STABILITY AND COMPACTNESS FOR COMPLETE f-MINIMAL SURFACES

XU CHENG, TITO MEJIA, AND DETANG ZHOU

Abstract

Let $\left(M, \bar{g}, e^{-f} d \mu\right)$ be a complete metric measure space with BakryÉmery Ricci curvature bounded below by a positive constant. We prove that in M there is no complete two-sided L_{f}-stable immersed f-minimal hypersurface with finite weighted volume. Further, if M is a 3 -manifold, we prove a smooth compactness theorem for the space of complete embedded f-minimal surfaces in M with the uniform upper bounds of genus and weighted volume, which generalizes the compactness theorem for complete self-shrinkers in \mathbb{R}^{3} by Colding-Minicozzi.

1. Introduction

Recall that a self-shrinker (for mean curvature flow in \mathbb{R}^{n+1}) is a hypersurface Σ immersed in the Euclidean space $\left(\mathbb{R}^{n+1}, g_{c a n}\right)$ satisfying that

$$
H=\frac{1}{2}\langle x, \nu\rangle,
$$

where x is the position vector in \mathbb{R}^{n+1}, ν is the unit normal at x, and H is the mean curvature of Σ at x. Self-shrinkers play an important role in the study of singularity of mean curvature flow and have been studied by many people in recent years. We refer to [4, 5] and the references therein. In particular, Colding-Minicozzi (4) proved the following compactness theorem for self-shrinkers in \mathbb{R}^{3}.

Theorem 1 (4). Given an integer $g \geq 0$ and a constant $V>0$, the space $\mathcal{S}(g, V)$ of smooth complete embedded self-shrinkers $\Sigma \subset \mathbb{R}^{3}$ with

- genus at most g,
- $\partial \Sigma=\emptyset$,
- $\operatorname{Area}\left(B_{R}\left(x_{0}\right) \cap \Sigma\right) \leq V R^{2}$ for all $x_{0} \in \mathbb{R}^{3}$ and $R>0$
is compact. Namely, any sequence of these has a subsequence that converges in the topology of C^{m} convergence on compact subsets for any $m \geq 2$.

In this paper, we extend Theorem 1 to the space of complete embedded f minimal surfaces in a 3-manifold. A hypersurface Σ immersed in a Riemannian manifold (M, \bar{g}) is called an f-minimal hypersurface if its mean curvature H satisfies that, for any $p \in \Sigma$,

$$
H=\langle\bar{\nabla} f, \nu\rangle,
$$

Received by the editors March 6, 2013.
2010 Mathematics Subject Classification. Primary 58J50; Secondary 58E30.
The first and third authors were partially supported by CNPq and Faperj of Brazil.
The second author was supported by CNPq of Brazil.
where f is a smooth function defined on M and $\bar{\nabla} f$ denotes the gradient of f on M. Here are some examples of f-minimal hypersurfaces:

- $f \equiv C$, an f-minimal hypersurface is just a minimal hypersurface.
- self-shrinker Σ in $\mathbb{R}^{n+1} . f=\frac{|x|^{2}}{4}$.
- Let (M, \bar{g}, f) be a shrinking gradient Ricci solitons; i.e. after a normalization, (M, \bar{g}, f) satisfies the equation $\overline{\mathrm{Ric}}+\bar{\nabla}^{2} f=\frac{1}{2} \bar{g}$ or equivalently the Bakry-Émery Ricci curvature $\overline{\operatorname{Ric}}_{f}:=\overline{\operatorname{Ric}}+\bar{\nabla}^{2} f=\frac{1}{2}$. We may consider f-minimal hypersurfaces in (M, \bar{g}, f). In particular, the previous example: a self-shrinker Σ in \mathbb{R}^{n+1} is f-minimal in Gauss shrinking soliton $\left(\mathbb{R}^{n+1}, g_{c a n}, \frac{|x|^{2}}{4}\right)$.
- $M=\mathbb{H}^{n+1}(-1)$, the hyperbolic space. Let r denote the distance function from a fixed point $p \in M$ and $f(x)=n a r^{2}(x)$, where $a>0$ is a constant. Now $\overline{\operatorname{Ric}_{f}} \geq n(2 a-1)$. The geodesic sphere of radius r centered at p is an f-minimal hypersurface if the radius r satisfies $2 a r=\operatorname{coth} r$.
An f-minimal hypersurface Σ can be viewed in two ways. One is that Σ is f-minimal if and only if Σ is a critical point of the weighted volume functional $e^{-f} d \sigma$, where $d \sigma$ is the volume element of Σ. The other one is that Σ is f-minimal if and only if Σ is minimal in the new conformal metric $\tilde{g}=e^{-\frac{2 f}{n}} \bar{g}$ (see Section 2 and Appendix). f-minimal hypersurfaces have been studied before as even more general stationary hypersurfaces for parametric elliptic functionals; see for instance the work of White [14] and Colding-Minicozzi (7).

We prove the following compactness result:
Theorem 2. Let $\left(M^{3}, \bar{g}, e^{-f} d \mu\right)$ be a complete smooth metric measure space and $\overline{\operatorname{Ric}}_{f} \geq k$, where k is a positive constant. Given an integer $g \geq 0$ and a constant $V>0$, the space $S_{g, V}$ of smooth complete embedded f-minimal surfaces $\Sigma \subset M$ with

- genus at most g,
- $\partial \Sigma=\emptyset$,
- $\int_{\Sigma} e^{-f} d \sigma \leq V$
is compact in the C^{m} topology, for any $m \geq 2$. Namely, any sequence of $S_{g, V}$ has a subsequence that converges in the C^{m} topology on compact subsets to a surface in $S_{g, V}$, for any $m \geq 2$.

Since the existence of the uniform scale-invariant area bound is equivalent to the existence of the uniform bound of the weighted area for self-shrinkers (see Remark 11 in Section (5), Theorem [2implies Theorem (1) Also, in [2], we will apply Theorem 2 to obtain a compactness theorem for the space of closed embedded f-minimal surfaces with the upper bounds of genus and diameter.

To prove Theorem 2, we need to prove a nonexistence result on L_{f}-stable f minimal hypersurfaces, which is of independent interest.

Theorem 3. Let $\left(M^{n+1}, \bar{g}, e^{-f} d \mu\right)$ be a complete smooth metric measure space with $\overline{\operatorname{Ric}}_{f} \geq k$, where k is positive constant. Then there is no complete two-sided L_{f}-stable f-minimal hypersurface Σ immersed in (M, \bar{g}) without boundary and with finite weighted volume (i.e. $\int_{\Sigma} e^{-f} d \sigma<\infty$), where d σ denotes the volume element on Σ determined by the induced metric from (M, \bar{g}).

Here we explain briefly the meaning of L_{f} stability. For an f-minimal hypersurface Σ, the L_{f} operator is

$$
L_{f}=\Delta_{f}+|A|^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)
$$

where $\Delta_{f}=\Delta-\langle\nabla f, \nabla \cdot\rangle$ is the weighted Laplacian on Σ. In particular, for selfshrinkers, it is the so-called L operator:

$$
L=\Delta+|A|^{2}-\frac{1}{2}\langle x, \nabla \cdot\rangle+\frac{1}{2}
$$

L_{f}-stability of Σ means that its weighted volume $\int_{\Sigma} e^{-f} d \sigma$ is locally minimal; that is, the second variation of its weighted volume is nonnegative for any compactly supported normal variation. We leave more details about the definition of $L_{f^{-}}$ stability and some of its properties to Section 2 and the Appendix.

For self-shrinkers in \mathbb{R}^{n+1}, Colding-Minicozzi [6] proved that
Theorem 4 ([6]). There are no L-stable smooth complete self-shrinkers without boundary and with polynomial volume growth in \mathbb{R}^{n+1}.

Since the first and third authors [3] of the present paper proved that for selfshrinkers, properness, the polynomial volume growth, and finite weighted volume are equivalent, Theorem 3 implies Theorem [4]

In this paper, we also discuss the relationship among the properness, polynomial volume growth and finite weighted volume of f-minimal submanifolds (Propositions (3) 4 and (5). We obtain their equivalence when the ambient space (M, \bar{g}, f) is a shrinking gradient Ricci solitons, i.e. $\overline{\operatorname{Ric}}+\bar{\nabla}^{2} f=\frac{1}{2} \bar{g}$, with the condition that f is a convex function with $|\bar{\nabla} f|^{2} \leq f$ (Corollary (1).

The rest of this paper is organized as follows: In Section 2 some definitions, notation and facts are given as preliminaries. In Section 3 we prove Propositions (3) 4) and 5. In Section (4) we prove Theorem 3) In Section 5 we prove Theorem 2. In the Appendix we calculate the second variation of the volume functional of f-minimal submanifolds and discuss some properties of L_{f}-stability for f-minimal submanifolds.

