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Sheet electron beams focused by periodically cusped magnetic (PCM) fields are stable against 
low-frequency velocity-shear instabilities (such as diocotron mode). This is in contrast to more 
familiar unstable behavior in uniform solenoidal magnetic fields. Two rectangular-cross-section 
magnetic configurations capable of focusing in both transverse dimensions are investigated: (i) 
a closed-side two-plane PCM configuration that is topologically equivalent to conventional 
round-cross-section PPM focusing; and (ii) an open-side configuration that uses ponderomotive 
PCM focusing in the vertical plane and simple vzBu Lorentz force focusing in the horizontal 
plane. Both configurations are capable of stable sheet beam confinement. The open-side 
configuration appears more practical both for focusing and for realizing matched (cold) beam 
conditions in which the beam envelope is free from oscillations. For realistic beams with finite 
emittance, the existence of a matched cold beam solution implies less emittance growth at beam 
injection. 

I. INTRODUCTION 

Sheet or ribbon electron beams have been of interest 
for numerous applications, ranging from microwave tubes 
to gas laser excitation and plasma chemistry reactors. A 
summary of desirable applications can be found in Ref. 1. 
Perhaps the most familiar (infamous) feature of sheet elec- 
tron beams concerns their behavior in the presence of a 
uniform solenoidal focusing magnetic field. Namely, this is 
an unstable configuration, due to EXB drift forces arising 
from the guiding magnetic field B and the transverse elec- 
tric space-charge fields of the beam. The tendency for low- 
frequency (MHD) beam instability in this configuration 
can manifest itself in several ways. The simplest manifes- 
tation is a rotational mode discussed in Ref. 2. More fa- 
miliar are transverse kink, diocotron, and/or filamentation 
instabilities. There appears to be some historical differences 
regarding the use of the term “diocotron,” with some au- 
thors applying it to “ac space-charge” kink-type modes3’4 
and others associating it with EXB velocity shear effects.5 
Antonsen and Ott5 identify that the mechanism is identical 
for both cases. The physical consequence of diocotron in- 
stability is that the beam forms localized kinks and vorti- 
ces, with the eventual rest& of beam filamentation, “heat- 
ing,” breakup, and possibly interception on the confining- 
vessel walls. A recent review article discussing diocotron- 
type instabilities is also availablea 

The onset of diocotron instability for sheet beams in 
solenoidal magnetic fields is not universally assured. There 
are several methods for stabilization that have been theo- 
retically predicted and experimentally demonstrated. First, 
the instability is convective, requiring a finite length of 
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propagation before becoming unacceptably pronounced. A 
worst-case (lower-bound) estimate for the diocotron insta- 
bility growth length can be obtained a?’ 

Ld(d > v, $~800~& JbF$‘c’2j , 

where wc=eB/m is the electron cyclotron frequency, 
a$=ne2/~mq-, is the square of the relativistic beam plasma 
frequency (n is the beam density in the laboratory frame), 
y= ( 1 -p;, - l’2 is the relativistic energy parameter, and 
&=v,/c is the beam axial velocity normalized to the speed 
of light in vacuum. Clearly, the diocotron instability can be 
suppressed by large beam energies (large r) or low-beam- 
current densities Jb This is just a consequence of stiffer 
beams-i.e., a space-charge instability being reduced by 
reducing the effective space charge. Also, strong magnetic- 
field intensity B, will increase Ld, thereby suppressing the 
instability. This has been experimentally demonstrated in 
several configurations.2,10,1’ Placing a sheet beam between 
closely spaced conducting plates (or an annular beam in 
close proximity to an outer conducting wall) will also sig- 
nificantly reduce the instability rate.2,3,5tg This effect is as- 
sociated with image charges and currents in the conducting 
boundaries. Finite-temperature effects5 and space-charge 
neutralization by ions4 are other mechanisms for diocotron 
instability suppression. 

Several of the methods mentioned above for sheet 
beam stabilization are not attractive for compact micro- 
wave tubes. For example, the generation of strong (several 
kilogauss) solenoidal fields requires bulky electromagnets 
and associated power supplies. The longer the tube inter- 
action length, the greater the field intensity required. Thus, 
this approach is primarily relevant to devices with short 
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interaction lengths, such as oscillators. The use of relativ- 
istic beam energies is obviously restricted to relativistic 
accelerator or relativistic vacuum electronics applications. 
More conventional devices with lower beam voltages V, 
< 100 kV must rely on keeping Jb small to obtain stiff 
beams. This approach is not always practical for moderate- 
to high-power millimeter-wave devices which require sig- 
nificant beam current propagated through small clearance 
microwave circuits (resulting in high Jb). Space-charge 
neutralization by background ions is generally incompati- 
ble with conventional devices based on thermionic 
electron-beam sources. An exception to this latter case in- 
volves the plasma-filled technology of the PASOTRONTM, 
although a sheet beam has not actually been used in that 
particular device. l2 

An alternative method to obtain a stable sheet 
electron-beam configuration is to employ a periodic- 
rather than uniform solenoidal-focusing magnetic field. 
Recently such a configuration has been studied both theo- 
retically and experimentally. This work investigated rela- 
tivistic sheet beams with periodic “wiggler” focusing. A 
robust stability was expected, due to a combination of “stiff 
beam” parameters and the fact that the ponderomotive 
focusing provides a stable minimum energy state against 
low-frequency (MHD) instabilities. This latter issue will 
be discussed in greater detail below. Convincing experi- 
mental evidence for this stability have included observa- 
tions of very low-beam interception currents (high-beam 
transmission) for short,’ intermediate,13’t4 and long15 wig- 
gler magnets. 

Sheet electron beams would be particularly attractive 
for nonrelativistic applications (beam voltages less than 50 
kV) such as moderate and high average power millimeter- 
wave tubes.’ Unfortunately, the wiggler-focusing scheme 
becomes more problematic with low-voltage beams be- 
cause the large peak magnetic fields required for focusing 
beam space charge impart an excessive amount of trans- 
verse “wiggling” velocity, possibly even causing complete 
beam deflection. An interesting alternative candidate, how- 
ever, is to employ a rectangular configuration of periodic 
cusped magnetic (PCM) fields such as that illustrated in 
Fig. 1. A cylindrical configuration of periodic cusped fields 
using permanent magnets to focus a conventional round- 
cross-section beam is commonly referred to in the micro- 
wave tube industry as PPM focusing.16 

The only known analysis of sheet beam stability in 
PCM fields is an article by Dohler17 who modified Pierce3 
and Kyhl and Webster’s4 analysis for a sheet beam in a 
uniform solenoidal field. Dohler’s analysis approach, how- 
ever, is only applicable to the case of a slowly varying 
magnetic field-specifically, for conditions where the beam 
plasma wavelength and the diocotron growth length are 
much shorter than the magnetic-field gradient scale length. 
For a sinusoidally varying focusing field, this amounts to 
the restriction /2,=2m~40,<1,,,/4, where 1, is the magnet 
spatial period. However, PCM focusing is generally most 
effective in the limit of short magnet period,16 I,,,/4 <& 
where Dohler’s analysis does not apply. 

