinker (for mean curvature flow in \mathbb{R}^{n+1}) is a hypersurface Σ immersed in the Euclidean space ($\mathbb{R}^{n+1}, g_{can}$) satisfying that

$$H = \frac{1}{2} \langle x, \nu \rangle,$$

where x is the position vector in \mathbb{R}^{n+1} , ν is the unit normal at x, and H is the mean curvature of Σ at x. Self-shrinkers play an important role in the study of singularity of mean curvature flow and have been studied by many people in recent years. We refer to [4], [5] and the references therein. In particular, Colding-Minicozzi [4] proved the following compactness theorem for self-shrinkers in \mathbb{R}^3 .

Theorem 1 ([4]). Given an integer $g \ge 0$ and a constant V > 0, the space S(g, V) of smooth complete embedded self-shrinkers $\Sigma \subset \mathbb{R}^3$ with

- genus at most g,
- $\partial \Sigma = \emptyset$,
- $Area(B_R(x_0) \cap \Sigma) < VR^2 \text{ for all } x_0 \in \mathbb{R}^3 \text{ and } R > 0$

is compact. Namely, any sequence of these has a subsequence that converges in the topology of C^m convergence on compact subsets for any $m \geq 2$.

In this paper, we extend Theorem 1 to the space of complete embedded f-minimal surfaces in a 3-manifold. A hypersurface Σ immersed in a Riemannian manifold (M, \overline{g}) is called an f-minimal hypersurface if its mean curvature H satisfies that, for any $p \in \Sigma$,

$$H = \langle \overline{\nabla} f, \nu \rangle,$$

Received by the editors March 6, 2013.

 $2010\ \textit{Mathematics Subject Classification}.\ \text{Primary 58J50; Secondary 58E30}.$

The first and third authors were partially supported by CNPq and Faperj of Brazil.

The second author was supported by CNPq of Brazil.

©2015 American Mathematical Society Reverts to public domain 28 years from publication

where f is a smooth function defined on M and $\overline{\nabla} f$ denotes the gradient of f on M. Here are some examples of f-minimal hypersurfaces:

- $f \equiv C$, an f-minimal hypersurface is just a minimal hypersurface.
- self-shrinker Σ in \mathbb{R}^{n+1} . $f = \frac{|x|^2}{4}$.
- Let (M, \overline{g}, f) be a shrinking gradient Ricci solitons; i.e. after a normalization, (M, \overline{g}, f) satisfies the equation $\overline{\text{Ric}} + \overline{\nabla}^2 f = \frac{1}{2}\overline{g}$ or equivalently the Bakry-Émery Ricci curvature $\overline{\text{Ric}}_f := \overline{\text{Ric}} + \overline{\nabla}^2 f = \frac{1}{2}$. We may consider f-minimal hypersurfaces in (M, \overline{g}, f) . In particular, the previous example: a self-shrinker Σ in \mathbb{R}^{n+1} is f-minimal in Gauss shrinking soliton $(\mathbb{R}^{n+1}, g_{can}, \frac{|x|^2}{4}).$ • $M = \mathbb{H}^{n+1}(-1)$, the hyperbolic space. Let r denote the distance function
- from a fixed point $p \in M$ and $f(x) = nar^2(x)$, where a > 0 is a constant. Now $\overline{\text{Ric}_f} \geq n(2a-1)$. The geodesic sphere of radius r centered at p is an f-minimal hypersurface if the radius r satisfies $2ar = \coth r$.

An f-minimal hypersurface Σ can be viewed in two ways. One is that Σ is f-minimal if and only if Σ is a critical point of the weighted volume functional $e^{-f}d\sigma$, where $d\sigma$ is the volume element of Σ . The other one is that Σ is f-minimal if and only if Σ is minimal in the new conformal metric $\tilde{g} = e^{-\frac{2f}{n}} \overline{g}$ (see Section 2 and Appendix). f-minimal hypersurfaces have been studied before as even more general stationary hypersurfaces for parametric elliptic functionals; see for instance the work of White [14] and Colding-Minicozzi [7].

We prove the following compactness result:

Theorem 2. Let $(M^3, \overline{g}, e^{-f}d\mu)$ be a complete smooth metric measure space and $\overline{Ric}_f \geq k$, where k is a positive constant. Given an integer $g \geq 0$ and a constant V>0, the space $S_{q,V}$ of smooth complete embedded f-minimal surfaces $\Sigma\subset M$ with

- genus at most g,
- $\bullet \ \partial \Sigma = \emptyset,$ $\bullet \ \int_{\Sigma} e^{-f} d\sigma \le V$

is compact in the C^m topology, for any $m \geq 2$. Namely, any sequence of $S_{g,V}$ has a subsequence that converges in the C^m topology on compact subsets to a surface in $S_{q,V}$, for any $m \geq 2$.

Since the existence of the uniform scale-invariant area bound is equivalent to the existence of the uniform bound of the weighted area for self-shrinkers (see Remark 1 in Section 5), Theorem 2 implies Theorem 1. Also, in [2], we will apply Theorem 2 to obtain a compactness theorem for the space of closed embedded f-minimal surfaces with the upper bounds of genus and diameter.

To prove Theorem 2, we need to prove a nonexistence result on L_f -stable fminimal hypersurfaces, which is of independent interest.

Theorem 3. Let $(M^{n+1}, \overline{g}, e^{-f}d\mu)$ be a complete smooth metric measure space with $\overline{Ric}_f \geq k$, where k is positive constant. Then there is no complete two-sided L_f -stable f-minimal hypersurface Σ immersed in (M, \overline{g}) without boundary and with finite weighted volume (i.e. $\int_{\Sigma} e^{-f} d\sigma < \infty$), where $d\sigma$ denotes the volume element on Σ determined by the induced metric from (M, \overline{g}) .

Here we explain briefly the meaning of L_f stability. For an f-minimal hypersurface Σ , the L_f operator is

$$L_f = \Delta_f + |A|^2 + \overline{Ric}_f(\nu, \nu),$$

where $\Delta_f = \Delta - \langle \nabla f, \nabla \cdot \rangle$ is the weighted Laplacian on Σ . In particular, for self-shrinkers, it is the so-called L operator:

$$L = \Delta + |A|^2 - \frac{1}{2} \langle x, \nabla \cdot \rangle + \frac{1}{2}.$$

 L_f -stability of Σ means that its weighted volume $\int_{\Sigma} e^{-f} d\sigma$ is locally minimal; that is, the second variation of its weighted volume is nonnegative for any compactly supported normal variation. We leave more details about the definition of L_f -stability and some of its properties to Section 2 and the Appendix.

For self-shrinkers in \mathbb{R}^{n+1} , Colding-Minicozzi [6] proved that

Theorem 4 ([6]). There are no L-stable smooth complete self-shrinkers without boundary and with polynomial volume growth in \mathbb{R}^{n+1} .

Since the first and third authors [3] of the present paper proved that for self-shrinkers, properness, the polynomial volume growth, and finite weighted volume are equivalent, Theorem 3 implies Theorem 4.

In this paper, we also discuss the relationship among the properness, polynomial volume growth and finite weighted volume of f-minimal submanifolds (Propositions 3, 4 and 5). We obtain their equivalence when the ambient space (M, \overline{g}, f) is a shrinking gradient Ricci solitons, i.e. $\overline{\text{Ric}} + \overline{\nabla}^2 f = \frac{1}{2}\overline{g}$, with the condition that f is a convex function with $|\overline{\nabla} f|^2 \leq f$ (Corollary 1).

The rest of this paper is organized as follows: In Section 2 some definitions, notation and facts are given as preliminaries. In Section 3 we prove Propositions 3, 4 and 5. In Section 4 we prove Theorem 3. In Section 5 we prove Theorem 2. In the Appendix we calculate the second variation of the volume functional of f-minimal submanifolds and discuss some properties of L_f -stability for f-minimal submanifolds.