2. Preliminaries

In general, a smooth metric measure space, denoted by $\left(M^{m}, \bar{g}, e^{-f} d \mu\right.$), is an m-dimensional Riemannian manifold $\left(M^{m}, \bar{g}\right)$ together with a weighted volume form $e^{-f} d \mu$ on M, where f is a smooth function on M and $d \mu$ is the volume element induced by the metric \bar{g}. In this paper, unless otherwise specified, we denote by a bar all quantities on (M, \bar{g}), for instance by $\bar{\nabla}$ and $\overline{\text { Ric }}$, the Levi-Civita connection and the Ricci curvature tensor of (M, \bar{g}) respectively. For $\left(M, \bar{g}, e^{-f} \underline{d \mu}\right)$, an important and natural tensor is the ∞-Bakry-Émery Ricci curvature tensor $\overline{\operatorname{Ric}}_{f}$ (for simplicity, Bakry-Émery Ricci curvature), which is defined by

$$
\overline{\operatorname{Ric}}_{f}:=\overline{\operatorname{Ric}}+\bar{\nabla}^{2} f,
$$

where $\bar{\nabla}^{2} f$ is the Hessian of f on M. If f is constant, $\overline{\operatorname{Ric}}_{f}$ is the Ricci curvature $\overline{\text { Ric }}$ on M respectively.

A Riemannian manifold with Bakry-Émery Ricci curvature bounded below by a positive constant has some properties similar to a Riemannian manifold with Ricci curvature bounded below by a positive constant. For instance, see the work of

Wei-Wylie [13, Munteanu-Wang [11,12] and the references therein. In this paper, we will use the following proposition by Morgan [10] (see also its proof in [13]).
Proposition 1. If a complete smooth metric measure space $\left(M, \bar{g}, e^{-f} d u\right)$ has $\overline{\operatorname{Ric}}_{f} \geq k$, where k is a positive constant, then M has finite weighted volume (i.e. $\left.\int_{M} e^{-f} d \mu<\infty\right)$ and finite fundamental group.

Now, let $i: \Sigma^{n} \rightarrow M^{m}, n<m$, be an n-dimensional smooth immersion. Then $i:\left(\Sigma^{n} ; i^{*} \bar{g}\right) \rightarrow\left(M^{m}, \bar{g}\right)$ is an isometric immersion with the induced metric $i^{*} \bar{g}$. For simplicity, we still denote $i^{*} \bar{g}$ by \bar{g} whenever there is no confusion. We will denote for instance by ∇, Ric, Δ and $d \sigma$, the Levi-Civita connection, the Ricci curvature tensor, the Laplacian, and the volume element of (Σ, \bar{g}) respectively.

The function f induces a weighted measure $e^{-f} d \sigma$ on Σ. Thus we have an induced smooth metric measure space ($\Sigma^{n}, \bar{g}, e^{-f} d \sigma$).

The associated weighted Laplacian Δ_{f} on (Σ, \bar{g}) is defined by

$$
\Delta_{f} u:=\Delta u-\langle\nabla f, \nabla u\rangle .
$$

The second order operator Δ_{f} is a self-adjoint operator on the space of square integrable functions on Σ with respect to the measure $e^{-f} d \sigma$ (however the Laplacian operator in general does not have this property).

The second fundamental form A of (Σ, \bar{g}) is defined by

$$
A(X, Y)=\left(\bar{\nabla}_{X} Y\right)^{\perp}, \quad X, Y \in T_{p} \Sigma, p \in \Sigma
$$

where \perp denotes the projection to the normal bundle of Σ. The mean curvature vector \mathbf{H} of Σ is defined by $\mathbf{H}=\operatorname{tr} A=\sum_{i=1}^{n}\left(\bar{\nabla}_{e_{i}} e_{i}\right)^{\perp}$.
Definition 1. The weighted mean curvature vector of Σ with respect to the metric \bar{g} is defined by

$$
\begin{equation*}
\mathbf{H}_{f}=\mathbf{H}+(\bar{\nabla} f)^{\perp} . \tag{1}
\end{equation*}
$$

The immersed submanifold (Σ, \bar{g}) is called f-minimal if its weighted mean curvature vector \mathbf{H}_{f} vanishes identically, or equivalently if its mean curvature vector satisfies

$$
\begin{equation*}
\mathbf{H}=-(\bar{\nabla} f)^{\perp} . \tag{2}
\end{equation*}
$$

Definition 2. The weighted volume of (Σ, \bar{g}) is defined by

$$
\begin{equation*}
V_{f}(\Sigma):=\int_{\Sigma} e^{-f} d \sigma \tag{3}
\end{equation*}
$$

It is well known that Σ is f-minimal if and only if Σ is a critical point of the weighted volume functional. Namely, it holds that

Proposition 2. If T is a compactly supported variational vector field on Σ, then the first variation formula of the weighted volume of (Σ, \bar{g}) is given by

$$
\begin{equation*}
\left.\frac{d}{d t} V_{f}\left(\Sigma_{t}\right)\right|_{t=0}=-\int_{\Sigma}\left\langle T^{\perp}, \mathbf{H}_{f}\right\rangle_{\bar{g}} e^{-f} d \sigma \tag{4}
\end{equation*}
$$

On the other hand, an f-minimal submanifold can be viewed as a minimal submanifold under a conformal metric. Precisely, define the new metric $\tilde{g}=e^{-\frac{2}{n} f} \bar{g}$ on M, which is conformal to \bar{g}. Then the immersion $i: \Sigma \rightarrow M$ induces a metric $i^{*} \tilde{g}$
on Σ from (M, \tilde{g}). In the following, $i^{*} \tilde{g}$ is still denoted by \tilde{g} for simplicity. The volume of (Σ, \tilde{g}) is

$$
\begin{equation*}
\tilde{V}(\Sigma):=\int_{\Sigma} d \tilde{\sigma}=\int_{\Sigma} e^{-f} d \sigma=\mathrm{V}_{f}(\Sigma) . \tag{5}
\end{equation*}
$$

Hence Proposition 2 and (5) imply that

$$
\begin{equation*}
\int_{\Sigma}\left\langle T^{\perp}, \tilde{\mathbf{H}}\right\rangle_{\tilde{g}} d \tilde{\sigma}=\int_{\Sigma}\left\langle T^{\perp}, \mathbf{H}_{f}\right\rangle_{\bar{g}} e^{-f} d \sigma \tag{6}
\end{equation*}
$$

where $d \tilde{\sigma}=e^{-f} d \sigma$ and $\tilde{\mathbf{H}}$ denote the volume element and the mean curvature vector of Σ with respect to the conformal metric \tilde{g} respectively.

Identity (6) implies that $\tilde{\mathbf{H}}=e^{\frac{2 f}{n}} \mathbf{H}_{f}$. Therefore (Σ, \bar{g}) is f-minimal in (M, \bar{g}) if and only if (Σ, \tilde{g}) is minimal in (M, \tilde{g}).

Now suppose that Σ^{n} is a hypersurface immersed in M^{n+1}. Let $p \in \Sigma$ and ν be a unit normal at p. The second fundamental form A and the mean curvature H of (Σ, \bar{g}) are as follows:

$$
\begin{gathered}
A: T_{p} \Sigma \rightarrow T_{p} \Sigma, A(X)=\bar{\nabla}_{X} \nu, X \in T_{p} \Sigma, \\
H=\operatorname{tr} A=-\sum_{i=1}^{n}\left\langle\bar{\nabla}_{e_{i}} e_{i}, \nu\right\rangle .
\end{gathered}
$$

Hence the mean curvature vector \mathbf{H} of (Σ, \bar{g}) satisfies $\mathbf{H}=-H \nu$. Define the weighted mean curvature H_{f} of (Σ, \bar{g}) by $\mathbf{H}_{f}:=-H_{f} \nu$. Then

$$
H_{f}=H-\langle\bar{\nabla} f, \nu\rangle .
$$

Definition 3. A hypersurface Σ immersed in $\left(M^{n+1}, \bar{g}, e^{-f} d \mu\right)$ with the induced metric \bar{g} is called an f-minimal hypersurface if it satisfies

$$
\begin{equation*}
H=\langle\bar{\nabla} f, \nu\rangle . \tag{7}
\end{equation*}
$$

For a hypersurface (Σ, \bar{g}), the L_{f} operator is defined by

$$
L_{f}:=\Delta_{f}+|A|^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)
$$

where $|A|^{2}$ denotes the square of the norm of the second fundamental form A of Σ.
The L_{f}-stability of Σ is defined as follows:
Definition 4. A two-sided f-minimal hypersurface Σ is said to be L_{f}-stable if for any compactly supported smooth function $\varphi \in C_{o}^{\infty}(\Sigma)$, it holds that

$$
\begin{equation*}
-\int_{\Sigma} \varphi L_{f} \varphi e^{-f} d \sigma=\int_{\Sigma}\left[|\nabla \varphi|^{2}-\left(|A|^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)\right) \varphi^{2}\right] e^{-f} d \sigma \geq 0 \tag{8}
\end{equation*}
$$

It is known that an f-minimal hypersurface (Σ, \bar{g}) is L_{f}-stable if and only if (Σ, \tilde{g}) is stable as a minimal surface with respect to the conformal metric $\tilde{g}=e^{-f} \bar{g}$. See more details in the Appendix of this paper.

In this paper, for closed hypersurfaces, we choose ν to be the outer unit normal.

