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STABILITY AND CONVERGENCE OF SECOND-ORDER

SCHEMES FOR THE NONLINEAR EPITAXIAL

GROWTH MODEL WITHOUT SLOPE SELECTION

ZHONGHUA QIAO, ZHI-ZHONG SUN, AND ZHENGRU ZHANG

Abstract. We present one nonlinear and one linearized numerical schemes for
the nonlinear epitaxial growth model without slope selection. Both schemes

are proved to be uniquely solvable and convergent with the convergence rate
of order two in a discrete L2-norm. By introducing an auxiliary variable in the
discrete energy functional, the energy stability of both schemes is guaranteed
regardless of the time step size, in the sense that a modified energy is mono-
tonically nonincreasing in discrete time. Numerical experiments are carried
out to support the theoretical claims.

1. Introduction

We consider the nonlinear two-dimensional fourth-order PDE designed to model
epitaxial growth of thin films without slope selection [6, 9]:

∂u

∂t
+ δΔ2u + ∇ ·

(

∇u

1 + |∇u|2

)

= 0, (x, y) ∈ Ω, 0 < t ≤ T,(1.1)

subject to the initial value condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω̄,(1.2)

and the periodic boundary conditions. Here u = u(x, y, t) is the scaled height func-
tion of a thin film in a co-moving frame, δ is a constant, and Ω = [a, b] × [c, d].
Problems of this type model coarsening process arising in various fields such as
chemistry, physics, ecology and biology [5, 20]. The fourth-order term models sur-
face diffusion, and the nonlinear second-order term models the Ehrlich-Schwoebel
effect. This growth equation (1.1) defines the gradient flow with respect to the
energy functional rendered by the L2(Ω) inner product; viz.

E(u) =

∫∫

Ω

(

δ

2
|Δu|2 −

1

2
ln(1 + |∇u|2)

)

dxdy.(1.3)

The second term in the energy −
1

2
ln(1 + |∇u|2) is bounded above but unbounded

below. Furthermore, it has no relative minima, which implies that there are no
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energetically favored values for |∇u|. At the physical point of view, this means
that there is no slope selection mechanism in the epitaxial growth dynamics. A
detailed discussion and additional references may be found in [2, 6, 16]. The well-
posedness of a suitable initial-boundary-value problem involving (1.1) was studied
by Li and Liu [15] using perturbation analysis. Two energy identities were also
given.

It has been predicted that mound structures in the surface profile will be gener-
ated in the coarsening process and will grow unbounded [13]. Some mathematical
justification of the coarsening scaling laws and mound growth rate has been pro-
duced. See [14,16] and the references therein. However, it is difficult to analyze the
growth detail of the mound structures, especially for complex thin-film systems, so
numerical simulation has played an important role in investigating the evolution
process of thin-film epitaxial growth at large times. Most existing continuum model
simulations have used the explicit Euler algorithm in time and a finite difference ap-
proximation in space, when the number of spatial grid points must be large and the
time step quite small to maintain numerical stability and to achieve high accuracy.
Even with rapidly increasing computing resources, explicit schemes remain limited
to simulating only the early surface evolution of thin-film epitaxial growth [15]. Im-
plicit treatment of the fourth-order term in (1.1) may be expected to relax the time
step restriction [18], but numerical experiments have demonstrated that a larger
time step cannot be used when δ is small; e.g. see [15]. To improve this, energy
stable schemes have attracted considerable attention recently, where the energy
stability is guaranteed regardless of the time step size, in the sense that the energy
is monotonically nonincreasing in discrete time. Some conditionally energy sta-
ble linear splitting schemes were suggested in [27] for the molecular beam epitaxial
(MBE) model with slope selection and in [11] for the Cahn-Hilliard equation. Split-
ting parameters are involved, which should be chosen sufficiently large to ensure
the energy stability. However, these parameters depend on the unknown solutions.
A convex splitting of the energy functional method was exploited by Eyre [7], to
study the unconditionally energy stable time discretization of the Cahn-Hilliard
equation. Eyre’s idea was generalized to the case of equations for thin-film epitaxy
where the energy functional was decomposed into convex and concave parts, with
the convex part treated implicitly and the concave part explicitly in the time dis-
cretization [25]. Two nonlinear schemes that are first-order in time were proposed
for thin-film epitaxy, to solve with or without slope selection. These schemes are
unconditionally uniquely solvable and unconditionally energy stable. Besides ap-
plication to the energy functional (1.3), the convex splitting method has been used
to solve Swift-Hohenberg and phase field crystal type equations [12, 26]. Du and
Nicolades proposed a different energy stable scheme for the Cahn-Hilliard equation
involving a finite element discretization in space [4], and a finite difference version
was subsequently analyzed by Furihata for one space dimension [8] . His scheme
has also been used to study the thin-film epitaxial model in [19] with an adaptive
time-stepping strategy.

It is challenging but important to construct energy stable higher order schemes
and linear schemes for the thin-film epitaxy model (1.1). Recently, a linear first-
order in time scheme was developed in [2] and two second-order in time schemes were
constructed for thin-film epitaxy [22], using the method of convex splitting of the
energy functional. In this paper, we first construct a nonlinear Crank-Nicolson type
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finite difference scheme. Then by linearizing the nonlinear term, we obtain a linear
four-level scheme. Both schemes are proved to be uniquely solvable and of second-
order convergence in a discrete L2-norm. By introducing an auxiliary variable in the
energy functional and discretizing its associated equation in a proper manner, the
energy stability of both schemes is guaranteed based on a modified energy regardless
of the time step size. A similar approach was presented in [10] for solving the Cahn-
Hilliard equation, where the auxiliary variable q(x, t) was introduced, which is not
a Lagrange multiplier but allows us to enforce the sphere condition |φ| = 1. By
using this approach, a linear unconditional stable and uniquely solvable scheme was
obtained for solving the Cahn-Hilliard equation. In [10], an equation related to the
auxiliary variable q(x, t) needs to be solved together with the mixed formulation of
the Cahn-Hilliard equation for updating the unknown function φ. However, in our
approach, the discrete equations related to the auxiliary variable is solved only for
updating the modified energies.