2. Preliminaries

In general, a smooth metric measure space, denoted by $(M^m, \overline{g}, e^{-f}d\mu)$, is an m-dimensional Riemannian manifold (M^m, \overline{g}) together with a weighted volume form $e^{-f}d\mu$ on M, where f is a smooth function on M and $d\mu$ is the volume element induced by the metric \overline{g} . In this paper, unless otherwise specified, we denote by a bar all quantities on (M, \overline{g}) , for instance by $\overline{\nabla}$ and $\overline{\text{Ric}}$, the Levi-Civita connection and the Ricci curvature tensor of (M, \overline{g}) respectively. For $(M, \overline{g}, e^{-f}d\mu)$, an important and natural tensor is the ∞ -Bakry-Émery Ricci curvature tensor $\overline{\text{Ric}}_f$ (for simplicity, Bakry-Émery Ricci curvature), which is defined by

$$\overline{\mathrm{Ric}}_f := \overline{\mathrm{Ric}} + \overline{\nabla}^2 f,$$

where $\overline{\nabla}^2 f$ is the Hessian of f on M. If f is constant, $\overline{\text{Ric}}_f$ is the Ricci curvature $\overline{\text{Ric}}$ on M respectively.

A Riemannian manifold with Bakry-Émery Ricci curvature bounded below by a positive constant has some properties similar to a Riemannian manifold with Ricci curvature bounded below by a positive constant. For instance, see the work of

Wei-Wylie [13], Munteanu-Wang [11,12] and the references therein. In this paper, we will use the following proposition by Morgan [10] (see also its proof in [13]).

Proposition 1. If a complete smooth metric measure space $(M, \overline{g}, e^{-f}du)$ has $\overline{Ric}_f \geq k$, where k is a positive constant, then M has finite weighted volume (i.e. $\int_M e^{-f}d\mu < \infty$) and finite fundamental group.

Now, let $i: \Sigma^n \to M^m, n < m$, be an *n*-dimensional smooth immersion. Then $i: (\Sigma^n; i^*\overline{g}) \to (M^m, \overline{g})$ is an isometric immersion with the induced metric $i^*\overline{g}$. For simplicity, we still denote $i^*\overline{g}$ by \overline{g} whenever there is no confusion. We will denote for instance by ∇ , Ric, Δ and $d\sigma$, the Levi-Civita connection, the Ricci curvature tensor, the Laplacian, and the volume element of (Σ, \overline{g}) respectively.

The function f induces a weighted measure $e^{-f}d\sigma$ on Σ . Thus we have an induced smooth metric measure space $(\Sigma^n, \overline{g}, e^{-f}d\sigma)$.

The associated weighted Laplacian Δ_f on (Σ, \overline{g}) is defined by

$$\Delta_f u := \Delta u - \langle \nabla f, \nabla u \rangle.$$

The second order operator Δ_f is a self-adjoint operator on the space of square integrable functions on Σ with respect to the measure $e^{-f}d\sigma$ (however the Laplacian operator in general does not have this property).

The second fundamental form A of (Σ, \overline{g}) is defined by

$$A(X,Y) = (\overline{\nabla}_X Y)^{\perp}, \quad X, Y \in T_p \Sigma, p \in \Sigma,$$

where \bot denotes the projection to the normal bundle of Σ . The mean curvature vector \mathbf{H} of Σ is defined by $\mathbf{H} = \text{tr} A = \sum_{i=1}^{n} (\overline{\nabla}_{e_i} e_i)^{\perp}$.

Definition 1. The weighted mean curvature vector of Σ with respect to the metric \overline{g} is defined by

(1)
$$\mathbf{H}_f = \mathbf{H} + (\overline{\nabla}f)^{\perp}.$$

The immersed submanifold (Σ, \overline{g}) is called f-minimal if its weighted mean curvature vector \mathbf{H}_f vanishes identically, or equivalently if its mean curvature vector satisfies

$$\mathbf{H} = -(\overline{\nabla}f)^{\perp}.$$

Definition 2. The weighted volume of (Σ, \overline{g}) is defined by

(3)
$$V_f(\Sigma) := \int_{\Sigma} e^{-f} d\sigma.$$

It is well known that Σ is f-minimal if and only if Σ is a critical point of the weighted volume functional. Namely, it holds that

Proposition 2. If T is a compactly supported variational vector field on Σ , then the first variation formula of the weighted volume of (Σ, \overline{g}) is given by

(4)
$$\frac{d}{dt}V_f(\Sigma_t)\bigg|_{t=0} = -\int_{\Sigma} \langle T^{\perp}, \mathbf{H}_f \rangle_{\overline{g}} e^{-f} d\sigma.$$

On the other hand, an f-minimal submanifold can be viewed as a minimal submanifold under a conformal metric. Precisely, define the new metric $\tilde{g} = e^{-\frac{2}{n}f}\overline{g}$ on M, which is conformal to \overline{g} . Then the immersion $i: \Sigma \to M$ induces a metric $i^*\tilde{g}$

on Σ from (M, \tilde{g}) . In the following, $i^*\tilde{g}$ is still denoted by \tilde{g} for simplicity. The volume of (Σ, \tilde{g}) is

(5)
$$\tilde{V}(\Sigma) := \int_{\Sigma} d\tilde{\sigma} = \int_{\Sigma} e^{-f} d\sigma = V_f(\Sigma).$$

Hence Proposition 2 and (5) imply that

(6)
$$\int_{\Sigma} \langle T^{\perp}, \tilde{\mathbf{H}} \rangle_{\tilde{g}} d\tilde{\sigma} = \int_{\Sigma} \langle T^{\perp}, \mathbf{H}_{f} \rangle_{\overline{g}} e^{-f} d\sigma,$$

where $d\tilde{\sigma} = e^{-f}d\sigma$ and $\tilde{\mathbf{H}}$ denote the volume element and the mean curvature vector of Σ with respect to the conformal metric \tilde{g} respectively.

Identity (6) implies that $\tilde{\mathbf{H}} = e^{\frac{2f}{n}} \mathbf{H}_f$. Therefore (Σ, \overline{g}) is f-minimal in (M, \overline{g}) if and only if (Σ, \tilde{g}) is minimal in (M, \tilde{g}) .

Now suppose that Σ^n is a hypersurface immersed in M^{n+1} . Let $p \in \Sigma$ and ν be a unit normal at p. The second fundamental form A and the mean curvature H of (Σ, \overline{g}) are as follows:

$$A: T_p\Sigma \to T_p\Sigma, A(X) = \overline{\nabla}_X \nu, X \in T_p\Sigma,$$

$$H = \operatorname{tr} A = -\sum_{i=1}^{n} \langle \overline{\nabla}_{e_i} e_i, \nu \rangle.$$

Hence the mean curvature vector \mathbf{H} of (Σ, \overline{g}) satisfies $\mathbf{H} = -H\nu$. Define the weighted mean curvature H_f of (Σ, \overline{g}) by $\mathbf{H}_f := -H_f\nu$. Then

$$H_f = H - \langle \overline{\nabla} f, \nu \rangle.$$

Definition 3. A hypersurface Σ immersed in $(M^{n+1}, \overline{g}, e^{-f}d\mu)$ with the induced metric \overline{g} is called an f-minimal hypersurface if it satisfies

(7)
$$H = \langle \overline{\nabla} f, \nu \rangle.$$

For a hypersurface (Σ, \overline{g}) , the L_f operator is defined by

$$L_f := \Delta_f + |A|^2 + \overline{\operatorname{Ric}}_f(\nu, \nu),$$

where $|A|^2$ denotes the square of the norm of the second fundamental form A of Σ . The L_f -stability of Σ is defined as follows:

Definition 4. A two-sided f-minimal hypersurface Σ is said to be L_f -stable if for any compactly supported smooth function $\varphi \in C_o^{\infty}(\Sigma)$, it holds that

(8)
$$-\int_{\Sigma} \varphi L_f \varphi e^{-f} d\sigma = \int_{\Sigma} \left[|\nabla \varphi|^2 - \left(|A|^2 + \overline{\text{Ric}}_f(\nu, \nu) \right) \varphi^2 \right] e^{-f} d\sigma \ge 0.$$

It is known that an f-minimal hypersurface (Σ, \overline{g}) is L_f -stable if and only if (Σ, \tilde{g}) is stable as a minimal surface with respect to the conformal metric $\tilde{g} = e^{-f}\overline{g}$. See more details in the Appendix of this paper.

In this paper, for closed hypersurfaces, we choose ν to be the outer unit normal.