This article is organized as follows. Unperturbed orbits 
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FIG. 1. Schematic of two-plane, rectangular-cross-section, PCM focusing 
configuration (electromagnet version). 

and period-averaged magnetic focusing forces are obtained 
in Sec. II for electrons in two-dimensional rectangular 
PCM focusing. Section III is an analysis of the low- 
frequency stability of nonrelativistic sheet beams in peri- 
odic magnetic focusing. Detailed formulas for magnetic 
and space-charge electric fields are derived in Sec. IV for a 
sheet electron beam in rectangular-cross-section PCM fo- 
cusing. Identification of a practical two-plane-focusing 
PCM configuration that allows for beam matching (to 
minimize emittance growth) is discussed in Sec. V. Sum- 
mary and Conclusions are presented in Sec. VI. 

II. UNPERTURBED ORBITS FOR ELECTRONS IN 
TWO-PLANE RECTANGULAR PERIODIC 
CUSP FOCUSING 

Consider a configuration such as that shown in Fig. 1 
with rectangular cross section and periodic cusps in both 
transverse planes. Anticipating a result from later discus- 
sion, the near-axis fields for this configuration can be ap- 
proximated by the following expressions which are derived 
from a scalar potential, B= -Vxm and 

xm=(Bo/km) cosh(k&cosh(k&cos(k,&: 

B,= - (k,/k,) B. sinh(k&)cosh(ky)cos(k&) 

z-&/k;) Bg cos(k,&, 

By= -(k/km)Bo cosh(kA)sinh(kg)cos(k&) 

z - (k;/k;) B,y cos(k,g), 

and 

(24 

(2b) 
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B,=&cosh(k~)cosh(k~)sin(k~)~&sin(k~), (2~) 

where k”, = k2,+ G follows from V l B = 0. The (nonrelativ- 
istic) Lorentz equation has the three vector components: 

~=~o~jt(~,/~o)--i(B~Bo)l, (34 

L’=~o[i(B,/Bo> -k(B,/Bo>], (3b) 

and 

i’=~ot~(~~~o)--3(B,/Bo>l, (3c) 

where fio=qB~m. For the zeroth-order motion we simply 
assume i. z ub, where ub is the beam velocity. The terms 

&=-v&0(&,&) (44 

and 

L’~=~&J(B,/&I) (4b) 

generate first-order “wiggle” motion (xi,yi) for electrons 
displaced from the axis. Substituting Eq. (2b) into Eq. 
(4a) and integrating yields 

i~=~;z,(kf~k2,)yo sin(k,#$) (54 

or 

X1=(-f&k&) (@@m>Y, COs(k,Vbt) 

and 

i)i= -(n,(k2,/k2,)x, Sirl(k,V$) (5b) 

or 

Yl= (&&JJb) (lc”,/k;)xo COS(k,,&t). 

We now turn to the zeroth-order motion in the x and y 
dimensions-i.e., that motion which survives averaging 
over a “wiggle” period. In the horizontal plane we have 

if,,=t-&, 4 By Ji, -=-vb- 
Bo Bo 

k”, 
= -n; p x0 sin2(k,vbt) 

m 

+ f&J& p (Yo +Yl )COS &.J+,t) 

m 

which after period averaging simplifies to 

Gl k”, % 
“o=-yxo$ 1-E ) 

( ) 
(6a) 

i.e., simple harmonic betatron” motion associated with a 
ponderomotive focusing force: 

(6b) 

By a similar process, we obtain the zeroth-order betatron 
motion in the vertical (y) plane, 

fiL$ e 
j;o=-yYoE 1-E f 

( ) 
(6~) 

associated with the ponderomotive focusing force, 

(Cd) 

Ill. STABILITY OF SHEET BEAMS IN PERIODIC 
MAGNETIC FOCUSING 

In this section we discuss the stability of sheet electron 
beams in periodic magnetic systems such as wiggler or 
PCM focusing. The stability derives from the fact that for 
modes evolving over distances longer than a magnet pe- 
riod, the magnetic focusing forces can be accurately repre- 
sented by their period-averaged, ponderomotive expres- 
sions arising from the vXB “beating” of an oscillatory 
(“wiggle”) velocity against the oscillatory periodic mag- 
netic focusing field [i.e., Eqs. (6b) and (6d)]. For a con- 
figuration such as that shown in Fig. 1 with periodic fo- 
cusing in both transverse planes the (nonrelativistic) near- 
axis, period-averaged vXB force terms can be 
approximated according to Eqs. (6b) and (6d). As dis- 
cussed in a later section, when the configuration is much 
wider in the horizontal plane than in the vertical plane, one 

obtains k,,zk, and k, z 4-1 Hence the near-axis, 
period-averaged ponderomotive PCM forces are approxi- 
mately 

<Fy> =: ( - m@mY Ud 

and 

(FJ s (--mRFJ2)Cs, Ub) 
where the brackets ( > denote averaging over a period and 
C,Z (kx/k,)4. Clearly, Eqs. (7) are in the form of a po- 
tential well U(x,y) with a force-free equilibrium point at 
the origin (x=y=O) and for which the second variation of 
the potential is positive definite for translational perturba- 
tions of the sort q-+q-tSq, i.e., 

(8) 

Hence, in accordance with the stability criteria articulated 
by Gibbs, lg one can expect that such a configuration is 
stable against low-frequency space-charge modes. We illus- 
trate this fact with a simplified treatment of diocotron in- 
stability patterned after that originally presented by Bune- 
man.18’2o For reference, we briefly review the mode12’ for a 
sheet beam in a uniform solenoidal field followed by a 
modification of this model for the periodically focused 
sheet beam. 

The model assumes a uniform solenoidal field B= Bo& 
and a thin beam with charge density per unit area Nq=ntq 
where t is the beam thickness, y1 is the electron density per 
unit volume, and N is the electron density per unit area. 
Beam perturbations of the sort in Fig. 2 are considered. 
Focusing on the dynamics of electrons at the beam center, 
the equations of motion are 

~5 = (qE,/m ) - !2& (94 

jj= (qlT$hn) +fh.% (9b) 
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FIG. 2. Schematic (used for stability analysis) of a sheet electron beam 
focused by a uniform solenoidal magnetic field: (a) unperturbed state, 
(b) perturbed configuration. 

where sl,= 1 qBdm I. By concentrating on electrons at the 
beam center, all quantities in the unperturbed state [Fig. 
2 (a)] are approximately zero. For harmonic. perturbations 
of the sort .zz~(~-~*) one has 

-o%= (q&/m) +ioK& (loa) 

- 02jF= (qi/m ) - id&F. (lob) 

Several approximations are now employed. First, it is as- 
sumed that in the perturbed state [Fig. 2(b)],-electrons in 
the beam center experience an electric field E that is ap- 
proximately the average of the field at the top E, and 
bottom Ed of the beam, 

E&E, +Z.J (11) 

For electrons at the center of the beam, the perturbed 
equation of continuity is approximately 

&z - iNkZ (12) 

Assuming kt<kjJ <l [see Fig. 2(a)], the geometry of 
Fig. 2(b), continuity of tangential field, and the jump in 
the normal field components we obtain 

~x+-~x-=-i(Nq/~o)k~ (134 

and 

icy+ -Ey- =Nq/eo . (13b) 

Next, by assuming the time scale of the perturbation to be 
slow (i.e., GM@,), Eqs. (10):( 13) can be combined to 
yield 

