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STABILITY AND CONTROL OF STOCHASTIC SYSTEMS WITH
WIDE-BAND NOISE DISTURBANCES. I*

G. BLANKENSHIP" AND G. C. PAPANICOLAOU$

Abstract. For dynamical systems with external influences which are approximately white noise

(wide-band noise), we show that stability and other properties of the white noise problem that depend
on the infinite time interval, continue to hold away from white noise but not far from it.

1. Introduction. The purpose of this work is to analyze the stability proper-
ties and the control of systems that are subjected to external noise disturbances.
Specifically, we consider a family of systems labeled by a parameter e > 0 such that
as e->0 the external disturbances become white noise. We assume that the
limiting white noise problem has certain properties; for example, stability,
recurrence, invariant distributions, etc. If these properties of the limiting problem
hold in a sufficiently nonmarginal way, i.e., they hold in a sufficiently strong sense,
then the corresponding problems for e > 0 and sufficiently small also have these
properties.

Thus, we confirm under specific conditions, what one expects to happen,
namely, that computations based on the assumption that the disturbances are
white noise are in fact robust relative to perturbations away from white noise but
remaining in the wide-band regime.

The basic ideas underlying the problems at hand are due to Stratonovich [ 1].
The mathematical analysis of stochastic systems near the white noise limit is
carried out in [2], [3] and elsewhere. However, in previous work the limit e -> 0
was taken under the assumption that the time remained in a bounded but
arbitrary set, 0 -< =< T<. Thus, questions of stability, etc., that depend on the
infinite time interval could not be answered. In this paper we attempt to remove
this deficiency.

In 2 we formulate the problems and explain the nature of the family of
systems, parameterized by e > 0, which are near a white noise system. We also
relate the parameter e to the bandwidth of the local noise disturbances.

In 3 we give in detail the perturbation analysis as e --> 0 which is the basis for
future constructions. The analysis is similar to the one in [4], [5] wherein
additional references are cited to related work and methodology.

In 4 we state and prove a weak convergence result similar to the one in [2]
and [3]. The proof is different here and plays an important role in the stability
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questions. The general scheme follows Kurtz’s work [6]. We make effective use of
martingales as in [7]; in the latter work it is no longer assumed that the coefficients
(the external driving process) are ergodic and new phenomena arise.

Section 5 contains our results on stability. The theorem of 5.1 is the
nonwhite noise analogue of a well known white noise result [8, p. 325]. Section 5.2
is analogous to Khasminskii’s result [9] for the white noise problem. We also
employ Pinsky’s device of introducing the function h [10, p. 320]. Section 5.3
contains an application of the theorem of 5.2 to a harmonic oscillator. The
analogous white noise problem at low frequency is treated in [ 11]. We treat here
the high frequency case because it is easier and because it illustrates nicely the
effect of averaging superimposed on the white noise or wide-band limit (cf. [3] and
references therein for additional information on this point).

Section 6 contains our results on invariant measures. The theorem in 6.1 is
analogous to the one of 5..1 and the one in 6.2 is analogous to the one of 5.2.
In both results we employ a theorem of Bene [12] concerning the existence of
invariant measures. The theorem of 6.2 is analogous to the white noise result of
Zakai [ 13].

Section 7 contains an upper estimate for the probability of deviating far from
the equilibrium point given that it is stable in a sufficiently strong sense. The white
noise result and its proof is due to Pinsky [14] and it is presented as Theorem 1.
Theorem 2 is the corresponding result for the wide-band noise systems.

In a companion paper, part II, we examine some related questions in control
theory.

2. Stochastic systems with wide-band noise disturbances. Let x(t)R be
the state of a system at time t =0 and let y(t)R ", say, be the state of some
external process that influences the evolution of the system. Suppose that

(2.1)

dx(t)
F(x (t), y (t)), > O,

dt

x(0)=x,

where F(x, y) is a smooth n-vector function on R xR" so that y(t) represents
the random coefficients in (2.1). We are interested, typically, in the following
questions:

(i) What is the probability law of x(. given that of y(. )?
(ii) Under what conditions is x(t) stable as to, with "stable" being

appropriately defined?
(iii) How can systems such as (2.1) be controlled, i.e.,

dx(t)
d---i- F(x (t), y (t), u (t)),

(2.2)
x(0) =x,

where u (.) is the control (in some space) chosen to optimize some cost
criterion?

These questions are too general to admit informative answers. When,
however, the external process y(t) is white noise, these questions have, as is well
known, reasonably satisfactory answers collectively referred to as the theory of It6

t>0,
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stochastic differential equations (cf. [8], [ 15], [ t 6], [ 17] and many other references
cited in these).

We want to study questions (i)-(iii) when the external influences are not white
noise but only approximately white noise. A very convenient way of defining what
is meant by this is by introducing a small parameter e >0 which measures
deviation from the white noise case. The situation is as follows.

Let y (t), t => 0, be a stationary m-vector valued process and let F(x, y) and
G(x) be smooth n-vector functions on R xR and R respectively. Consider
the problem

(2.3) dx(t___) F(x(t), y(t))+ G(x(t)) x(O) x,
dt

and assume that for each x fixeda

(2.4) E{F(x, y (t))} 0.

With (2.3) we associate the deterministic system

(2.5) cl.(_,.,t_.__.___z, G((t)), (0) x.
dt

Because of (2.4), the term F(x(t), y(t)) in (2.3) plays the role of fluctuations to the
deterministic problem (2.5). Note that the fluctuations are locally dependent upon
the solution, i.e., F depends on x.

.Let FT(x, y) denote the transpose of F(x, y) and let R (x, s) be the n n
covariance matrix of the local fluctuations"

(2.6) R (x, s) E{F(x, y(t))FT"(x, y(t + s))}.

Let S(x, to) be the power spectral density3 of the fluctuations

(2.7) S(x, to) I- eiSR (x, s) ds.

The basic premise of the wide-band noise approximation is that S(x, to) is
(effectively) band limited"

(2.8) S(x, to)-=-O for I ol> oo>0, x

and that all relevant frequencies associated with the deterministic problem (2.5)
are contained in [-too, too], i.e., the support of S is wide enough.

Let e > 0 be a parameter and define

(2.9) F (x, y (t)) e-F(x, y (t/e 2)).

2 E{. denotes expectation value.
We assume it exists.
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Then (2.6) yields

R (x, s) E{F (x, y (t))(F (x, y (t + s)))r}
e-2E{F(x, y(t/e2))F(x, y((t + s)/e2))}

(2.1o)
-2R 2)(x,s/

,1, 0 I) R (x, o-) do" 6 (s) (white noise)

and hence,

(2.11) 2O)S(x, oo)= S(x, e ).

Thus
-2(2.12) S(x,o))=-O forlo)l>e oo

and as e 0 the bandwidth of S" tends to infinity.
4We shall take as our wide-band noise system

dx (t) 1
-F(x (t), y (t)) + G(x (t) y (t)) > O,

dt e

(2.13) x’(0) =x,

y (t) y(t/e2),
with y (t) a given stationary process (other hypotheses introduced later), F and G
smooth n-vector functions on RnR and F satisfying (2.4). The parameter
e > 0 measures departure from the white noise approximation. Another interpre-
tation for e is that it differentiates between the time scale of fluctuations of the
coefficients and the solution; the latter is much slower than the former.

In many applications one encounters other small parameters, in addition to e,
in (2.13). If as e - 0 they remain of order one, then it is reasonable to first take the
limit e 0 and consider other approximations afterwards. In many interesting
cases the other small parameters are coupled to e and one has, for example, rapid
oscillations (averaging) or rapid decay superimposed on the wide band noise
(white noise) limit. An example is given in 5.3. For more details we refer to [3]
and [18].

The behavior of the process x (t) of (2.13) when e is small, and specifically
stability or related questions, is the object of the following sections. If we rescale
(2.13) as follows

(2.14) t e2’r, 3 (7") X (E 27),
then :" (-), - -> O, satisfies the equation

(2.15)

d; (r)
eF(; (’), y (r)) + e (; (r), y (r)), - > O,2G

dr

"(o)X

4 LettingG G (x, y withE G (x, y (t))} 0 introduces no additional features into the problem.
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In 3 and 4 we analyze the limit e $ 0 in (2.13) or, e $ 0, z ]’ oo, ezr t in
(2.15), with tfixed in both cases and 0 <- <-_ T< oo (T is arbitrary). This is the usual
diffusion or white noise limit [2], [3]. In 5, 6 and 7 we examine the limit eo in
(2.13) or, "- oo in (2.15), with e fixed and 0<e -<eo, where eoissulficientlysmall.