3. Properness, polynomial volume growth and finite weighted volume of f-minimal hypersurfaces

In [3], the first and third authors of the present paper proved that the finite weighted volume of a self-shrinker Σ^n immersed in \mathbb{R}^m implies it is properly immersed. In [9], Ding-Xin proved that a properly immersed self-shrinker must have the Euclidean volume growth. Combining these two results, it was proved in [3] that for immersed self-shrinkers, properness, polynomial volume growth and finite weighted volume are equivalent.

In this section we study the relationship among the properness, polynomial volume growth and finite weighted volume of f-minimal submaifolds, some of which will be used later in this paper.

Let Σ be an n-dimensional submanifold in a complete manifold $M^m, n < m$. Σ is said to have polynomial volume growth if, for a $p \in M$ fixed, there exist constants C and d so that for all $r \geq 1$,

(9)
$$\operatorname{Vol}(B_r^M(p) \cap \Sigma) \le Cr^d,$$

where $B_r^M(p)$ is the extrinsic ball of radius r centered at p and $\operatorname{Vol}(B_r^M(p))$ denotes the volume of $B_r^M(p) \cap \Sigma$. When d = n in (9), Σ is said to be of Euclidean volume growth.

Before proving the following Proposition 3, we recall an estimate implied by the Hessian comparison theorem (cf., for instance, [6], Lemma 7.1).

Lemma 1. Let (M, \overline{g}) be a complete Riemannian manifold with bounded geometry, that is, M has sectional curvature bounded by k ($|K_M| \leq k$), and injectivity radius bounded below by $i_0 > 0$. Then the distance function r(x) satisfies

$$\left|\overline{\nabla}^{2} r(V, V) - \frac{1}{r} |V - \langle V, \overline{\nabla} r \rangle \overline{\nabla} r|^{2} \right| \leq \sqrt{k},$$

for $r < \min\{i_0, \frac{1}{\sqrt{k}}\}\$ and any unit vector $V \in T_xM$.

Using this estimate we will prove

Proposition 3. Let Σ^n be a complete noncompact f-minimal submanifold immersed in a complete Riemannian manifold M^m . If Σ has finite weighted volume, then Σ is properly immersed.

Proof. We argue by contradiction. Since the argument is local, we may assume that (M,g) has bounded geometry. Suppose that Σ is not properly immersed. Then there exist a number $2R < \min\{i_0, \frac{1}{\sqrt{k}}\}$ and $o \in M$ so that $\overline{B}_R^M(o) \cap \Sigma$ is not compact in Σ , where $\overline{B}_R^M(o)$ denotes the closure of the (open) ball $B_R^M(o)$ in M of radius R centered at o. Then for any a > 0, there is a sequence $\{p_k\}$ of points in $B_R^M(o) \cap \Sigma$ with $\mathrm{dist}_{\Sigma}(p_k, p_j) \geq a > 0$ for any $k \neq j$. So $B_{\frac{\alpha}{2}}^{\Sigma}(p_k) \cap B_{\frac{\alpha}{2}}^{\Sigma}(p_j) = \emptyset$ for any $k \neq j$, where $B_{\frac{\alpha}{2}}^{\Sigma}(p_k)$ and $B_{\frac{\alpha}{2}}^{\Sigma}(p_j)$ denote the intrinsic balls in Σ of the radius $\frac{\alpha}{2}$, centered at p_k and p_j respectively. Choose a < 2R. Then $B_{\frac{\alpha}{2}}^{\Sigma}(p_j) \subset B_{2R}^M(o)$. If

 $p \in B^{\Sigma}_{\frac{a}{2}}(p_j)$, the extrinsic distance function $r_j(p) = \operatorname{dist}_M(p, p_j)$ from p_j satisfies

$$\Delta r_{j} = \sum_{i=1}^{n} \overline{\nabla}^{2} r_{j}(e_{i}, e_{i}) + \langle \mathbf{H}, \overline{\nabla} r_{j} \rangle$$

$$\geq \frac{n}{r_{j}} - \frac{1}{r_{j}} |\nabla r_{j}|^{2} - n\sqrt{k} - \langle \overline{\nabla} f^{\perp}, \overline{\nabla} r_{j} \rangle$$

$$\geq \frac{n}{r_{j}} - \frac{1}{r_{j}} |\nabla r_{j}|^{2} - c,$$

where $c = n\sqrt{k} + \sup_{B_{2R}^{M}(0)} |\overline{\nabla} f|$. Lemma 1 is used above. Hence

$$\Delta r_j^2 \ge 2n - 2cr_j.$$

Choosing $a \leq \min\{\frac{n}{2c}, 2R\}$, we have for $0 < \mu \leq \frac{a}{2}$,

(10)
$$\int_{B_{\mu}^{\Sigma}(p_{j})} (2n - 2cr_{j}) d\sigma \leq \int_{B_{\mu}^{\Sigma}(p_{j})} \Delta r_{j}^{2} d\sigma$$
$$= \int_{\partial B_{\mu}^{\Sigma}(p_{j})} \langle \nabla r_{j}^{2}, \nu \rangle d\sigma$$
$$< 2\mu A(\mu).$$

where ν denotes the outward unit normal vector of $\partial B^{\Sigma}_{\mu}(p_j)$ and $A(\mu)$ denotes the area of $\partial B^{\Sigma}_{\mu}(p_j)$. Using the co-area formula in (10), we have

(11)
$$\int_0^{\mu} (n-cs)A(s)ds \le \int_0^{\mu} \int_{d_{\Sigma}(n,n_s)=s} (n-cr_j)d\sigma \le \mu A(\mu).$$

This implies

$$(n - c\mu)V(\mu) \le V'(\mu),$$

where $V(\mu)$ denotes the volume of $B^{\Sigma}_{\mu}(p_j)$. So

(12)
$$\frac{V'(\mu)}{V(\mu)} \ge \frac{n}{\mu} - c.$$

Integrating (12) from $\varepsilon > 0$ to μ , we have

$$\frac{V(\mu)}{V(\varepsilon)} \ge \left(\frac{\mu}{\varepsilon}\right)^n e^{-c(\mu-\varepsilon)}.$$

Since
$$\lim_{s \to 0^+} \frac{V(s)}{s^n} = \omega_n$$
,

$$(13) V(\mu) \ge \omega_n \mu^n e^{-c\mu}.$$

Thus we conclude

$$\int_{\Sigma} e^{-f} d\sigma \geq \sum_{j=1}^{\infty} \int_{B_{\frac{\alpha}{2}}(p_j)} e^{-f} d\sigma \geq \inf_{B_{2R}^M(o)} (e^{-f}) \sum_{j=1}^{\infty} \int_{B_{\frac{\alpha}{2}}(p_j)} d\sigma = \infty.$$

This contradicts the assumption of the finite weighted volume of Σ .

Proposition 4. Let $(M^m, \overline{g}, e^{-f}d\mu)$ be a complete smooth metric measure space with $\overline{Ric}_f = k$, where k is a positive constant. Assume that f is a convex function. If Σ^n is a complete noncompact properly immersed f-minimal submanifold in M, then Σ has finite weighted volume and Euclidean (hence polynomial) volume growth.

Proof. Since (M, \overline{g}, f) is a gradient shrinking Ricci soliton, it is well known that, by a scaling of the metric \overline{g} and a translating of f, still denoted by \overline{g} and f respectively, we may normalize the metric so that $k = \frac{1}{2}$ and the following identities hold:

$$\overline{R} + |\overline{\nabla}f|^2 - f = 0,$$

$$\overline{R} + \overline{\Delta}f = \frac{m}{2},$$

$$\overline{R} > 0.$$

From these equations, we have that

$$\overline{\Delta}f - |\overline{\nabla}f|^2 + f = \frac{m}{2}$$
 and $|\overline{\nabla}f|^2 \le f$.

It was proved by Cao and the third author [1] that there is a positive constant c so that

(14)
$$\frac{1}{4}(r(x) - c)^2 \le f(x) \le \frac{1}{4}(r(x) + c)^2$$

for any $x \in M$ with $r(x) = \operatorname{dist}_M(p, x) \ge r_0$, where p is a fixed point in M and c, r_0 are positive constants that depend only on m and f(p).

