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This paper presents sufficient conditions of asymptotic stability for discrete-time linear

systems subject to actuator saturations with an output feedback law. The derived stability

results are given in terms of LMIs. A new proof is presented to obtain previous conditions

of asymptotic stability. A numerical example is used to illustrate this technique by using

a linear optimization problem subject to LMI constraints.
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1. Introduction

It is well known that the problem of actuator saturation is inherent to all dynamical sys-

tems. This main problem has been an active area of research for many years [7, 17, 26].

Two main approaches have been developed in the literature. The first, the so-called pos-

itive invariance approach (see [4, 5, 8, 25] and the references therein), is based on the

design of stabilizing controllers that work inside a region of linear behavior and do not

allow saturation to be reached. An extension of this approach to a class of hybrid systems

can be found in [2, 3, 9]. For the second approach however, the actuator saturations are

allowed and the goal to achieve is the asymptotic stability despite the actuator saturations

(see [20–22] and the references therein). The main objective of these two approaches is

to obtain a domain of initial states as large as possible such that asymptotic stability is

achieved despite the control constraints [1, 2, 16, 22].

On the other hand, the problem of stabilizing linear systems by output feedback, de-

spite its apparent simplicity, is still open. A number of numerical procedures have been

proposed for solving the problem since the work of Kimura [23, 24]. A survey was given

by [27], and recent progress has been made for the related problem of pole placement

(see [13, 15] and the references therein). However, less works were proposed for linear

systems with actuator saturations. In [18] a dynamic output feedback is considered while

in [6, 11] the positive invariance approach is used.
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2 Output feedback for saturated systems

This paper studies the static output feedback problem for discrete-time linear systems

subject to actuator saturations. This work can be seen as an extension of the results of

[10, 22] where a state feedback is used. The use of a key lemma rewriting the saturation

function under a convex combination is the cornerstone of this work and the works of

[14, 20–22]. A different proof of the main result of [22] is obtained by using this writ-

ing of the saturation. Hence, a new sufficient condition of asymptotic stability for these

systems is obtained. Further, the synthesis of the stabilizing controller by static output

feedback is then proposed under LMI form. Furthermore, a relaxation technique is used

to obtain less conservative LMIs. The proposed technique is completely different from all

the previous works cited before on the same subject. The obtained regions of invariance

and contractivity are generally less conservative.

This paper is organized as follows. The problem formulation is dealt with in the second

section. The third section is reserved to some preliminary results useful for the develop-

ment below. The main results of this work which consist in designing saturating stabiliz-

ing static output feedback for linear discrete-time systems with actuator saturations are

presented in the fourth section. Section 5 deals with two illustrative examples.

2. Problem formulation

Consider the linear system described by

xk+1 = Axk +B sat
(

uk
)

,

yk = Cxk,
(2.1)

where xk ∈ Rn is the state, uk ∈ Rm is the control with m ≤ n, yk ∈ Rp is the output

vector. The notation sat(·) stands for the standard saturation function assumed here to

be normalized, that is, |sat(uk)| =min{1,|uk|}.

Let the following standard assumptions for the problem hold true:

(H1) matrix C has full rank;

(H2) (A,B) is stabilizable; (C,A) is detectable.

Consider the following static output feedback control law:

uk = Kyk. (2.2)

The closed-loop system is then given by

xk+1 = Axk +B sat
(

KCxk
)

. (2.3)

In this work, we are interested in the synthesis of stabilizing controllers for linear systems

subject to actuator saturations by static output feedback.

3. Preliminary results

In this section, two results on which our work is based are recalled, that is, a condition

of asymptotic stability of a linear system subject to actuator saturation [10, 22], together

with a useful lemma.
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Define the following subsets of Rn:

ε(P,ρ)=
{

x ∈Rn | xTPx ≤ ρ, ρ > 0
}

,

�(F)=
{

x ∈Rn |
∣

∣ f j x
∣

∣≤ 1, 1≤ j ≤m
}

,
(3.1)

with P a positive definite matrix and f j the jth row of the matrix F ∈Rm×n. ε(P,ρ) is an

ellipsoid set while �(F) is a polyhedral set for which the saturation does not occur.

