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Abstract We consider a number of questions pertaining to the stalifipositive
switched linear systems. Recent results on common queddé&gonal, and copos-
itive Lyapunov function existence are reviewed and theimrmxtion to the stability
properties of switched positive linear systems is higtikgh\We also generalise the
concept of D-stability to positive switched linear systeamsl present some prelim-
inary results on this topic.

1 Introduction

While the stability properties of positive linear time-anant (LTI) systems have
been thoroughly investigated and are now completely uhateds the theory for
nonlinear, uncertain and time-varying positive systemsoissiderably less well-
developed. In fact, many natural and fundamental questiarike stability of such
systems remain unanswered. It is clear that for many pedcjplications there is
a need to extend the theory for positive LTI systems to broadd more realistic
system classes incorporating nonlinearities and timgivgrparameters. Another
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separate and interesting line of recent research has fetossextending the stabil-
ity properties of positive LTI systems to positive desasipgystems [1].

Our principal focus in the present paper is on extending takilgy theory of
positive LTI systems to switched positive linear systenjs\[& review recent work
on the stability of these systems, highlighting the coninadbetween various no-
tions of stability and the existence of corresponding typesommon Lyapunov
function. We also consider an extension of the concept ofabilty to positive
switched linear systems, present some preliminary refulthis question and high-
light some directions for future research.

2 Notation and Background

ThroughoutR denotes the field of real numbeRs, denotes the set of non-negative
real numbersR" stands for the vector space of altuples of real numbers and
R™" is the space ofn x n matrices with real entries. Forin R", x, denotes the
it component o, and the notatiox > 0 (x = 0) means thax, > 0 (x, > 0) for
1<i < n. The notationx < 0 andx < 0 are defined in the obvious manner.

We write AT for the transpose oA € R™" and for a symmetri® in R"™" the
notationP > 0 means that the matriXis positive definite.

Throughout the paper, in an abuse of notation, for LTI systeve shall use
the term stability to denote asymptotic stability. Also,emhreferring to switched
linear systems, stability shall be used to denote asyngmtability under arbitrary
switching [2].

For a positive LTI system

X(t) = Ax(t) (1)

whereA € R™" is a Metzler matrix (meaning that the off-diagonal entrieéd\are
non-negative), the equivalences we collect in the follgaiesult are well known.

Proposition 1.[3] Let A€ R™" be a Metzler matrix. The following statements are
equivalent:

(@) The LTI system (1) is stable;

(b)A is Hurwitz, meaning that its eigenvalues lie in the open left half plane;
(c) There exists P > 0 such that ATP + PA < 0,

(d)There exists a diagonal matrix D > 0 such that ATD + DA < 0;

(e) There exists a vector v = 0in R" with Av < O;

(f) For any diagonal matrix D > 0, the system x(t) = DAX(t) is stable.

While the equivalence of (a), (b) and (c) in the previous ltesigo holds for any
LTI system, properties (d), (e) and (f) are specific to pesitiTl systems. With
regard to point (), aé is Hurwitz and Metzler if and only iAT is Hurwitz, an
equivalent condition for stability for positive LTI systens the existence of > 0
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satisfyingATv < 0. Such av can be used to define a copositive linear Lyapunov
functionV (x) = v x for the system (1).

The property described in (f) is known Bsstability and establishes that stability
of positive LTI systems is robust with respect to paramairicertainties given by
diagonal scaling. Later in the paper, we shall be concern#dinvestigating the
connection between concepts similar to those in (e) and(fsWwitched positive
linear systems. Before this, in the following section, wealkreview some recent
work on the stability of switched positive linear systems.

3 Lyapunov Functions and Stability for Switched Positive Lnear
Systems

It is well known that a switched positive linear system of ftien
X(t) = AX()  A(l) € {A,A} ®)

can be unstable for certain choices of switching sequenae when the individual
system matrice#\;, A, are asymptotically stable [2]. This observation has led to
great interest in the stability of such systems under atyitswitching regimes. A
key result in this connection is that stability of (2) is eepléent to the existence
of a common Lyapunov function for the individual componeiit kystems [2].

In the light of Proposition 1, three classes of Lyapunov fimrcnaturally suggest
themselves for positive switched linear systems:

e Common Quadratic Lyapunov Functions (CQLFs): V(x) = x"Px whereP =
PT > 0andATP+PA <0 fori=1,2;

e Common Diagonal Lyapunov Functions (CDLFs): V(x) = x"Dx whereD =
diag(d,,...,dn), D > 0 andA’ D + DA < 0 fori = 1,2;

e Common Linear Copositive Lyapunov Functions (CLLFS): V(x) = v'x where
v 0andATv < 0fori=1,2.

In the interests of brevity, we shall abuse notation slightid say that the matrices
A, A, have a CQLF, CDLF or CLLF rather than always referring to thsoaiated
LTI systems.