By (14), we know that f is a proper function on M. Since Σ is properly immersed in M and f is proper in M, $f|_{\Sigma}$ is also a proper smooth function on Σ . Note that with the scaling metric and translating f, Σ is still f-minimal. Hence

$$\Delta f - |\nabla f|^2 + f = (\overline{\Delta}f - \sum_{\alpha=n+1}^m f_{\alpha\alpha} - |\overline{\nabla}f^{\perp}|^2) - |\overline{\nabla}f^{\top}|^2 + f$$

$$= \overline{\Delta}f - |\overline{\nabla}f|^2 + f - \sum_{\alpha=n+1}^m f_{\alpha\alpha}$$

$$\leq \frac{m}{2}.$$

Also we have

$$|\nabla f|^2 = |\overline{\nabla} f^{\top}|^2 \le |\overline{\nabla} f|^2 \le f.$$

By Theorem 1.1 of [3], Σ has finite weighted volume and the Euclidean volume growth of the sub-level set of f with respect to the scaling metric and the translating f, and hence with respect to the original metric and f. Moreover, by the estimate (14), we have that Σ has the Euclidean volume growth.

Next we prove the following:

Proposition 5. Let $(M^m, \overline{g}, e^{-f}d\mu)$ be a complete smooth metric measure space with $\overline{Ric}_f \geq k$, where k is a positive constant. Assume that $|\overline{\nabla} f|^2 \leq 2kf$. If Σ^n is a complete submanifold (not necessarily f-minimal) with polynomial volume growth, then Σ has finite weighted volume.

Proof. By a scaling of the metric, we may assume that $k = \frac{1}{2}$. The proof follows from an estimate of f. Munteanu-Wang [11] extended the estimate (14) to $(M^m, \overline{g}, e^{-f}d\mu)$ with $\overline{\text{Ric}}_f \geq \frac{1}{2}$ and $|\overline{\nabla} f|^2 \leq f$. Combining the assumption that Σ

has polynomial volume growth with the estimate (14), we have

$$\int_{\Sigma} e^{-f} d\sigma = \int_{\Sigma \cap B_{r_0}^M(p)} e^{-f} d\sigma + \sum_{i=0}^{\infty} \int_{\Sigma \cap (B_{r_0+i+1}^M(p) \setminus B_{r_0+i}^M(p))} e^{-f} d\sigma
\leq C_1 \text{Vol}(\Sigma \cap B_{r_0}^M(p)) + C \sum_{i=0}^{\infty} e^{-\frac{1}{4}(r_0+i-c)^2} \text{Vol}(\Sigma \cap B_{r_0+i+1}^M(p))
\leq C \left[r_0^d + \sum_{i=0}^{\infty} e^{-\frac{1}{4}(r_0+i-c)^2} (r_0+i+1)^d \right]
< \infty. \qquad \square$$

By Propositions 3, 4 and 5, we have the following.

Corollary 1. Let (M^m, \overline{g}, f) be a complete shrinking gradient Ricci soliton with $\overline{Ric}_f = \frac{1}{2}$. Assume that f is a convex function. If Σ is a complete f-minimal submanifold immersed in M, then for Σ the properness, polynomial volume growth, and finite weighted volume are equivalent.

4. Nonexistence of L_f stable f-minimal hypersurfaces

In this section, we prove Theorem 3, which is a key to proving the compactness theorem in Section 5.

Theorem 5 (Theorem 3). Let $(M, \overline{g}, e^{-f}d\mu)$ be a complete smooth metric measure space with $\overline{Ric}_f \geq k$, where k is a positive constant. Then there is no two-sided L_f -stable complete f-minimal hypersurface Σ immersed in (M, g) without boundary and with finite weighted volume (i.e. $\int_{\Sigma} e^{-f}d\sigma < \infty$).

Proof. We argue by contradiction. Suppose that Σ is an L_f -stable complete f-minimal hypersurface immersed in (M,g) without boundary and with finite weighted volume. Recall that a two-sided hypersurface Σ is L_f -stable if the following inequality holds, that is, for any compactly supported smooth function $\varphi \in \mathcal{C}_o^{\infty}(\Sigma)$,

(15)
$$\int_{\Sigma} \left[|\nabla \varphi|^2 - \left(|A|^2 + \overline{\mathrm{Ric}}_f(\nu, \nu) \right) \varphi^2 \right] e^{-f} d\sigma \ge 0.$$

Observe that any closed hypersurface cannot be L_f -stable. This is because the assumption $\overline{\text{Ric}}_f \geq k > 0$ implies that (15) cannot hold for $\varphi \equiv c$ on Σ . Hence, Σ must be noncompact.

Let η be a nonnegative smooth function on $[0, \infty)$ satisfying

$$\eta(s) = \begin{cases} 1 & \text{if} \quad s \in [0, 1) \\ 0 & \text{if} \quad s \in [2, \infty) \end{cases}$$

and $|\eta'| \leq 2$.

Fix a point $p \in \Sigma$ and let $r(x) = \operatorname{dist}_{\Sigma}(p, x)$ denote the (intrinsic) distance function on Σ . Define a sequence of functions $\varphi_j(x) = \eta(\frac{r(x)}{j}), \ j \geq 1$. Then

 $|\nabla \varphi_j|^2 \le 1$ for $j \ge 2$. Substituting $\varphi_j, j \ge 2$ for φ in (15):

$$\begin{split} \int_{\Sigma} & \left[|\nabla \varphi_{j}|^{2} - (|A|^{2} + \overline{\text{Ric}}_{f}(\nu, \nu)) \varphi_{j}^{2} \right] e^{-f} d\sigma \\ & \leq \int_{\Sigma} \left(|\nabla \varphi_{j}|^{2} - k \varphi_{j}^{2} \right) e^{-f} d\sigma \\ & = \int_{B_{2j}^{\Sigma}(p) \backslash B_{j}^{\Sigma}(p)} |\nabla \varphi_{j}|^{2} e^{-f} d\sigma - \int_{B_{2j}^{\Sigma}(p)} k \varphi_{j}^{2} e^{-f} d\sigma \\ & \leq \int_{B_{2j}^{\Sigma}(p) \backslash B_{j}^{\Sigma}(p)} e^{-f} d\sigma - k \int_{B_{2j}^{\Sigma}(p)} \varphi_{j}^{2} e^{-f} d\sigma \\ & \leq \int_{B_{2j}^{\Sigma}(p) \backslash B_{j}^{\Sigma}(p)} e^{-f} d\sigma - k \int_{B_{2}^{\Sigma}(p)} e^{-f} d\sigma, \end{split}$$

where $B_j^{\Sigma}(p)$ is the intrinsic geodesic ball in M of radius j centered at p. Since Σ has finite weighted volume, we have, when $j \to \infty$,

$$\int_{B_{2i}^{\Sigma}(p)\backslash B_{i}^{\Sigma}(p)} e^{-f} d\sigma \to 0.$$

Choosing j large enough, we have that φ_i satisfies

$$\int_{\Sigma} \left(|\nabla \varphi_j|^2 - (|A|^2 + \overline{\mathrm{Ric}}_f(\nu, \nu)) \varphi_j^2 \right) e^{-f} d\sigma < -\frac{k}{2} \int_{B_2^{\Sigma}(p)} e^{-f} d\sigma < 0.$$

This contradicts the fact that Σ is L_f -stable.

5. Compactness of complete f-minimal surfaces

Before proving Theorem 2, we give some facts.

Wei-Wylie ([13], Theorem 7.3) used the mean curvature comparison theorem to give a distance estimate for two compact hypersurfaces Σ_1 and Σ_2 in a smooth metric measure space $(M, \overline{g}, e^{-f}d\mu)$ with $\overline{\text{Ric}}_f \geq k$, where k is a positive constant. Observe that for two complete properly immersed hypersurfaces Σ_1 and Σ_2 , if at least one of them is compact, there is a minimizing geodesic segment joining Σ_1 and Σ_2 and realizing their distance. Hence the proof of Theorem 7.3 [13] can be applied to obtain the following.