Theorem 3.1 [22]. Given an ellipsoid ε(P,ρ), if there exists a matrix H ∈Rm×n such that

[

A+B
(

DiKC+D−i H
)]T

P
[

A+B
(

DiKC+D−i H
)]

−P < 0, ∀i∈
[

1,2m
]

, (3.2)

and ε(P,ρ)⊂�(H), then ε(P,ρ) is a contractively invariant set for the closed-loop saturated

system in (2.3).

Matrices Di are m-by-m diagonal matrices with elements either 1 or 0 and D−i = Im−

Di. There are 2m possible combinations with 1 and 0 leading to 2m different matrices Di.

Note that matrices Di and D−i are introduced by [22] to model the nonlinear saturation

function as a linear convex combination by using the following lemma.

Lemma 3.2 [22]. For all u∈Rm and v ∈Rm such that |v j| < 1, j ∈ [1,m],

sat(u)∈ co
{

Diu+D−i v, i∈�
}

(3.3)

with � = [1,η], η = 2m, and co standing for the convex hull. In this case, there exist

δ1 ≥ 0, . . . ,δη ≥ 0 satisfying
∑η

i=1 δi = 1 such that

sat(u)=

η
∑

i=1

δi
[

Diu+D−i v
]

. (3.4)

4. Main result

In this section, the design of stabilizing controllers for linear systems with actuator satu-

rations is presented by using the results of both Theorem 3.1 and Lemma 3.2. A different

proof of Theorem 3.1 is also proposed. Note that ∗ is used to write the transpose of the

off-diagonal element of an LMI.

Theorem 4.1. For a given positive scalar ρ, if there exists a symmetric matrix P and a

matrix H such that
⎡

⎣

P
[

A+B
(

DiKC+D−i H
)]T

P

∗ P

⎤

⎦ > 0, ∀i∈�; (4.1)

ε(P,ρ)⊂�(H), (4.2)

then the closed-loop system (2.3) is asymptotically stable for all x0 ∈ ε(P,ρ).

Proof. Assume that there exists a matrixH and a symmetric matrix P such that conditions

(4.1) and (4.2) hold true. Using Lemma 3.2, there exist δ1, . . . ,δη such that one can rewrite
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the saturated output feedback control (2.2) as follows:

sat
(

KCxk
)

=

η
∑

i=1

δi(k)
[

DiKC+D−i H
]

xk;

δi(k)≥ 0,

η
∑

i=1

δi(k)= 1.

(4.3)

The closed-loop system can be rewritten as

xk+1 =

η
∑

i=1

δi(k)Acixk;

Aci =A+B
(

DiKC+D−i H
)

, i∈�.

(4.4)

Consider now the Lyapunov function candidate given by

V
(

xk
)

= xTk Pxk. (4.5)

Its rate of increase on the trajectories of the system (4.4) is given by

∆V
(

xk
)

= xTk+1Pxk+1− xTk Pxk = xTk

{[ η
∑

i=1

δi(k)Aci

]T

P

[ η
∑

i=1

δi(k)Aci

]

−P

}

xk. (4.6)

Recall that condition (4.1) is satisfied and premultiply each inequality (4.1) for i= 1, . . . ,η

by δi(k). Summing up the obtained inequalities and bearing in mind that
∑η

i=1 δi(k)= 1,

one gets

⎡

⎢

⎢

⎣

P

[ η
∑

i=1

δi(k)Aci

]T

P

∗ P

⎤

⎥

⎥

⎦

> 0. (4.7)

The use of Schur complement allows one to write condition (4.7) under the equivalent

form,

[ η
∑

i=1

δi(k)Aci

]T

P

[ η
∑

i=1

δi(k)Aci

]

−P < 0, ∀i∈�, (4.8)

which ensures that

∆V
(

xk
)

<−γ
(

‖ xk ‖
)

, (4.9)

where

γ
(

‖ xk ‖
)

=min
i

λmin

(

P−

[ η
∑

i=1

δi(k)Aci

]T

P

[ η
∑

i=1

δi(k)Aci

])

‖ xk ‖
2 . (4.10)
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Taking into account condition (4.2) and noticing that ε(P,ρ) is a contractively invari-

ant set, one can guarantee that for all xo ∈ ε(P,ρ) ⊂�(H), the saturated system (2.3) is

asymptotically stable. �

Note that Theorem 4.1 proposes a different proof of [22, Theorem 3.1] for linear sys-

tems with state feedback by letting C = I. This result of stability can be exploited for the

synthesis of the controller by the following.