3. Properness, polynomial volume growth

AND FINITE WEIGHTED VOLUME OF f-MINIMAL HYPERSURFACES

In [3, the first and third authors of the present paper proved that the finite weighted volume of a self-shrinker Σ^{n} immersed in \mathbb{R}^{m} implies it is properly immersed. In 9, Ding-Xin proved that a properly immersed self-shrinker must have the Euclidean volume growth. Combining these two results, it was proved in 3] that for immersed self-shrinkers, properness, polynomial volume growth and finite weighted volume are equivalent.

In this section we study the relationship among the properness, polynomial volume growth and finite weighted volume of f-minimal submaifolds, some of which will be used later in this paper.

Let Σ be an n-dimensional submanifold in a complete manifold $M^{m}, n<m . \Sigma$ is said to have polynomial volume growth if, for a $p \in M$ fixed, there exist constants C and d so that for all $r \geq 1$,

$$
\begin{equation*}
\operatorname{Vol}\left(B_{r}^{M}(p) \cap \Sigma\right) \leq C r^{d} \tag{9}
\end{equation*}
$$

where $B_{r}^{M}(p)$ is the extrinsic ball of radius r centered at p and $\operatorname{Vol}\left(B_{r}^{M}(p)\right)$ denotes the volume of $B_{r}^{M}(p) \cap \Sigma$. When $d=n$ in (9), Σ is said to be of Euclidean volume growth.

Before proving the following Proposition 3 we recall an estimate implied by the Hessian comparison theorem (cf., for instance, [6], Lemma 7.1).

Lemma 1. Let (M, \bar{g}) be a complete Riemannian manifold with bounded geometry, that is, M has sectional curvature bounded by $k\left(\left|K_{M}\right| \leq k\right)$, and injectivity radius bounded below by $i_{0}>0$. Then the distance function $r(x)$ satisfies

$$
\left.\left|\bar{\nabla}^{2} r(V, V)-\frac{1}{r}\right| V-\left.\langle V, \bar{\nabla} r\rangle \bar{\nabla} r\right|^{2} \right\rvert\, \leq \sqrt{k},
$$

for $r<\min \left\{i_{0}, \frac{1}{\sqrt{k}}\right\}$ and any unit vector $V \in T_{x} M$.
Using this estimate we will prove
Proposition 3. Let Σ^{n} be a complete noncompact f-minimal submanifold immersed in a complete Riemannian manifold M^{m}. If Σ has finite weighted volume, then Σ is properly immersed.

Proof. We argue by contradiction. Since the argument is local, we may assume that (M, g) has bounded geometry. Suppose that Σ is not properly immersed. Then there exist a number $2 R<\min \left\{i_{0}, \frac{1}{\sqrt{k}}\right\}$ and $o \in M$ so that $\bar{B}_{R}^{M}(o) \cap \Sigma$ is not compact in Σ, where $\bar{B}_{R}^{M}(o)$ denotes the closure of the (open) ball $B_{R}^{M}(o)$ in M of radius R centered at o. Then for any $a>0$, there is a sequence $\left\{p_{k}\right\}$ of points in $B_{R}^{M}(o) \cap \Sigma$ with $\operatorname{dist}_{\Sigma}\left(p_{k}, p_{j}\right) \geq a>0$ for any $k \neq j$. So $B_{\frac{\Omega}{2}}^{\Sigma}\left(p_{k}\right) \cap B_{\frac{\Omega}{2}}^{\Sigma}\left(p_{j}\right)=\emptyset$ for any $k \neq j$, where $B_{\frac{a}{2}}^{\Sigma}\left(p_{k}\right)$ and $B_{\frac{\Sigma}{2}}^{\Sigma}\left(p_{j}\right)$ denote the intrinsic balls in Σ of the radius $\frac{a}{2}$, centered at p_{k} and p_{j} respectively. Choose $a<2 R$. Then $B_{\frac{a}{2}}^{\perp}\left(p_{j}\right) \subset B_{2 R}^{M}(o)$. If
$p \in B_{\frac{\partial}{2}}^{\Sigma}\left(p_{j}\right)$, the extrinsic distance function $r_{j}(p)=\operatorname{dist}_{M}\left(p, p_{j}\right)$ from p_{j} satisfies

$$
\begin{aligned}
\Delta r_{j} & =\sum_{i=1}^{n} \bar{\nabla}^{2} r_{j}\left(e_{i}, e_{i}\right)+\left\langle\mathbf{H}, \bar{\nabla} r_{j}\right\rangle \\
& \geq \frac{n}{r_{j}}-\frac{1}{r_{j}}\left|\nabla r_{j}\right|^{2}-n \sqrt{k}-\left\langle\bar{\nabla} f^{\perp}, \bar{\nabla} r_{j}\right\rangle \\
& \geq \frac{n}{r_{j}}-\frac{1}{r_{j}}\left|\nabla r_{j}\right|^{2}-c,
\end{aligned}
$$

where $c=n \sqrt{k}+\sup _{B_{2 R}^{M}(0)}|\bar{\nabla} f|$. Lemma 1 is used above. Hence

$$
\Delta r_{j}^{2} \geq 2 n-2 c r_{j}
$$

Choosing $a \leq \min \left\{\frac{n}{2 c}, 2 R\right\}$, we have for $0<\mu \leq \frac{a}{2}$,

$$
\begin{align*}
\int_{B_{\mu}^{\Sigma}\left(p_{j}\right)}\left(2 n-2 c r_{j}\right) d \sigma & \leq \int_{B_{\mu}^{\Sigma}\left(p_{j}\right)} \Delta r_{j}^{2} d \sigma \tag{10}\\
& =\int_{\partial B_{\mu}^{\Sigma}\left(p_{j}\right)}\left\langle\nabla r_{j}^{2}, \nu\right\rangle d \sigma \\
& \leq 2 \mu A(\mu),
\end{align*}
$$

where ν denotes the outward unit normal vector of $\partial B_{\mu}^{\Sigma}\left(p_{j}\right)$ and $A(\mu)$ denotes the area of $\partial B_{\mu}^{\Sigma}\left(p_{j}\right)$. Using the co-area formula in (10), we have

$$
\begin{equation*}
\int_{0}^{\mu}(n-c s) A(s) d s \leq \int_{0}^{\mu} \int_{d_{\Sigma}\left(p, p_{j}\right)=s}\left(n-c r_{j}\right) d \sigma \leq \mu A(\mu) . \tag{11}
\end{equation*}
$$

This implies

$$
(n-c \mu) V(\mu) \leq V^{\prime}(\mu)
$$

where $V(\mu)$ denotes the volume of $B_{\mu}^{\Sigma}\left(p_{j}\right)$. So

$$
\begin{equation*}
\frac{V^{\prime}(\mu)}{V(\mu)} \geq \frac{n}{\mu}-c \tag{12}
\end{equation*}
$$

Integrating (12) from $\varepsilon>0$ to μ, we have

$$
\frac{V(\mu)}{V(\varepsilon)} \geq\left(\frac{\mu}{\varepsilon}\right)^{n} e^{-c(\mu-\varepsilon)}
$$

Since $\lim _{s \rightarrow 0^{+}} \frac{V(s)}{s^{n}}=\omega_{n}$,

$$
\begin{equation*}
V(\mu) \geq \omega_{n} \mu^{n} e^{-c \mu} \tag{13}
\end{equation*}
$$

Thus we conclude

$$
\int_{\Sigma} e^{-f} d \sigma \geq \sum_{j=1}^{\infty} \int_{B_{\frac{n}{2}}^{\Sigma}\left(p_{j}\right)} e^{-f} d \sigma \geq \inf _{B_{2 R}^{M}(o)}\left(e^{-f}\right) \sum_{j=1}^{\infty} \int_{B_{\frac{n}{2}}^{\Sigma}\left(p_{j}\right)} d \sigma=\infty .
$$

This contradicts the assumption of the finite weighted volume of Σ.
Proposition 4. Let $\left(M^{m}, \bar{g}, e^{-f} d \mu\right)$ be a complete smooth metric measure space with $\overline{\operatorname{Ric}}_{f}=k$, where k is a positive constant. Assume that f is a convex function. If Σ^{n} is a complete noncompact properly immersed f-minimal submanifold in M, then Σ has finite weighted volume and Euclidean (hence polynomial) volume growth.

Proof. Since (M, \bar{g}, f) is a gradient shrinking Ricci soliton, it is well known that, by a scaling of the metric \bar{g} and a translating of f, still denoted by \bar{g} and f respectively, we may normalize the metric so that $k=\frac{1}{2}$ and the following identities hold:

$$
\begin{aligned}
\bar{R}+|\bar{\nabla} f|^{2}-f & =0, \\
\bar{R}+\bar{\Delta} f & =\frac{m}{2}, \\
\bar{R} & \geq 0 .
\end{aligned}
$$

From these equations, we have that

$$
\bar{\Delta} f-|\bar{\nabla} f|^{2}+f=\frac{m}{2} \quad \text { and } \quad|\bar{\nabla} f|^{2} \leq f
$$

It was proved by Cao and the third author [1] that there is a positive constant c so that

$$
\begin{equation*}
\frac{1}{4}(r(x)-c)^{2} \leq f(x) \leq \frac{1}{4}(r(x)+c)^{2} \tag{14}
\end{equation*}
$$

for any $x \in M$ with $r(x)=\operatorname{dist}_{M}(p, x) \geq r_{0}$, where p is a fixed point in M and c, r_{0} are positive constants that depend only on m and $f(p)$.