Recall the following well-known necessary condition foe ttability of positive
switched linear systems (in fact this is a necessary camditir stability for general
switched linear systems)[2].

Lemma 1.Let A, A, € R™" be Metzer and Hurwitz. Suppose that the associated
switched positive linear system (2) is stable. Then for any real y > 0, A, + YA, is
Hurwitz.

Common Quadratic Lyapunov Functions (CQLFs)

In [4], the relationship between the existence of CQLFs stladility of all ma-
trices of the formA, + yA, with y > 0, and the stability of the system (2) was
considered. For 2-dimensional systems, the followingltegas established.
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Theorem 1.Let A}, A, € R?*2? be Hurwitz and Metzer. Then the following state-
ments are equivalent:

(a)A;, A, have a CQLF,
(b) The switched system (2) is stable;
(c)A; + YA, isHurwitz for all real y > 0.

Further, the equivalence of (b) and (c) can be extended toake of an arbitrary
finite number of positive LTI systems. Formally, it was shoimn[4] that given
Metzler, Hurwitz matriceg\, ..., A, in R%*2, the switched system(t) = A(t)x(t),
A(t) € {A,..., A} is stable if and only ifA; + A, + - - + y A is Hurwitz for all
realy, > 0,...y > 0.

The equivalence of (a), (b) and (c) fails immediately foriBensional systems.
Moreover, the equivalence of (b) and (c) is not true for aajt dimensions [4]. In
fact, in a very recent paper [5], a 3-dimensional exampleafrestable switched sys-
tem for whichA, + yA, was Hurwitz for ally > 0 was explicitly described. In con-
nection with CQLF existence and the stability of positivétshed linear systems, it
has been shown in [6] for 2 and 3 dimensional systems thatk{fg —A;) = 1, and
A,, A, are both Hurwitz, then the associated LTI systems alwaysgsssa CQLF
and the switched linear system (2) is stable.

Common Diagonal Lyapunov Functions (CDLFs)

As stable positive LTI systems have diagonal Lyapunov fionet it is natural to
ask under what conditions families of such systems will pess& common diagonal
Lyapunov function. In the paper [7], the following resultsvderived for systems
with irreducible system matrices (for the definition of dtecible matrices, see [8]).

Theorem 2.Let A;,A, € R™" beirreducible, Metzler and Hurwitz. A;, A, have a
CDLF if and only if A; + DA,D is Hurwitz for all diagonal matrices D > 0.

The above result allows us to establish a connection betweemexistence of a
CDLF and a form of robust stability for switched positivedar systems. First of
all, note that forA,, A, irreducible, Metzler and Hurwitz, Theorem 2 shows that
if A;, A, have a CDLF, then so dD,A,D,, D,A,D, for any choice of diagonal
matricesD; > 0, D, > 0. Hence the existence of a CDLF guarantees the stability of
the positive switched linear system

X(t) = A(t)x(t) A(t) € {D;A;D1,D,A,D,} 3)

for any diagonal matrice®, > 0,D, > 0.

Conversely, ifA;, A, do not have a CDLF, then it follows from Theorem 2 that
there is some diagonal matrix > 0 such tha#\; + DA,D is not Hurwitz. This then
immediately implies from Lemma 1 that the switched systejrig3ot stable with
D, =1, andD, = D. This discussion establishes the following result.

Proposition 2. Let A;, A, € R™" beirreducible, Metzler and Hurwitz. The switched
system (3) is stable for any diagonal matrices D, > 0, D, > Oif and only if A;, A,
have a CDLF.
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Common Linear Copositive Lyapunov Functions (CLLFs)

It is also possible to establish the stability of positivatshed linear systems
using copositive linear Lyapunov functions. As noted in fghditional Lyapunov
functions may give conservative stability conditions fosjtive switched systems as
they fail to take into account that trajectories are natyanstrained to the positive
orthant. The existence of a CLLF for a pair of Metzler, HuamibatricesA, , A,
is equivalent to the feasibility of the linear inequalities- 0, Alv < 0, Alv < 0.
For the most part, we shall be concerned with the feasikilitthe related system
of inequalitiesv - 0, A;v < 0, A,v < 0 as this is more relevant to the extension
of the concept of D-stability for switched positive linegiseems that interests us.
Conditions for the feasibility of this system of inequadgi (for compact sets of
matrices) have been given in terms of P-matrix sets in thepdg].

It is important for what follows to make clear the distinetibetween the exis-
tence of a common - 0 satisfyingA'v < 0 fori = 1,2 (CLLF existence), and the
existence of a commown> 0 such that\v < 0 fori = 1,2. For switched systems
(in contrast with the LTI case), these two conditions areetptivalent. This can be
seen from the following simple 2 2 example.