A brief outline of the paper is as follows. Definitions and basic notations are given
in Section 2. An energy stable nonlinear second-order scheme with the stability
and convergence analysis is presented in Section 3, followed by a description of an
energy stable fully linear second-order scheme in Section 4. In Section 5, the results
of numerical experiments with test problems from the literature are presented,
and comparisons are made with other published solution techniques. Concluding
remarks are given in Section 6.

2. Preliminaries

Let

(2.1) v = ln(1 + |∇u|2),

then

(2.2)
∂v

∂t
=

(|∇u|2)t
1 + |∇u|2

=
2∇u · ∇ut

1 + |∇u|2
,

and the energy functional (1.3) can be written as
(2.3)

E(u) =

∫∫

Ω

1

2

(

δ|Δu|2 − v(x, y, t)
)

dxdy =
1

2

(

δ‖Δu(·, ·, t)‖2 − (v(·, ·, t), 1)
)

.

Lemma 2.1 (Existence, uniqueness and energy identity [15]). Let u0 ∈ H2
per(Ω).

Then, the initial-boundary-value problem (1.1)-(1.2) has a unique solution u : Ω ×
[0, T ] → R that satisfies the following energy identities:

d

dt
‖u‖2 + 4E(u) + 2

∫∫

Ω

(

1

1 + |∇u|2
+ ln(1 + |∇u|2)

)

dxdy = 2|Ω|,(2.4)

d

dt
E(u) + ‖

∂u

∂t
‖2 = 0,(2.5)

where |Ω| is the area of the domain.

Let h1 = (b − a)/M1, h2 = (d − c)/M2, Δt = T/N, xi = a + ih1, yj =
c + jh2, tn = nΔt. Denote

Ωh = {(xi, yj) | 0 ≤ i ≤ M1, 0 ≤ j ≤ M2}, Ωτ = {tn | 0 ≤ n ≤ N},

Vh = {u | u = {uij}, ui+M1,j = uij , ui,j+M2
= uij} .
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For u ∈ Vh, denote

δxui+ 1
2
,j =

1

h1
(ui+1,j − ui,j) , δyui,j+ 1

2
=

1

h2
(ui,j+1 − ui,j) ,

Δxuij =
1

2h1
(ui+1,j − ui−1,j) , Δyuij =

1

2h2
(ui,j+1 − ui,j−1) ,

δ2xuij =
1

h2
1

(ui+1,j − 2uij + ui−1,j) , δ2yuij =
1

h2
2

(ui,j+1 − 2uij + ui,j−1) ,

∇huij = (Δxuij ,Δyuij)
T , Δhuij =

(

δ2x + δ2y
)

uij .

It is obvious that

Δxuij =
1

2

(

δxui− 1
2
,j + δxui+ 1

2
,j

)

, Δyuij =
1

2

(

δyui,j− 1
2

+ δyui,j+ 1
2

)

and

δ2xuij =
1

h1

(

δxui+ 1
2
,j − δxui− 1

2
,j

)

, δ2yuij =
1

h2

(

δyui,j+ 1
2
− δyui,j− 1

2

)

.

For a grid function w =
(

w0, w1, · · · , wN−1, wN
)

on Ωτ , denote

wn+ 1
2 =

1

2

(

wn + wn+1
)

, 0 ≤ n ≤ N − 1

ŵn+ 1
2 = 2wn− 1

2 − wn− 3
2 , 2 ≤ n ≤ N − 1.

It is easy to know that

ŵn+ 1
2 = wn +

1

2
wn−1 −

1

2
wn−2, 2 ≤ n ≤ N − 1.

For u ∈ Vh and v ∈ Vh, define the inner product

(u, v) = h1h2

M1
∑

i=1

M2
∑

j=1

uij · vij

and Sobolev norms (or seminorms)

‖u‖ =
√

(u, u), ‖u‖∞ = max
1≤i≤M1,1≤j≤M2

|uij |,

‖δxu‖ =

√

√

√

√h1h2

M1
∑

i=1

M2
∑

j=1

|δxui− 1
2
,j |

2, ‖δyu‖ =

√

√

√

√h1h2

M1
∑

i=1

M2
∑

j=1

|δyui,j− 1
2
|2

‖∇hu‖ =

√

√

√

√h1h2

M1
∑

i=1

M2
∑

j=1

|∇huij |
2, ‖Δhu‖ =

√

√

√

√h1h2

M1
∑

i=1

M2
∑

j=1

|Δhuij |2 .

Lemma 2.2. For any grid function u ∈ Vh, we have [21, 29]

‖∇hu‖
2 ≤ ‖u‖ · ‖Δhu‖.(2.6)

3. Nonlinear two-level Crank-Nicolson type scheme

Define the grid functions Un ∈ Vh, V
n ∈ Vh as follows:

Un
ij = u(xi, yj , tn), V n

ij = v(xi, yj).
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Then according to (1.1) and (2.2) with the Taylor expansion, we have

Un+1
ij − Un

ij

Δt
+ δΔ2

hU
n+ 1

2

ij + ∇h ·

⎛

⎝

∇hU
n+ 1

2

ij

1 + |∇hU
n+ 1

2

ij |2

⎞

⎠ = Rn
ij ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N − 1

(3.1)

and

V n+1
ij − V n

ij

Δt
=

2∇hU
n+ 1

2

ij · ∇h
Un+1

ij −Un
ij

∆t

1 +
∣

∣

∣
∇hU

n+ 1
2

ij

∣

∣

∣

2 + Sn
ij ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N − 1,

(3.2)

where there exists a constant c1 such that

|Rn
ij | ≤ c1(h

2
1 + h2

2 + Δt2), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N − 1,(3.3)

|Sn
ij | ≤ c1(h

2
1 + h2

2 + Δt2), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N − 1,(3.4)

noticing the initial conditions

(3.5) U0
ij = u0(xi, yj), V 0

ij = ln(1 + |∇hU
0
ij |

2), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Omitting the small terms in (3.1) and (3.2), we construct the difference scheme
for (1.1)-(1.2) as follows:

Finding un ∈ Vh, v
n ∈ Vh (0 ≤ n ≤ N) such that

un+1
ij − un

ij

Δt
+ δΔ2

hu
n+ 1

2

ij + ∇h ·

⎛

⎝

∇hu
n+ 1

2

ij

1 + |∇hu
n+ 1

2

ij |2

⎞

⎠ = 0,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N − 1,

(3.6)

u0
ij = u0(xi, yj), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,(3.7)

and

vn+1
ij − vnij

Δt
=

2∇hu
n+ 1

2

ij · ∇h
un+1

ij −un
ij

∆t

1 +
∣

∣

∣∇hu
n+ 1

2

ij

∣

∣

∣

2 ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N − 1.

v0ij = ln(1 + |∇hu
0
ij |

2).