Proposition 6. Let $(M, \overline{g}, e^{-f}d\mu)$ be an (n+1)-dimensional complete smooth metric measure space with $\overline{Ric}_f \geq k$, where k is a positive constant. If Σ_1 and Σ_2 are two complete properly immersed hypersurfaces, at least one of which is compact, then the distance $d(\Sigma_1, \Sigma_2)$ satisfies

(16)
$$d(\Sigma_1, \Sigma_2) \le \frac{1}{k} (\max_{x \in \Sigma_1} |H_f^{\Sigma_1}(x)| + \max_{x \in \Sigma_2} |H_f^{\Sigma_2}(x)|),$$

where $H_f^{\Sigma_i}$, i = 1, 2, denotes the weighted mean curvatures of Σ_i respectively.

Corollary 2. Let $(M, \overline{g}, e^{-f}d\mu)$ be as in Proposition 6. Then there is a closed ball \overline{B}^M of M satisfying that any complete properly immersed f-minimal hypersurface Σ must intersect it.

Proof. Fix $p \in M$ and a geodesic sphere $S_r^M(p)$ of M. By Proposition 6,

$$d(S_r^M(p), \Sigma) \le \frac{1}{k} \max_{x} |H_f^{S_r^M(p)}(x)| = C,$$

where C is independent of Σ . Therefore there is a closed ball \overline{B}^M of M with radius big enough so that any Σ must intersect it.

We need the following fact:

Proposition 7. Let M be a simply connected Riemannian manifold. If a hypersurface Σ is complete, not necessarily connected, properly embedded, and has no boundary, then every component of Σ separates M into two components and thus is two-sided. Therefore Σ has a globally defined unit normal.

Proof. Suppose Σ_j is a component of Σ . By contrast, $M \setminus \Sigma_j$ has one component. Since Σ is a properly embedded f-minimal hypersurface, for any $p \in \Sigma_j$ there is a neighborhood W of p in M so that $W \cap \Sigma_j = W \cap \Sigma$ only has one piece (i.e. it is a graph above a connected domain in the tangent plane of p). Thus we have a simply closed curve γ passing p, transversal to Σ_j at p, and $\Sigma_j \cap \gamma = p$. Since M is simply connected, we have a disk D with the boundary γ . Again since Σ is proper, the intersection of Σ_j with $\partial D = \gamma$ cannot be one point, which is a contradiction. \square

Combining Proposition 3 in Section 3 with Proposition 7, we obtain

Proposition 8. Let $(M, \overline{g}, e^{-f}d\mu)$ be a simply connected complete smooth metric measure space. If a complete f-minimal hypersurface has finite weighted volume, then every component of Σ separates M into two components and thus is two-sided. Therefore Σ has a globally defined unit normal.

We will take the same approach as in Colding-Minicozzi's paper [4] to prove Theorem 2, a smooth compactness theorem for complete f-minimal surfaces. First we recall a well known local singular compactness theorem for embedded minimal surfaces in a Riemannian 3-manifold.

Proposition 9 (cf. [4], Proposition 2.1). Given a point p in a Riemannian 3-manifold M, there exists an R > 0 such that the following holds: Let Σ_j be embedded minimal surfaces in $B_{2R}(p) \subset M$ with $\partial \Sigma_j \subset \partial B_{2R}(p)$. If each Σ_j has area at most V and genus at most p for some fixed p, then there exist a finite collection of points p, a smooth embedded minimal surface p constants p with p constants p and a subsequence of p that converges in p (with finite multiplicity) to p away from the set p constants.

Here and in the following, we denote by B_R the ball B_R^M in M for simplicity.

It is known that Σ is f-minimal with respect to metric \overline{g} if and only if Σ is minimal with the conformal metric $\tilde{g} = e^{-f}g$ (see Appendix). Using this fact and applying Proposition 9, we may prove a global singular compactness theorem for f-minimal surfaces.

Proposition 10. Let M be a complete 3-manifold and $(M, \overline{g}, e^{-f}d\mu)$ a smooth metric measure space. Suppose that $\Sigma_i \subset M$ is a sequence of smooth complete embedded f-minimal surfaces with genus at most g, without boundary, and with weighted area at most V, i.e.

(17)
$$\int_{\Sigma_i} e^{-f} d\sigma \le V < \infty.$$

Then there are a subsequence, still denoted by Σ_i , a smooth embedded complete non-trivial f-minimal surface $\Sigma \subset M$ without boundary, and a locally finite collection

of points $S \subset \Sigma$ so that Σ_i converges smoothly (possibly with multiplicity) to Σ off of S. Moreover, Σ satisfies $\int_{\Sigma} e^{-f} d\sigma \leq V$ and is properly embedded.

Here a set $S \subset M$ is said to be locally finite if $B_R(p) \cap S$ is finite for every $p \in M$ and for all R > 0.

Proof. Consider the conformal metric $\tilde{g} = e^{-f}\overline{g}$ on M. For a point $p \in M$, let $\tilde{B}_{2R}(p) \subset M$ denote the ball in (M, \tilde{g}) of radius 2R centered at p. Then the area of $\tilde{B}_{2R}(p) \cap \Sigma_i$ satisfies

(18)
$$\widetilde{\operatorname{Area}}(\widetilde{B}_{2R}(p) \cap \Sigma_j) \leq \int_{\Sigma_j} d\widetilde{\sigma} = \int_{\Sigma_j} e^{-f} d\sigma \leq V.$$

Also, it is clear that the genus of $\tilde{B}_{2R}(p) \cap \Sigma_j$ remains at most g. Then by Proposition 9, there exist an R > 0 and a finite collection of points x_k , a smooth embedded minimal surface $\Sigma \subset \tilde{B}_R(p)$, with $\partial \Sigma \subset \partial \tilde{B}_R$ and a subsequence of $\{\Sigma_j\}$ that converges in $\tilde{B}_R(p)$ (with finite multiplicity) to Σ away from the set $\{x_k\}$.

Let $\{\tilde{B}_{R_i}(p_i)\}$ be a countable cover of (M, \tilde{g}) of small balls such that $\{\tilde{B}_{2R_i}(p_i)\}$ is still a cover of (M, \tilde{g}) . On each $\tilde{B}_{2R_i}(p_i)$, applying the previous local convergence and then passing to a diagonal subsequence, we obtain that there are a subsequence of Σ_i , still denoted by Σ_i , a smooth embedded minimal surface Σ (with respect to the metric \tilde{g}) without boundary, and a locally finite collection of points $\mathcal{S} \subset \Sigma$ so that Σ_i converges smoothly (possibly with multiplicity) to Σ off of \mathcal{S} . Since Σ has no boundary, it is complete in the original metric \overline{g} . Thus we obtain the smooth convergence of the subsequence to the smooth embedded complete f-minimal surface Σ off of \mathcal{S} .

By Corollary 2, Σ is nontrivial. The convergence of Σ_i to Σ and (17) imply $\int_{\Sigma} e^{-f} d\sigma \leq V$. By Proposition 3, Σ is properly embedded.

We need to show that the convergence is smooth across the points in S. To prove this, we need the following.

Proposition 11. Assume that the ambient manifold M in Proposition 10 is simply connected. If the convergence of the sequence $\{\Sigma_i\}$ has multiplicity greater than one, then Σ is L_f -stable.

Proof. By Proposition 8, we know that Σ_i and Σ are orientable. We may have two ways to prove the proposition. The first is to use the known fact on minimal surfaces. It is known that (cf. [6], Appendix A) if the multiplicity of the convergence of a sequence of embedded orientable minimal surfaces in a simply connected 3-manifold is not one, then the limit minimal surface is stable. Under the conformal metric \tilde{g} , a sequence $\{\Sigma_i\}$ of minimal surfaces converges to a smooth embedded orientable minimal surface Σ and thus Σ is stable. Also, the conclusion that Σ is stable with respect to the conformal metric \tilde{g} is equivalent to saying that Σ is L_f -stable under the original metric \overline{g} (see Appendix).

The second way is to prove it directly. We may prove that L_f is the linearization of the f-minimal equation by a proof similar to the one in [4], Appendix A. By arguing as in Proposition 3.2 in [4], we can find a smooth positive function u on Σ satisfying

$$(19) L_f u = 0.$$

This implies that Σ is L_f -stable.