Both scalings (2.13) and (2.15) are useful and all results can be stated in
either scaling, in 3 and 4 we employ (2.13). Later we also employ (2.15). In the
context of specific applications one or the other scaling, (2.13) or (2.15), may be
more appropriate or more natural. This should not obscure the fact that we are
dealing with the same problem.

3. The perturbation expansion. In this section we describe the class of
external influence processes we shall admit and then, under some simplifying
assumptions that are removed in 4, we describe the perturbation procedure that
is used repeatedly in later sections.

Let y(t) be a time homogeneous Markov process with values in a compact
metric space S. We shall assume that y (t) is ergodic and this is necessary for the
results we want (see [7] for results without this assumption). This process will be
our external influence process. To be specific, and without substantially restricting
generality, we shall assume that y (t) is a jump process as follows (for more general
situations see [3] and [7]).

Let P(t, y, A), t 0, y S, A a Borel subset of S, be the transition probability
function of y(t), t-0. We shall assume that for f(y) a continuous real-valued
function on S

(3.1)

has the form5

(3.2)

where

(3.3)

and

(3.4)

Of(y) lim
1 Iso - e(t, y, dz)(f(z) -f(y))

Of(Y) q(Y) I r(y, dz)f(z)-q(y)f(y)

q(y) is a continuous function on S and there exist constants % qu such
that 0<q q (y) -< qu < oo

7r(y, A), y S, A a Borel subset of S, is a probability measure on S for
each y S and a continuous function of y for each Borel set A.

The operator O of (3.1) and (3.2) is the infinitesimal generator of the process y(t),
=> 0. It is easily seen that P(t, y, A) is a Feller transition function and that y (.) can

be taken as right continuous with left hand limits. Hence y (.) is a strong Markov
process.

Let us assume, in addition to (3.4), that for some nontrivial reference
probability measure/x on S, 7r(y, has a density

(3.5) r(y, dz ’(y, z )tx (dz ),

The region of integration will be usually omitted in the following.
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jointly measurable in y, z S and such that

(3.6) 0< ’l ’(y, z) --<’u<
where andu are constants. Then it follows easily by standard arguments that
the process y(t), ---0 is ergodic and that it has a unique invariant measure P(A),
AcS

(3.7)
P(S) 1,

Moreover the equation

(3.8)

with

P(A I P(dy)P(t, y, A ).

O[(y) -g(y), y e s,

(3.9)
P(dy)g(y)=O

has a bounded solution, unique up to an additive constant. The solution is given by

(3.10) f(Y) (O-g)(Y) Is X(Y, dz)g(z), y e S,

where

(3.11) X(Y, A) dt(P(t, y, A)-P(A ))

is the recurrent potential kernel; the integral is absolutely convergent since
P(t, y, A) approaches P(A) exponentially fast uniformly in y and A as a con-
sequence of (3.3) and (3.6).

We shall refer to (3.8)-(3.11) by the statement that the Fredholm alternative
holdsfor the process y (t), t >- O. The above description of the influence process y (.)
and its properties will be used throughout in the sequel. We emphasize that we
have introduced these details for the sake of being specific. Most results that
follow hold under much more general conditions. However, as already men-
tioned, a minimum of ergodicity assumptions is necessary. Some form of the
Fredholm alternative as above must hold or else different phenomena can arise.

Let x (t), =>0, be defined by (2.13) where F(x, y), G(x, y): R" xS -->R are
continuous in y and bounded and smooth as functions of x. Lety (t) be defined by
(2.13) with y(t) as above. The assumptions thatF and G are bounded is removed
in the next section so that linear systems can be included. We impose it in this
section for simplicity.

Clearly (x(t),y(t)) are jointly a Markov process on RnxS. Let
P" (t, x, y, A), x eR n, y e S,A a Borel subset of R" S, be the transition probabil-
ity function and the infinitesimal generator of this process. On functionsf(x, y)
smooth in x and continuous in y, we find easily from (2.13) and (3.2) that

(3.12) f(x, y)=l-Qf(x, y)+lF(x, y)-Of(x,Y)+ G(x, y).
Of(x, y)

e e Ox Ox
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Here dffdx stands for the x-gradient of [ and the dot stands for inner product of
vectors in R". In the scaling (2.15) the process( (r), y(z)) has the infinitesimal
generator

(3.13) 7(x, Y)= Q(x, y)+eF(x, y)"
O[(x, y._.___) +e2G(x y)

O[(x, y______2),
Ox Ox

which differs from of (3.12) merely by a factor e. The backward Kolmog0rov
equation for

u(t’x’y)=Ex’y{f(x(t)’ y(t)}=IR I P(t,x, y,ddu)f(,u)

(3.14)

ou(t,x, y)
Ot

=u(t, x, y), t >0,

u’(O,x, y)=f(x, y).

For e > 0 fixed the process (x" (t), y (t)) has the following properties which
are elementary consequences of the above definitions and assumptions:

(3.15)

(i) The transition function P" (t, x, y, A defines a Feller semigroup on
C(R x S), the continuous functions on R x S.

(ii) The semigroup maps (R" x S) (continuous functions that vanish
as Ix - oo) into itself. In fact for any compact setK cR x S and all
yS,t>O,

lim P" (t, x, y, K) 0.

(iii) The process (x (t), y" (t)) has a version which is right continuous
with left hand limits. In fact, trivially, x (t) is continuous.

From the above it follows that (x" (t), y" (t)) is a strong Markov process.
We shall now proceed with the perturbation analysis of the backward

equation (3.14) for e small. Note first that Le of (3.12) has the form

(3 16)
1 +-+e

where

(3.17) .1-=O, a=F .--o 3=G .--9
Ox’

Let us now assume, as in (2.8), that

I(3.18)
F(x, y)P(dy) 0.

Problem (3.14) can be analyzed as a problem entirely within the context of
differential equations and semigroups following the general results of Kurtz [19].
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The formal analysis behind such results follows the general rules of perturbation
expansions and one can use the same general rules for a surprisingly diverse class
of problems [20] in addition to the present ones. We continue now with the
analysis.

Recall at first that we are interested mainly in the behavior of x (t) for e
small. Therefore we take f in (3.14) as a smooth function of x only,6 i.e. f f(x).
Because of (3.18) and the Fredholm alternative (3.8)-(3.11) the function

of(x)
(3.19) fl(x, y)= X(Y, dz)F(x, z)

Ox

satisfies the equation
of(x)(3.20) Ofx(x, y)+F(x, y).
3x

Now we define on smooth functions a linear operator by setting

I- I [(x)(3.21) f(x)= P(dy)F(x, y). Ofl(X,ox Y) + P(dy)G(x, y)
Oz

More explicitly, using (3.19), we have

(3.22)
+ Ip(ay)G(x y). o(x).ox

We assume now that the diffusion equation

Ou(t,x)
Lu t, x t >0,

Ot
(3.23)

u(O,x)=[(x)
has a unique smooth and bounded solution in 0t_<-T< oo, whenever f(x) is
smooth and bounded. This is in fact true on account of the smoothness of the
coefficients of the operator which follows from the smoothness of F and G.

Under the above hypotheses we have the following.
THZORZM. For f(x) smooth and bounded let u (t, x, y) be the solution of

(3.14) with u (0, x, y)=f(x), i.e.,

(3.24) u (t, x, y) Ex,y {f(x (t))}.
Let u(t, x) be the solution of (3.23) with the same data f. Then

(3.25) Ju(t,x, y)-u(t,x)l=O(e), O<-_t<-T<oo,

uniformly in x R", y S.
Proof. The idea is to construct an expansion

(3.26) u
6 Otherwise we have an initial layer which is handled easily.
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where Rr is the remainder, and show that

(3.27) lu Uo- eu et’ruNI O(etq-1), N O, 1, 2," ".

Therefore, for example,

3.28 I uol---I o-u,-ul +Iu +ul o( +o(,

provided Ul and u2 are bounded. Naturally u0 is identified with u(t, x)of (3.23).
Now let u satisfy (3.14), i.e., in view of (3.16),

(3.29) a+2e+3- u O.