By (14), we know that f is a proper function on M. Since Σ is properly immersed in M and f is proper in $M,\left.f\right|_{\Sigma}$ is also a proper smooth function on Σ. Note that with the scaling metric and translating f, Σ is still f-minimal. Hence

$$
\begin{aligned}
\Delta f-|\nabla f|^{2}+f & =\left(\bar{\Delta} f-\sum_{\alpha=n+1}^{m} f_{\alpha \alpha}-\left|\bar{\nabla} f^{\perp}\right|^{2}\right)-\left|\bar{\nabla} f^{\top}\right|^{2}+f \\
& =\bar{\Delta} f-|\bar{\nabla} f|^{2}+f-\sum_{\alpha=n+1}^{m} f_{\alpha \alpha} \\
& \leq \frac{m}{2}
\end{aligned}
$$

Also we have

$$
|\nabla f|^{2}=\left|\bar{\nabla} f^{\top}\right|^{2} \leq|\bar{\nabla} f|^{2} \leq f
$$

By Theorem 1.1 of [3, Σ has finite weighted volume and the Euclidean volume growth of the sub-level set of f with respect to the scaling metric and the translating f, and hence with respect to the original metric and f. Moreover, by the estimate (14), we have that Σ has the Euclidean volume growth.

Next we prove the following:
Proposition 5. Let $\left(M^{m}, \bar{g}, e^{-f} d \mu\right)$ be a complete smooth metric measure space with $\overline{\operatorname{Ric}}_{f} \geq k$, where k is a positive constant. Assume that $|\bar{\nabla} f|^{2} \leq 2 k f$. If Σ^{n} is a complete submanifold (not necessarily f-minimal) with polynomial volume growth, then Σ has finite weighted volume.

Proof. By a scaling of the metric, we may assume that $k=\frac{1}{2}$. The proof follows from an estimate of f. Munteanu-Wang [11] extended the estimate (14) to $\left(M^{m}, \bar{g}, e^{-f} d \mu\right)$ with $\overline{\operatorname{Ric}}_{f} \geq \frac{1}{2}$ and $|\bar{\nabla} f|^{2} \leq f$. Combining the assumption that Σ
has polynomial volume growth with the estimate (14), we have

$$
\begin{aligned}
\int_{\Sigma} e^{-f} d \sigma & =\int_{\Sigma \cap B_{r_{0}}^{M}(p)} e^{-f} d \sigma+\sum_{i=0}^{\infty} \int_{\Sigma \cap\left(B_{r_{0}+i+1}^{M}(p) \backslash B_{r_{0}+i}^{M}(p)\right)} e^{-f} d \sigma \\
& \leq C_{1} \operatorname{Vol}\left(\Sigma \cap B_{r_{0}}^{M}(p)\right)+C \sum_{i=0} e^{-\frac{1}{4}\left(r_{0}+i-c\right)^{2}} \operatorname{Vol}\left(\Sigma \cap B_{r_{0}+i+1}^{M}(p)\right) \\
& \leq C\left[r_{0}^{d}+\sum_{i=0}^{\infty} e^{-\frac{1}{4}\left(r_{0}+i-c\right)^{2}}\left(r_{0}+i+1\right)^{d}\right] \\
& <\infty
\end{aligned}
$$

By Propositions 3, 4 and 5, we have the following.
Corollary 1. Let $\left(M^{m}, \bar{g}, f\right)$ be a complete shrinking gradient Ricci soliton with $\overline{\operatorname{Ric}}_{f}=\frac{1}{2}$. Assume that f is a convex function. If Σ is a complete f-minimal submanifold immersed in M, then for Σ the properness, polynomial volume growth, and finite weighted volume are equivalent.

4. Nonexistence of L_{f} Stable f-minimal hypersurfaces

In this section, we prove Theorem 3, which is a key to proving the compactness theorem in Section 5

Theorem 5 (Theorem 3). Let $\left(M, \bar{g}, e^{-f} d \mu\right)$ be a complete smooth metric measure space with $\overline{R i c}_{f} \geq k$, where k is a positive constant. Then there is no two-sided L_{f}-stable complete f-minimal hypersurface Σ immersed in (M, g) without boundary and with finite weighted volume (i.e. $\int_{\Sigma} e^{-f} d \sigma<\infty$).

Proof. We argue by contradiction. Suppose that Σ is an L_{f}-stable complete f minimal hypersurface immersed in (M, g) without boundary and with finite weighted volume. Recall that a two-sided hypersurface Σ is L_{f}-stable if the following inequality holds, that is, for any compactly supported smooth function $\varphi \in \mathcal{C}_{o}^{\infty}(\Sigma)$,

$$
\begin{equation*}
\int_{\Sigma}\left[|\nabla \varphi|^{2}-\left(|A|^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)\right) \varphi^{2}\right] e^{-f} d \sigma \geq 0 \tag{15}
\end{equation*}
$$

Observe that any closed hypersurface cannot be L_{f}-stable. This is because the assumption $\overline{\operatorname{Ric}}_{f} \geq k>0$ implies that (15) cannot hold for $\varphi \equiv c$ on Σ. Hence, Σ must be noncompact.

Let η be a nonnegative smooth function on $[0, \infty)$ satisfying

$$
\eta(s)=\left\{\begin{array}{llc}
1 & \text { if } & s \in[0,1) \\
0 & \text { if } & s \in[2, \infty)
\end{array}\right.
$$

and $\left|\eta^{\prime}\right| \leq 2$.
Fix a point $p \in \Sigma$ and let $r(x)=\operatorname{dist}_{\Sigma}(p, x)$ denote the (intrinsic) distance function on Σ. Define a sequence of functions $\varphi_{j}(x)=\eta\left(\frac{r(x)}{j}\right), j \geq 1$. Then
$\left|\nabla \varphi_{j}\right|^{2} \leq 1$ for $j \geq 2$. Substituting $\varphi_{j}, j \geq 2$ for φ in (15):

$$
\begin{aligned}
\int_{\Sigma}\left[\left|\nabla \varphi_{j}\right|^{2}\right. & \left.-\left(|A|^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)\right) \varphi_{j}^{2}\right] e^{-f} d \sigma \\
& \leq \int_{\Sigma}\left(\left|\nabla \varphi_{j}\right|^{2}-k \varphi_{j}^{2}\right) e^{-f} d \sigma \\
& =\int_{B_{2 j}^{\Sigma}(p) \backslash B_{j}^{\Sigma}(p)}\left|\nabla \varphi_{j}\right|^{2} e^{-f} d \sigma-\int_{B_{2 j}^{\Sigma}(p)} k \varphi_{j}^{2} e^{-f} d \sigma \\
& \leq \int_{B_{2 j}^{\Sigma}(p) \backslash B_{j}^{\Sigma}(p)} e^{-f} d \sigma-k \int_{B_{2 j}^{\Sigma}(p)} \varphi_{j}^{2} e^{-f} d \sigma \\
& \leq \int_{B_{2 j}^{\Sigma}(p) \backslash B_{j}^{\Sigma}(p)} e^{-f} d \sigma-k \int_{B_{2}^{\Sigma}(p)} e^{-f} d \sigma
\end{aligned}
$$

where $B_{j}^{\Sigma}(p)$ is the intrinsic geodesic ball in M of radius j centered at p. Since Σ has finite weighted volume, we have, when $j \rightarrow \infty$,

$$
\int_{B_{2 j}^{\Sigma}(p) \backslash B_{j}^{\Sigma}(p)} e^{-f} d \sigma \rightarrow 0 .
$$

Choosing j large enough, we have that φ_{j} satisfies

$$
\int_{\Sigma}\left(\left|\nabla \varphi_{j}\right|^{2}-\left(|A|^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)\right) \varphi_{j}^{2}\right) e^{-f} d \sigma<-\frac{k}{2} \int_{B_{2}^{\Sigma}(p)} e^{-f} d \sigma<0 .
$$

This contradicts the fact that Σ is L_{f}-stable.

5. Compactness of complete f-minimal surfaces

Before proving Theorem 2, we give some facts.
Wei-Wylie ([13], Theorem 7.3) used the mean curvature comparison theorem to give a distance estimate for two compact hypersurfaces Σ_{1} and Σ_{2} in a smooth metric measure space $\left(M, \bar{g}, e^{-f} d \mu\right)$ with $\overline{\operatorname{Ric}}_{f} \geq k$, where k is a positive constant. Observe that for two complete properly immersed hypersurfaces Σ_{1} and Σ_{2}, if at least one of them is compact, there is a minimizing geodesic segment joining Σ_{1} and Σ_{2} and realizing their distance. Hence the proof of Theorem 7.3 [13] can be applied to obtain the following.