(3.8)

3.1. The stability. The difference scheme (3.6)-(3.8) is unconditionally energy
stable in the sense that a modified energy is monotonically nonincreasing in discrete
time.

Theorem 3.1. Let un and vn be the solution of difference scheme (3.6)-(3.8) and

denote

En
h =

1

2

[

δ‖△hu
n‖2 − (vn, 1)

]

, 0 ≤ n ≤ N.
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Then, we have

(3.9)

∥

∥

∥

∥

un+1 − un

Δt

∥

∥

∥

∥

2

+
En+1

h − En
h

Δt
= 0, 0 ≤ n ≤ N − 1.

Proof. Taking the inner product of (3.6) with un+1−un

△t leads to

∥

∥

∥

∥

un+1 − un

Δt

∥

∥

∥

∥

2

+ δ

(

Δ2
hu

n+ 1
2 ,

un+1 − un

Δt

)

+

(

∇h · (
∇hu

n+ 1
2

1 + |∇hun+ 1
2 |2

),
un+1 − un

Δt

)

= 0.

(3.10)

For the middle term on the left-hand of (3.10), we have
(

Δ2
hu

n+ 1
2 ,

un+1 − un

Δt

)

=

(

Δhu
n+ 1

2 ,Δh
un+1 − un

Δt

)

=
δ

2Δt

(

‖Δhu
n+1‖2 − ‖Δhu

n‖2
)

.

(3.11)

For the last term on the left-hand of (3.10), we have
(

∇h · (
∇hu

n+ 1
2

1 + |∇hun+ 1
2 |2

),
un+1 − un

Δt

)

= −

(

∇hu
n+ 1

2

1 + |∇hun+ 1
2 |2

,∇h
un+1 − un

Δt

)

= −
1

2Δt

(

vn+1 − vn, 1
)

.

(3.12)

Inserting (3.11) and (3.12) into (3.10) yields
∥

∥

∥

∥

un+1 − un

Δt

∥

∥

∥

∥

2

+
1

Δt

[

1

2

(

δ‖Δhu
n+1‖2 − (vn+1, 1)

)

−
1

2

(

δ‖Δhu
n‖2 − (vn, 1)

)

]

= 0

(3.13)

or
∥

∥

∥

∥

un+1 − un

Δt

∥

∥

∥

∥

2

+
En+1

h − En
h

Δt
= 0, 0 ≤ n ≤ N − 1.

This completes the proof. �

3.2. The solvability. We shall use the following Brouwer fixed-point theorem to
show the existence of solution of the Crank-Nicolson type finite difference scheme
(3.6)-(3.7).

Lemma 3.2 ([1,24]). Let (H, (·, ·)) be a finite dimensional inner product space, ‖·‖
the associated norm, and let g : H → H be continuous. Assume, moreover, that

∃α > 0, ∀z ∈ H, ‖z‖ = α, (g(z), z) ≥ 0.

Then, there exists an element z∗ ∈ H such that g(z∗) = 0 and ‖z∗‖ ≤ α.
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Theorem 3.3. The difference scheme (3.6)-(3.7) has at least one solution.

Proof. The difference scheme (3.6) can be written as

u
n+ 1

2

ij − un
ij

Δt/2
+ δΔ2

hu
n+ 1

2

ij + ∇h ·

⎛

⎝

∇hu
n+ 1

2

ij

1 + |∇hu
n+ 1

2

ij |2

⎞

⎠=0, 1≤ i≤M1, 1 ≤ j ≤ M2

or

wij − un
ij +

Δt

2
δΔ2

hwij +
Δt

2
∇h ·

(

∇hwij

1 + |∇hwij |2

)

= 0,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2,

(3.14)

with wij = u
n+ 1

2

ij .

Define the map

g(w)ij = wij − un
ij +

Δt

2
δΔ2

hwij +
Δt

2
∇h ·

(

∇hwij

1 + |∇hwij |2

)

= 0,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Then

(g(w), w)

= (w,w) − (w, un) +
Δt

2
δ(Δ2

hw,w) +
Δt

2

(

∇h ·

(

∇hw

1 + |∇hw|2

)

, w

)

= (w,w) − (w, un) +
Δt

2
δ‖Δhw‖

2 −
Δt

2

(

∇hw

1 + |∇hw|2
,∇hw

)

≥ ‖w‖2 − ‖w‖ · ‖un‖ −
Δt

2
|Ω|

≥
1

2

(

‖w‖2 − ‖un‖2 − |Ω|
)

.

Take α = ‖un‖2 + |Ω|. Then if w ∈ Vh and ‖w‖ = α, we have (g(w), w) ≥ 0.
By Lemma 3.2, there is at least one solution w satisfying ‖w‖ ≤ ‖un‖2 + |Ω|. This
completes the proof. �

Now we consider the uniqueness. We need the following lemma.

Lemma 3.4.

2
(

|∇hz|
2∇hw − |∇hw|

2∇hz
)

=
(

|∇hz|
2 + |∇hw|

2
)

∇h(w − z)

− [(∇hw + ∇hz) · ∇h(w − z)] (∇hw + ∇hz).

Proof. Adding

|∇hz|
2∇hw − |∇hw|

2∇hz

= |∇hz|
2 (∇hw −∇hz) − (|∇hw|

2 − |∇hz|
2)∇hz

= |∇hz|
2 (∇hw −∇hz) − [(∇hw + ∇hz) · (∇hw −∇hz)]∇hz
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and

|∇hz|
2∇hw − |∇hw|

2∇hz

= |∇hw|
2 (∇hw −∇hz) − (|∇hw|

2 − |∇hz|
2)∇hw

= |∇hw|
2 (∇hw −∇hz) − [(∇hw + ∇hz) · (∇hw −∇hz)]∇hw,

we get the equality required. This completes the proof. �

Theorem 3.5. If Δt < 32δ/9, then the difference scheme (3.6)-(3.7) has at most

one solution.