If we insert (3.26) into (3.29) and equate coefficients of equal powers of e we
obtain the following sequence of problems:

(3.30) Uo= O,

(3.31) u -zUo,

(3.32) u -u- - uo,"

Recalling that =O by (3.17), we conclude from (3.30) and the ergodic
properties of O that uo uo(t, x) and does not depend on y. It will be identified
with u(t, x) of (3.23) later. Because of (3.18) and the Fredholm alternative, (3.31)
has a bounded solution (up to a constant)

(3.33) u -uo.
Using this in (3.32) and applying the solvability condition (3.9) to the right side, we
find that uo(t,x) must satisfy (3.23). Since u(O,x, y)=(x), it follows that the
initial data for u0 is and hence uo u of (3.23). Solving (3.32) now yields

(.4 u -;(u ( )u),

and both u and u above are well defined smooth and bounded.
A direct computation and the above definitions (3.33) and (3.34) produce the

following:

+ +- (u-u-eu-e u)

(.5 ++- (u+u+

Therefore, by the maximum principle for3_ O/Ot and the regularity, we obtain
(3.27) with N 2 and so (3.28). The proof is complete.
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Letus note that the choice of ul and u2 in (3.33) and (3.34) implies that (3.31)
and (3.32) hold and hence the O(1/e) and O(1) terms in (3.35) cancel. This is the
essential point of the perturbation expansion and will be used repeatedly in the
following sections.

4. Weak convergence. The result of 3 shows that under suitable hypoth-
eses, mostly smoothness and the ergodicity of y(t),

(4.1) Ex.r {f(x (t))} Ex{f(x (t))}, 0 _-< t _-< T< co,

as e 0, with T arbitrary, where x(t) is the diffusion Markov process associated
with the operator of (3.21). In order to conclude that the process x’(t)
converges weakly to x(t), as a measure on C([0, T]; R"), T< co but arbitrary, it is
necessary to do a bit more. We also need information, useful in later sections,
concerning moments of x" (t). This is what is done in this section.

First we replace the boundedness assumptions on F(x, y) and G(x, y) by the
following:

(i) F(x, y) and G(X, y) are functions on R" x S R ", smooth in x and
continuous in y;

(ii) There is a constant K such that for all x R and y S

(4.2) IF(x, Y)I-<K(1 + Ixl), IG,(x, y)lK(1 + Ixl)

OF(x, y)
oG,(x, y)

_-<K, i,j= 1,2,...,n.

(iii) Higher order x-derivatives of F and G do not grow faster than
powers of Ix as Ix I-" uniformly in y s.

We note that the assumptions (3.3) and (3.6) imply the exponential estimate

(4.3) sup sup IP(t, y, A )- ff(A )l <=e -‘, =>0,
yS AS

for some a > 0.
LEMMA. Under the above hypotheses, the solution x (t) of (2.13) satisfies 7

(4.4) Ex,y{Ix(t)lp} <-Cp(1 + Ix [P), 0_-<t _-< T< co,

where p >- 1 is an integer and Cp is a constant depending on p and T< co but not on
e>0.

Proo[. It is enough to prove (4.4) with G -=0 in (2.13) and with p replaced by
2p.

We haves

(4.5) ix (t)12p Ixl2 +2p F(x (s), y (s))x(s)lx (s)l2p-2 ds.

IX 12 =1 X/2.
We use the summation convention.
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Iterating this identity once, we obtain the identity

Ix(t)l=p= Ixl2 + E(x, y(s))x, lxl2-2 ds

+ F,(x (, y ( x(l(x(’ y(sl Ix (1-(4.6)
+F,(x" (V), Y (s))lx" (y)l2p-2

(2p 2)x;(v)5 (x (v),y (s))x;(v)lx (y)l2-4] dy+ ds.

We now take expectation and, letting ,, 0, stand for the -algebras generated
by (x (s), y (s)) for s t, we obtain

Ex.r {Ix (t)l2p} Ix 12p + 2p
Ex,y {F (x, y (s))x, Ix 12p-2} ds

E

+--- Ex,y E F(x(T), y (,y))
e

(4.7)
ix f,)l,,- +F, fx f-,,), y (s))lx f,,,)

+(2p 2)x(T)(x* (T), Y (S))X(T)Ix (T)I2p-4] v} } dy ds.

Now we use (4.3) (recall thaty (t) y(t/e2)), the centering hypothesis (3.18) and
(4.2) in (4.7) which yields

(4.8)

4epKEx.y {Ix (tll-p)_-< Ix =p /- (1 / Ix 12p)

2 e (-’>/"’---x,y ’t 1 + Ix (3,)12p} aT ds,

where p is a constant. Thus,

(4.9)
E,,{Ix (t)l= } Ixl + e 4pK(1 / Ixl2)

/ ’P 2pK2o Io Ex., { 1 + Ix (3,)12’} dT.

Inequality (4.9) and Gronwall’s lemma yield (4.4). The proof of the lemma is
complete.

We consider next the diffusion operator of (3.21) and introduce a set of
hypotheses corresponding to (4.2). First we write in the form 0c e Cz)
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where, from (3.19)-(3.21), we have

a(x) symmetric part of 2 X(Y, dz)P(dy)F(x, y)F.(x, z)

| E{F(x, y(t))F(x, y, (o))}

(4.11) r

lim
1 iTI0r,- E{F(x, y(t))F,(x, y (s))} dt ds,

k OXk
(4.12)

i,]=1,2,...,n.

Here E{-}, without subscripts, denotes expectation relative to the stationary
process y (t), i.e., where y (0) is distributed according to P. The kernel X is defined
by (3.11). Note that the last expression in (4.11) displays the symmetry and
nonnegative definiteness of (a(x))= a(x).

In the notation (2.6) and (2.7), the matrix a(x) has the form

(4.13) a(x) | R (x, s) ds S(x, 0),
d-

i.e., it is the power spectrum of F at zero frequency. Frequencies other than zero
enter into the definition of a(x) (and also of b(x)) when (2.13) has rapidly
oscillating terms, i.e.,

X (t) e-at/2. (t

where

d (t) A (t) +-F(x (t) y (t)) + G(x (t), y" (t)),
dt e e

t>0,

x (0) x,

and A has only imaginary eigenvalues. The corresponding problem (2.15) has an
O(1) linear term on the right hand side. We shall deal only with the case A =0
here and refer to 5.3 for an example and to [3], [7], [18] for additional
information on this point.

We assume that (aij(x)) and (bj(x)) satisfy the following conditions

(i) They are smooth functions of x.

(ii) There is a constant K such that

ai(x)l<--g2(1 / Ix I), Ib(x)l<-g(1 / Ix I),

(4.14) aq(x) _-<g(l/lxl), Ob(x) <-K,
OXk

i,j,k,l=l,2,...,n.
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(iii) Higher order derivatives of aq and bj are dominated by powers of
Ix for Ix large.

Under these conditions the diffusion equation

Ou(t,x)
=u(t,x), t>O,

Ot
(4.15)

u(O,x)=f(x),
has a unique smooth solution if f(x)is smooth and I(x)l =< C(l/lxl), for some
integer p. In fact we also have lu (t, x)l =< C’(1 + Ix I), 0 -< T<, for T arbitrary
and for some constant C’ and integer ft. The process corresponding to 5f is
denoted by x(t) and it is a sample continuous strong Markov process (the
corresponding semigroup is C (cf. (3.15)) and Feller).

THEOREM. Under the above hypotheses the process x(t), >-0 defined
by (2.13) converges weakly as e 0 to the diffusion Markov process x(t) generated
by of (4.10)-(4.12). Moreover, moments ofx (t) converge to moments ofx(t) on
any finite interval.

Proof. With the moment estimate (4.4) on hand, the theorem of 3 extends
easily to the present situation and we have that for f smooth such that If(x)l -<
C(1 + Ix IP), there is an integer p such that

(4.16) lim sup sup
[Ex,y {f(x (t))} u (t, x)l

,00<=,T x,y 1 -" Ix [P O,

where T<c is arbitrary and u (t, x) is the solution of (4.15).
It remains therefore to show that the processes x" (t), with 0< e =< 1, say, are

relatively weakly compact. Since x(t) and x(t) are processes on C([0, T]; R"),
T< ,.it suffices to show that they are relatively weakly compact in D([0, T];
(cf. [21, p. 150], [22]), i.e. to show that for some constants 3’ >0 and/3 >0

Ex, {Ix (t) x ()l Ix ()- x (s)1 } _-< c(t s) /
(4.17)

O<=s <=r <=t <= T< c,

where C is a constant independent of s, tr, t, e, x and y provided x, the starting
point of x (t), ranges over a compact set inR n. In addition to (4.17) we must show

(4.17’) lim lPx,y{ sup Ix(t)l>N}=O, T<.
N’oo 0 O<--t<--T

To prove (4.17) and (4.17’) we proceed roughly as in 3. The preliminary
considerations that follow are given in detail because they are relevant to later
sections. For the proof of the present theorem it suffices to have fl in (4.18); f2 is
superfluous here, but is used in later sections.