Jg+ +Jq- w 260 
_-- 

E ,,+-Ey-= k Nq BOY 

E+ +L w 26, 

E .X-f- --ES 
=+-i;~qBo- 

(144 

(lab) 

Boundary conditions at the beam-vacuum edges are ob- 
tained by assuming a quasistatic limit (i.e., k<w/2n-c) 

such that fields in the vacuum region are separable in their 
dependence on x and y. For a curl-free electric field, this 
results in the approximation 

-K, - =: TiEy+ . (15) 

Finally, we can combine Eqs. ( 14) and ( 15) to obtain 

o/k= &i(Nq/2~,Bo), (16) 

i.e., a purely growing mode. 
We now apply the above model to the case of a sheet 

beam in a periodic magnetic focusing field. Again, we as- 
sume a perturbation of the sort ei(kx--of) as depicted in Fig. 
2(b) and assume that the perturbation evolves on a time 
scale sufficiently long to justify averaging the dynamics 
over a magnet period [see Eqs. (7)]. Hence, the equations 
of motion are 

-w25= (q&m) - (#j/2) C$ (174 

and 

-w”F= (q&/m) - (@/2)jX (17b) 

Using Eqs. (1 l)-( 13) and (15) we obtain for this case the 
two equations: 

co2= (Ng/2meo)k+ (0~2)C, (1W 

and 

co’= ( -Nq2/2meo)k+ (@/2). (18b) 

Normal mode solutions exist only for simultaneous solu- 
tion of Eqs. ( 18a) and ( 18b). Upon substitution this yields 

WZ’(n~4>(l+cX,, (19) 

i.e., bounded, harmonic, betatron motion (no growing in- 
stability). The validity of this calculation pertains to per- 
turbations for which w/u0 < k,, or 

fgc 1 +c,> <4k2,u;, 

where u. is the beam’s axial velocity. 

(20) 

In conclusion, whereas a sheet electron beam in a uni- 
form solenoida13-6.8’g or a slowly varying periodic” mag- 
netic field is unstable to diocotron modes, a sheet beam in 
a short-period periodic magnetic field should be stable 
against low-frequency space-charge perturbations. The lat- 
ter statement is predicated upon the assumption that the 
periodic magnetic fields are sufficiently strong to permit an 
equilibrium solution-i.e., that the beam is focused in the 
bulk sense. Evaluating conditions necessary for such focus- 
ing forms the content of the following sections. 

Still unresolved are questions associated with dynamics 
occuring on fast time scales, such as emittance growth and 
electromagnetic (FEL) instabilities. To rigorously investi- 
gate the former requires a 3D simulation. However, the 
general qualitative behavior is expected to follow that re- 
ported for cylindrical configurations, e.g., emittance 
growth can occur as the result of beam mismatch21 or 
magnetic-field errors.22 Hence, optimizing beam entrance 
conditionsi and minimizing field errors should keep emit- 
tance growth low enough for microwave tube applications. 
Evaluation of emittance growth of periodically focused 
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FIG. 3. Cross-sectional view of sheet beam enclosed in a conducting 
rectangular waveguide showing relevant beam and waveguide wall dimen- 
sions. 

sheet beams for more stringent accelerator applications 
will require more detailed numerical analyses. 

Susceptibility to unintended FEL-like electromagnetic 
instabilities is also theoretically possible, due to the “wig- 
gling” motion of electrons off the geometric axis as induced 
by the periodic PCM field. However, whereas the quiver 
energy scales as (nonrelativistically) vi,,,, =: #/2l& for 
near-axis electrons with wiggler focusing,23 we have 

&ms = $$/2 for PCM focusing. Hence, 

(v~,,s)PcM~(~~,rms)wiggler~~k2ny2, 

which will generally be a small number, implying weak 
growth for FEL-type instabilities. 

IV. MAGNETIC AND SPACE-CHARGE ELECTRIC 
FIELDS FOR A SHEET ELECTRON BEAM IN 
RECTANGULAR-CROSS-SECTION PCM FOCUSING 

Before evaluating conditions necessary for focusing, we 
will derive limiting-form expressions for the space-charge 
electric and magnetic fields associated with sheet electron 
beams in rectangular-cross-section PCM focusing. 

A. Space-charge electrostatic fields of a rectangular 
sheet electron beam with uniform density and 
sharp edges 

We seek the space-charge fields for a configuration 
such as that illustrated in Fig. 3, with beam thickness t, 

beam width w, and waveguide cross-section dimensions a, 
and 6,. It is assumed that the solution is independent of the 
waveguide axis dimension z. Hence, we seek the solution 
for electrostatic scalar potential QB, 

Pb,Y> 
V2GE( x,y,z) = -- 

EO 
, lx(~aJ& (YI<W~, 

(21) 

(PE( 1x1 =a/2) =QE( ly) =b/2) =O. 

A Green’s function solution to the relevant equation 

(&+$) G(x’,x;y’,y) = - 
S(x’-x)&y’-y) 

EO 
, 

(22) 

G( Ix’] =a/2)=G( Iy’l =bd2)=0, 

is obtained as 

G(x’J;Y’,Y) = i gj coS(kjy’)coS(kjy) 
j=O 

Xsinh[ kj( :*x) ]sinh[ kj( $Fx’)], 

x’><x , 

2 

gi” Eobdcj sinh( kja,) ’ 

k.mw+l).” 

I- J be ’ 
-(23) 

The solution to Eq. (21) is therefore 

@E(&Y I= 
JJ 

dx’ dy’ G(x’,x;Y’,Y)~(x’,Y’), (24) 
s w 

where S, represents the waveguide cross section. Since the 
geometry is symmetric about they axis, we concentrate our 
computation of QE to the region x>O. Taking the case of a 
uniform distribution of beam density n with “sharp” edges 

--en, 
/d&Y> = 

L 

lyl <t/2, 1x1 <w/2 

0, otherwise 
(25) 

(where F is a constant) one obtains from Eqs. (23) 
and (24) 

@‘E(&Y) = ’ (26) 

\ 

It is useful to obtain the form of this expression in the limit that we can ignore the sidewalls at x= h:a$2. Evaluating 

Eq. (26) in the limit a,-+ CO yields 
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iPE(XJ)) = -- 
y j. ~cos(k,y)s~.[k,(t/2)] ( ~-e-‘~[(~‘2)+xl:e-~~~(~‘2)-xl), 

3 

J 

(27) 

for 1x1 <w/2. This expression becomes accurate when kj(a,-w)/2>2, or whenever (a,-w) 2 l.jb,. In this limit it is 
identical to that which one obtains for the sheet beam positioned between two infinite parallel planes as shown in Fig. 4 
and associated with the Green’s function 

OD 2 cos(kjy’)cos(kjy) e*tki(X-X’) GII (x,x’;y,y’) = c 
j=o Eobkj 

2 ) x5x’. (28) 

For stability and focusing calculations, expressions for 
the electric field, E= -VaE will be preferred. As a check 
on the validity of our expressions above, it is instructive to 
first consider the electric field for an infinitely wide sheet 
beam of thickness t/2, placed between two conducting par- 
allel plates that are separated by a spacing of b,. This can 
be rather trivially obtained by direct integration of Gauss’s 
law to obtain 

E- (--m/e)+G, OLsygt/2, - 

I (--m/e>~+W2>$, t/2sy<bd2. 
(29) 

Alternatively, one should obtain the same result by taking 
the negative gradient of Eq. (27) in the limit w/2+ 00 to 
obtain 

infinitely wide beam 
w/2- a0 

qdY) - 
-T jzo !$sinrkr)l sin(kjy). 