-12 -6 6
ne (1 5) A (25
It can be verified algebraically thAfv < O fori = 1,2 wherev= (5 2)T. However,
it is easy to show that there can bewe 0 satisfyingATv < 0 fori = 1,2.

Example 1.

An algebraic condition for CLLF existence was derived in][1f the interests
of brevity, we shall not explicitly state this result here bather state the following
technical result which follows from Theorem 3.1 in that paféis fact shall prove
useful in our later discussion.

Lemma 2. Let A;,A, € R™" be Metzer and Hurwitz. Supposethat thereis no non-
zerov = 0inR" with A;v < 0, A, < 0. Then thereis some diagonal D > 0 such that
A, + DA, issingular.

4 Switched Positive Linear Systems and D-Stability: The 2-d
Case

In this and the following section, we shall investigate tbkofving generalisation
of the notion of D-stability to positive switched linear sg#s.

Definition 1. Let A;,A, € R™" be Metzler and Hurwitz. The associated switched
positive linear system (2) is said to be D-stable if for arggginal matrice®,,D, €
R™" with D, > 0,D, > 0, the system

X(t) = AMLX(t)  A(t) € {D1A;, DA} (4)
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is stable.

For positive LTI systems, Proposition 1 shows that stab#ihd D-stability are
equivalent. Our first observation, in Example 2, is to not this equivalence is
not true in the switched case. First of all, we note the follmysimple necessary
condition for D-stability, which follows immediately frolmemma 1.

Lemma 3. Let A;,A, € R™" be Metzler and Hurwitz. Suppose that the associated
switched positive linear system (2) is D-stable. Then for any diagonal matrix D > 0,
A, + DA, isHurwitz.

Example 2. Consider the Metzler, Hurwitz matrices Rf*?

-2 0 -15
A1::< 1 —4>’A?::< 0 —1>

It is straightforward to verify tha#\, + yA, is Hurwitz for all y > 0. Hence by
Theorem 1, the associated switched system is stable. Oriitbeland, choosing

20 0
D‘(ooJ

it is easily verified tha\; + DA, is not Hurwitz. Hence by Lemma 3 the associated
switched system is not D-stable.

The above example illustrates that for switched positivedr systems, the concepts
of stability and D-stability are not equivalent, in contressthe LTI system case. In
the following result, we show that the necessary conditivargin Lemma 3 is also
sufficient for D-stability for 2-dimensional systems.

Theorem 3.Let A, A, € R2*2 be Metzer and Hurwitz. The positive switched linear
system (2) is D-stable if and only if A, 4+ DA, is Hurwitz for all diagonal matrices
D>0.

Proof: Lemma 3 has already established the necessity of this ¢omdior suffi-
ciency letD, >0, D, > 0 be diagonal matrices and ket 0 be any non-negative real
number. By hypothesig\, + yDIlDZA2 is Hurwitz fory > 0 and it is trivially true
for y= 0. However, this matrix is also Metzler and hence by poind{fProposition
1,D,A, + YD,A, = D;(A; + YD 'D,A,) is also Hurwitz. It now follows immedi-
ately from Theorem 1 that the switched system (4) associaitdD,;A;, D,A, is
stable. As this is true for any diagoria] > 0, D, > 0, the system (2) is D-stable.
The next result establishes a connection between the egestef a common
solution to the inequalitieg > 0, A;v < 0 fori = 1,2 and D-stability for (2).

Corollary 1. Let A}, A, € R%*2 be Metzer and Hurwitz Then:

(i) If thereis some v > O with A;v < 0, A,v < 0 then the system (2) is D-stable;
(ii)If (2) is D-stable then there exists some non-zero v > O with A;v < 0, A,v < 0.
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Proof: (i) Suppose there is some> 0 with Av < 0 fori = 1,2. Then for any
diagonalD > 0, DA,v < 0 and(A; + DA,)v < 0. MoreoverA, + DA, is Metzler.
Hence, from point (e) of Proposition 1, it follows that+ DA, is Hurwitz. Theorem
3 now implies that the switched system (2) is D-stable.

(i) If (2) is D-stable, then Theorem 3 implies thai 4+ DA, is Hurwitz for all
diagonalD > 0. It now follows from Lemma 2 that there must exist some neroz
v>= 0withAjv=<0,Av=0.

Note that the sufficient condition for D-stability preseshta point (i) of Corol-
lary 1 is not necessary as demonstrated by the following pi&m

Example 3. Consider the Metzler, Hurwitz matricég, A, given by:

21 31
me (7 )= (3)

Using Theorem 4.1 of [11] it is straightforward to show thatre is no vectov > 0
with A;v < 0, A,v < 0. On the other hand, it can be verified algebraically thaafor
diagonalD > 0, A; + DA, is Hurwitz and hence the switched system (2) is D-stable
by Theorem 3.