Let f(x) be a smooth function such that If(x)l <= C(1 + Ixlp) and definefl(x, y),
f2(x, y) by

of(x)(4.18) /l(X, y)= X(Y, dz)F(x, z)
Ox

(4.19) f2(x, Y)= Is X(Y, dz)[F(x, z)
o/(x, z)

OX [(x)],
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so that

(4.18’) Ofl-l-F" Of--O,
Ox

(4.19’) Ofz+F v’--21+G v’ -f O.
Ox Ox

Here O is defined by (3.2) and X by (3.11). Define
2

’X(4.20) f (x, y) f(x) + efl (x, y) + t f2( y ).

With defined by (3.12), it follows from (4.18’) and (4.19’) that

O.(x, Y)
+G(x, y

Y)(4.21) ,f (x, y) f(x) + e F(x, y)
Ox Ox

+ eG(x, y)"
oh(x, y)

Define Mr- by

(4.22) MF(t) =f (x (t), y" (t))-f (x, y)- J0T (x" (s), y (s)) ds.

Mt is a zero-mean, integrable (because of (4.4)), right-continuous martingale
relative to t, the g-algebras associated with the paths (x (-), y (-)) up to time t.
The increasing process (Mt,,MF) corresponding to MI is given by9

(MF(t)) Jo[ (f)2_ 2f,ef,](x, (s), y" (s)) ds

(4.23)
J0 [O(fa + ef2)2- 2(fl + ef)O(f + eh)](x (s), y" (s)) ds

Nr(x(s, y(s as.

By definition, (Mt,) satisfies

(4.24) E{(Mr(t)-Mr(s))2[,} E{(Mr(t))-(Mr(s))l,}
for 0_-<s-_<t _-< T<. It can be verified by direct computation that (4.22) and
(4.23) obey (4.24).

If we let gl and gz be the integrands multiplying X in (4.18) and (4.19)
respectively, we obtain the following expression forHt. in (4.23):

(4.25) HF(x y) =q(y) 7r(y, dz) (X(Z, d’)-X(y, d’))(gl+eg2)(x, y)

Thus, H-(x, y) is a smooth function of x and grows like a power of ]x for x large,
uniformly in y.

9 For simplicity we write (Mte) instead of (Mte, M,,).
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From (4.20) and (4.21) it follows that the identity (4.22) can be written in the
form

f(x (t)) f(x Jo ’f(x (s )) ds

(4.26) =Mi’(t)+efl(x, y)+e2f2(x, y)-ef(x’(t), y’(t))-e2f2(x(t), y(t))

q- F 4-G 0fl_ + 2 0f2" (xe (s) y (s)) ds.]
Ox Ox ] J

This form displays clearly why indeed x (t) is well approximated by x (t) generated
by.

Let us return to estimates (4.17) and (4.17’). We choose f(x) xi, the
coordinate functions, for i 1, 2,..., n successively. Let the corresponding fl
and f of (4.18) and (4.19) be denoted by fl, and f2i respectively. Let the
corresponding martingale Mr be denoted by M(t). With the use of (4.12) the
identity (4.26) becomes

x(t)=x+ b(x(s))ds+M(t)+4,(x, y)+e(x, y)

(4.27) 4,(x (t), y (t))- e, (x (t), y (t))

i=l,2,...,n.

From (4.14), (4.4) and Kolmogorov’s inequality for the martingale MT(t), esti-
mate (4.17’) follows. Now define

(4.28) 7(t)=x,+Jo b,(x’(s))ds+MT(t), i= 1, 2,- , n.

From (4.4), (4.27) and Kolmogorov’s inequality, it follows that for x in a compact
set and e 1, say,

> 0, > 0.(4.29) lim
e$O OtT J

Thus, it suces to show that (4.17) holds for (7(t)).
Let us first estimate conditional expectations. We have, in vector notation,

(4.30)

E{I; (t)-;*(s)ll,}- E{

c(t s( + Ix (s

b(x(cr)) dcr +M’(t)-M(s)

+2{IM (t)-M (s)ll}

C a constant.
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The last step in (4.30) is elementary for the deterministic integral. For the
martingale we have

E{IM (t)-M (s)121} y. E{(MT(t)-MT(s))2I}
i=1

Y. E{(M(t))-(MT(s))],}
i=1

i=1

-<_(t-s)(1 +lx (s)la).
The last step here follows from (4.4) and the bound for H that follows from
(4.25).

To prove (4.17) we use (4.30) and the moment estimate (4.4) as follows"

G,y{1 (t)-()1I ()- (s)l }

G,y{E{I; (t)-; ()1I}1; ()-; (s)l}
Ex,y{E’/2{lf (t)-; ()l=l}l; ()- (s)[ }

<C(t_W/2E,,{(1+1;’())/1; ()-;’(s)l}
=C(t /2-) =.,{{( +;

-) =., +1;()1)/-)}
/{;()-; (s)ll}}

c(t )/( / -)/{(1 I)-s) Ex,y{E +1;()

Choosing and applying (4.4) we obtain (4.17) with . The proof of the
theorem is complete.

We note that we shall have occasion in later sections to refer to (4.18)-(4.26).
is is why the theorem is proved here in detail since it is not substantially
different from the one in [3], for example.

5. Stochastic stability based on the wide-band noise approximation.
5.1. a Lyapunov theorem. Consider system (2.13) which defines

(x (t), y (t)) (or (2.15) for (: 0"), Y 0"))) under the hypotheses of 4. As we have
shown, x" (t) converges weakly to the diffusion process x(t) generated by of
(4.10)-(4.12). We shall examine properties of x (t) with 0<e _-<eo, e fixed and eo
sufficiently small, as - o. The objective is to establish results about x (t) which
are based only on conditions upon the approximating diffusion x(t). The first
theorem is Lyapunov-like result for a class of Markov processes.

THEOREM. Let V(x) be a smooth function on R such that V(x) +oo as
[x[, it behaves like a polynomial in x for x large and it is positive definite:
(5.1) V(x)O, V(x)-O=)>x-O.
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Suppose that the vector fields F(x, y) and G(x, y) satisfy, in addition to
smoothness and (4.2),

(5.2) Fi(0, y)=0, Gi(0, y)=0, i=l,2,...,n, y6S,

so that, by (4.11), (4.12),

(5.3) aq(x) O(Ix12), bj(x) O([x[), Ixl $ o.
Suppose that V(x satisfies

(5.4) V(x) <=-yV(x),

Then for 0<e =<e0, e fixed and eo sufficiently small, x (t) is uniformly
stochastically asymptotically stable as t 00, i.e., for any 11 > 0 and 12 > O, there is
a 6 > 0 such that if Ix (0)[ Ix I<, then

(5.5) Px.y {Ix (/)[ < r/2e -t,
for all y S, with " > 0 a constant. Furthermore,

(5.6) Px,y{limlx(t)l=O}=l.
Remark 1. The global requirements on V(x) are necessary only for (5.6) and

not for the local result (5.5).
Remark 2. In the linear case (F and G linear in x), one can get very sharp

results by deriving closed equations for moments (in the limit) and using well
chosen quadratic functions for V(x).

Proof. We refer repeatedly to the constructions (4.18)-(4.26). The function
[(x) in these constructions will now be the Lyapunov function V(x).

Let Vl(X, y) and V2(x, y) be the functions corresponding to (4.18) and (4.19)
with f V. Define V as in (4.20) so that (4.21) holds.

We note that because of (4.2), (5.2) and (4.14), (5.3), V1 and V2 behave like
V(x) for small Ixl and large Ixl uniformly in y S. Thus, there is an eo such that for
0<e <---E0

(.7) V(x)<-_ V’(x, y) =< ).V(x),
for some positive constants 1 and

Let > 0 be a constant. From (4.21) we have

( + ,)V (x, y)= ,V (x, y)+V(x)

(5.8) + el(x, y)
OVz(x, y)

+O(x, y)
OVa(x, y)]

L Ox Ox

+ eG(x, y)-
0x

<=(+2/+ eo3) V(x),

for some constant 83. If we choose so that 8/+ e083 =< 3’ we find that

(5.9) (? +,)V (x, y)=<0.
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Now we write (4.22) withf e4’V"
etV (x (t), y (t)) V (x, y)

(5.10)
+ e( +,V(x(sl, y(sll as +,-(tl.

Here lv,(t) is a zero-mean, integrable, right-continuous martingale relative to. The increasing process associated with My has an extra factor e multi-
plying Hv" in (4.23).