Proof. Suppose that (3.14) has an another solution zij , which satisfies

zij − un
ij +

Δt

2
δΔ2

hzij +
Δt

2
∇h ·

(

∇hzij
1 + |∇hzij |2

)

= 0,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

(3.15)

Let

ǫij = wij − zij , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Subtracting (3.15) from (3.14), we have

ǫij +
Δt

2
δΔ2

hǫij +
Δt

2
∇h ·

(

∇hwij

1 + |∇hwij |2
−

∇hzij
1 + |∇hzij |2

)

= 0,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

(3.16)

Taking the inner product of (3.16) with ǫ, we have

(3.17) ‖ǫ‖2 +
Δt

2
δ‖Δhǫ‖

2 −
Δt

2

(

∇hw

1 + |∇hw|2
−

∇hz

1 + |∇hz|2
,∇hǫ

)

= 0.

Applying Lemma 3.4, we obtain

∇hw

1 + |∇hw|2
−

∇hz

1 + |∇hz|2

=
∇hw −∇hz + |∇hz|

2∇hw − |∇hw|
2∇hz

(1 + |∇hw|2)(1 + |∇hz|2)

=
∇h(w − z) + 1

2

(

|∇hz|
2 + |∇hw|

2
)

∇h(w − z)

(1 + |∇hw|2)(1 + |∇hz|2)

− 1
2 [(∇hw + ∇hz) · ∇h(w − z)] (∇hw + ∇hz)

(1 + |∇hw|2)(1 + |∇hz|2)
.

Consequently,
∣

∣

∣

∣

∇hw

1 + |∇hw|2
−

∇hz

1 + |∇hz|2

∣

∣

∣

∣

≤
|∇h(w − z)|

(1 + |∇hw|2)(1 + |∇hz|2)

·

[

1 +
1

2
(|∇hz|

2 + |∇hw|
2) +

1

2
(|∇hw| + |∇hz|)

2

]

≤
3

2
|∇h(w − z)|.

(3.18)
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It follows from (3.17) and (3.18) that

‖ǫ‖2 +
Δt

2
δ‖Δhǫ‖

2

=
Δt

2

(

∇hw

1 + |∇hw|2
−

∇hz

1 + |∇hz|2
,∇hǫ

)

≤
3Δt

4
‖Δhǫ‖ · ‖ǫ‖

≤
3Δt

4

(

2δ

3
‖Δhǫ‖

2 +
3

8δ
‖ǫ‖2

)

or

‖ǫ‖2 ≤
9Δt

32δ
‖ǫ‖2.

When Δt < 32δ/9, it follows that ‖ǫ‖ = 0. Consequently, ǫij = 0, 1 ≤ i ≤ M1,
1 ≤ j ≤ M2. This completes the proof. �

Remark 3.6. The constraint on Δt in the above theorem may become severe as δ
becomes very small. Meanwhile, there are some related works on MBE models (see
e.g., [2,22,25]), so that the unique solvability is unconditional in terms of time step.
In Section 4, a linearized scheme based on the nonlinear scheme (3.6)-(3.7) will be
developed, where the unique solvability is also unconditionally guaranteed.

3.3. The convergence.

Lemma 3.7 (Gronwall lemma [23]). Let μ be positive and let ν, ak, (k=0, 1, 2, 3, · · · )
be nonnegative and satisfy

ak ≤ (1 + μτ )ak−1 + ντ, k = 1, 2, 3, · · · ,

then

ak ≤ exp(μkτ )(a0 + ν/μ), k = 1, 2, 3, · · · .

Define error grid function where U(x, y, t) is the exact solution.

Theorem 3.8. Suppose Un
ij is the solution of (1.1)-(1.2) and un

ij is the solution of

(3.6)-(3.7). Let

enij = Un
ij − un

i,j , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Then there exists a constant C1 independent of h1, h2 and Δt such as

(3.19) ‖en‖ ≤ C1(h
2
1 + h2

2 + +Δt2), 1 ≤ n ≤ N.

Proof. Subtracting (3.6), (3.7) from (3.1) and (3.5), respectively, we obtain the
error equations

en+1
ij − enij

Δt
+ δΔ2

he
n+ 1

2

ij + ∇h ·

⎡

⎣

∇hU
n+ 1

2

ij

1 + |U
n+ 1

2

ij |2
−

∇hu
n+ 1

2

ij

1 + |u
n+ 1

2

ij |2

⎤

⎦ = R
n+ 1

2

ij ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N − 1,

(3.20)

e0ij = 0, 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.(3.21)
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Making a product of (3.20) with en+
1
2 and using the summation by parts, we get

(3.22)

1

2Δt
(‖en+1‖2 − ‖en‖2) + δ‖Δhe

n+ 1
2 ‖2

=

⎛

⎝

∇hu
n+ 1

2

ij

1 + |∇hun+ 1
2 |2

−
∇hU

n+ 1
2

ij

1 + |∇hUn+ 1
2 |2

,∇he
n+ 1

2

⎞

⎠ + (Rn+ 1
2 , en+

1
2 ).

Similarly to the proof of (3.18), we can get

(3.23)

⎛

⎝

∇hu
n+ 1

2

ij

1 + |∇hun+ 1
2 |2

−
∇hU

n+ 1
2

ij

1 + |∇hUn+ 1
2 |2

,∇he
n+ 1

2

⎞

⎠ ≤
3

2
‖∇he

n+ 1
2 ‖2.