Theorem 4.2. For a given scalar ρ, if there exists a symmetric matrix X ∈ Rn×n, matrices

V ∈Rp×p, Y ∈Rm×p, and Z ∈Rm×n solutions of the LMIs

⎡

⎣

X
(

AX +BDiYC+BD−i Z
)T

∗ X

⎤

⎦ > 0, ∀i∈�; (4.11)

⎡

⎢

⎣

1

ρ
z j

∗ X

⎤

⎥

⎦ > 0, ∀ j ∈ [1,m]; (4.12)

VC−CX = 0, (4.13)

then, the closed-loop system subject to saturations (2.3) is asymptotically stable at the origin

for all x0 ∈ ε(P,ρ), where z j is the jth row of matrix Z and

K = YV−1, (4.14)

H = ZX−1, (4.15)

P = X−1. (4.16)

Proof. Let conditions (4.11)–(4.13) hold true. According to (4.13), one can write KCX =

KVC. Since matrix X is positive definite, and by virtue of assumption (H1), matrix V

solution of (4.13) is nonsingular. Further, by replacing Y = KV and Z =HX as given by

(4.14)–(4.15), the LMI,

⎡

⎣

X
(

AX +BDiKCX +BD−i HX
)T

∗ X

⎤

⎦ > 0 (4.17)

the use of the Schur complement leads to follows.

[

A+B
(

DiKC+D−i H
)]

X
[

A+B
(

DiKC+D−i H
)]T

−X < 0. (4.18)

Since X = P−1, inequality (4.19) becomes

[

A+B
(

DiKC+D−i H
)]

P−1
[

A+B
(

DiKC+D−i H
)]T

−P−1 < 0. (4.19)

Postmultiplying and premultiplying the last inequalities by P leads to

P
[

A+B
(

DiKC+D−i H
)]

P−1
[

A+B
(

DiKC+D−i H
)]T

P−P < 0. (4.20)
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The use of the Schur complement a second time leads to LMI (4.1). Using [19], the LMI

(4.12) can also be transformed to the equivalent inclusion condition (4.2) with X = P−1.

Consequently, by virtue of Theorem 4.1, the closed-loop system subject to saturations

(2.3) is asymptotically stable at the origin for all x0 ∈ ε(P,ρ). �

It is worth noting that the state feedback problem follows readily from Theorem 4.2

by letting C = Im. In this case, V = X . The resolution of these LMIs can be extended to

the case where the scalar ρ is also taken as a design variable.

Conditions of Theorem 4.2 may be conservative due to (4.13). In order to relax this

conservatism, we associate this equation to a second matrix S different from X as sug-

gested by [12] for unsaturated systems. This technique is presented by the following

result.

Theorem 4.3. For a given scalar ρ, if there exist symmetric matrix X ∈ Rn×n, matrices

V ∈Rp×p, S∈Rn×n, Y ∈Rm×p, and Z ∈Rm×n solutions of the LMIs

⎡

⎣

S+ ST −X
[

AS+BDiYC+BD−i Z
]T

∗ X

⎤

⎦ > 0, ∀i∈�, (4.21)

⎡

⎢

⎣

1

ρ
z j

∗ X

⎤

⎥

⎦ > 0, ∀ j ∈ [1,m], (4.22)

VC−CS= 0, (4.23)

then the closed-loop system subject to saturations (2.3) is asymptotically stable at the origin

for all x0 ∈ ε(P,ρ), where z j is the jth row of matrix Z and

K = YV−1, (4.24)

H = ZS−1, (4.25)

P = X−1. (4.26)

Proof. The main idea of this proof is given by [12]. Using (4.23), (4.24), and (4.25), the

LMI (4.21) can be rewritten equivalently as

⎡

⎣

S+ ST −X ST
(

A+BDiKC+BD−i H
)T

∗ X

⎤

⎦ > 0. (4.27)

It is obvious that if (4.21) holds, then S+ ST −X > 0; thus, matrix S is nonsingular; hence

matrix V is also nonsingular. Since matrix X is positive definite, we have

(X − S)TX−1(X − S) > 0. (4.28)

This implies that

STX−1S≥ S+ ST −X. (4.29)
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Inequalities (4.29) and (4.21) enable us to write

[

STX−1S ST
(

A+BDiKC+BD−i H
)T

∗ X

]

> 0. (4.30)

This LMI is equivalent to

[

ST 0

0 X

][

X−1
(

A+BDiKC+BD−i H
)T
X−1

∗ X−1

][

S 0

0 X

]