J 

(30) 

It has been verified that Eqs. (29) and (30) are in exact 
agreement by completing the sum numerically. 

More generally, the electric field for a sheet beam with 
uniform density and “sharp” edges can be obtained by 
taking the negative gradient of Eq. (26) or Eq. (27), de- 
pending on which limiting case is of interest. As an illus- 
tration, we compute the electric-field components for the 
case of a wide sheet beam with uniform density and sharp 
(abrupt) edges at Ix ( = w/2 where the effect of the side 
walls can be neglected [e.g., using Eq. (27)]: 

sheet electron 

b&m+, 

\ 
conducting 

waveguide 

wall 

FIG. 4. Rectangular sheet beam confined between two conducting par- 
allel planes. 

OD 2@; sin[kj(t/2)] 
E,(X,Y)=--5-~ b~coS(kjy) 

j=O e i 

Xexp 

sin(kjy) 

@la) 

e-kj(W/2+X) +e--kj(W/2--X) 

2 (31b) 

B. Space-charge electrostatic fields of a rectangular 
sheet electron beam with nonuniform density 
or diffuse edges 

Equations (3 1) provide expressions for the electric- 
field components of a wide rectangular sheet beam with 
uniform density, abrupt edges at 1 x I = w/2, and confined 
between two infinitely wide parallel conducting plates. The 
assumptions _ -of ’ uniform density and abrupt edges at 
Ix ] = w/2 may not always be applicable or desirable and in 
this sub-section we investigate formulas for the electro- 
static space-charge field when the beam has diffuse edges 
that are nominally located at 1 x ( = w/2. We will start with 
a very simplified model and formula, followed by a more 
exact derivation to establish validity regimes for the sim- 
pler expression. 

First, we consider a simplified model in which the x 
and y dependencies are~approximately separable. In partic- 
ular, we consider Poisson’s equation for a wide rectangular 
sheet electron beam confined between parallel conducting 
plates with beam density n(x) that is uniform in y but 
variable in x (for example, near the beam edge): 

d2QE a2QE e 
p+aJll=G n(x). (32) 

When the density varies sufficiently slowly in x (criteria to 
be determined plater), we can expect 

a2aE a2aE 
pQayl 

or 
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where ‘fi has the same definition as before.fiIntroducing the 
norm..hzed quantities L= L/b,, 3=s/b,, t= t/b,, y^=y/be, 
and E=EJEo, where E,= -en,b/q,, IZq. (38).can be re- 

FIG. 5. Horizontal density profile used to compare approximate and 
exact space-charge-field solutions for a beam with diffuse edges [Eqs. 

(3311. 

=- i 2sinr2y) cosc(2j+l)*91 

j=O (2j+ II2973 

For a beam of thickness t and symmetrically confined be- 
tween conducting planes separated by a distance b, one 
readily obtains a solution for the potential 

@Eb,Y) = 

(34) 

and for the electric-field components in the region 

IY I an, 

E,(x,Y) PZ -; o jj-t($f)] y, . (35a) 

E,(GY) zz - (e/qJn(x)y. (35b) 

To establish validity restrictions on Eqs. (35) for the 
case of a sheet beam symmetrically placed between con- 
ducting planes, we again perform a Green’s function solu- 
tion for the electrostatic fields. In this case, however, we 
consider a beam with a prescribed diffuse density variation. 
It will be convenient to measure horizontal displacement 
from the beam edge by introducing the position variable 
s=w/2-x. To keep the analysis clear and tractable, we 
select a particular representative density variation near the 
nominal beam edge at s=O: 

(nd2)expWL), s-a, 
n(x)+n(s)= 

i 
no[ 1 -f exp( --s/L)], 00, (36) 

schematically illustrated in Fig. 5. The horizontal electric- 
field component can be calculated as 

aaE 
- E~(s~Y) = - as 

.---. - __.._ . _. 

co 
+ t/2 q, w;Y,Y’) 

= 
s 

ds’ en(s’) 
s 

W 
-cc -t/2 

as 2 

(37) 

where Gil (s,s’;y,y’) is obtained from Eq. (28). The exact 
result for this case is 

E&y) =“no c 
m 2 Sill[kj(t/2>] 

EO j=O be$ 
COSCkjY) 

X 
kjL exp( --S/L) -exp(kis) 

, (38) 

A 

( 
(2j+l)rrLexp ( 1 -i -exp[-(2j+l)?rs^] 

X 
(2j+1>2&2-1 1. 

(3%) 
We now proceed to compare the’ exact expression (39a) 
with the approximate expression (35a) for the case of the 
density variation specified in Eq. (36). In terms of the 
normalized quantities, Eq. (35a) using Eq. (36) is rewrit- 
ten as 

&s,y) s -- 4:. [$-(i-i)]exp( -g). (3%) 

The exact expression (39a) is then computed by numeri- 
cally summing over a large but finite number of terms. Th$ 
summation is facilitated by noting that for, (2j + 1 )?rt/ 
2~1, ES-(2j+l)-‘, whereas for (2j + l)rrt/2 > 1, 

B sin[(2j+1)7r(i/2)] 1 

s- (2j+1)37r3H 72j+1)3’ 

a rapidly converging series. Consequently, the sum in Eq. 
(3_9a) can be well approximated by truncation after j = l/ 
s-t-$ Equations (39a) and (39b) haye been plotted in 
Figs. 6(a) and 6(b) for L= 3 and L = 1, respectively. 
From the two plots, it can be inferred that the simplified 
expressions [Eqs. (35) or (39b)] can be used with reason- 
able accuracy (within 10%) whenever i = L/b,> 1. Fur- 
thermore, the simplified expressions generally err in a con- 
servative manner (higher E-field estimate than the exact 
formula). 

In summary, Eqs. (3 1) and (35) provide simplified 
limiting forms for the electric space-charge fields of 
rectangular-cross-section sheet beams for the cases of uni- 
form density with sharp edges [Eqs. (3 1 )] and sheet beams 
with density gradients along the horizontal dimension 
[Eqs. (35)]. With reference to Fig. 3, both equations are 
quantitatively valid for (a,-~> X 1.3b, Equations (35) 
are generally applicable to density gradients at the beam 
edge or in the beam center, provided the density gradient 
scale length is not too abrupt, i.e., L/b&l. 

C. Magnetostatic fields for 2D PCM focusing 

In this subsection, we investigate periodically cusped 
magnetic-field configurations that will provide sheet beam 
focusing in both transverse planes. At first glance, one may 
be tempted to consider either curved-pole24 or canted- 
pOZi25 configurations which have been successfully em- 
ployed with wiggler focusing. However, in periodic-cusped 
focusing, midplane (y=O) electrons experience no trans- 
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FIG. 6. Comparison of exact lP.q. (33a)] and approximate [Eq. (33b)] 
space-charge-field solutions for a beam with diffuse edges. s is a horizontal 
position coordinate measuring displacement relative to the beam edge (at 
s=O) and normalized to the waveguide wall separation distance b,. (a) 
r/b,=O.l and L/b,=3; (b) t/b,=O.l and L/b,= 1. 

verse force or quiver velocity. Hence, neither the curved- 
pole nor the canted-pole configuration will provide hori- 
zontal focusing for midplane electrons-which generally 
represent a large fraction of the sheet beam. Instead, we 
will consider two alternative configurations. 