Proposition 6. Let $\left(M, \bar{g}, e^{-f} d \mu\right)$ be an ($n+1$)-dimensional complete smooth metric measure space with $\overline{\operatorname{Ric}}_{f} \geq k$, where k is a positive constant. If Σ_{1} and Σ_{2} are two complete properly immersed hypersurfaces, at least one of which is compact, then the distance $d\left(\Sigma_{1}, \Sigma_{2}\right)$ satisfies

$$
\begin{equation*}
d\left(\Sigma_{1}, \Sigma_{2}\right) \leq \frac{1}{k}\left(\max _{x \in \Sigma_{1}}\left|H_{f}^{\Sigma_{1}}(x)\right|+\max _{x \in \Sigma_{2}}\left|H_{f}^{\Sigma_{2}}(x)\right|\right), \tag{16}
\end{equation*}
$$

where $H_{f}^{\Sigma_{i}}, i=1,2$, denotes the weighted mean curvatures of Σ_{i} respectively.
Corollary 2. Let $\left(M, \bar{g}, e^{-f} d \mu\right)$ be as in Proposition 6. Then there is a closed ball \bar{B}^{M} of M satisfying that any complete properly immersed f-minimal hypersurface Σ must intersect it.
Proof. Fix $p \in M$ and a geodesic sphere $S_{r}^{M}(p)$ of M. By Proposition 6,

$$
d\left(S_{r}^{M}(p), \Sigma\right) \leq \frac{1}{k} \max _{x}\left|H_{f}^{S_{r}^{M}(p)}(x)\right|=C
$$

where C is independent of Σ. Therefore there is a closed ball \bar{B}^{M} of M with radius big enough so that any Σ must intersect it.

We need the following fact:
Proposition 7. Let M be a simply connected Riemannian manifold. If a hypersurface Σ is complete, not necessarily connected, properly embedded, and has no boundary, then every component of Σ separates M into two components and thus is two-sided. Therefore Σ has a globally defined unit normal.

Proof. Suppose Σ_{j} is a component of Σ. By contrast, $M \backslash \Sigma_{j}$ has one component. Since Σ is a properly embedded f-minimal hypersurface, for any $p \in \Sigma_{j}$ there is a neighborhood W of p in M so that $W \cap \Sigma_{j}=W \cap \Sigma$ only has one piece (i.e. it is a graph above a connected domain in the tangent plane of p). Thus we have a simply closed curve γ passing p, transversal to Σ_{j} at p, and $\Sigma_{j} \cap \gamma=p$. Since M is simply connected, we have a disk D with the boundary γ. Again since Σ is proper, the intersection of Σ_{j} with $\partial D=\gamma$ cannot be one point, which is a contradiction.

Combining Proposition 3 in Section 3 with Proposition 7, we obtain
Proposition 8. Let $\left(M, \bar{g}, e^{-f} d \mu\right)$ be a simply connected complete smooth metric measure space. If a complete f-minimal hypersurface has finite weighted volume, then every component of Σ separates M into two components and thus is two-sided. Therefore Σ has a globally defined unit normal.

We will take the same approach as in Colding-Minicozzi's paper [4] to prove Theorem [2 a smooth compactness theorem for complete f-minimal surfaces. First we recall a well known local singular compactness theorem for embedded minimal surfaces in a Riemannian 3-manifold.

Proposition 9 (cf. [4, Proposition 2.1). Given a point p in a Riemannian 3manifold M, there exists an $R>0$ such that the following holds: Let Σ_{j} be embedded minimal surfaces in $B_{2 R}(p) \subset M$ with $\partial \Sigma_{j} \subset \partial B_{2 R}(p)$. If each Σ_{j} has area at most V and genus at most g for some fixed V, g, then there exist a finite collection of points x_{k}, a smooth embedded minimal surface $\Sigma \subset B_{R}(p)$ with $\partial \Sigma \subset \partial B_{R}(p)$ and a subsequence of $\left\{\Sigma_{j}\right\}$ that converges in $B_{R}(p)$ (with finite multiplicity) to Σ away from the set $\left\{x_{k}\right\}$.

Here and in the following, we denote by B_{R} the ball B_{R}^{M} in M for simplicity.
It is known that Σ is f-minimal with respect to metric \bar{g} if and only if Σ is minimal with the conformal metric $\tilde{g}=e^{-f} g$ (see Appendix). Using this fact and applying Proposition [9, we may prove a global singular compactness theorem for f-minimal surfaces.
Proposition 10. Let M be a complete 3-manifold and ($M, \bar{g}, e^{-f} d \mu$) a smooth metric measure space. Suppose that $\Sigma_{i} \subset M$ is a sequence of smooth complete embedded f-minimal surfaces with genus at most g, without boundary, and with weighted area at most V, i.e.

$$
\begin{equation*}
\int_{\Sigma_{i}} e^{-f} d \sigma \leq V<\infty \tag{17}
\end{equation*}
$$

Then there are a subsequence, still denoted by Σ_{i}, a smooth embedded complete nontrivial f-minimal surface $\Sigma \subset M$ without boundary, and a locally finite collection
of points $\mathcal{S} \subset \Sigma$ so that Σ_{i} converges smoothly (possibly with multiplicity) to Σ off of \mathcal{S}. Moreover, Σ satisfies $\int_{\Sigma} e^{-f} d \sigma \leq V$ and is properly embedded.

Here a set $\mathcal{S} \subset M$ is said to be locally finite if $B_{R}(p) \cap \mathcal{S}$ is finite for every $p \in M$ and for all $R>0$.

Proof. Consider the conformal metric $\tilde{g}=e^{-f} \bar{g}$ on M. For a point $p \in M$, let $\tilde{B}_{2 R}(p) \subset M$ denote the ball in (M, \tilde{g}) of radius $2 R$ centered at p. Then the area of $\tilde{B}_{2 R}(p) \cap \Sigma_{j}$ satisfies

$$
\begin{equation*}
\widetilde{\operatorname{Area}}\left(\tilde{B}_{2 R}(p) \cap \Sigma_{j}\right) \leq \int_{\Sigma_{j}} d \tilde{\sigma}=\int_{\Sigma_{j}} e^{-f} d \sigma \leq V \tag{18}
\end{equation*}
$$

Also, it is clear that the genus of $\tilde{B}_{2 R}(p) \cap \Sigma_{j}$ remains at most g. Then by Proposition 9 there exist an $R>0$ and a finite collection of points x_{k}, a smooth embedded minimal surface $\Sigma \subset \tilde{B}_{R}(p)$, with $\partial \Sigma \subset \partial \tilde{B}_{R}$ and a subsequence of $\left\{\Sigma_{j}\right\}$ that converges in $\tilde{B}_{R}(p)$ (with finite multiplicity) to Σ away from the set $\left\{x_{k}\right\}$.

Let $\left\{\tilde{B}_{R_{i}}\left(p_{i}\right)\right\}$ be a countable cover of (M, \tilde{g}) of small balls such that $\left\{\tilde{B}_{2 R_{i}}\left(p_{i}\right)\right\}$ is still a cover of (M, \tilde{g}). On each $\tilde{B}_{2 R_{i}}\left(p_{i}\right)$, applying the previous local convergence and then passing to a diagonal subsequence, we obtain that there are a subsequence of Σ_{i}, still denoted by Σ_{i}, a smooth embedded minimal surface Σ (with respect to the metric \tilde{g}) without boundary, and a locally finite collection of points $\mathcal{S} \subset \Sigma$ so that Σ_{i} converges smoothly (possibly with multiplicity) to Σ off of \mathcal{S}. Since Σ has no boundary, it is complete in the original metric \bar{g}. Thus we obtain the smooth convergence of the subsequence to the smooth embedded complete f-minimal surface Σ off of \mathcal{S}.

By Corollary 2, Σ is nontrivial. The convergence of Σ_{i} to Σ and (17) imply $\int_{\Sigma} e^{-f} d \sigma \leq V$. By Proposition 3, Σ is properly embedded.

We need to show that the convergence is smooth across the points in \mathcal{S}. To prove this, we need the following.
Proposition 11. Assume that the ambient manifold M in Proposition 10 is simply connected. If the convergence of the sequence $\left\{\Sigma_{i}\right\}$ has multiplicity greater than one, then Σ is L_{f}-stable.

Proof. By Proposition [8 we know that Σ_{i} and Σ are orientable. We may have two ways to prove the proposition. The first is to use the known fact on minimal surfaces. It is known that (cf. [6], Appendix A) if the multiplicity of the convergence of a sequence of embedded orientable minimal surfaces in a simply connected 3manifold is not one, then the limit minimal surface is stable. Under the conformal metric \tilde{g}, a sequence $\left\{\Sigma_{i}\right\}$ of minimal surfaces converges to a smooth embedded orientable minimal surface Σ and thus Σ is stable. Also, the conclusion that Σ is stable with respect to the conformal metric \tilde{g} is equivalent to saying that Σ is L_{f}-stable under the original metric \bar{g} (see Appendix).

The second way is to prove it directly. We may prove that L_{f} is the linearization of the f-minimal equation by a proof similar to the one in 4], Appendix A. By arguing as in Proposition 3.2 in [4], we can find a smooth positive function u on Σ satisfying

$$
\begin{equation*}
L_{f} u=0 \tag{19}
\end{equation*}
$$

This implies that Σ is L_{f}-stable.