Inserting (3.23) into (3.22) and using (3.3), we have

1

2Δt
(‖en+1‖2 − ‖en‖2) + δ‖Δhe

n+ 1
2 ‖2

=

⎛

⎝

∇hu
n+ 1

2

ij

1 + |∇hun+ 1
2 |2

−
∇hU

n+ 1
2

ij

1 + |∇hUn+ 1
2 |2

,∇he
n+ 1

2

⎞

⎠ + (Rn+ 1
2 , en+

1
2 )

≤
3

2
‖∇he

n+ 1
2 ‖2 +

1

2
‖en+

1
2 ‖2 +

1

2
‖Rn+ 1

2 ‖2

≤
3

2
‖Δhe

n+ 1
2 ‖ · ‖en+

1
2 ‖ +

1

2
‖en+

1
2 ‖2 +

1

2
|Ω|

[

c1(h
2
1 + h2

2 + Δt2)
]2

≤
3

2

[

2δ

3
‖Δhe

n+ 1
2 ‖2 +

3

8δ
‖en+

1
2 ‖2

]

+
1

2
‖en+

1
2 ‖2 +

1

2
|Ω|

[

c1(h
2
1 + h2

2 + Δt2)
]2

or

1

2Δt
(‖en+1‖2 − ‖en‖2) ≤

(

9

16δ
+

1

2

)

‖en+
1
2 ‖2 +

1

2
|Ω|

[

c1(h
2
1 + h2

2 + Δt2)
]2

.

It follows that for 0 ≤ n ≤ N − 1,
[

1 −

(

9

16δ
+

1

2

)

Δt

]

‖en+1‖2 ≤

[

1 +

(

9

16δ
+

1

2

)

Δt

]

‖en‖2 + |Ω|
[

c1(h
2
1 + h2

2 + Δt2)
]2

.

When
(

9
16δ + 1

2

)

Δt ≤ 1
3 , it holds that

‖en+1‖2 ≤

[

1 + 3

(

9

16δ
+

1

2

)

Δt

]

‖en‖2 +
3

2
|Ω|

[

c1(h
2
1 + h2

2 + Δt2)
]2

, 0 ≤ n ≤ N − 1.

By Gronwall’s lemma, it yields

(3.24) ‖en+1‖2 ≤ e3(
9

16δ
+ 1

2 )T ·
|Ω|c21
9
8δ + 1

(h2
1 + h2

2 + Δt2)2, 0 ≤ n ≤ N − 1

or, equivalently,

(3.25) ‖en+1‖ ≤ e
3
4 (

9
8δ

+1)T ·

√

|Ω|
9
8δ + 1

c1(h
2
1 + h2

2 + Δt2), 0 ≤ n ≤ N − 1.

The proof of the theorem is completed. �
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4. Linearized four-level scheme

It follows from (1.1)-(1.2) that

ut(x, y, 0) = δΔ2u0(x, y) −∇ ·
( ∇u0(x, y)

1 + |∇u0(x, y)|2

)

.

Let

ũ
1
2

ij = u0(xi, yj) +
1

2
Δtut(xi, yj , 0), ũ

3
2

ij = u0(xi, yj) +
3

2
Δtut(xi, yj , 0),

1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Then according to (1.1) and (2.2) with the Taylor expansion, we have

(4.1)

Un+1
ij − Un

ij

Δt
+ δΔ2

hU
n+ 1

2

ij + ∇h ·

⎛

⎝

∇hũ
n+ 1

2

ij

1 + |∇hũ
n+ 1

2

ij |2

⎞

⎠ = Řn
ij ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, n = 0, 1,

(4.2)

Un+1
ij − Un

ij

Δt
+ δΔ2

hU
n+ 1

2

ij + ∇h ·

⎛

⎝

∇hÛ
n+ 1

2

ij

1 + |∇hÛ
n+ 1

2

ij |2

⎞

⎠ = Řn
ij ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 2 ≤ n ≤ N − 1,

and

V n+1
ij − V n

ij

Δt
=

2∇hũ
n+ 1

2

ij · ∇h
Un+1

ij −Un
ij

∆t

1 +
∣

∣

∣∇hũ
n+ 1

2

ij

∣

∣

∣

2

+ Šn
ij , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, n = 0, 1,

(4.3)

V n+1
ij − V n

ij

Δt
=

2∇hÛ
n+ 1

2

ij · ∇h
Un+1

ij −Un
ij

∆t

1 +
∣

∣

∣∇hÛ
n+ 1

2

ij

∣

∣

∣

2

+ Šn
ij , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 2 ≤ n ≤ N − 1,

(4.4)

where there exists a constant c2 such that

|Řn
ij | ≤ c2(h

2
1 + h2

2 + Δt2), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,(4.5)

|Šn
ij | ≤ c2(h

2
1 + h2

2 + Δt2), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.(4.6)

Omitting the small terms in (4.1)-(4.4), and noticing the initial conditions

(4.7) U0
ij = u0(xi, yj), V 0

ij = ln(1 + |∇hU
0
ij |

2), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,

we construct the difference scheme for (1.1)-(1.2) as follows:

(4.8)

un+1
ij − un

ij

Δt
+ δΔ2

hu
n+ 1

2

ij + ∇h ·

⎛

⎝

∇hũ
n+ 1

2

ij

1 + |∇hũ
n+ 1

2

ij |2

⎞

⎠ = 0,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, n = 0, 1,
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(4.9)

un+1
ij − un

ij

Δt
+ δΔ2

hu
n+ 1

2

ij + ∇h ·

⎛

⎝

∇hû
n+ 1

2

ij

1 + |∇hû
n+ 1

2

ij |2

⎞

⎠ = 0,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 2 ≤ n ≤ N − 1,

u0
ij = u0(xi, yj), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,(4.10)

and

vn+1
ij − vnij

Δt
=

2∇hũ
n+ 1

2

ij · ∇h
un+1

ij −un
ij

∆t

1 +
∣

∣

∣∇hũ
n+ 1

2

ij

∣

∣

∣

2 ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, n = 0, 1,

(4.11)

v0ij = ln(1 + |∇hu
0
ij |

2), 1 ≤ i ≤ M1, 1 ≤ j ≤ M2,

vn+1
ij − vnij

Δt
=

2∇hû
n+ 1

2

ij · ∇h
un+1

ij −un
ij

∆t

1 +
∣

∣

∣
∇hû

n+ 1
2

ij

∣

∣

∣

2 ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 2 ≤ n ≤ N − 1.