The first configuration-henceforth referred to as a 
“closed” configuration-is that displayed in Fig. 1. This 
structure is topologically equivalent to PPM focusing of 
round beams and can be envisioned as the result of com- 
pressing a circular-cross-section PPM structure in one 
transverse (y) dimension while stretching the configura- 
tion in the other transverse dimension (x). Focusing oc- 
curs in the narrow dimension by the simultaneous exist- 
ence of BY and B, components, while focusing in the wide 
transverse dimension results from the presence of B, and 
B, components. 

In principle, the fields for the closed configurationof 
Fig. 1 can be obtained from a scalar magnetic potential QM 
that satisfies Laplace’s equation along with appropriate 
boundary conditions at the inside edges of the magnet, 

V2Q>,&x,y,z) =0, I x /@,/2, 1 y I <b,/2. (40) 

In the limit of an infinitely wide problem (i.e., a,+ ~4 ), 
the problem reduces to two dimensions 0, and z) and can 
be solved by separationof variables in a manner similar to 
that of Refs. 26 and 27 for wiggler magnets. For finite a,, 
however, the problem is no longer separable. Nevertheless, 

F- 
bm 
L 

r4isg7 

p&lJ In 

am 

FIG. 7. Filamentary model (without iron pole pieces) of rectangular 
PCM configuration. 

in the magnet gap region far from the magnet edges one 
intuitively expects approximately separable solutions 
(from Sec. II): 

-B xz - Bo(kx/k,Jsinh(kg)cosh(k,y)cos(k,g), (24 

B yz -Bo(ku/km)cosh(kg)sinh(kg)cos(k~), (2b) 

BzzBo cosh(k$>cosh(k,y>sin(kA), (2c) 

where, to satisfy Laplace’s equation as well as to obtain 
B,,(b,/2) = B,(a,,,/2), we take 

(41a) 

(41b) 

To support this approximation, we have used the Biot- 
Savart formula and numerically calculated the fields for 
the filamentary closed PCM configuration illustrated Fig. 
7. The transverse field variation of Fig. 7 is expected to be 
similar to that of Fig. 1, with the principal exception that 
higher-harmonic content should be observed for the con- 
figuration of Fig. 1 due to the presence of the low- 
reluctance iron pole pieces. Specific results for the z com- 
ponent of the case am= 5.0, b,=0.5, k,=2z- (i.e., all 
dimensions are normalized to the magnet period I,), are 
plotted in Fig. 8. Generally, for Iy ( ~0.1 and IX I< 1.0 it 
was observed that the above approximate expressions [Eqs. 

(2) and (41)] provide a very good fit to the computed field 
values. More exact numerical simulations including the ef- 
fects of ferritic pole pieces are planned for the future. For 
the purposes of this article, however, we will make use of 
the approximate expressions given above. 

A second configuration is also considered, namely the 
“open” structure of Fig. 9 with offset pole pieces. This 
offset-pole-piece configuration has already been success- 
fully used for two-plane wiggler focusing of low-space- 
charge, relativistic sheet electron beams.” The two-plane 
focusing properties of this arrangement can be appreciated 
from inspection of its magnetic equivalent in Fig. 10. Fo- 
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FIG. 8. Numerically calculated axial magnetic-field component B, of the 
filamentary PCM configuration displayed in Pig. 7 [lo coils placed at 
z= (0, 0.5, 1.0 ,... ,4.0, 4.5)]. (a) B, vs x at y=O and z=2.5, (b) B, vs y 
at x=0 and z=2.5, and (c) B, vs z for x=0 and y=Q. 

cusing in the narrow (y) dimension works on the ponder- 
omotive (periodic fields) principle, whereas focusing at the 
beam edges in the wide transverse dimension results from 
the zeroth-order vzBv forces. 

To model the fields of the configuration in Fig. 9 (or 
Fig. 10) we will superpose periodic fields for an “infinitely 
wide” PCM structure with fields resulting from four semi- 
infinite sheets of magnetic “surface charge”, as depicted in 

FIG. 10. An open-sided PCM configuration equivalent to the offset pole 
piece configuration of Fig. 9. Again, magetic polarity labels (N,S) indi- 
cate the field polarity on the inside or gap-side faces of the magnet poles. 

Fig. 11. With this approach, we can solve for the periodic 

field, Bpcm, using Eq. (40) and separation of variables. 
Following the derivations of Refs. 26 and 27, and keeping 
just the lowest-order harmonic terms, the result is 

Bjl,pcm z - Be sinh(kd)cos(k&), 

and 

(424 

B Z,,,~&cosh(kd)sin(k&). (42b) 

The side or “offset” fields BoK can be obtained from Cou- 
lomb’s law-i.e., by integrating over the %x-face magnetic 
charge” sources, 

%= CB (X-X’)&& 
[(x-x’)2+ (Y-Y’)21 f 

(Y-Y')Pm&' 

+I(x-x’)2+(y-yr)2] 9 
(43) 

where CB is a dimensionalizing constant. Equation (43) 
has been solved for the semi-infinite magnetic charge 

- pm* / 

- pm, 

FIG. 9. Open-sided PCM configuration using offset pole pieces. Magnetic FIG. Il. Magnetic equivalent of open-sided configurations in Figs. 9 and 

polarity labels (NJ) indicate the field polarity on the inside or gap-side 10 achieved by replacing offset pole regions with semi-infinite sheets of 

faces of the magnet poles. magnetic “surface charge.” 
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FIG. 12. Two-dimensional view of the semi-infinite magnetic surface 
charge sheets of Fig. 11, indicating and labeling their relative positions. 

source distribution pictured in Fig. 12, subject to the con- 
dition that II,,- f B$ at x-t =t CO. In particular, the y 
component of B,, is 

-arctan( ,~~~>~,) 1. (4.4) 

The fields of the open-side configuration of Figs. 9 or 10 are 
therefore modeled as the superposition B=B,,+B,rr us- 
ing Eqs. (42) and (44). 

V. FOCUSING AND BEAM MATCHING 

In this section, we review conditions for bulk beam 
focusing and beam matching. In general, the problem of 
matching a rectangular sheet beam with two-plane- 
focusing periodic magnetic fields is a nonlinear, nonsepa- 
rable problem involving the balance of magnetic focusing 
forces, space-charge defocusing forces, and transverse ki- 
netic pressure associated with finite beam emittance. Fu- 
ture numerical studies of this problem are planned, but 
they are beyond the scope of this article. Hence, present 
discussions will be limited to approximate analyses associ- 
ated with zero emittance (“cold”) laminar beams. 