Using (5.7) and (5.9) in (5.10)we obtain

(5.11) 0 Ne/’l V(x(t))<-2V(x)+lv’(t),
and hence zV(x)+lv(t) is a nonnegative integrable martingale. By Kol-
mogorov’s inequality we have that for each 2 ) 0

Px,y{ sup eqtlV(Xe(t))>12}
(5.12)

--<Px.y{ sup (2V(x)+ly(t))>12} <’2V(x)
O<_t<=T 912

Letting T 1’ 0o in (5.12) yields

(5.13) ,x,y{ sup e’l V(x’(t))>2} < 2_V_(x)
t_>0 ’12

By the positive definiteness and smoothness of V(x), there exist constants
c- > 0 and c2> 0 and positive integers pl and p2 such that

(5.14)

for Ix small, say Ix I=< g. Thus,

clx (t Pl<=e t>-O V(x(t))<-e
Cl

and hence

(5.15) Px.y I (t)[ <-e \Cl/ ,leO el-
2 Z

Let 911 >0 and 912 >0 be given. Choose so small that (5.15) yields

Px.y {Ix (t)[ _-< e --’t 2, t __--> 0} --> 1 e2 V(x)
912

and then choose 6 > 0 so that for Ixl <, W(x)<n.n. This proves (5.5).
To prove (5.6), we note that

tl’oo tl’ t_->o
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where C is a constant. Thus, from (5.13),

px,y{limlx(t)l=O}>l 2 V(x)
, C

and letting C ’ yields (5.6). The proof of the theorem is complete.

5.2. Linear systems. We shall consider the linear system

(5.16)

dx(t) a-a (y (t))x (t) +B(y (t))x (t),
dt e

x’(0)=x,

or, in the scaling of (2.15),

(5,16’)

dYe(r) eA(y(z)) (’) + e 2B (y(’)) (’),

’(0)=x,

t>0,

-r>O,

where y(t) is as before (cf. 3 and 4), y (t)= y(t/e 2) and A (y), B(y) are n n
continuous matrix functions on S such that

(5.17) A(y)P(dy)=O.

The theorems of 4 and 5.1 specialize without changes to (5.16) and (5.16’).
The limiting diffusion process has the infinitesimal generator given by (4.10)
where (4.11) and (4.12) are replaced by the following.

(5.18)

(5.19)

aq(x) symmetric part of 2 X(Y, dz)/5(dy) Y’. A,k (y)Ajt(x)xkxt
k,l=!

k,l=l

b(x) X(Y, dz)P(dy) Y A,(y)A(z)x + P(dy) E B(y)x,
i,k=l k=l

i,j= 1,2,’’ .,n.

We prove next the following theorem which extends Khasminskii’s result for
linear It6 equations [9], [10].

THEOREM. Let x (t) be the process defined by (5.16) and suppose that there
exists a smooth ]:unction h on S"-1, the unit sphere in R, such that if

(5.20)

then

jr(x) log Ix I+ h (x/Ix

(5.21) f(x)<-_q <0, x eR",
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where q is a constant. Then, for 0< e _-< e o, e fixed and eo sufficiently small,

(5.22) Px,y{lim [/(t)[ 0} 1, x

If instead of (5.21) we have

,f(x)>=q >O,(5.23)

then (5.22) is replaced by

(5.24) P,y{lim lx(t)l=oo} l, x 6R", y 6S.

Remarks. 1. The conditions of this theorem are sharper than the ones of the
theorem of 5.1.

2. The device of introducing h is due to Pinsky [101. Before proving the
theorem we elaborate on (5.20) and (5.21); see also [10].

Let us introduce polar coordinates

(5.25) x p:, p Ix I, sc x/Ix

and the following notation"

(5.26)

(5.27)

a:(y,)"
O ,i,,=a

f()A, (y), (6q :,:)
oi

B*(y, ) Of()_ XO ,,=
af(,)B, (y)(6

a * (y, ) A, (y),,
i,k =1

b (y, ) ,
Bite (y)i,

i,i

4(Z8a )(5.28) v(:) | IX(Y, dz)ff(dy)A *(y, )" I/5(dy)b (y, ).

The infinitesimal generator (cf. (4.10.), (5.18)and (5.19)) has the following form
in polar coordinates"

O---+ a :)pp]f(P’ :)= II X(Y, dz)(dy)[A(Y, )’O (y’
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Therefore,

(5.30) ofE(log p + h ()) v() +eh (),

wheree is the infinitesimal generator of the angular process (on S"-1) and

(5.31) Oh()

The operatore is an elliptic differential operator of second order defined on
smooth functions on Sn-1. If it is uniformly elliptic, then the corresponding
angular process is ergodic with/5(A ),A c Sn-l, its invariant measure. Moreover,
the Fredholm alternative holds in the same way as in (3.8)-(3.11). Thus, in the
ergodic case, if

(5.32) q v()P(d),

then h(sc) can be.chosen so that it is smooth and

(5.33) eh (:) -v()+q.

Combining this with (5.30) yields

(5.34) (log p + h (so)) q.

Thus, (5.21) or (5.23) can be verified by computing the integral (5.32) in the
ergodic case. In the nonergodic case, there are no general criteria assuring the
existence of h with q > 0 or q < 0.

Proof. We shall use polar coordinates and the notation (5.25)-(5.31). The
infinitesimal generator of (x (t), y" (t)) has the following form in polar coordi-
nates:

(5.35) =_o+l A..+ p O 0

e e 0 a + B +b o

Let f(x) logp +h() be as in (5.20) and define f(, y), f(, y) as in (4.18)
and (4.19); they do not depend on p since (5.16) is linear:

(5.36)

(5.37)

Define

(5.38)

f(,y)= x(y, dz) a*(z,)+A(z,) O J’

h(, Y)= Is X(y, dz)[A *(z, ) of(,z) oh()
+B(z,)

+ b *(z,

ff(p,, y)=logp+h()+ef(, y)+ e 2f2(, y).
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Then, as in (4.21), we have

(5.39)

!" Y)
.f .f(x)+ elA (y, ).

l
+B*(y, )

+e:ZB*(y, so). 0f2(s’ y)

The analogue of (4.22) is as follows:

[x;(t) (x’(t) ) ,[x’(t),y )log Ix (t)l + h\l--l] + el1 ix (t)l’
y (t) + e 2\l-(t)l (t)

(5.40)

where Mrs(t) is a zero-mean, integrable, right-continuous martingale relative to
t. As in (4.23) and (4.25), its increasing process is given by

(5.41) x (s) (s)) ds

where

(5.42) Hf-(:, y)= q(y) rr(y, dz) (X(z, d()-(y, d))(gl + eg2)(:, ’)

and

(5.43)
g(:, y)= a*(y, sC)+A *(y, ) oh()

g=(:, y)=A *(y, :). Ofl( Y--------) +B *(y, :) Oh()

+ b*(y, )-v(se)-eh().

11 We use interchangeably rectangular and polar coordinates to simplify notation.
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Let us assume that (5.21) holds; the case (5.23) is similar. For 0< e -<-eo and
with eo sufficiently small, it follows that

q +e sup IA *(y, :)-0/2(,Y-------)+B*(y, ). Ofl(, y_______)

(5.44)
e.y 0sc Osc

+ e sup IB*(y, :). Of2(, y)
, o q < 0.

Thus, from (5.40) it follows that for e fixed and 0< e <_-eo,

(5.45) li-’ 1
log Ix (t)l -< 4 +

1

with probability one. The lemma that follows shows that t-MF(t)->O as t->oo
with probability one. We have thus proved the following sharper result.

’
log Ix (t)l--< 1.

The proof of the theorem is complete.
LA. LetM(t) be a zero-mean right-continuous martingale with (M(t)) its

increasing process such that

(M(t)) Io H(s) ds

with

Then,

supE{H(t)}<-_C<.

1
-M(t) --> 0 as t -->,
t

with probability one.
Proof. The proof is similar to the one in [23, p. 487]. Let Y(t)= t-lM(t),

> 0. For a > 1, m __< < (m + 1)", m integer, we have

t
y(t)= 1-M(t)= 1--M(m)+ 1-[M(t)-M(m)]

rn rn m rn

Y(m) +Z(m, t).

Put

U(m) <sup IZ(m, t)l.
m’__t<(m+l)

To show that t-IM(t)-, 0 with probability one we must show"
(i) Y(m) -. 0 as m --> with probability one,
(ii) U(m) -. 0 as m --> with probability one.
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We have

E E{IY(m’)I2} Y, E{Me(m’)}
m=l m=l m

Z -----(M(m)> <=C Z ---if<oo,
m=l m m=l m

if a>l.