Proof of Theorem 2. By the assumption on $\overline{\mathrm{Ric}}_f$ and Proposition 1, M has finite fundamental group. After passing to the universal covering, we may assume that M is simply connected. Given a sequence of smooth complete embedded f-minimal surfaces $\{\Sigma_i\}$ with genus g, $\partial \Sigma_i = \emptyset$, and the weighted area at most V, by Proposition 10 there is a subsequence, still denoted by $\{\Sigma_i\}$, that converges in the topology of smooth convergence on compact subsets to a smooth embedded complete f-minimal surface Σ away from a locally finite set $S \subset \Sigma$ (possibly with multiplicity). Moreover, the limit surface $\Sigma \subset M$ is complete, properly embedded, $\int_{\Sigma} e^{-f} d\sigma \leq V$, has no boundary and has a well-defined unit normal ν . We also have the equivalent convergence under the conformal metric \overline{q} .

If S is not empty, Allard's regularity theorem implies that the convergence has multiplicity greater than one. Then by Proposition 11, we conclude that Σ is L_f -stable. But Proposition 5 says that there is no such Σ . This contradiction implies that S must be empty. We complete the proof of the theorem.

Remark 1. For self-shrinkers, the condition that the scale-invariant uniform area bound exists (i.e. there is a uniform bound V_1 : Area $(B_R(x_0) \cap \Sigma) \leq V_1 R^2$ for all $x_0 \in \mathbb{R}^3$ and R > 0) implies that the uniform bound V of weighted area (i.e. $\int_{\Sigma} e^{-f} d\sigma < V$) exists (cf. the proof of Proposition 5). The converse is also true by the conclusion that the entropy of a self-shrinker can be achieved by $F_{0,1}$ for self-shrinkers with polynomial volume growth (see Section 7 of [5]). Therefore Theorem 2 generalizes the result of Colding-Minicozzi (Theorem 1) for self-shrinkers.

Remark 2. Combining Theorem 2 with the upper bound estimate of weighted area for closed embedded f-minimal surfaces of fixed genus in a complete 3-manifold with $\overline{\text{Ric}}_f \geq k > 0$, we may obtain the smooth compactness theorem for the space of closed embedded f-minimal surfaces of fixed topological type and with diameter bound. We discuss it in [2].

APPENDIX

In this appendix, we discuss the L_f -stability properties of f-submanifolds. With the same notation as in Section 2, let (M^m, \overline{g}) be an m-dimensional Riemannian manifold and $i: \Sigma^n \to M^m, n < m$, be an immersion. Let $\tilde{g} = e^{-\frac{2}{n}f}\overline{g}$ denote the new conformal metric on M. Therefore i may induce two isometric immersions of $\Sigma: (\Sigma, \overline{g}) \to (M, \overline{g})$ and $(\Sigma, \tilde{g}) \to (M, \tilde{g})$ respectively.

When (Σ, \tilde{g}) is minimal, it is well known that the second variation of the volume of (Σ, \tilde{g}) is given by

Proposition 12 (cf. [6]). Let (Σ, \tilde{g}) be a minimal submanifold in (M, \tilde{g}) . If T is a normal compactly supported variational vector field on Σ (that is, $T = T^{\perp}$), then the second variational formula of the volume \tilde{V} of (Σ, \tilde{g}) is given by

(20)
$$\frac{d^2}{dt^2} \tilde{V}(\Sigma_t) \bigg|_{t=0} = -\int_{\Sigma} \langle T, JT \rangle_{\tilde{g}} d\tilde{\sigma},$$

where the stability operator (or Jacobi operator) J is defined on a normal vector field T to Σ by

(21)
$$JT = \Delta^{\perp}_{(\Sigma,\tilde{g})} T + tr_{(\Sigma,\tilde{g})} [\widetilde{Rm}(\cdot,T)\cdot]^{\perp} + \tilde{B}(T).$$

Here $\Delta_{(\Sigma,\tilde{g})}^{\perp}T = \sum_{i=1}^{n} (\nabla_{\tilde{e}_{i}}^{\perp} \nabla_{\tilde{e}_{i}}^{\perp}T - \nabla_{\nabla_{\tilde{e}_{i}}}^{\perp}\tilde{e}_{i}}^{\perp}T)$ is the Laplacian determined by the normal connection ∇^{\perp} of (Σ,\tilde{g}) , \widetilde{Rm} is the curvature tensor on (M,\tilde{g}) , $tr_{(\Sigma,\tilde{g})}[\widetilde{Rm}(\cdot,T)\cdot]^{\perp} = \sum_{i=1}^{n} [\widetilde{Rm}(\tilde{e}_{i},T)\tilde{e}_{i}]^{\perp}$, \widetilde{A} denotes the second fundamental form of (Σ,\tilde{g}) , $\widetilde{B}(T) = \sum_{i=1}^{n} \langle \widetilde{A}(\tilde{e}_{i},\tilde{e}_{j}),T \rangle \widetilde{A}(\tilde{e}_{i},\tilde{e}_{j})$, and $\{\tilde{e}_{i}\}$, $i=1,\cdots,n$, is a local orthonormal base of (Σ,\tilde{g}) .

Recall that the weighted volume of (Σ, \overline{g}) is defined by

(22)
$$V_f(\Sigma) = \int_{\Sigma} e^{-f} d\sigma.$$

By a direct computation similar to that of (20), we may prove the second variation formula of the weighted volume of f-minimal submanifold (Σ, \overline{g}) .

Definition 5. For any normal vector field T on (Σ, \overline{g}) , the second order operator Δ_f^{\perp} is defined by

$$\Delta_f^{\perp} T := \Delta^{\perp} T - \operatorname{tr}[\nabla f \otimes \nabla^{\perp} T(\cdot, \cdot)]$$
$$= \sum_{i=1}^{n} (\nabla_{e_i}^{\perp} \nabla_{e_i}^{\perp} T - \nabla_{\nabla_{e_i}}^{\perp} e_i T) - \sum_{i=1}^{n} (e_i f)(\nabla_{e_i}^{\perp} T).$$

The operator L_f on (Σ, \overline{g}) is defined by

(23)
$$L_f T = \Delta_f^{\perp} T + R(T) + B(T) + F(T).$$

In the above, ∇^{\perp} denotes the normal connection of (Σ, \overline{g}) ; $\{e_i\}$, $i = 1, \ldots, n$, is a local orthonormal base of (Σ, \overline{g}) ; $B(T) = \sum_{i,j=1}^{n} \langle A(e_i, e_j), T \rangle A(e_i, e_j)$, where A denotes the second fundamental form of (Σ, \overline{g}) ; $R(T) = \operatorname{tr}_{(\Sigma, \overline{g})}[\overline{Rm}(\cdot, T)\cdot]^{\perp} = \sum_{i=1}^{n} [\overline{Rm}(e_i, T)e_i]^{\perp}$, where \overline{Rm} denotes the Riemannian curvature tensor of (M, \overline{g}) ;

and
$$F(T) = [\overline{\nabla}^2 f(T)]^{\perp} = \sum_{\alpha=n+1}^m \overline{\nabla}^2 f(T, e_{\alpha}) e_{\alpha}$$
, where $\{e_{\alpha}\}, \alpha = n+1, \dots, m$, is a local orthonormal normal vector field on (Σ, \overline{g}) .

Proposition 13. Let (Σ, \overline{g}) be an f-minimal submanifold in (M, \overline{g}) . If T is a normal compactly supported variational vector field on Σ (that is, $T = T^{\perp}$), then the second variation of the weighted volume of (Σ, \overline{g}) is given by

(24)
$$\frac{d^2}{dt^2} V_f(\Sigma_t) \bigg|_{t=0} = -\int_{\Sigma} \langle T, L_f T \rangle_{\overline{g}} e^{-f} d\sigma.$$

Proof. Let $\psi(\cdot,t), t \in (-\varepsilon,\varepsilon)$ be a compactly supported variation of Σ so that $T = d\psi(\frac{\partial}{\partial t})$ is the variational vector field, $\Sigma_t = \psi(\Sigma,t), \Sigma_0 = \Sigma$. Choose a normal coordinate system $\{x_1,\ldots,x_n\}$ at a point $p \in \Sigma$. We can consider $\{x_1,\ldots,x_n,t\}$ to be a coordinate system of $\Sigma \times (-\varepsilon,\varepsilon)$ near the point (p,0). Denote $e_i = d\psi(\frac{\partial}{\partial x_i})$ for $i = 1,\ldots,n$. The induced metric on Σ_t from (M,\overline{g}) is given for $g_{ij} = \langle e_i,e_j \rangle$.