Proof of Theorem 2. By the assumption on $\overline{\operatorname{Ric}}_{f}$ and Proposition 11 M has finite fundamental group. After passing to the universal covering, we may assume that M is simply connected. Given a sequence of smooth complete embedded f-minimal surfaces $\left\{\Sigma_{i}\right\}$ with genus $g, \partial \Sigma_{i}=\emptyset$, and the weighted area at most V, by Proposition 10 there is a subsequence, still denoted by $\left\{\Sigma_{i}\right\}$, that converges in the topology of smooth convergence on compact subsets to a smooth embedded complete f minimal surface Σ away from a locally finite set $\mathcal{S} \subset \Sigma$ (possibly with multiplicity). Moreover, the limit surface $\Sigma \subset M$ is complete, properly embedded, $\int_{\Sigma} e^{-f} d \sigma \leq V$, has no boundary and has a well-defined unit normal ν. We also have the equivalent convergence under the conformal metric \bar{g}.

If \mathcal{S} is not empty, Allard's regularity theorem implies that the convergence has multiplicity greater than one. Then by Proposition [11] we conclude that Σ is L_{f} stable. But Proposition 5 says that there is no such Σ. This contradiction implies that \mathcal{S} must be empty. We complete the proof of the theorem.

Remark 1. For self-shrinkers, the condition that the scale-invariant uniform area bound exists (i.e. there is a uniform bound V_{1} : $\operatorname{Area}\left(B_{R}\left(x_{0}\right) \cap \Sigma\right) \leq V_{1} R^{2}$ for all $x_{0} \in \mathbb{R}^{3}$ and $R>0$) implies that the uniform bound V of weighted area (i.e. $\int_{\Sigma} e^{-f} d \sigma<V$) exists (cf. the proof of Proposition (5). The converse is also true by the conclusion that the entropy of a self-shrinker can be achieved by $F_{0,1}$ for selfshrinkers with polynomial volume growth (see Section 7 of [5]). Therefore Theorem 2 generalizes the result of Colding-Minicozzi (Theorem (1) for self-shrinkers.

Remark 2. Combining Theorem 2 with the upper bound estimate of weighted area for closed embedded f-minimal surfaces of fixed genus in a complete 3 -manifold with $\overline{\operatorname{Ric}}_{f} \geq k>0$, we may obtain the smooth compactness theorem for the space of closed embedded f-minimal surfaces of fixed topological type and with diameter bound. We discuss it in [2].

Appendix

In this appendix, we discuss the L_{f}-stability properties of f-submanifolds. With the same notation as in Section [2 let $\left(M^{m}, \bar{g}\right)$ be an m-dimensional Riemannian manifold and $i: \Sigma^{n} \rightarrow M^{m}, n<m$, be an immersion. Let $\tilde{g}=e^{-\frac{2}{n} f} \bar{g}$ denote the new conformal metric on M. Therefore i may induce two isometric immersions of $\Sigma:(\Sigma, \bar{g}) \rightarrow(M, \bar{g})$ and $(\Sigma, \tilde{g}) \rightarrow(M, \tilde{g})$ respectively.

When (Σ, \tilde{g}) is minimal, it is well known that the second variation of the volume of (Σ, \tilde{g}) is given by

Proposition 12 (cf. [6). Let (Σ, \tilde{g}) be a minimal submanifold in (M, \tilde{g}). If T is a normal compactly supported variational vector field on Σ (that is, $T=T^{\perp}$), then the second variational formula of the volume \tilde{V} of (Σ, \tilde{g}) is given by

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} \tilde{V}\left(\Sigma_{t}\right)\right|_{t=0}=-\int_{\Sigma}\langle T, J T\rangle_{\tilde{g}} d \tilde{\sigma}, \tag{20}
\end{equation*}
$$

where the stability operator (or Jacobi operator) J is defined on a normal vector field T to Σ by

$$
\begin{equation*}
J T=\Delta_{(\Sigma, \tilde{g})}^{\perp} T+\operatorname{tr}_{(\Sigma, \tilde{g})}[\widetilde{R m}(\cdot, T) \cdot]^{\perp}+\tilde{B}(T) . \tag{21}
\end{equation*}
$$

Here $\Delta \underset{(\Sigma, \tilde{g})}{\perp} T=\sum_{i=1}^{n}\left(\nabla \stackrel{\tilde{e}_{i}}{\perp} \nabla_{\tilde{e}_{i}}^{\perp} T-\nabla_{\nabla_{\tilde{e}_{i}} \tilde{e}_{i}}^{\perp} T\right)$ is the Laplacian determined by the normal connection ∇^{\perp} of $(\Sigma, \tilde{g}), \widetilde{R m}$ is the curvature tensor on $(M, \tilde{g}), \operatorname{tr}_{(\Sigma, \tilde{g})}[\widetilde{R m}(\cdot, T) \cdot]^{\perp}=$ $\sum_{i=1}^{n}\left[\widetilde{R m}\left(\tilde{e}_{i}, T\right) \tilde{e}_{i}\right]^{\perp}, \tilde{A}$ denotes the second fundamental form of $(\Sigma, \tilde{g}), \quad \tilde{B}(T)=$ $\sum_{i, j=1}^{n}\left\langle\tilde{A}\left(\tilde{e}_{i}, \tilde{e}_{j}\right), T\right\rangle \tilde{A}\left(\tilde{e}_{i}, \tilde{e}_{j}\right)$, and $\left\{\tilde{e}_{i}\right\}, i=1, \cdots, n$, is a local orthonormal base of (Σ, \tilde{g}).

Recall that the weighted volume of (Σ, \bar{g}) is defined by

$$
\begin{equation*}
V_{f}(\Sigma)=\int_{\Sigma} e^{-f} d \sigma \tag{22}
\end{equation*}
$$

By a direct computation similar to that of (20), we may prove the second variation formula of the weighted volume of f-minimal submanifold (Σ, \bar{g}).
Definition 5. For any normal vector field T on (Σ, \bar{g}), the second order operator Δ_{f}^{\perp} is defined by

$$
\begin{aligned}
\Delta_{f}^{\perp} T & :=\Delta^{\perp} T-\operatorname{tr}\left[\nabla f \otimes \nabla^{\perp} T(\cdot, \cdot)\right] \\
& =\sum_{i=1}^{n}\left(\nabla_{e_{i}}^{\perp} \nabla_{e_{i}}^{\perp} T-\nabla_{\nabla_{e_{i}} e_{i}}^{\perp} T\right)-\sum_{i=1}^{n}\left(e_{i} f\right)\left(\nabla_{e_{i}}^{\perp} T\right) .
\end{aligned}
$$

The operator L_{f} on (Σ, \bar{g}) is defined by

$$
\begin{equation*}
L_{f} T=\Delta_{f}^{\perp} T+R(T)+B(T)+F(T) . \tag{23}
\end{equation*}
$$

In the above, ∇^{\perp} denotes the normal connection of $(\Sigma, \bar{g}) ;\left\{e_{i}\right\}, i=1, \ldots, n$, is a local orthonormal base of $(\Sigma, \bar{g}) ; B(T)=\sum_{i, j=1}^{n}\left\langle A\left(e_{i}, e_{j}\right), T\right\rangle A\left(e_{i}, e_{j}\right)$, where A denotes the second fundamental form of $(\Sigma, \bar{g}) ; R(T)=\operatorname{tr}_{(\Sigma, \bar{g})}[\overline{R m}(\cdot, T) \cdot]^{\perp}=$ $\sum_{i=1}^{n}\left[\overline{R m}\left(e_{i}, T\right) e_{i}\right]^{\perp}$, where $\overline{R m}$ denotes the Riemannian curvature tensor of (M, \bar{g}); and $F(T)=\left[\bar{\nabla}^{2} f(T)\right]^{\perp}=\sum_{\alpha=n+1}^{m} \bar{\nabla}^{2} f\left(T, e_{\alpha}\right) e_{\alpha}$, where $\left\{e_{\alpha}\right\}, \alpha=n+1, \cdots, m$, is a local orthonormal normal vector field on (Σ, \bar{g}).
Proposition 13. Let (Σ, \bar{g}) be an f-minimal submanifold in (M, \bar{g}). If T is a normal compactly supported variational vector field on Σ (that is, $T=T^{\perp}$), then the second variation of the weighted volume of (Σ, \bar{g}) is given by

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} V_{f}\left(\Sigma_{t}\right)\right|_{t=0}=-\int_{\Sigma}\left\langle T, L_{f} T\right\rangle_{\bar{g}} e^{-f} d \sigma \tag{24}
\end{equation*}
$$

Proof. Let $\psi(\cdot, t), t \in(-\varepsilon, \varepsilon)$ be a compactly supported variation of Σ so that $T=d \psi\left(\frac{\partial}{\partial t}\right)$ is the variational vector field, $\Sigma_{t}=\psi(\Sigma, t), \Sigma_{0}=\Sigma$. Choose a normal coordinate system $\left\{x_{1}, \ldots, x_{n}\right\}$ at a point $p \in \Sigma$. We can consider $\left\{x_{1}, \ldots, x_{n}, t\right\}$ to be a coordinate system of $\Sigma \times(-\varepsilon, \varepsilon)$ near the point $(p, 0)$. Denote $e_{i}=d \psi\left(\frac{\partial}{\partial x_{i}}\right)$ for $i=1, \ldots, n$. The induced metric on Σ_{t} from (M, \bar{g}) is given for $g_{i j}=\left\langle e_{i}, e_{j}\right\rangle$.