Thus, -’_m=l [Y(m)[ < and hence Y(m’)O with probability one. This proves
(i).

With a > 1 fixed we show that with probability one there exists an mo such
that for some/3 > 0 fixed,

1
U(m)<- m > too.m,

By the Borel-Cantelli lemma it suffices to show that the series below converges"

Y U(m) > P sup
m=l m=l m’ <t<(m +

IM(t)-M(m)[ >m- }
< . E{(M((m + 1))-M(m))2}

2a --/3

(m + 1)_m
C E

m--1 m

The last series converges provided a > 2/3 + 1. Clearly a 3 and/3 1/2 satisfy all
conditions and the lemma is proved.

5.3. The harmonic oscillator. In this section we shall consider in detail an
example" the harmonic oscillator with random spring constant.

There are (at least) two different ways the wide-band noise limit (---white
noise limit) may be considered depending on whether the radian frequency of the
oscillator is of order one or large (going to oo) as s 0. Both cases can be treated
without difficulty. The former leads to the white noise problem studied in [11].
The latter leads to a much simpler white noise problem because an additional
averaging is superimposed [3]. Therefore, we shall treat here the large frequency
problem which illustrates at the same time how averaging can be handled in
general. For multidimensional versions of this interaction between the wide-band
noise limit and averaging see [3] and the references cited there.

As another variation of the general theme up to now, we shall consider the
problem in the scaling (2.15). Thus, we have

(5.46)

d2 (r) 2 d" (r)
+2e /--dT-r +(O2+ey(r))i’(r)=O,

(0) X1,

r>O,
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where o is the radian frequency12 and 3’ is the damping constant of the oscillator.
The process y(r) is taken as the random telegraph process, i.e., the two state
Markov process y(r) +/-/3,/3 > 0, with a -1 the mean time between jumps. We are
interested in the asymptotic behavior of the oscillator as r-->oo, when e is
sufficiently small and fixed. We are also interested in the dependence of this
behavior on the parameters, a,/3, 3/and w and on the size of eo, the length of the e
interval.

Define

x() (z), x() =o

so that (5.46) becomes

(5.47)
dr (r)] -oo -ew-ly(z)

x(O)=x, x(O)=.x.

As usual, (x(r), x(r), y(r)) is a Markov process on RR {-/3,/3}. its
infinitesimal generator is defined on functions f(Xl, x2, y), y +/3, as follows "13

f(Xl, x2, y)= ce(-f(x1, x2, y)+f(x1, x2,

(5.48)

Of(X1, X2, y)
"r- O) X2

OX1

-1 0f(X1, X2, y)
--CO) yx 8 22/X2

0x2

With the introduction of polar coordinates

0f(x1, X2, y)),0x2

Of(x1, x2, y)
Oxz

(5.49) x e cos O, X2 e sin O,
0-<0 <2rr,

" of (5.48) becomes

f(r, 0, y)= a[-f(r, 0, y)+/(r, 0,
Of(r, O, y)

00

(5.50)
ew-1[ly sin 20 Of(r’O’Y).+cos200f(r’O’y)]Or00
22 [ 0

Or
e 3’ sin2 Of(r, O, y) __1 0, y)]+2 sin 20 Of(r;o

Note that has the form (cf. (3.16), (3.17))

(5.51) e 1 -}" E’92 -]" 8 2,3,

Not to be confused with a point in a probability space.
Because of the scaling (2.15) of (3.12) is multiplied by e 2.
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where

(5.52) ,1 Q-to-, Qf(y)--a[-f(y)+f(-y)],

(5.53) =- y sin20+cos
(5.54) 3 -2 sin 00 sin 20

From the form of above, it is clear that the effect of large radian frequency
is the extra term -0/00. In the problem corresponding to [11] this term would
appear as part4 of. We must now study the ergodic properties of in (5.52).
Since O and 0/00 commute this presents no diculties. In fact if g(y, 0) is a
function on {-,}x [0, 2) such that

(5.55) P(dy)g(y, O)g(B, O)+g(-B, 0)=0, 0N 0 <2,

then

(5.56) -g(y, 0)= e-[g(y, 0-t)-g(-y, 0-t)] dr.

Let [(r) be a smooth function on -m<r <m. We define [(r, 0, y) and
h(r, O, y), as usual, by (4.18) and (4.19) which now yield

-Y
)( sin 20 -cos 20)O(r(5.57) I(r, 0, y)

4(+ or
(5.58) h(r, O, y) 0.

Thus, the generator of the limiting diffusion process to which r(r)
log (Xl(r)+x(r)) 1/2 converges as e0 is given by

(5.59) otCt 2 02f(r) +( ce2 )Of(r)f(r)= 16to-(--+c Or 8to(--c) -3’ Or

The process r(r) generated by in (5.59) is one dimensional Brownian motion
with variance

and drift

1, It can also appear as part of2, as it does in some applications [7], [24]. We still have averaging,
however.
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Now choose f(r)= r. Then,

a/32(5.60) .Tf(r) 8to2(to2 + a2 3’ q

and hence the stability condition for the limit problem (q < 0) is now15

(5.61) 8w..(to 2 +a) < 3’.

From the expression corresponding to (5.44) we estimate the relevant eo as
follows: stability (with probability one) persists for (5.47), provided 0<e <eo
where

43"w [2to (to 2 -" O2) (O -1-- 1)]-- Ctfl 2(5.62) eo
8(.o 2((.0 2 ..i_ a 2

and where a,/3, 3’ and to satisfy (5.61). This result corresponds to (5.22). The
instability result (5.24) follow analogously. When 3" 0 the system is unstable, as
is well known.

One may ask the following question regarding (5.47) and problems similar to
it. If (5.61) holds, is it true that (5.47) is stable for any e > 0 not just for 0< e < eo?
We do not have an answer to this question at presett (of. also [11]).

Stability of moments and explicit bounds on the range of variation of e can be
obtained easily in much the same way done above.

6. Asymptotic distributions for large time based on the wide-band noise
approximation.

6.1. A Lyapunov theorem. We shall prove a theorem closely related to the
one in 5.1, the main difference being that (5.2) and (5.3) do not hold here. We
shall work with the scaling (2.15) and with the assumptions of 4.

TI-IEORE. Let ( (’), y(z)) be the process defined by (2.15) jointly with the
external influence process and let .T be the infinitesimal generator of the limiting
diffusion process defined by (4.10)-(4.12).

Assume that there exists a smooth function V(x such that
(i) V(x >- O, V(x az as Ixl and V(x and its derivatives are

bounded by powers of Ix [or Ix large,
(ii) for some 3" > 0 and K > O,

(6.1) V(x)<=-/V(x), ]’or lxl>g.

Then, for 0< e <-_ eo, e fixed and eo sufficiently small, ( (z), y (z)) has
invariantprobability measures onR" x S. Ifthe diffusion process x (t), with generator, has a unique invariant measure tz, if i is the marginal measure on R" of any
invariantmeasure of( (-), y (z)) and ill(x) is a bounded continuousfunction, then

(6.2) lim l f(x)(dx)= I f(x)(dx).,l, O

This result was first obtained formally in [1].
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Remarks. 1. Conditions (i) and (ii) imply that x (t) has an invariant probability
measure. This follows from a theorem of Bene 12] since x (t) is a (7 Feller process
(cf. (3.15)).

2. If V(x) behaves like ]x ]P, p an integer, for Ix large, then any limit measure
(as or - 1’ o)/x and/z" of x (t) and* 0") respectively, has moments of order 16 < p.

Proof. We construct V" (x, y) as in (4.20) with V exactly as in 5.1.e
inequalities (5.11) hold again for Ix >K and there is a and an eo> 0 suciently
small so that (5.9) holds for Ixl>g and 0<e eo. With the use of (4.4), the
martingale term drops out in (4.10) on taking expectations and we obtain
(allowing for the (2.15) scaling)

eE,y{eV((r))}
E,y {e9*V ( (z), y (r))}

2 e 2S g(6.3) V(x, y)+e e Ex,y{( +) ((s), y(s))} ds

f[ y(s))2V(x) + e 2 e x,y
(e ds

+e e ,,{( +) (2(s), y(s)), 2 (s)lNK}ds.