(4.12)

Remark 4.1. Our proposed schemes 3.6)-(3.7) and (4.8)-(4.9) do not use a com-
pact stencil for the calculation of the approximation of the second-order term
∇ · ( ∇u

1+|∇u|2 ). In [22], a compact stencil is used by introducing an auxiliary vari-

able w = Δu. This approach will further improve the stability of numerical
schemes. In our numerical schemes, we discretize the fourth-order term directly
instead of using the auxiliary variable w = Δu, which will sample points from
(i − 2, j),(i − 1, j),(i, j),(i + 1, j),(i + 2, j), in addition to other lattice points in
the neighborhood of the point (i, j), even if the compact stencil is used for the
calculation of the approximation of the second-order term ∇ · ( ∇u

1+|∇u|2 ), and in the

resulting linear system, the discretization of the fourth-order term will dominate
comparing to the discretization of the second-order terms. So without including the
auxiliary variable w = Δu, the long stencil approximation and compact stencil ap-
proximation will not give much difference on numerical solutions. We will consider
the approach with auxiliary variable w = Δu and the compact stencil presented in
[22] in our future study of this type of PDEs.

4.1. The stability and solvability.

Theorem 4.2. The solution of the difference scheme (4.8)-(4.12) satisfies the en-

ergy law (2.5) in the discrete sense,

(4.13)

∥

∥

∥

∥

un+1 − un

Δt

∥

∥

∥

∥

2

+
En+1

h − En
h

Δt
= 0,

where En
h is defined in Theorem 3.1.

Proof. It is similar to the proof of Theorem 3.1. �

Theorem 4.3. The linearized scheme (4.8)-(4.10) is uniquely solvable.
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Proof. Suppose un has been determined. Then (4.8)-(4.9) is a linear system about
un+1. Consider its homogenous system

un+1
ij

Δt
+

δ

2
Δ2

hu
n+1
ij = 0, 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.

Making inner product with un+1, we get

1

Δt
‖un+1‖2 +

δ

2
‖Δhu

n+1‖2 = 0.

Thus un+1 = 0. This completes the proof. �

4.2. The convergence. For the convergence of the difference scheme, we have the
following result.

Theorem 4.4. The difference scheme (4.8)-(4.10) is convergent and there exists a

constant C2 independent of the step sizes such that

(4.14) ‖en‖ ≤ C2(h
2
1 + h2

2 + Δt2), 1 ≤ n ≤ N.

Proof. Let

enij = Un
ij − un

ij , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 0 ≤ n ≤ N.

Subtracting (4.8), (4.9) and (4.10) from (4.1), (4.2) and (4.7), respectively, we
obtain the error equations

en+1
ij − enij

Δt
+ δΔ2

he
n+ 1

2

ij = Řn
ij , 1 ≤ i ≤ M1, 1 ≤ j ≤ M2, n = 0, 1,(4.15)

en+1
ij − enij

Δt
+ δΔ2

he
n+ 1

2

ij

+ ∇h ·

⎛

⎝

∇hÛ
n+ 1

2

ij

1 + |∇hÛ
n+ 1

2

ij |2
−

∇hû
n+ 1

2

ij

1 + |∇hû
n+ 1

2

ij |2

⎞

⎠ = Řn
ij ,

1 ≤ i ≤ M1, 1 ≤ j ≤ M2, 2 ≤ n ≤ N − 1,

(4.16)

e0ij = 0, 1 ≤ i ≤ M1, 1 ≤ j ≤ M2.(4.17)

Taking the inner product of (4.15) with en+
1
2 , we have

(4.18)
1

2Δt
(‖en+1‖2 − ‖en‖2) + δ‖Δhe

n+ 1
2 ‖2 = (Řn+ 1

2 , en+
1
2 ), n = 0, 1.

Taking the inner product of (4.16) with en+
1
2 , we have

(4.19)

1

2Δt
(‖en+1‖2 − ‖en‖2) + δ‖Δhe

n+ 1
2 ‖2

=

(

∇hÛ
n+ 1

2

1 + |∇hÛn+ 1
2 |2

−
∇hû

n+ 1
2

1 + |∇hûn+ 1
2 |2

,∇he
n+ 1

2

)

+ (Řn+ 1
2 , en+

1
2 ),

2 ≤ n ≤ N − 1.
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Similarly to the proof of (3.18), we can get

(

∇hÛ
n+ 1

2

1 + |∇hÛn+ 1
2 |2

−
∇hû

n+ 1
2

1 + |∇hûn+ 1
2 |2

,∇he
n+ 1

2

)

≤
3

2
‖∇hê

n+ 1
2 ‖ · ‖∇he

n+ 1
2 ‖, 2 ≤ n ≤ N − 1.

(4.20)

Inserting (4.20) into (4.19), we have

1

2Δt
(‖en+1‖2 − ‖en‖2) + δ‖Δhe

n+ 1
2 ‖2

≤
3

2
‖∇hê

n+ 1
2 ‖ · ‖∇he

n+ 1
2 ‖ + (Řn+ 1

2 , en+
1
2 )

≤
3

4

(

‖∇hê
n+ 1

2 ‖2 + ‖∇he
n+ 1

2 ‖2
)

+ (Řn+ 1
2 , en+

1
2 )

≤
3

4

(

‖Δhê
n+ 1

2 ‖ · ‖ên+
1
2 ‖ + ‖Δhe

n+ 1
2 ‖ · ‖en+

1
2 ‖

)

+ (Řn+ 1
2 , en+

1
2 )

≤
3

4

(

δ

15
‖Δhê

n+ 1
2 ‖2 +

15

4δ
‖ên+

1
2 ‖2 +

2δ

3
‖Δhe

n+ 1
2 ‖2 +

3

8δ
‖en+

1
2 ‖2

)

+ (Řn+ 1
2 , en+

1
2 )

=
δ

20
‖Δhê

n+ 1
2 ‖2 +

δ

2
‖Δhe

n+ 1
2 ‖2 +

45

16δ
‖ên+

1
2 ‖2 +

9

32δ
‖en+

1
2 ‖2

+ (Řn+ 1
2 , en+

1
2 )

≤
δ

20
(8‖Δhe

n− 1
2 ‖2 + 2‖Δhe

n− 3
2 ‖2) +

δ

2
‖Δhe

n+ 1
2 ‖2

+
45

16δ
(8‖en−

1
2 ‖2 + 2‖en−

3
2 ‖2)

+
9

32δ
‖en+

1
2 ‖2 + (Řn+ 1

2 , en+
1
2 ), 2 ≤ n ≤ N − 1.