> 0. (4.31)

Consequently, by letting P = X−1, the LMI (4.21) implies the LMI (4.1). This last LMI,

together with condition (4.22), presents the sufficient conditions of stability of Theorem

4.1. Hence, the closed-loop system subject to saturations (2.3) is asymptotically stable at

the origin for all x0 ∈ ε(P,ρ). �

It is worth noting that in the case of output feedback we have more constraining equal-

ities (4.13) that may generally lead to conservative regions of stability. Hence, as in the

previous works on the problem of saturated systems, it is of great interest to enlarge the

ellipsoid ε(P,ρ) of initial conditions. Two optimization procedures to obtain the largest

ellipsoid are proposed by rewriting the LMI (4.22) with µ= 1/ρ as an additional variable

as follows:

(Pb.1) :

⎧

⎨

⎩

inf (X ,Y ,V ,Z)(µ),

s.t. (4.21),(4.22),(4.23).
(4.32)

This optimization problem can help to enlarge the ellipsoids ε(P,ρ) by maximizing the

scalars ρ. Since the volume of the ellipsoid is proportional to the trace of matrix X , a

second way to obtain larger sets of invariance and contractivity is to solve the following

optimization problem:

(Pb.2) :

⎧

⎨

⎩

sup(X ,Y ,V ,Z) Trace(X),

s.t. (4.21),(4.22),(4.23).
(4.33)

According to [22], when this optimization problem is feasible, the volume of the obtained

ellipsoids is maximum with respect to the data of the system. The resolution of these two

optimization problems can be easily obtained by the use of Matlab.

5. Examples

In this section, two illustrative examples are presented to show the applicability of the

results presented above.

Example 5.1. Consider the double integrator system modeled by the saturated discrete-

time linear system given by the following matrices:

A=

[

1 1

0 1

]

; B =

[

0.5

1

]

; C =
[

1 1
]

. (5.1)
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Figure 5.1. The ellipsoid set of invariance and contractivity for the saturated discrete-time linear

system with output feedback with 5 trajectories.

For this example with n= 2 and m= p = 1, we have to solve the LMIs of Theorem 4.2

with 4 variables. Let the scalar ρ be given equal to 1. The use of the LMI Matlab Toolbox

leads to the following:

P =

[

0.3661 0.1494

0.1494 0.3661

]

;

H =
[

−0.3402 −0.5756
]

; K =−0.7826;

Ac = A+BKC =

[

0.6087 0.6087

−0.7826 0.2174

]

;

σ(Ac)= {0.4131 + 0.6619i;0.4131− 0.6619i}.

(5.2)

Figure 5.1 presents the ellipsoid set of invariance and contractivity for the saturated

discrete-time linear system with output feedback. Since the LMIs of Theorem 4.2 are fea-

sible, the relaxation technique is not used for this example.

Example 5.2. Consider now the following example studied in [10]:

A=

⎡

⎢

⎣

1 1 0.5

0 1 1

1 0 1

⎤

⎥

⎦ ; B =

⎡

⎢

⎣

1.67

0.5

1

⎤

⎥

⎦ ; C =

[

1 1 0

0 0 1

]

. (5.3)

For this example with n= 3, m= 1, and p = 2, we have to solve the LMIs of Theorem

4.2. Let the scalar ρ be given equal to 1. The use of the LMI Matlab Toolbox leads to the
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following results:

P =

⎡

⎢

⎣

0.5380 −0.1923 0

−0.1923 0.5380 0

0 0 0.8555

⎤

⎥

⎦ ;

H =
[

−0.3656 −0.2859 −0.5397
]

;

K =
[

−0.4122− 0.4699
]

; V =

[

2.8929 0

0 1.1690

]

;

Ac = A+BKC =

⎡

⎢

⎣

0.3116 0.3116 −0.2847

−0.2061 0.7939 0.7650

0.5878 −0.4122 0.5301

⎤

⎥

⎦ ;

σ(Ac)= {0.4639 + 0.7131i;0.4639− 0.7131i;0.7079}.