Now when ]xl<=K,( +’)V is bounded by a constant CK. Thus, from (6.3), we
obtain

2 --e 2,r CK(6.4) Ex,y{V(, (r))} -<-:--e --C I1’

with 0< e -< Co, and eo sufficiently small.
Inequality (6.4) implies that the probability distributions of 09, " --> 0, with

x, y and e fixed,, are tight. Since V(x) +oo as Ix] oo, it follows that there is a
function R (K) oo as K --> oo such that [xl >K implies V(x) >R (K). Thus,

(6.5)
Px,y{I O’)l >K} <=Px,y{V(2 0")) >R (K)}

1<-- Ex,y{V(YO-))},
-R(K)

and this along with (6.4) gives tightness.
We can now apply a theorem of Beneg [12] to the Markov process (" 0"),

y(z)) on R xS and deduce 16 that as , 0<e -<e0, it has invariant probability
measures u" on R x S. Note that we make no statement about uniqueness; there
may be many limits. For any limit measure, we have that P(A) u (R" A),A is
a Borel subset of S, since P(A) is the unique invariant measure of Y0").

Let/. (B)= v (B x S), B a Borel subset of R", let f(x) be the bounded
continuous function on R" and let be the unique invariant measure of the
diffusion x(t) (we assume it is unique). By the ergodic theorem for x(t) we have

16By (3.15),( 0"), y(z)) is a Feller process as required in [12]. Recall that S is compact.
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that for almost all x

(6.6) limE{f(x(t))}= I f()t(d,)."
Thus, for > 0 fixed,

lim
e$0

f(2)l (d2)- f f(2)tx(d2)

(6.7)
lim
e$0

=<lim
e$0

+ lim
e$0

The second term on the right side of the last inequality in (6.7) is zero in view of
(6.6) and the dominated convergence theorem. The first term is zero by the weak
convergence theorem of 4 and the dominated convergence theorem. This proves
(6.2) and the proof of the theorem is complete.

6.2. Linear systems. As in 5.2, one can be considerably more specificwhen
dealing with linear problems. We shall consider the following analogue of (5.16):

(6.8)

dx (t) _1[A (y (t))x (t) +A (y (t))]
dt e

+B(y (t))x (t) + (y (t)), t>0, x(0) =x,

where y(t)=y(t/e2), as in (2.13), A(y) and B(y) are nn continuous matrix
functions on S and A (y) and/ (y) are continuous n-vector functions on S such
that

(6.9) A (y)P(dy) 0, A (y)P(dy) 0.

In the scaling (2.15), the process Y (r) satisfies the system

d(r)
d--- e[A (y (r))Y (r) + (y (r))]

(6.8’)
+ei[B(t(r))Y(r)+D(y(r))], r>0, x" (0) x,

which corresponds to (5.16’).
Note that for both (6.8) and (6.8’) the origin x 0 is no longer an equilibrium

point as it was in 5.2.
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For the processes x(t) of (6.8) (or (z) of (6.8’)) the limiting diffusion
process has, according to the theorem of 4, generator given by

(6.10)

where

(x + (x ),

(6.11)
lf(x) IIX(y dz)P(dy)[A(y)x. x(A(z)x’

0f(x)+ P(dy)B (y)x
Ox

and

(6.12)

+ P(dy)J(y)
Ox

Note that1 is the same as the operator denoted by in 5.2, given by (5.29) in
polar coordinates.

THEOREm. Let () be the process defined by (6.8’) and assume that there
exists a smooth function h on Sn-l, the unit sphere in R, such that if

(6.13)

then

(6.14)

)(x) log Ix I+ h (x/Ix

l](x) <-- q < 0, Ixl>g,

where q and K are constants.
Then]’or 0< e <= So, e fixed and eo sufficiently small,( (), y (-)) has invariant

probability measures on R"xS. If the process x(t) with generator 1+2 in
(6.10) has a unique invariant measure Ix, ifl is the marginal measure onR" ofany
invariant measure of( (’), y(z)) and ill(x) is a bounded continuous function on
R, then

(6.15)
lim l f(x)Iz(dx)= I f(x)tz(dx).
0

Remarks. 1. The conditions (6.13), (6.14) are essentially the same as (5.20)
and (5.21) since1 is the same as of (5.29). Thus, we are demanding that (6.8’)
be stable when A and B are removed.
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2. As in Remark 2 of 5.2, we shall work with polar coordinates (5.25). In
addition to the notation (5.26)-(5.31) (with in these formulas being’1 of (6.11)
in polar coordinates) we need the following definitions:

(6.16)
0f()= ,(y)(,_:g:)f(:)

(6.17)

, (y, :) E A, (y),,
i=1

/T* (y, :) /,(y).
i=1

The operator1 is identical with of (5.29) as mentioned already. The operator
02 of (6.12) has the following form in polar coordinates:

(6.18)

zf(p, )= X(Y, dz)e(dz) fi (y, ). --+ i (y, :)

( of(p, ))A (z, )" Of(p, ) + a (z, )p

(}A’(z, ) of(p,+ a’(z, )of(p, )

+ *(y,).+*(y,)

(; f(P, ) of(p, )]*(z,). o +(z’)op ]

+ f P(dy)[.(y ).
Of(p, ,)

p O

Op

Proof. Let b(p) be a function on [0, o) such that

and define f(x) by

(6.19)

(p) {0 ifp <=1,
1 ifp ->2,

f(x)=(lx]) log Ix] + h (]x)
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Since (6.1.4) is not altered by adding a constant to h we may assume that

(6.20) f(x) >0.

From the boundedness and smoothness of the various coefficients in of (6.18)
and from their specific dependence on p, it follows from (6.14) that

(6.21) f(x) f(x)/=f(x)_-< < O, Ixl >,
where/ is sufficiently large and I1 is smaller than Iql-

We construct next the functions f2(p, , y) and f2(P, :, Y) as in (5.36) and
(5.41) but now, because of the fi and B terms, they do depend on p. It is easily
seen that they are uniformly bounded, however, along with their p derivatives.
For 0< e -<-eo and eo sufficiently small, we can arrange to have

ff(p,, y)=f(p,)+efl(p,, y)+ e 2f2(p, , y)>0,(6.22)

and

ff(p, , y)-<M< ifp<=K,
(6.23)

’ff (p, , y) < 0 ifp >K.

Therefore, using (4.4) to let the martingale term drop, we have

0_---<E.,y

( x ) 2 { Io*f( *(s) )}=f Ixl,, y + Ex, I(s)l, i(s)l,
y(s) ds-

(6.24)
x 2M

+ e,,{l (sll >l as,

and hence

(6.25)

From (6.25) it follows that for x ranging over a compact set and any y S
(0<e

(6.26) lim
1

P,,{12 (s)l <} ds > 0

Now we can use again the theorem
an invariant measure for (2 (r), y (r)). The rest of the argument is as in 6.1. The
proof is complete.

In [13], Zakai used condition (6.26) and the theorem of Beneg in the same
manner as above for general (not necessarily linear) It6 stochastic differential

Recall is negative.
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equations. It is easily seen that his results have direct analogs in the present
context; the linear systems provide a more concrete situation.

7. An estimate for large deviations of stable linear systems. Consider the
systems (5.16) or (5.16’) under the usual hypotheses and in particular18 (5.20),
(5.21). Thus (-) (we shall use the (2.15) scaling, or (5.16’)) is stable as - -->o in
the sense of (5.22). In this section we shall estimate the quantity

Px,yl sup lx (s)] >>-R}
for 0< e -<-eo, eo sufficiently small. We shall show (Theorem 2 below) that it is
exponentially small in e2", - >--0.

The analysis we shall follow is motivated by the setup of 4 and 5 and results
of Pinsky [14] on the analogous large deviations problem for It6 stochastic
equations. Since the white noise results are of independent interest, we shall
reproduce them here in Theorem 1 below.

Let us consider the following system of linear It6 stochastic differential
equations"

dx (t) Bx (t) dt + A kx (t) dWk (t), > O,
k=l

(7.1)
x(0) =x.