Hence $g_{i j}(p, 0)=\delta_{i j}$ and $\nabla_{e_{i}} e_{j}(p, 0)=0$. Denote by $d \sigma_{t}$ the volume element of Σ_{t}. Then $d \sigma_{t}=J(x, t) d \sigma_{0}$, where $d \sigma_{0}=d \sigma$ and the function $J(x, t)$ is given by

$$
J(x, t)=\frac{\sqrt{G(x, t)}}{\sqrt{G(x, 0)}}
$$

with $G(x, t)=\operatorname{det}\left(g_{i j}(x, t)\right)$. Denote by $d\left(\sigma_{f}\right)_{t}$ the weighted volume element of Σ_{t}. Then $d\left(\sigma_{f}\right)_{t}=J_{f}(x, t) d \sigma_{0}$, where $J_{f}(x, t)=J(x, t) e^{-f(x, t)}, f(x, t)=f(\psi(x, t))$.

Since $\frac{\partial J}{\partial t}=\sum_{i, j=1}^{n} g^{i j}\left\langle\bar{\nabla}_{e_{i}} T, e_{j}\right\rangle J, \frac{\partial J_{f}}{\partial t}=\left(\sum_{i, j=1}^{n} g^{i j}\left\langle\bar{\nabla}_{e_{i}} T, e_{j}\right\rangle-\langle\bar{\nabla} f, T\rangle\right) J_{f}$.
Note that T is a normal vector field. A direct computation gives, at $(p, 0)$,

$$
\begin{aligned}
\left.\frac{\partial^{2} J_{f}}{\partial^{2} t}\right|_{t=0}= & {\left[-2 \sum_{i, j=1}^{n}\left\langle A_{i j}, T\right\rangle^{2}+\left\langle\bar{R}\left(e_{i}, T\right) T, e_{i}\right\rangle\right.} \\
& +\sum_{i=1}^{n}\left\langle\bar{\nabla}_{e_{i}} \bar{\nabla}_{T} T, e_{i}\right\rangle+\sum_{i=1}^{n}\left\langle\bar{\nabla}_{e_{i}} T, \bar{\nabla}_{e_{i}} T\right\rangle \\
& -\bar{\nabla}^{2} f(T, T)-\left\langle\bar{\nabla} f, \bar{\nabla}_{T} T\right\rangle \\
& \left.+\left(\sum_{i=1}^{n}\left\langle\bar{\nabla}_{e_{i}} T, e_{i}\right\rangle-\langle\bar{\nabla} f, T\rangle\right)\left(\sum_{j=1}^{n}\left\langle\bar{\nabla}_{e_{j}} T, e_{j}\right\rangle-\langle\bar{\nabla} f, T\rangle\right)\right] J_{f}
\end{aligned}
$$

By

$$
\begin{aligned}
\sum_{i=1}^{n}\left\langle\bar{\nabla}_{e_{i}} T, \bar{\nabla}_{e_{i}} T\right\rangle & =\sum_{i, j=1}^{n}\left\langle\bar{\nabla}_{e_{i}} T, e_{j}\right\rangle^{2}+\sum_{i=1}^{n} \sum_{\alpha=n+1}^{m}\left\langle\bar{\nabla}_{e_{i}} T, e_{\alpha}\right\rangle^{2} \\
& =\sum_{i, j=1}^{n}\left\langle A_{i j}, T\right\rangle^{2}+\sum_{i=1}^{n}\left\langle\nabla_{e_{i}}^{\perp} T, \nabla_{e_{i}}^{\perp} T\right\rangle \\
& =|\langle A(\cdot, \cdot), T\rangle|^{2}+\left|\nabla^{\perp} T\right|^{2}
\end{aligned}
$$

and $\sum_{i=1}^{n}\left\langle\bar{\nabla}_{e_{i}} \bar{\nabla}_{T} T, e_{i}\right\rangle=\operatorname{div}\left(\bar{\nabla}_{T} T\right)^{\top}-\left\langle\left(\bar{\nabla}_{T} T\right)^{\perp}, \mathbf{H}\right\rangle$ we have that, at p,

$$
\begin{aligned}
\left.\frac{\partial^{2} J_{f}}{\partial t^{2}}\right|_{t=0}= & {\left[-|\langle A(\cdot, \cdot), T\rangle|^{2}-\sum_{i=1}^{n}\left\langle\bar{R}\left(e_{i}, T\right) e_{i}, T\right\rangle+\left|\nabla^{\perp} T\right|^{2}+\operatorname{div}\left(\bar{\nabla}_{T} T\right)^{\top}\right.} \\
& \left.-\left\langle\left(\bar{\nabla}_{T} T\right)^{\perp}, \vec{H}\right\rangle-\bar{\nabla}^{2} f(T, T)-\left\langle\bar{\nabla} f, \bar{\nabla}_{T} T\right\rangle+\left\langle T, \mathbf{H}_{f}\right\rangle^{2}\right] e^{-f}
\end{aligned}
$$

Using $\operatorname{div}\left(e^{-f}\left(\bar{\nabla}_{T} T\right)^{\top}\right)=e^{-f} \operatorname{div}\left(\bar{\nabla}_{T} T\right)^{\top}-e^{-f}\left\langle\left(\bar{\nabla}_{T} T\right)^{\top}, \nabla f\right\rangle$, we have at p :

$$
\begin{align*}
\left.\frac{\partial^{2} J_{f}}{\partial t^{2}}\right|_{t=0}= & {\left[\left|\nabla^{\perp} T\right|^{2}-|\langle A(\cdot, \cdot), T\rangle|^{2}-\sum_{i=1}^{n}\left\langle\bar{R}\left(e_{i}, T\right) e_{i}, T\right\rangle-\bar{\nabla}^{2} f(T, T)\right.} \tag{25}\\
& \left.-\left\langle\left(\bar{\nabla}_{T} T\right)^{\perp}, \mathbf{H}_{f}\right\rangle+\left\langle T, \mathbf{H}_{f}\right\rangle^{2}\right] e^{-f}+\operatorname{div}\left(e^{-f}\left(\bar{\nabla}_{T} T\right)^{\top}\right)
\end{align*}
$$

Observe that the right-hand side of (25) is independent of the choice of coordinates. Hence (25) holds on Σ. By integrating (25) and using the fact that Σ is f-minimal (i.e. $\mathbf{H}_{f}=0$), we obtain

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}} V_{f}\left(\Sigma_{t}\right)\right|_{t=0} & =\int_{\Sigma}\left(\left|\nabla^{\perp} T\right|^{2}-|\langle A(\cdot, \cdot), T\rangle|^{2}-\langle R(T), T\rangle-\bar{\nabla}^{2} f(T, T)\right) e^{-f} d \sigma \\
& =-\int_{\Sigma}\left\langle T, \Delta_{f}^{\perp} T+A(T)+R(T)+F(T)\right\rangle e^{-f} d \sigma \\
& =-\int_{\Sigma}\left\langle T, L_{f} T\right\rangle e^{-f} d \sigma
\end{aligned}
$$

Substituting $e^{-f} T$ for T in the identity $\int_{\Sigma}\left|\nabla^{\perp} T\right|^{2} d \sigma=-\int_{\Sigma}\left\langle T, \Delta^{\perp} T\right\rangle d \sigma$, we have

$$
\int_{\Sigma}\left|\nabla^{\perp} T\right|^{2} e^{-f} d \sigma=-\int_{\Sigma}\left\langle T, \Delta{ }_{f}^{\perp} T\right\rangle e^{-f} d \sigma
$$

Thus we have the second variation formula of the weighted volume of Σ :

$$
\begin{aligned}
\left.\frac{d^{2}}{d t^{2}} V_{f}\left(\Sigma_{t}\right)\right|_{t=0} & =-\int_{\Sigma}\left\langle T, \Delta_{f}^{\perp} T+A(T)+R(T)+F(T)\right\rangle e^{-f} d \sigma \\
& =-\int_{\Sigma}\left\langle T, L_{f} T\right\rangle e^{-f} d \sigma
\end{aligned}
$$

Definition 6. An f-minimal submanifold (Σ, \bar{g}) is called L_{f}-stable if the second variation of the weighted volume of Σ given by (24) is nonnegative for any normal compactly supported variational vector field T on Σ.

Observe that for an f-minimal submanifold Σ and its normal compactly supported variation, it holds that $V_{f}\left(\Sigma_{t}\right)=\tilde{V}\left(\Sigma_{t}\right)$. Then

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} \tilde{V}\left(\Sigma_{t}\right)\right|_{t=0}=\left.\frac{d^{2}}{d t^{2}} V_{f}\left(\Sigma_{t}\right)\right|_{t=0} \tag{26}
\end{equation*}
$$

By (20), (24), and (26), we have

$$
\begin{equation*}
\int_{\Sigma}\langle T, J T\rangle_{\tilde{g}} d \tilde{\sigma}=\int_{\Sigma}\left\langle T, L_{f} T\right\rangle_{\bar{g}} e^{-f} d \sigma \tag{27}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\int_{\Sigma} e^{-\frac{2 f}{n}}\langle T, J T\rangle_{\bar{g}} e^{-f} d \sigma=\int_{\Sigma}\left\langle T, L_{f} T\right\rangle_{\bar{g}} e^{-f} d \sigma \tag{28}
\end{equation*}
$$

By (28), the following equality holds.
Corollary 3. For any normal vector field T on Σ,

$$
J T=e^{\frac{2 f}{n}} L_{f} T
$$

The operator L_{f} corresponds to a symmetric bilinear form $B_{f}(T, T)$ for the space of normal compactly supported vector fields on Σ :

$$
\begin{equation*}
B_{f}(T, T):=-\int_{\Sigma}\left\langle T, L_{f} T\right\rangle_{\bar{g}} e^{-f} d \sigma \tag{29}
\end{equation*}
$$

We define the L_{f}-index, denoted by L_{f}-ind, of (Σ, \bar{g}) by the maximum of the dimensions of negative definite subspaces of B_{f}. Hence (Σ, \bar{g}) is L_{f}-stable if and only if its L_{f}-ind $=0$.