A. Basic focusing in two dimensions 

To clarify the discussion, we first consider general 
guidelines for PCM focusing of an infinitely wide sheet 
beam with uniform density. In this limit, the-problem de- 
pends only on the y dimension, for which the relevant 
equation of motion is [see Eq. (17b)] 

Hence, we can expect beam focusing for 

@>2&$. (45) 

Furthermore, to ensure the validity of the period-averaged 
equations, as well as to ensure stability against diocotron 
modes, we require a spatial magnet period short enough to 
satisfy k&k,, kp = c+,/ue < km, and kd= 25./L,< km, 
where k. is the betatron wave number and Ld has been 
defined in Eq. ( 1). Simultaneous satisfaction of these con- 
straints yields a general guideline for a stable confinement 
regime of periodically focused (nonrelativistic) sheet elec- 
tron beams, 
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FIG. 13. Stability regime for a PCM focused sheet electron beam with 
perveance density P/A= 10e5 pervs/cm* and PCM magnet period I,,,= 1 
cm. 

20@;<2k2,u;. (46) 

Based on the definitions of the various parameters in Eq. 
(46)) an alternative form is 

(2.1X10-“)no~&&9.2X10-4)(V&J, 

where no is the beam density in cmA3, B. is the peak PCM 
field amplitude in kG, I,,, is the PCM period in cm, and V, 
is the beam voltage in volts. Further advantage is gained by 
noting that 

no= Jdeuo . 

Also, for a thermionic Pierce gun sheet beam source 
(space-charge limited) the current density is related to the 
beam voltage as 

.Jb(A/cm2) = (P/A) Vi’2, 

where P/A represents the perveance per unit area of the 
beam in units of per&cm’ and V, is in volts. Thus, Eq. 
(46) can be expressed as 

2.2(P,A) Vb<B;49*27;o-4 Vb. 
m 

As an illustration, consider the representative case of 
P/A = 10 ppervs/cm2-a value readily achieved in present 
commercial Pierce-type thermionic electron guns-and 
l,= 1 cm. The corresponding upper and lower bounds on 
values of peak PCM magnetic field for stable sheet beam 
confinement have been plotted in Fig. 13 for beam voltages 
ranging between 1 and 50 kV. From these values it can be 
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assured that exceeding the lower bound while staying sig- 
nificantly less than the upper bound is well within the ca- 
pability of modern magnet technology. 

We next turn to consideration of bulk focusing of sheet 
beams in the horizontal dimension. For the closed mag- 
netic configuration of Fig. 7 and a sheet beam near y~0, 
we assume the approximate equation of motion [see Eq. 

(17b)l 

4 q ; z pm*x-~~X. ??I 
For a beam with uniform density and sharp edges, we use 
Eq. (3 la) for the electric field. Looking at the beam edge 
(x=20/2) and taking y~0, the condition for magnetic fo- 
cusing to exceed space-charge defocusing is 

m 2sin[(2j+l)(?r/2)(t/b)l Q: k: w 

wP. “C 
(2j+ II22 <Tip- 

(48) 
J=o 

To illustrate, we consider the particular case of t/b=O. 1 
and w/b=6. Furthermore, from the previous discussion of 
the closed PCM configuration and with reference to Fig. 5, 
we can take kfJk$zb4/a4 for which we consider the rep- 
resentative case of b/a=O. 1. For these values, Eq. (48) 
approximately reduces to 

300+& (49) 

or 

33O(P/A) V,< B;, (50) 

which is significantly more restrictive than for focusing in 
the y dimension. 

By comparison, basic focusing in the x direction using 
the offset-pole or open-side configuration appears much 
easier. In this case, the equation of motion for electrons at 
the beam edge is 

,Again, we use Eq. (31a) for the space-charge electric field 
at the beam edge and BY,,ff is based on the model of Eq. 
(44). For illustration, we set b, = b, w,= w, x= w/2, y =0, 
and select representative values of t/b=O. 1 and w/b = 6 
yielding the horizontal focusing condition 

0.4w;b/uodlz,, (51) 

where sl,=qBJm. Converting as before to an alternative 
form, we obtain 

130(P/A)b KGB,, (52) 

where P/A is in pervs/cm*, V, is in volts, the waveguide 
wall separation b is in cm, and B, is in kG. In Fig. 14 we 
have plotted Eqs. (50) and (52) for the case where P/A 
= 10 ppervs/cm2 and b=O.S cm. The fact that B, is con- 
siderably less than B. (by several orders of magnitude) 
illustrates the greater effectiveness of open-side focusing. 

CL of . 1 
0 10 20 30 40 50 

0.00 . I 

0 10 20 30 40 50 

beam voltage, V n (kV) 

FIG. 14. Comparison of peak magnetic fields needed to horizontally focus 
a sharp-edged rectangular sheet beam with f/b=O.l and w/b=6: (a) 
peak PCM field intensity needed for horizontal focusing with closed-side 
configuration; (b) peak side field intensity needed for horizontal focusing 
with open-side configuration. Both figures assume a perveance density of 
P/A=lO-' pervs/cm*. Note the large difference in vertical axis scale 
between the two figures. 

B. Matching with sheet beams having constant 
thickness 

From the discussion above, stable focusing of sheet 
electron beams with appreciable space charge appears to be 
within the reach of present technology; however, most ap- 
plications of this capability (such as coherent microwave 
sources or accelerators) are also interested in low-velocity 
spread or low emittance. From this perspective, the situa- 
tion is much more complicated. In general, controlling 
emittance g?owth in periodically focused beams requires 
beam matching at injection’6’2’-that is, a precise balance 
of space charge, magnetic focusing, and transverse kinetic 
pressure forces. As mentioned above, our discussion of this 
topic will concentrate on idealized “zero-emittance” 
beams. 

The first point concerns the fact that a (laminar) sheet 
beam with constant thickness t and uniform density no 
cannot be “matched” in the y dimension (equal space 
charge and magnetic focusing forces for all values of y in 
the beam) simultaneously for all points across the beam 
width, - w/2<x< + w/2. This can be appreciated from the 
fact that the y component of space-charge field decreases 
near the beam edge at 1 x I= w/2 due to fringing effects. In 
particular, this field reduction-due to image charges in 
the waveguide walls-occurs within a distance b of the 
beam edge and results in a factor of 2 reduction in EY as 
seen in Fig. 15 [calculated from Eq. (31b) for w/b% 11. 

4150 J. Appl. Phys., Vol. 73, No. 9, 1 May 1993 Booske, McVey, and Antonsen, Jr. 4150 

Downloaded 25 Apr 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



FIG. 15. Vertical space-charge-field variation across the width of a uni- 
form density, constant thickness sheet beam confined between two paral- 
lel conducing plates separated by a distance b,. s is a horizontal position 
coordinate measuring displacement relative to the beam edge (at s=O). 
s=3 corresponds to the center of the beam in this example. 

Hence, setting 0&2e$ to obtain beam matching in the 
center results in overfocusing (and probable emittance 
growth) in the vertical direction at the beam edges. 