(5.4)

While we obtain with the LMIs of Theorem 4.3 the following solutions:

P =

⎡

⎢

⎣

0.1021 0.0901 0.1129

0.0901 0.0929 0.1086

0.1129 0.1086 0.1379

⎤

⎥

⎦ ;

H =
[

−0.4321 −0.4024 −0.5409
]

; K =
[

−0.5426− 0.6904
]

;

S=

⎡

⎢

⎣

127.1701 −20.3197 −86.4222

1.0455 148.5353 −109.7623

−103.2536 −103.2536 162.8427

⎤

⎥

⎦ ; V =

[

128.2156 −196.1846

−103.2536 162.8427

]

;

Ac = A+BKC

⎡

⎢

⎣

0.0939 0.0939 −0.6530

−0.2713 0.7287 0.6548

0.4574 −0.5426 0.3096

⎤

⎥

⎦ ;

σ(Ac)=
{

0.2770; 0.4276 + 0.7634i; 0.4276− 0.7634i
}

.

(5.5)

For this example, LMIs of both Theorems 4.2 and 4.3 were found feasible. Hence, the

obtained results are slightly similar. Generally, the results of Theorem 4.3 are used when

the LMIs of Theorem 4.2 are not feasible.

6. Conclusion

This work deals with asymptotic stability of linear systems with static output feedback

subject to actuator saturations. Sufficient conditions of asymptotic stability are then es-

tablished. Another proof of the results of [22] obtained with state feedback control is

given in the case of output feedback control. This proof is based on the rewriting of the

saturation function under a linear convex function. Further, all the results of this work

are presented under LMI form. A relaxation technique, together with two optimization

problems, is also given to improve the feasibility of the LMIs and the conservatism of the

solutions. Two illustrative examples are studied to show the applicability of this approach.
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[17] C. Gökçek, P. T. Kabamba, and S. M. Meerkov, An LQR/LQG theory for systems with saturating

actuators, IEEE Transactions on Automatic Control 46 (2001), no. 10, 1529–1542.



A. Benzaouia et al. 11

[18] D. Henrion, S. Tarbouriech, and G. Garcia, Output feedback robust stabilization of uncertain lin-

ear systems with saturating controls: an LMI approach, IEEE Transactions on Automatic Control

44 (1999), no. 11, 2230–2237.

[19] H. Hindi and S. Boyd, Analysis of linear systems with saturating using convex optimization, Pro-

ceeding of the 37th IEEE Conference on Decision and Control, vol. 1, Florida, 1998, pp. 903–908.

[20] T. Hu and Z. Lin, The equivalence of several set invariance conditions under saturation, Procceding

of the 41st IEEE Conference on Decision and Control, vol. 4, Nevada, 2002, pp. 4146–4147.

[21] T. Hu, Z. Lin, and B. M. Chen, An analysis and design method for linear systems subject to actuator

saturation and disturbance, Automatica 38 (2002), no. 2, 351–359.

[22] , Analysis and design for discrete-time linear systems subject to actuator saturation, Systems

& Control Letters 45 (2002), no. 2, 97–112.

[23] H. Kimura, Pole assignment by gain output feedback, IEEE Transactions on Automatic Control

20 (1975), no. 4, 509–516.

[24] F. Mesquine and A. Benzaouia, Existence of output feedback for the regulator problem of a class of

systems with constrained control, Proceedeings of the 1st International Conference on Electronics

and Automatic, vol. 4, Tizi Ouzou, 1992, pp. 108–116.

[25] F. Mesquine, F. Tadeo, and A. Benzaouia, Regulator problem for linear systems with constraints on

control and its increment or rate, Automatica 40 (2004), no. 8, 1387–1395.

[26] E. D. Sontag and H. J. Sussmann, Nonlinear output feedback design for linear systems with saturat-

ing controls, Proceedings of the 29th IEEE Conference on Decision and Control, vol. 6, Hawaii,

1990, pp. 3414–3416.

[27] V. L. Syrmos, C. Abdallah, and P. Dorato, Static output feedback: a survey, Proceedings of the

33rd IEEE Conference on Decision and Control, vol. 1, Florida, 1994, pp. 837–842.

A. Benzaouia: Department of Physics, EACPI Research Unit, Faculty of Sciences Semlalia,

University of Cadi Ayyad, P.B. 2390, Marrakech, Morocco

E-mail address: benzaouia@ucam.ac.ma

F. Mesquine: Department of Physics, EACPI Research Unit, Faculty of Sciences Semlalia,

University of Cadi Ayyad, P.B. 2390, Marrakech, Morocco

E-mail address: mesquine@ucam.ac.ma
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