Hence $g_{ij}(p,0) = \delta_{ij}$ and $\nabla_{e_i} e_j(p,0) = 0$. Denote by $d\sigma_t$ the volume element of Σ_t . Then $d\sigma_t = J(x,t)d\sigma_0$, where $d\sigma_0 = d\sigma$ and the function J(x,t) is given by

$$J(x,t) = \frac{\sqrt{G(x,t)}}{\sqrt{G(x,0)}},$$

with $G(x,t) = \det(g_{ij}(x,t))$. Denote by $d(\sigma_f)_t$ the weighted volume element of Σ_t . Then $d(\sigma_f)_t = J_f(x,t)d\sigma_0$, where $J_f(x,t) = J(x,t)e^{-f(x,t)}$, $f(x,t) = f(\psi(x,t))$. Since $\frac{\partial J}{\partial t} = \sum_{i,j=1}^n g^{ij} \langle \overline{\nabla}_{e_i} T, e_j \rangle J$, $\frac{\partial J_f}{\partial t} = \left(\sum_{i,j=1}^n g^{ij} \langle \overline{\nabla}_{e_i} T, e_j \rangle - \langle \overline{\nabla} f, T \rangle\right) J_f$. Note that T is a normal vector field. A direct computation gives, at (p,0),

$$\begin{split} \frac{\partial^2 J_f}{\partial^2 t} \bigg|_{t=0} &= \bigg[-2 \sum_{i,j=1}^n \langle A_{ij}, T \rangle^2 + \langle \overline{R}(e_i, T) T, e_i \rangle \\ &+ \sum_{i=1}^n \langle \overline{\nabla}_{e_i} \overline{\nabla}_T T, e_i \rangle + \sum_{i=1}^n \langle \overline{\nabla}_{e_i} T, \overline{\nabla}_{e_i} T \rangle \\ &- \overline{\nabla}^2 f(T, T) - \langle \overline{\nabla} f, \overline{\nabla}_T T \rangle \\ &+ \big(\sum_{i=1}^n \langle \overline{\nabla}_{e_i} T, e_i \rangle - \langle \overline{\nabla} f, T \rangle \big) \big(\sum_{i=1}^n \langle \overline{\nabla}_{e_j} T, e_j \rangle - \langle \overline{\nabla} f, T \rangle \big) \bigg] J_f. \end{split}$$

By

$$\begin{split} \sum_{i=1}^{n} \langle \overline{\nabla}_{e_i} T, \overline{\nabla}_{e_i} T \rangle &= \sum_{i,j=1}^{n} \langle \overline{\nabla}_{e_i} T, e_j \rangle^2 + \sum_{i=1}^{n} \sum_{\alpha=n+1}^{m} \langle \overline{\nabla}_{e_i} T, e_\alpha \rangle^2 \\ &= \sum_{i,j=1}^{n} \langle A_{ij}, T \rangle^2 + \sum_{i=1}^{n} \langle \nabla_{e_i}^{\perp} T, \nabla_{e_i}^{\perp} T \rangle \\ &= |\langle A(\cdot, \cdot), T \rangle|^2 + |\nabla^{\perp} T|^2 \end{split}$$

and $\sum_{i=1}^{n} \langle \overline{\nabla}_{e_i} \overline{\nabla}_T T, e_i \rangle = \operatorname{div}(\overline{\nabla}_T T)^\top - \langle (\overline{\nabla}_T T)^\perp, \mathbf{H} \rangle$ we have that, at p,

$$\begin{split} \frac{\partial^2 J_f}{\partial t^2}\bigg|_{t=0} = & \left[-|\langle A(\cdot,\cdot), T\rangle|^2 - \sum_{i=1}^n \langle \overline{R}(e_i, T)e_i, T\rangle + |\nabla^\perp T|^2 + \operatorname{div}(\overline{\nabla}_T T)^\top \right. \\ & \left. - \langle (\overline{\nabla}_T T)^\perp, \vec{H}\rangle - \overline{\nabla}^2 f(T, T) - \langle \overline{\nabla} f, \overline{\nabla}_T T\rangle + \langle T, \mathbf{H}_f\rangle^2 \right] e^{-f}. \end{split}$$

Using $\operatorname{div}\left(e^{-f}(\overline{\nabla}_T T)^{\top}\right) = e^{-f}\operatorname{div}(\overline{\nabla}_T T)^{\top} - e^{-f}\langle(\overline{\nabla}_T T)^{\top}, \nabla f\rangle$, we have at p:

(25)
$$\frac{\partial^{2} J_{f}}{\partial t^{2}}\Big|_{t=0} = \left[|\nabla^{\perp} T|^{2} - |\langle A(\cdot, \cdot), T \rangle|^{2} - \sum_{i=1}^{n} \langle \overline{R}(e_{i}, T)e_{i}, T \rangle - \overline{\nabla}^{2} f(T, T) - \langle (\overline{\nabla}_{T} T)^{\perp}, \mathbf{H}_{f} \rangle + \langle T, \mathbf{H}_{f} \rangle^{2} \right] e^{-f} + \operatorname{div} \left(e^{-f} (\overline{\nabla}_{T} T)^{\top} \right).$$

Observe that the right-hand side of (25) is independent of the choice of coordinates. Hence (25) holds on Σ . By integrating (25) and using the fact that Σ is f-minimal (i.e. $\mathbf{H}_f = 0$), we obtain

$$\frac{d^2}{dt^2} V_f(\Sigma_t) \Big|_{t=0} = \int_{\Sigma} (|\nabla^{\perp} T|^2 - |\langle A(\cdot, \cdot), T \rangle|^2 - \langle R(T), T \rangle - \overline{\nabla}^2 f(T, T)) e^{-f} d\sigma$$

$$= -\int_{\Sigma} \langle T, \Delta_f^{\perp} T + A(T) + R(T) + F(T) \rangle e^{-f} d\sigma$$

$$= -\int_{\Sigma} \langle T, L_f T \rangle e^{-f} d\sigma.$$

Substituting $e^{-f}T$ for T in the identity $\int_{\Sigma} |\nabla^{\perp}T|^2 d\sigma = -\int_{\Sigma} \langle T, \Delta^{\perp}T \rangle d\sigma$, we have

$$\int_{\Sigma} |\nabla^{\perp} T|^2 e^{-f} d\sigma = -\int_{\Sigma} \langle T, \Delta_f^{\perp} T \rangle e^{-f} d\sigma.$$

Thus we have the second variation formula of the weighted volume of Σ :

$$\begin{aligned} \frac{d^2}{dt^2} V_f(\Sigma_t) \bigg|_{t=0} &= -\int_{\Sigma} \langle T, \Delta_f^{\perp} T + A(T) + R(T) + F(T) \rangle e^{-f} d\sigma \\ &= -\int_{\Sigma} \langle T, L_f T \rangle e^{-f} d\sigma. \end{aligned}$$

Definition 6. An f-minimal submanifold (Σ, \overline{g}) is called L_f -stable if the second variation of the weighted volume of Σ given by (24) is nonnegative for any normal compactly supported variational vector field T on Σ .

Observe that for an f-minimal submanifold Σ and its normal compactly supported variation, it holds that $V_f(\Sigma_t) = \tilde{V}(\Sigma_t)$. Then

(26)
$$\left. \frac{d^2}{dt^2} \tilde{V}(\Sigma_t) \right|_{t=0} = \left. \frac{d^2}{dt^2} V_f(\Sigma_t) \right|_{t=0}.$$

By (20), (24), and (26), we have

(27)
$$\int_{\Sigma} \langle T, JT \rangle_{\tilde{g}} d\tilde{\sigma} = \int_{\Sigma} \langle T, L_f T \rangle_{\overline{g}} e^{-f} d\sigma.$$

This implies that

(28)
$$\int_{\Sigma} e^{-\frac{2f}{n}} \langle T, JT \rangle_{\overline{g}} e^{-f} d\sigma = \int_{\Sigma} \langle T, L_f T \rangle_{\overline{g}} e^{-f} d\sigma.$$

By (28), the following equality holds.