(4.21)

Summing (4.18) and (4.21), we get

1

2Δt
(‖en+1‖2 − ‖e0‖2)

≤
45

16δ
(8

n
∑

l=2

‖el−
1
2 ‖2 + 2

n
∑

l=2

‖el−
3
2 ‖2)

+
9

32δ

n
∑

l=2

‖el+
1
2 ‖2 +

n
∑

l=0

(Řl+ 1
2 , el+

1
2 )

≤
45

16δ
(8

n−1
∑

l=1

‖el+
1
2 ‖2 + 2

n−2
∑

l=0

‖el+
1
2 ‖2) +

9

32δ

n
∑

l=2

‖el+
1
2 ‖2

+
1

2

n
∑

l=0

(‖Řl+ 1
2 ‖2 + ‖el+

1
2 ‖2)

≤
1

2
(

9

32δ
+

1

2
)‖en+1‖2 + (

909

32δ
+

1

2
)

n
∑

l=0

‖el‖2 +
1

2

n
∑

l=0

‖Řl+ 1
2 ‖2.
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Noticing ‖e0‖ = 0 and (4.5), we have

[

1 − (
9

32δ
+

1

2
)Δt

]

‖en+1‖2 ≤ (
909

32δ
+

1

2
)Δt

n
∑

l=1

‖el‖2

+ (n + 1)Δt
[

c2(h
2
1 + h2

2 + Δt2)
]2

, 0 ≤ n ≤ N − 1.

When ( 9
32δ + 1

2 )Δt ≤ 1
3 , we have

‖en+1‖2 ≤
3

2
(
909

32δ
+

1

2
)Δt

n
∑

l=1

‖el‖2

+
3

2
(n + 1)Δt

[

c2(h
2
1 + h2

2 + Δt2)
]2

, 0 ≤ n ≤ N − 1.

The Gronwall lemma yields

‖en+1‖2 ≤ e
3
2
( 909
32δ

+ 1
2
)T ·

1
909
32δ + 1

2

·
[

c2(h
2
1 + h2

2 + Δt2)
]2

, 0 ≤ n ≤ N − 1

or

‖en+1‖ ≤ e
3
4
( 909
32δ

+ 1
2
)T ·

1
√

909
32δ + 1

2

· c2(h
2
1 + h2

2 + Δt2) 0 ≤ n ≤ N − 1.

This completes the proof. �

5. Numerical experiments

The purpose of this section is to verify the theoretical claims of the proposed
numerical schemes. We begin by presenting a numerical test for the problem (1.1)-
(1.2) in one space dimension, which gives the evidence of the expected energy
stability and second-order convergence of the proposed numerical scheme. In a
second test, we reproduce some calculations from a previous paper [15]. Finally, we
perform a coarsening dynamics simulation.

We have carried out the numerical tests with both the nonlinear scheme (3.6)-
(3.7) and the linear scheme (4.8)-(4.10). Both schemes give similar numerical re-
sults. For the nonlinear scheme, we use Newton’s iterative solver. The numerical
solution at the previous time level is taken as the initial guess at each time step.
At each Newton iteration step, an algebraic multigrid solver (AMG) is employed
to solve the resulted linear system. The tolerance of the Newton iteration is set
to be 10−6, and the tolerance of the AMG solver is 10−8. This Newton iteration
method with the AMG solver has been successfully used for many simulations in
our previous work; see e.g., [18,19]. In this section, we will only show the numerical
results obtained by the linear scheme (4.8)-(4.10).

Example 5.1. Consider the one-dimensional MBE model without slope selection:

∂u

∂t
= −

(

ux

1 + |ux|2

)

x

− δuxxxx, (x, t) ∈ (0, 12) × (0, T ),(5.1)

u(x, 0) = 0.1(sin
πx

2
+ sin

2πx

3
+ sinπx), x ∈ [0, 12],(5.2)

subject to periodic boundary conditions, where δ = 0.1.
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Table 1. Example 5.1: numerical accuracy test in time

Δt L2-error order
0.01 1.2320E-3 ——-
0.005 2.6977E-4 2.1912
0.0025 6.3541E-5 2.0860
0.00125 1.5416E-5 2.0431

−4 −3.5 −3 −2.5 −2 −1.5 −1
−9
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−5

−4

−3

−2

Figure 1. Example 5.1: The log-log plot of the error in L2-norm
versus the mesh size 12/M1. The solid line is the linear least-
squares fitting whose slope is the average order of accuracy in space,
which is 2.0840.
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Figure 2. Example 5.1: energy curve, 0 ≤ t ≤ 120.

To test the accuracy we take the numerical solution obtained by using M1 = 1200
and Δt = 10−5 as the reference solution. In Table 1, we show the grid refinement
analysis in time of our numerical scheme with M1 = 1200. We can see that the
method is second-order accurate in time in a discrete L2-norm.

To show the convergence order in space, we use a linear least-squares fitting to
find the average order of accuracy:

log ‖error‖2 ≈ order log(12/M1) + C

in Figure 1. We choose M1 = 50 + 10k, k = 0, 1, 2, . . . , 36. The order is found to
be 2.0840 and the constant is C = −0.7003.

The discrete energy is presented in Figure 2 with Δt = 0.01 and M1 = 120. It
is monotonically nonincreasing in time, which demonstrates the stability analysis.
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Figure 3. Example 5.2: contour plots of the numerical solution
at t = 0, 0.05, 2.5, 5.5, 8 and 30.

Example 5.2. Consider the two-dimensional MBE model without slope selection.
Here δ = 0.1 and the domain is Ω = [0, 2π] × [0, 2π]. The initial condition is

u0(x, y) = 0.1(sin 3x sin 2x + sin 5x sin 5y) (x, y) ∈ Ω.