Next, we consider the issue of beam matching in the 
horizontal dimension. In general, matching over the entire 
beam cross section requires that defocusing and focusing 
forces have the same spatial dependence. This occurs nat- 
urally in the y dimension since the space-charge force (y 
component) and periodic focusing force (near y~0) both 
vary linearly with dimension y across the beam. The same 
cannot be said for horizontal force components associated 
with a beam of constant thickness and uniform density. 
For example, with the closed-side magnet configuration of 
Fig. 7, the x component of the focusing force has an ap- 
proximately linear dependence on x, as discussed previ- 
ously. From Eq. (31a), however, it is apparent that near 
the beam edge at x=w/2, the space-charge force varies 
much more rapidly with x (i.e., exponentially, due to the 
hyperbolic sine term). To remedy this functional mis- 
match, one is tempted to consider a beam with a diffuse, 
parabolic density dependence, n(x) az~*/L~. According 
to Eq. (35a), such a density profile would yield the desired 
linear dependence of the space-charge field on x; however, 
while improving the matching in the x dimension, this 
parabolic density profile will only exacerbate the previ- 
ously mentioned mismatch in the y dimension near the 
beam edges (1x1 =w/2). 

The situation improves slightly when one considers the 
open-side configuration for horizontal focusing. In Fig. 16, 
we have plotted the spatial dependence of horizontal fo- 
cusing and defocusing forces given a sharp-edged, uniform 
density beam and open-side focusing [see Eqs. (31a) and 
(44)]. Both forces increase rapidly with x as one ap- 
proaches the beam edge, although the gradient scale length 
for the magnetic field is longer than for the space-charge 
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FIG. 16. Variation with x of horizontal (magnetic) focusing and (space 
charge) defocusing forces for a sharp-edged, uniform density, constant 
thickness (rectangular) sheet beam in the open-side PCM configuration 
of Fig. 9 or Fig. 10. In this instance the waveguide wall spacing and 
magnet gap are equal (b,= b, = 6) , and x/b = 0 represents the beam cen- 
ter while x/b= 3 represents the beam edge ( f/b=O. 1) . 

field. Again, one is tempted to consider profiling the beam 
density in the x dimension to achieve more nearly equal 
spatial variations between the two forces. To illustrate, we 
consider a density profile that is parabolic for 1 x 1 <w/2 but 
has sharp edges at [xl= w/2 as pictured in Fig. 17. This 
particular choice is motivated by the fact that the space- 
charge fields can be analytically computed from Eq. (37). 
For a very large density gradient scale length L,, one ob- 
tains the previous result shown in Fig. 16. However, as 
illustrated in Fig. 18 for w/b=6, a close match in the 
spatial dependencies of the space charge and magnetic 
forces is realized with modest profiling obtained with L,/ 
b=4. Again, however, such profiling causes the beam den- 
sity to be lower at the sides than in the beam center result- 
ing in beam edges that are overfocused in they dimension. 

The discussion above illustrates that self-consistent 
matching of a zero-emittance sheet beam in both dimen- 

n0x2/L2 
+ 

n(x) 

“\ 

) r-L-m;1 

-w/2 +-w/2 x 

FIG. 17. Horizontal density profile with abrupt edges used for approxi- 
mate match of space-charge and focusing forces in Fig. 18. 
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FIG. 18. Approximately matched horizontal focusing and defocusing 
forces for a constant thickness sheet beam having the density profile of 
Fig. 7 with L,,/b=4 and confined by the open-sided PCM configuration 
of Fig. 10. For this example, b,=b,=b, w,=w=6b, and r/b=O.l. 

sions across the entire cross section is not achievable with 
constant thickness beams. In particular, the regions suffer- 
ing from greatest mismatch (and therefore vulnerable to 
the greatest emittance growth) occur within a waveguide 
wall separation distance b of the sheet beam edges. Com- 
plete matching of the beam (if possible), including these 
edge regions, would require a complicated prescription for 
beam density and emittance profiles-a topic for future 
study. On the other hand, for large values of w/b, these 
higher-emittance edge regions will constitute a small por- 
tion of the overall beam and-depending on the 
application-may be negligible. 

C. Matching with sheet beams by profiling the beam 
thickness: Elliptical sheet beams 

An alternative approach to beam matching involves 
profiling the thickness (modifying the beam cross-sectional 
shape) rather than the density. For example, based on cal- 
culations by Lapostolle,28 approximate expressions for the 
electric-field components due to a uniformly dense beam 
with elliptical cross section can be written as 

1 wry E,=- ~ 
Eo (rxfry) 

and 

(534 

(53b) 

where r, and ry are the semiaxes of the ellipse in the hor- 
izontal and vertical transverse dimensions, respectively. 
Note that these fields are linear in both x and y, automat- 

space 

charge 

electric 

field lines 

FIG. 19. Distortion of space-charge electric fields of an elliptical beam by 
conducting waveguide walls. 

ically ensuring that a matchable condition exists with the 
linear forces [Eqs. (7)] obtained from closed-side, two- 
plane PCM focusing (see Figs. 1 and 8). In particular, a 
matched beam will be realized for 

fii 2 rx --X(j) 
2 p (rx+ry) 

and 

(544 

(54b) 

In the limit that rx$ry matching is achieved by setting 
c$=@/2 to balance forces in the vertical dimension @q. 
(54a)], followed by separately adjusting the ratios b,/a, 
and rx/ry to achieve balance in the horizontal dimension 
[Eq. (54b)]. Taking the example of b,/a,=0.2, this re- 
quires a very thin elliptical sheet beam with r,/r,=625. 

The next issue concerns the effect of nearby conducting 
walls on the spa&charge fields of an elliptical-cross- 
section sheet beam, as illustrated in Fig. 19. This is ana- 
lyzed through the use of the Green’s function for a beam 
between two parallel plates [viz., Eq. (28)] and the expres- 
sions 

EXE -qn J:,& p” ;I,, @’ =I1 (;‘;JJsy’) , 

EyLeqn J”, & p;;;,, &’ aGIl (;‘;YpY’) , 

where 

locates the perimeter of the elliptical-cross-section beam. 
Normalizing all quantities as previously done in the deri- 
vation of Eq. (39a) we obtain 
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m 2cos[(2j+l)ry] 
IExbGY) I = jzo 

U 

x 

(&i+lh- 
dx’ sin[ (2j+ l)~~b(~‘)]e-(~j+‘)~(~-~‘) 

-‘x 

and 

- 
s 

rXdx’sin[ (2j+ 1)~~b(x’)]ef(2j+1)~(x-x’) 
x 1 

(554 

(E,(x,y) I= i 2 sin(!2y;;y1 ( JI, dx’ sin[ (2j+1)~yb(x’)]e-(2j+‘)n(x-x’) 
j-0 x 

I- 
‘x 

+ dx’sin[ (2j+l)ny6(x’)]e+(2j+1)ff(~-x’) (55b) 
JX 

where (normalized) dimensions are in units of b, (the 
waveguide wall separation distance) and the fields are in 
units of Eo= -encbJec. 

The basic behavior of the fields is illustrated by the 
following numerically evaluated cases. First, we computed 
the horizontal field E,(x,y=O) as a function of (normal- 
ized) horizontal position for several representative values 
of waveguide wall separation. In particular, Fig. 20 dis- 
plays E,(x) in the y=O plane for (r,/b,,rJb,) 
=(0.375,0.0125), (3,0.1), and (6,0.2), respectively. For 
the case of distant conducting walls (0.375,0.0125), E,(x) 
has the linear dependence predicted in Eq. (53a); however, 
as the walls are brought closer [ (3,0.1) and (6,0.2)], image 
charge shielding causes the horizontal space-charge field to 
increase more rapidly near the edges of the beam. 