On the other hand, for minimal (Σ, \tilde{g}), it is well known that the stability operator J also defines a symmetric bilinear form $\tilde{B}(T, T)$,

$$
\begin{equation*}
\tilde{B}(T, T):=-\int_{\Sigma}\langle T, J T\rangle_{\tilde{g}} d \tilde{\sigma} \tag{30}
\end{equation*}
$$

There are also the concepts of index and stability of (Σ, \tilde{g}). In particular, (Σ, \tilde{g}) is stable if and only if the index $\operatorname{ind}(\Sigma, \tilde{g})=0$. Since $B_{f}(T, T)=\tilde{B}(T, T)$, it holds that

Proposition 14. L_{f}-ind of (Σ, \bar{g}) is equal to the index of (Σ, \tilde{g}). In particular, (Σ, \bar{g}) is L_{f}-stable if and only if (Σ, \tilde{g}) is stable in (M, \tilde{g}).

Now if Σ is a two-sided hypersurface, that is, if there is a globally-defined unit normal ν on (Σ, \bar{g}), take $T=\varphi \nu$. Then the second variation (24) implies that

Proposition 15. Let Σ be a two-sided f-minimal hypersurface in $\left(M^{n+1}, \bar{g}\right)$. If φ is a compactly supported smooth function on Σ, then the second variation of the weighted volume of (Σ, \bar{g}) is given by

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} V_{f}\left(\Sigma_{t}\right)\right|_{t=0}=-\int_{\Sigma} \varphi L_{f}(\varphi) e^{-f} d \sigma \tag{31}
\end{equation*}
$$

where ν denotes the unit normal of (Σ, \bar{g}) and the operator L_{f} is defined by $L_{f}=$ $\Delta_{f}+|A|_{g}^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)$.

Definition 7. The operator $L_{f}=\Delta_{f}+|A| \frac{2}{g}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)$ is called the L_{f}-stability operator of hypersurface (Σ, \bar{g}).

A bilinear form on space $C_{o}^{\infty}(\Sigma)$ of compactly supported smooth functions on Σ is defined by

$$
\begin{align*}
B_{f}(\varphi, \varphi): & =-\int_{\Sigma} \varphi L_{f} \varphi e^{-f} d \sigma \tag{32}\\
& =\int_{\Sigma}\left[|\nabla \varphi|^{2}-\left(|A|_{g}^{2}+\overline{\operatorname{Ric}}_{f}(\nu, \nu)\right) \varphi^{2}\right] e^{-f} d \sigma
\end{align*}
$$

The L_{f}-index, denoted by L_{f}-ind, of (Σ, \bar{g}) is defined to be the maximum of the dimensions of negative definite subspaces of B_{f}. Hence (Σ, \bar{g}) is L_{f}-stable if and only if L_{f}-ind $=0$. Clearly the definition of L_{f}-index is equivalent to the corresponding definition using the variational vector field T as before.

Also, for minimal hypersurface $i:(\Sigma, \tilde{g}) \rightarrow\left(M^{n+1}, \tilde{g}\right)$, it is well known that if ψ is a compactly supported smooth function on Σ, then the second variation of the volume \tilde{V} of $\left(\Sigma, i^{*} \tilde{g}\right)$ is given by

$$
\begin{equation*}
\left.\frac{d^{2}}{d t^{2}} \tilde{V}\left(\Sigma_{t}\right)\right|_{t=0}=-\int_{\Sigma} \psi J(\psi) d \tilde{\sigma} \tag{33}
\end{equation*}
$$

where \tilde{A} denotes the second fundamental form of $(\Sigma, \tilde{g}), \tilde{\nu}$ denotes the unit normal of (Σ, \tilde{g}), and $J=\triangle_{\tilde{g}}+|\tilde{A}|_{\tilde{g}}^{2}+\widetilde{\operatorname{Ric}}(\tilde{\nu}, \tilde{\nu})$ is the stability operator (or the Jacobi operator) of (Σ, \tilde{g}).

The following holds, from (28).
Proposition 16. Let $\left(\Sigma^{n}, g\right)$ be an f-minimal hypersurface immersed in (M, \bar{g}). Then for all $\varphi \in \mathcal{C}_{o}^{\infty}(\Sigma)$,

$$
\begin{equation*}
\int_{\Sigma}\left(e^{-\frac{f}{n}} \varphi\right) J\left(e^{-\frac{f}{n}} \varphi\right) e^{-f} d \sigma=\int_{\Sigma} \varphi L_{f}(\varphi) e^{-f} d \sigma \tag{34}
\end{equation*}
$$

Corollary 4. For $\varphi \in C^{\infty}(\Sigma), J\left(e^{-\frac{f}{n}} \varphi\right)=e^{\frac{f}{n}} L_{f}(\varphi)$.
Corollary 5. L_{f}-ind of (Σ, \bar{g}) is equal to the index of (Σ, \tilde{g}). In particular, (Σ, \bar{g}) is L_{f}-stable if and only if (Σ, \tilde{g}) is stable in (M, \tilde{g}).

References

[1] Huai-Dong Cao and Detang Zhou, On complete gradient shrinking Ricci solitons, J. Differential Geom. 85 (2010), no. 2, 175-185. MR2732975 (2011k:53040)
[2] Xu Cheng, Tito Mejia, and Detang Zhou, Eigenvalue estimate and compactness for closed f-minimal surfaces, Pacific J. Math. 271 (2014), no. 2, 347-367, DOI $10.2140 / \mathrm{pjm} .2014 .271 .347$. MR 3267533
[3] Xu Cheng and Detang Zhou, Volume estimate about shrinkers, Proc. Amer. Math. Soc. 141 (2013), no. 2, 687-696, DOI 10.1090/S0002-9939-2012-11922-7. MR2996973
[4] Tobias H. Colding and William P. Minicozzi II, Smooth compactness of self-shrinkers, Comment. Math. Helv. 87 (2012), no. 2, 463-475, DOI 10.4171/CMH/260. MR 2914856
[5] Tobias H. Colding and William P. Minicozzi II, Generic mean curvature flow I: generic singularities, Ann. of Math. (2) $\mathbf{1 7 5}$ (2012), no. 2, 755-833, DOI 10.4007/annals.2012.175.2.7. MR2993752
[6] Tobias Holck Colding and William P. Minicozzi II, A course in minimal surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011. MR2780140
[7] Tobias H. Colding and William P. Minicozzi II, Estimates for parametric elliptic integrands, Int. Math. Res. Not. 6 (2002), 291-297, DOI 10.1155/S1073792802106106. MR 1877004 (2002k:53060)
[8] Tobias H. Colding and William P. Minicozzi II, Embedded minimal surfaces without area bounds in 3-manifolds, Geometry and topology: Aarhus (1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 107-120, DOI 10.1090/conm/258/04058. MR 1778099 (2001i:53012)
[9] Qi Ding and Y. L. Xin, Volume growth, eigenvalue and compactness for self-shrinkers, Asian J. Math. 17 (2013), no. 3, 443-456, DOI 10.4310/AJM.2013.v17.n3.a3. MR 3119795
[10] Frank Morgan, Manifolds with density, Notices Amer. Math. Soc. 52 (2005), no. 8, 853-858. MR2161354 (2006g:53044)
[11] Ovidiu Munteanu and Jiaping Wang, Analysis of weighted Laplacian and applications to Ricci solitons, Comm. Anal. Geom. 20 (2012), no. 1, 55-94, DOI 10.4310/CAG.2012.v20.n1.a3. MR2903101
[12] Ovidiu Munteanu and Jiaping Wang, Geometry of manifolds with densities, Adv. Math. 259 (2014), 269-305, DOI 10.1016/j.aim.2014.03.023. MR3197658
[13] Guofang Wei and Will Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377-405. MR2577473(2011a:53064)
[14] B. White, Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987), no. 2, 243-256, DOI 10.1007/BF01388908. MR880951 (88g:58037)

Instituto de Matematica e Estatística, Universidade Federal Fluminense, Niterói, RJ 24020, Brazil

E-mail address: xcheng@impa.br
Instituto de Matematica e Estatística, Universidade Federal Fluminense, Niterói, RJ 24020, Brazil

E-mail address: tmejia.uff@gmail.com
Instituto de Matematica e Estatística, Universidade Federal Fluminense, Niterói, RJ 24020, BraziL

E-mail address: zhou@impa.br