This example has been studied by Li and Liu [15] for observing the nonlinear
interaction. We show contour plots of the numerical solution u and the magnitude
of its gradient |∇u| at t = 0, 0.05, 2.5, 5.5, 8 and 30 with Δt = 0.01 and M1 = M2 =
100 in Figure 3 and Figure 4, respectively. The structural transition of mounds in
the coarsening can be observed in Figure 3. In Figure 4, it can be seen that the
magnitude of the gradient |∇u| is much larger than that for the thin film epitaxy
growth with slope selection; see [15].

The energy evolution is shown in Figure 5. We observe that the energy decays
rapidly initially. Then after a relatively long period of time, the energy has its
second sharp decay at around t = 5. After the third fast decay, the energy reaches
a steady state after t = 15.

The contour plots figures in Figure 3 and Figure 4 and the energy evolution
profile shown in Figure 5, obtained by our proposed numerical scheme, are in good
agreement with those in [15].
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Figure 4. Example 5.2: contour plots of gradient at t = 0,
0.05, 2.5, 5.5, 8 and 30.
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Figure 5. Example 5.2: energy evolution. Left: energy decays in
early stage 0 ≤ t ≤ 0.04. Right: energy decays for 0 ≤ t ≤ 50.

Example 5.3. (coarsening dynamics). We simulate the no-slope-selection MBE
model (1.1) in two dimensions. The initial condition is a random state by random
numbers varying from −0.001 to 0.001 on each grid point. The domain is Ω =
[0, 12.8]× [0, 12.8] and also the problem is subject to periodic boundary conditions.
We use a 300 × 300 grid in this simulation. For the temporal step size Δt, we use
Δt = 0.001 on the time interval [0, 400], Δt = 0.01 on the time interval [400, 6000]
and Δt = 0.1 for t > 6000. Figure 6 presents time snapshots of the computed film
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height u with δ = 0.001. Coarsening dynamics with shapes of hills and valleys in the
system is evident. The system clearly saturates to a one-hill-one-valley structure
at t = 100000.

(a) t = 400 (b) t = 4000 (c) t = 10000

(d) t = 20000 (e) t = 40000 (f) t = 100000

Figure 6. Example 5.3: time snapshots of the computed height
function u with the parameters Ω = [0, 12.8] × [0, 12.8]; δ = 0.001.

The energy decay rate, the growth rates of surface roughness and mound width
are of great interest to physicists and engineers. The surface roughness is defined
as

(5.3) w(t) =

√

1

|Ω|

∫

Ω

|u(x, t) − ū(t)|2dx, with ū(t) =
1

|Ω|

∫

Ω

u(x, t)dx,

where x = (x, y)T . The mound width λ(t) measures the mean size of the network
cell, which can be calculated as suggested in [9,27] from the height-height correlation
function

Kuu(r, t) =

∫

Ω

u(x + r, t)u(x, t)dx,

where r is a positive vector. In our computation, we take a simple form r = (r, r)T .
Kuu can be regarded as a function of r for fixed t, which shows an oscillatory
character reflecting the presence of a mound structure. For a given t, the mean
pyramid width λ(t) is defined as r0(t), which is the first zero crossing of Kuu(r, t),

r0(t) = inf {r > 0,Kuu(r, t) = 0} .

For the no-slope-selection MBE model (1.1), one obtains w(t) ∼ O(t1/2), λ(t) ∼
O(t1/4) and the energy (1.3) evolves like E(t) ∼ O(− ln t) [9,15,16]. In Figure 7(a),
we present the linear least-squares fit of the semi-log energy data up to t = 4000.
The fitted line has the form me ln t + be, with me = −40.01, be = −110.3. In
Figure 7(b), we present the linear least-squares fit of the log-log surface roughness
data up to t = 4000. The fitted line has the form brtmr , where br = 0.4089 and
mr = 0.5021. Figure 7(c) gives the linear least-squares fit of the log-log width
data up to t = 4000. The fitted line has the form bwtmw , where bw = 0.2313
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and mw = 0.2412. A clear explanation of the − ln t, t1/2 and t1/4 scaling laws for
the energy decay rate, the surface roughness growth rate and mound width growth
rate, respectively, has been supported by our simulation. Figures 7(a) and 7(b) also
agree well with those in [2, 3].
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Figure 7. Example 5.3: energy, roughness and width evolution
for the simulation depicted in Figure 6. The final simulation time
is t = 100000.

6. Conclusion

In this work, we have developed and analyzed two energy stable schemes for
solving molecular beam epitaxy model without slope selection. One scheme is
nonlinear, while the other one is fully linear. Both schemes are proved to be uniquely
solvable and of second-order convergence in a discrete L2-norm. By introducing an
auxiliary variable v, we define the physical energy in an alternate way, which avoids
the classical theoretical difficulty of energy stability. However, since the auxiliary
variable v is updated by (3.8), which is based on the evolutionary equation (2.2)
instead of the original representation (2.1), the energy stability result is obtained
based on a modified energy. Such a modified energy stability is an inferior result,
compared to a direct energy stability in terms of the original variable u. Several
numerical experiments are carried out in Section 5. The numerical results are
in good agreement with the existing ones and the theoretical claims have been
demonstrated numerically. We also perform a long time simulation for a coarsening
process. The t1/2 growth law for surface roughness, the t1/4 growth law for mound
width and the − ln(t) decay law for energy of the no-slope-selection MBE model
(1.1) have been recovered and verified numerically.

We should point out that the H2 numerical stability for the solution u cannot
be derived at the theoretical level, while for the original PDE solution (1.1), it is
well-known that the energy stability indicates a global in time H2 stability for the
solution u. Meanwhile, there are some related references in existing literatures, of
energy stable schemes to (1.1) so that an H2 stability analysis is available for the so-
lution u, with either first- or second-order accuracy in time; see e.g., [2,22,25]. One
of the future works in this direction is to develop energy stable schemes, especially
high-order linear energy stable schemes, based on a direct energy discretization in
terms of the original variable u. Other future works in this direction include carry-
ing out the adaptive time integration as that in [19], i.e., treating the fast dynamics
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changes and slow changes separately. This is important in further improving the
efficiency for the large time simulations.
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