Corollary 3. For any normal vector field T on Σ ,

$$JT = e^{\frac{2f}{n}} L_f T.$$

The operator L_f corresponds to a symmetric bilinear form $B_f(T,T)$ for the space of normal compactly supported vector fields on Σ :

(29)
$$B_f(T,T) := -\int_{\Sigma} \langle T, L_f T \rangle_{\overline{g}} e^{-f} d\sigma.$$

We define the L_f -index, denoted by L_f -ind, of (Σ, \overline{g}) by the maximum of the dimensions of negative definite subspaces of B_f . Hence (Σ, \overline{g}) is L_f -stable if and only if its L_f -ind = 0.

On the other hand, for minimal (Σ, \tilde{g}) , it is well known that the stability operator J also defines a symmetric bilinear form $\tilde{B}(T,T)$,

(30)
$$\tilde{B}(T,T) := -\int_{\Sigma} \langle T, JT \rangle_{\tilde{g}} d\tilde{\sigma}.$$

There are also the concepts of index and stability of (Σ, \tilde{g}) . In particular, (Σ, \tilde{g}) is stable if and only if the index $\operatorname{ind}(\Sigma, \tilde{g}) = 0$. Since $B_f(T, T) = \tilde{B}(T, T)$, it holds that

Proposition 14. L_f -ind of (Σ, \overline{g}) is equal to the index of (Σ, \tilde{g}) . In particular, (Σ, \overline{g}) is L_f -stable if and only if (Σ, \tilde{g}) is stable in (M, \tilde{g}) .

Now if Σ is a two-sided hypersurface, that is, if there is a globally-defined unit normal ν on (Σ, \overline{g}) , take $T = \varphi \nu$. Then the second variation (24) implies that

Proposition 15. Let Σ be a two-sided f-minimal hypersurface in (M^{n+1}, \overline{g}) . If φ is a compactly supported smooth function on Σ , then the second variation of the weighted volume of (Σ, \overline{g}) is given by

(31)
$$\frac{d^2}{dt^2} V_f(\Sigma_t) \Big|_{t=0} = -\int_{\Sigma} \varphi L_f(\varphi) e^{-f} d\sigma,$$

where ν denotes the unit normal of (Σ, \overline{g}) and the operator L_f is defined by $L_f = \Delta_f + |A|_{\overline{g}}^2 + \overline{Ric}_f(\nu, \nu)$.

Definition 7. The operator $L_f = \Delta_f + |A|^2_{\overline{g}} + \overline{\text{Ric}}_f(\nu, \nu)$ is called the L_f -stability operator of hypersurface (Σ, \overline{g}) .

A bilinear form on space $C_o^\infty(\Sigma)$ of compactly supported smooth functions on Σ is defined by

(32)
$$B_{f}(\varphi,\varphi) := -\int_{\Sigma} \varphi L_{f} \varphi e^{-f} d\sigma$$
$$= \int_{\Sigma} [|\nabla \varphi|^{2} - (|A|_{g}^{2} + \overline{\operatorname{Ric}}_{f}(\nu,\nu))\varphi^{2}] e^{-f} d\sigma.$$

The L_f -index, denoted by L_f -ind, of (Σ, \overline{g}) is defined to be the maximum of the dimensions of negative definite subspaces of B_f . Hence (Σ, \overline{g}) is L_f -stable if and only if L_f -ind = 0. Clearly the definition of L_f -index is equivalent to the corresponding definition using the variational vector field T as before.

Also, for minimal hypersurface $i:(\Sigma,\tilde{g})\to (M^{n+1},\tilde{g})$, it is well known that if ψ is a compactly supported smooth function on Σ , then the second variation of the volume \tilde{V} of $(\Sigma,i^*\tilde{g})$ is given by

(33)
$$\frac{d^2}{dt^2}\tilde{V}(\Sigma_t)\bigg|_{t=0} = -\int_{\Sigma} \psi J(\psi) d\tilde{\sigma},$$

where \tilde{A} denotes the second fundamental form of (Σ, \tilde{g}) , $\tilde{\nu}$ denotes the unit normal of (Σ, \tilde{g}) , and $J = \triangle_{\tilde{g}} + |\tilde{A}|_{\tilde{g}}^2 + \widetilde{\text{Ric}}(\tilde{\nu}, \tilde{\nu})$ is the stability operator (or the Jacobi operator) of (Σ, \tilde{g}) .

The following holds, from (28).

Proposition 16. Let (Σ^n, g) be an f-minimal hypersurface immersed in (M, \overline{g}) . Then for all $\varphi \in \mathcal{C}_o^{\infty}(\Sigma)$,

(34)
$$\int_{\Sigma} (e^{-\frac{f}{n}}\varphi)J(e^{-\frac{f}{n}}\varphi)e^{-f}d\sigma = \int_{\Sigma} \varphi L_f(\varphi)e^{-f}d\sigma.$$

Corollary 4. For $\varphi \in C^{\infty}(\Sigma)$, $J(e^{-\frac{f}{n}}\varphi) = e^{\frac{f}{n}}L_f(\varphi)$.

Corollary 5. L_f -ind of (Σ, \overline{g}) is equal to the index of (Σ, \tilde{g}) . In particular, (Σ, \overline{g}) is L_f -stable if and only if (Σ, \tilde{g}) is stable in (M, \tilde{g}) .

References

- Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175–185. MR2732975 (2011k:53040)
- [2] Xu Cheng, Tito Mejia, and Detang Zhou, Eigenvalue estimate and compactness for closed f-minimal surfaces, Pacific J. Math. 271 (2014), no. 2, 347–367, DOI 10.2140/pjm.2014.271.347. MR3267533
- [3] Xu Cheng and Detang Zhou, Volume estimate about shrinkers, Proc. Amer. Math. Soc. 141 (2013), no. 2, 687–696, DOI 10.1090/S0002-9939-2012-11922-7. MR2996973
- [4] Tobias H. Colding and William P. Minicozzi II, Smooth compactness of self-shrinkers, Comment. Math. Helv. 87 (2012), no. 2, 463–475, DOI 10.4171/CMH/260. MR2914856
- [5] Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) 175 (2012), no. 2, 755–833, DOI 10.4007/annals.2012.175.2.7.
 MR2993752
- [6] Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011. MR2780140
- [7] Tobias H. Colding and William P. Minicozzi II, Estimates for parametric elliptic integrands, Int. Math. Res. Not. 6 (2002), 291–297, DOI 10.1155/S1073792802106106. MR1877004 (2002k:53060)
- [8] Tobias H. Colding and William P. Minicozzi II, Embedded minimal surfaces without area bounds in 3-manifolds, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 107–120, DOI 10.1090/conm/258/04058. MR1778099 (2001i:53012)
- [9] Qi Ding and Y. L. Xin, Volume growth, eigenvalue and compactness for self-shrinkers, Asian J. Math. 17 (2013), no. 3, 443–456, DOI 10.4310/AJM.2013.v17.n3.a3. MR3119795
- [10] Frank Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), no. 8, 853–858.MR2161354 (2006g:53044)
- [11] Ovidiu Munteanu and Jiaping Wang, Analysis of weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012), no. 1, 55–94, DOI 10.4310/CAG.2012.v20.n1.a3. MR2903101
- [12] Ovidiu Munteanu and Jiaping Wang, Geometry of manifolds with densities, Adv. Math. 259 (2014), 269–305, DOI 10.1016/j.aim.2014.03.023. MR3197658
- [13] Guofang Wei and Will Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377–405. MR2577473 (2011a:53064)

[14] B. White, Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987), no. 2, 243–256, DOI 10.1007/BF01388908. MR880951 (88g:58037)

INSTITUTO DE MATEMATICA E ESTATÍSTICA, UNIVERSIDADE FEDERAL FLUMINENSE, NITERÓI, RJ 24020, BRAZIL

 $E ext{-}mail\ address: xcheng@impa.br}$

INSTITUTO DE MATEMATICA E ESTATÍSTICA, UNIVERSIDADE FEDERAL FLUMINENSE, NITERÓI, RJ 24020, BRAZIL

E-mail address: tmejia.uff@gmail.com

Instituto de Matematica e Estatística, Universidade Federal Fluminense, Niterói, RJ 24020, Brazil

 $E ext{-}mail\ address: {\tt zhou@impa.br}$