The next question is whether a beam that is matched to 
PCM focusing in the vertical dimension at the beam center 
(x=0) remains matched across the entire cross section. 
Recall that for the constant thickness sheet beam with uni- 

0.06 

--o- r,ib=6 

-D- r,/b = .375 

0.0 0.2 0.4 0.6 0.8 1.0 

normalized horizontal position, x/rx 

FIG. 20. Horizontal space-charge electric field E,(x,,Y=O) for an ellipti- 
cal sheet beam between two conducting plates separated by distance b. 
rJ5=30 for all three cases. Large r,/b corresponds to closely spaced 
conducting walls, while small rJb corresponds to remotely spaced 
conducting walls. 

form density, a beam that was matched in the center near 
x = 0 was overfocused at the edges near x = w/2, due to a 
reduction in Ey with increasing j, (Fig. 15). To check this 
for the elliptical sheet beam, we numerically evaluated 
E,,(x,y=yb) [viz., Eq. (55b)] for large and small wave- 
guide wall spacing, i.e., (r,/b,,r,,lb,) = (0.375,0.0125), and 
(6,0.2), respectively. To determine whether matching in 
the vertical direction at the beam perimeter is satisfied for 
all values of x, we compare EY(x,yb) with yb(x), since the 
PCM focusing in the vertical plane is a linear function of y. 
The results shown in Fig. 21 indicate the desired vertical 
matching of forces across the entire beam width. 

The results displayed in Figs. 20 and 21 suggest that 
two possible matched configurations are possible. In the 
limit of large b, (distant waveguide walls), the space- 
charge fields are linear in both dimensions and are well 
matched with the linear forces of closed-side two-plane 
PCM focusing as discussed previously. On the other hand, 

C; Y 

0.00 
0.0 0.2 

normalized horizontal posltion, x/rx 

FIG. 21. Demonstration of matching between vertical space charge and 
vertical PCM focusing forces (at elliptical beam perimeter) across the 
entire beam width, independent of whether conducting waveguide walls 
are in close proximity or distant. Circles (open and solid) correspond to 
close proximity walls (r&,=6), while squares (open and solid) corre- 
spond to remotely positioned waveguide walls (r,/b,=O.375). In all 
cases, r,/r,=30. 
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I -o- scaled sf,aca charge force 
0.0s --*- scaled magnetic side-focus force 

B A 

normalized horizontal position, x/r x 

FIG. 22. Demonstration of matching between horizontal space-charge 
and offset-pole-piece focusing forces across entire beam width. For this 
example, r,/b,=6, r,/b,=0.2, wJb,=l, w,=2r, and b,= (12/7) b,. 

for smaller values of b, the space-charge fields are linear 
and match single-plane PCM focusing in the vertical di- 
mension, but are nonlinear and better matched to the open- 
side focusing configuration [viz., Fig. 9 or Fig. lo] in the 
horizontal dimension. That such a match is possible is il- 
lustrated in Fig. 22 where, taking w,=2r, we have plotted 
(normalized) E, vs x for (r,/b,,r,./b,) = (6,0.2) and com- 
pared it with the (normalized) open-side, horizontal focus- 
ing force for wJb, =7 [this combination of parameters 
corresponds to having the magnet gap somewhat larger 
than the waveguide wall gap, i.e., b,=( 12/7)b,]. The 
close match between magnetic focusing and space-charge 
defocusing forces as a function of horizontal position is 
evident. 

Vi. SUMMARY AND CONCLUSIONS 

Sheet beams would be attractive for numerous appli- 
cations, but are subject to disruptive instabilities and emit- 
tance growth. In this article we have analyzed the confine- 
ment characteristics of sheet beams focused by periodic 
cusped magnetic (PCM) focusing. The analysis has con- 
centrated on nonrelativistic (low voltage) sheet beams, be- 
cause space-charge forces are often more significant in this 
regime in comparison with relativistic applications. Two 
rectangular-cross-section magnetic configurations capable 
of focusing in both transverse directions were considered: 
(i) a closed-side two-plane PCM configuration that is to- 
pologically equivalent to conventional round-cross-section 
PPM focusing; and (ii) an open-side configuration that 
uses ponderomotive PCM focusing in the vertical plane 
and simple vzBy Lorentz force focusing in the horizontal 
plane. Three types of sheet beams were studied: (i) sheet 
beams with constant thickness (rectangular cross section) 
and uniform density; (ii) sheet beams with constant thick- 
ness (rectangular cross section) and a density variation in 
the horizontal plane; and (iii) sheet beams with elliptical 
cross section and uniform density. Electrostatic and mag- 

netostatic field formulas were derived for the three types of 
sheet beams and two magnetic configurations, respectively. 

Using a simplified fluid model (first introduced by 
Buneman for sheet beams in solenoidal magnetic fields) we 
have illustrated the fact that periodically focused sheet 
beams (either PCM or wiggler) should be stable against 
low-frequency perturbations such as the diocotron mode. 
This stability should hold for all modes with growth 
lengths longer than the spatial magnetic period. 

We also investigated two-plane beam focusing require- 
ments. Period-averaged orbit dynamics in the closed-side 
two-plane PCM fields show that ponderomotive focusing 
in the narrow (vertical) transverse dimension is equal in 
magnitude to planar “wiggler” focusing or cylindrical 
PPM focusing, but focusing in the horizontal plane is 
much weaker-by approximately a factor of the cross- 
section aspect ratio to the fourth power, (b,/a,J4. As a 
result, two-plane focusing of rectangular thickness sheet 
beams with uniform thickness and density appears 
straightforward in the vertical dimension, but problematic 
in the horizontal dimension. On the other hand, two-plane 
focusing of such beams with the open-side configuration 
appears to be well within the capabilities of existing magnet 
technology. Adding a density variation or diffuse edges (to 
the constant thickness sheet beam) in the horizontal di- 
mension such that beam density is peaked near the center 
would tend to make focusing in the horizontal dimension 
more feasible for closed-side PCM focusing (by reducing 
space-charge fields at the beam edge), but it exacerbates 
beam mismatch problems near the beam edges. 

Finally, we discussed the issue of beam matching in 
order to minimize beam envelope oscillations or emittance 
growth. The discussion only considered cold, or zero- 
emittance, beams. In general, it was illustrated that lami- 
nar sheet beams with constant thickness cannot be 
matched with either the closed- or open-side PCM magnet 
configurations. The most troublesome regions, as men- 
tioned above, are within a waveguide wall separation dis- 
tance of the beam edges in the horizontal plane. On the 
other hand, elliptical-cross-section sheet beams with uni- 
form density can be matched with either the open- or 
closed-side PCM configurations by suitable adjustments to 
magnet, beam, and waveguide cross-section dimensions. Of 
the two magnet alternatives, matching in the closed-side 
two-plane PCM configuration may be more challenging 
due to the large eccentricity or aspect ratio (YJ~,,$ 1) re- 
quired in the beam’s elliptical cross section for reasonable 
choices of magnet dimensions. This large elliptical aspect 
ratio is a result of the significantly weaker focusing force in 
the horizontal plane of a closed-side two-plane PCM con- 
figuration. Fabrication of a beam source with the precise 
elliptical cross section may be difficult when such a large 
aspect ratio is required. On the other hand, fabrication of 
elliptical cross section beam sources that are matched to 
open-side PCM focusing appears much more practical. 
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