Here x (t) takes values in R n, A A 2,... A andB are n n constant matrices
and (Wl(t),..., w,,(t)) is the standard m dimensional Brownian motion. The
infinitesimal generator L of the diffusion process x (t) has the form

ilXlA + Bijx(7.2) Lf(x) - 2 Ak k 02f(x) Of(x)
jrXr

i,j,l,r= k OX OXj i,j

We assume that x 0 is a stable equilibrium point of x(t) in the sense that
there exists a smooth function h (x/Ix l) on S-, the unit sphere inR n, such that if

(7.3) f(x) log Ixl + h(x/[xI),
then

(7.4) Lf(x <-_-q < O,

where q is a positive constant.
Applying It6’s formula to f(x(t)) yields

(7.5)

log lx (t)l + h lx(t)l/=loglxl+h + gf(x (s )) as

of(x(t)) k+ ZA (t)qXl(t) dWk
j,t k OXj

18 The case (5.23) leads to entirely analogous results and requires no special treatment.
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Direct computation leads to the following expression for the integrand of the
stochastic integral in (7.5)

n ( X ) AkXjXl__l_ Oh (x__(Xltq XrXjXl1(7.6) k ox  lxl} ]j, k 1, 2,’’’, m,

and these are smooth functions on S"-1. Define also

We may now rewrite (7.5) in the form

(7.8)

loglx(t)l+h :ix(t)i]=loglxl+h + Lf(x(s))ds+M(t),

where M(t) is a zero-mean continuous martingale and (M(t)) ((M(t))=-(M(t),
M(t)) for simplicity) is its increasing process.

From the strong law of large numbers for M(t) (see the lemma at end of 5.2
or use a time substitution) and (7.4), it follows that

(7.9) li--- 1 log Ix (t)[ _-<-q < 0,
tToo t

with probability one.
The following result is due to Pinsky [14].
THEORE 1. Under the above hypotheses

Px{ )[ } (])q/H (2qh+q2/2)/H

(7.10) max x (s >-_R < e

t 1 e -q2/(2171)

where q is as in (7.4) and

(7.11) H sup H(x), h sup h (x).

--q2t/(2H)e

Remarks. 1. Clearly (7.10) implies that

(7.12) e {Ix (t)l >-R }_<-C e

with C a constant as above. For (7.12) the constant can be improved a bit by an
elementary direct argument as in the proof below.

2. Let TR be the time of last entrance of x(t) into Ix I--<R from the outside.
Then

P{T >t}=P{sup[x(s)[>-R},
and so (7.10) gives an upper estimate for the distribution of TR.

IOtklM(t)= H IX(S dwg(s),
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Proof. For any/3 > 0, exp (13M(t)-132(M(t))/2) is an integrable, continuous,
nonnegative martingale with mean equal to one.

We have the following:

(7.13) max x(s) >=R <- Y. max x(s >-_
s>t v=[t] v<_--t<v+l

and for v =It], [t]+l,...,/3 >0,

(7.14) Px{ max
v<s<v+l vs<v+

We also have

max /3 log Ix(s)[

(7.15)
-<_s<v+lmax fl loglx(s)l+h\ix(s)l}-loglxl-h Lf(x(,))d/

+ max /3-h
x

ix(S)I]
+lg Ixl + h + Lt(x(y)) dy

2

<= max [flM(s)--(M(s))j+13[2+loglxl-qu+-ffI(u+l)].
Combining (7.14) and (7.15) and using Kolmogorov’s inequality we obtain
is fixed)

2

Px{ max Ix(s)l>R}<P{= max (BM(s)--(M(s)))v_s<v+ v<-s<v+

(7. og-;+q, (,, +

The choice/3 q/H optimizes the inequality (7.16). Using the result in (7.13) we
find that

(7.17)
P m.>ax Ix (s)l >-R <= eqa+q/2)m y. e

=,

vq / 21l)

(..) q/ff-I e (2q+q2)/ffI

-q2/(2/-) e-q2t/(2/)1 e

By beginning with/3 q/H in (7.15) we can improve a bit the constant as in (7.10).
The proof of Theorem 1 is complete.

We turn now to the analogous problem for the linear system (5.16’). We
employ systematically the notation of 5.2; in particular the polar coordinates of
the representation ofL in (5.29) and of in (5.35).
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At first we must establish the analogue of the exponential martingale which
was employed in Theorem 1. Let u (x, y) > 0 be a bounded smooth function in x
and continuous in y and suppose that for each -=> 0 the nonnegative random
variable

e Le’u(2 (s), y(s))M (’)= u(2 (-r), y(z))exp { U(: (s)iY(s)i ds}
is integrable. By direct computation we find that

(7.19) F,r{M ()}= u(x, y),

which is nothing other than the Feynman-Kac formula with the potential equal to
-u/u, u being the initial data. It follows from this that M(-) is a right-
continuous, integrable martingale with mean equal to u(x, y). In the case of
diffusions in R n,. proper choice of u yields the usual martingales of Stroock and
Varadhan [25].

In the spirit of the considerations of the previous sections, we construct a
martingale M (-) by (7.18) with an appropriate choice of the function u. The u
will depend on e and it will be denoted by u u (Ix l, x/Ix I, Y), in polar coordi-
nates. First we state the result.

TnFOIZM 2. Let () be the process defined by (5.16’). Suppose, as in 5.2,
that there is a smooth function h (), S"-, such that if

(7.20) ]’(x) log Ix I+ h (x/Ix

(7.21) [(x)-<-q < 0,

where q is a positive constant and5 is defined, in polar coordinates, by (5.29).
Under these conditions there is an eo> 0 such that for each e (0, eo] and all

>0

(7.22) 1-cexp 2q/+ -e 2(e)

[1-exp (qZ/(2ISI-az(e)))]-x exp {-eZ-q/(2I-cz(e))}.

Here a 1(8) and a2(e are positive]unctions which go to zero as e 0 and are defined
by (7.32) and (7.33) below,

(7.23) h sup h (x), q is as in (7.21),



STABILITY AND CONTROL OF STOCHASTIC SYSTEMS. 473

and

H sup H(x)

(7.24)
=sup2 If X(y, dz)ff(dy)[A(x, y)

Oh(X) +a (x, y)]
Ixl=l

O
in the notaon o[ 5.2.

Remarks. 1. Note that (7.10) and (7.22) are very similar. In fact as e 0 with
2

e r fixed we recover (7.10) from (7.22) with appropriate definition of the other
constants, as should be.

2. Remarks 1 and 2 of Theorem 1 apply verbatim to this theorem as well.
Pro@ Let/(x) log0 +h() be as in (7.20) and definef(, y) and[(G y) by

(5.36) and (5.37) respectively. Define [3(, Y) by

(7.25) 3(’, Y)= IX(Y, dz)[l(Z, ,)(A (z, ,)" Oh(’)+a(z, ,))-H(,)]
where H() is given by the right hand side of (7.24) without the sup.

Define

(7.26)
u(p,,y)=p

eqq/Ne qh()/FI 1 +-f(G Y)

2 2 2eq eq
y)+ y)

A lengthy but straightforward calculation yields the following result (with
given by (5.39))

2

u(o, , y)
e f()+ H()+e (, y)

where, omitting the arguments sc and y,

(7.28) U G1 + eG2- G;
1 + egl+ eZg2

OfGI=A * Of2+B*.

+q(A* Of3H-+f2A
Oh Oh )-ff+  B

+ f3A. -+ a

Of2 q( Of3 +f2B
Oh )G2 B "-+- B -- -+f2b



474 G. BLANKENSHIP AND G. C. PAPANICOLAOU

(7.29)
2 Oh+
q
H ef2+
g=-h + f.

The important thing to observe here is that U (so, y) is a bounded function
and that u" is a bounded function of (sc, y) multiplied by p q/gi. Therefore, by an
elementary moment estimate like (4.4), it follows thatM (r) of (7.18) with u u
of (7.26) is an integrable, right-continuous martingale.

We now continue as in Theorem 1 assuming that 0<e-<eo and eo is
sufficiently small

P,r{ max lY (s )l >-R }
(7.30) <= ,. Px,y max

[e -r] v/e2s(v+l)/e

2-t- 1,,/e2<__$<(v+l)/e,

We also have that

I (s)lq/n

max
2<-s <(v+ 1)/e

(7.31)

max
2<__$ <(v+ 1)/e

I;(s)[

eqh/r-Z[l +egl +e2gz] exp [-Ioe2"u d)’]i(s)l./, u

eqh/’q[l+eg+e2g2]exp[--Io"e2udyJu
max

vie 2<=s (v+ 1)/e
u l;(s) x () (v)], y(v) dv(s)]’Y(S) exp u [(y)

min
v/e 2<=s <(v+ 1)/e

eqh/"4[1 +eg, +e2ga]exp (i:,(Y) y(’y)

max
./,=,<.+I/M (s)

e-qhm[ 1 o (e)] e -,,[-q :v2/q,+, 2(,)1"

Here a l(e) and a2(e) are defined by

(7.32) a(e) e sup
y,:
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(7.33)

Thus

(7.34)

a(e e sup U" (s, y)l.

and returning to (7.30), using (7.34) and summing the series yields (7.22). The
proof of Theorem 2 is complete.
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