5 D-Stability in Higher Dimensions

In this section, we present a result extending Corollary hither dimensional
positive switched linear systems. While the following desistated for switched
systems with two constituent systems, the argument caly éasamended to derive
a corresponding result for an arbitrary number of constitsgstems.

Theorem 4.Let A, A, € R™" be Metzer and Hurwitz. Then:

(i) If thereis some v > O with A;v < 0, A,v < 0 then the system (2) is D-stable;
(ii)If (2) is D-stable then there exists some non-zero v - 0 with Ajv < 0, A,v < 0.

Proof:

(i)

The first step in proving (i) is to show that the existence ahsav is sufficient
for the stability of the switched system (2). With this in mjsuppose that there ex-
ists somer > 0 satisfyingA,v < 0,A,v < 0, and let a (piecewise-constant) switching
signalo : R, — {1,2} be given such tha(t) = Ao_(t) for allt > 0. Furthermore,
let0=1ty,t;,t5,..., ..., be the switching times or points of discontinuity@f As
is standard for switching systems [2], we assume that tlseserme non-vanishing
dwell-timet > 0 such that, , —t, > tforallk> 0. Letx?(.,X,) denote the unique,
piecewiseC! solution of (2) corresponding to the initial conditigpand the switch-
ing signalo. Also, fori = 1,2, letx'!(.,x,) denote the unique solution of the stable
positive LTI systenx = A x corresponding to the initial staig.

Note the following readily verifiable facts concerning tldugions of the positive
LTI systems with system matricég, A,.
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(@)Fori = 1,2, if X, = 0,x; > 0 satisfyx, < x,, thenx( (t,x,) < xV(t,x,) for all
t > 0. This simply records the well-known fact that positive LSyjstems are
monotone;

(b)Fori = 1,2, as3x (0,v) = Av < 0, it follows that there is somé > 0 such that
xW(t,v) <vfor0<t<é.

Combining (a) and (b) we see immediately that foat 0< §, andi = 1,2,
XD (t+ 8,v) = x (1, xD(3,v)) < xV(t,v) < v

Simply iterating this process, it is easy to see thatifer1,2, x)(t,v) < v for all
t>0.

Now consider the solutior?(.,v) of (2) corresponding to the initial condition
v and the switching signat. The argument in the previous paragraph guarantees
that for 0<'t <t,, x?(t,v) < v (as the dynamics in this interval are given by one of
the constituent positive LTI systems). But in the secondrival[t;,t,), the system
dynamics are again given by a positive LTI system wilit;,v) < v as initial con-
dition. Hence from the previous argument combined with p¢h above, we can
conclude that fot; <t <t,, x?(t,v) < v. Continuing in this way, we can easily see
that for allt > 0, we havex? (t,v) < v. As the switching signalr was arbitrary, we
can conclude that? (t,v) < v holds for all switching signals.

Itis now straightforward to show that the solutions of (2) aniformly bounded.

In fact, for anyx, > 0 such that|x,||o < Ky, if Vi, = min{vy,...,vp}, thenx, <
(Ky/Vyin)V- It now follows that for allt > 0, x(t,x,) < (K;/Vsin)V and hence that
[1X? (t, %) |0 < K (Vimax/Viyipy) fOr all t > 0 wherevimax = max{v;,...,vn}.

Now if there is somes > 0 with Av < 0 fori = 1,2, then(A + €l)v < 0 for
sufficiently small positivee > 0. Therefore, the trajectories of the switched system
corresponding tdA, + €l, A, + £l are also uniformly bounded for small enough
positive € > 0. This immediately implies that the original system (2) isbally
asymptotically stable.

To complete the proof of (i), note that for any positive deérdiagonal matrices
D,.D,, the matrice,A; andD,A, are Metzler and Hurwitz. Moreover, Kv <
0 fori =1,2, thenD;Av < O fori = 1,2. The above argument now immediately
implies that the system (4) is stable and hence the origyséém (2) is D-stable as
claimed.

The result given by (ii) follows immediately from Lemma 3 alogimma 2.

Note that the result given by (i) provides a condition forbdity of (2) that is
distinct although related to the condition given by CLLFs#&hce.

6 Concluding remarks

In this paper, we have discussed a number of problems rglatithe stability prop-
erties of switched positive linear systems. In particues, have reviewed recent
work on common quadratic, copositive and diagonal Lyapunaegtions for these
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systems and on the relationship between the existence lofsnctions and various
notions of stability for switched positive systems. We hals® discussed the notion
of D-stability for positive switched systems and presergeparate necessary and
sufficient conditions for D-stability fon-dimensional systems. More detailed and
complete results have also been given for 2-dimensiontisys

A number of interesting directions for future research eqaerom the work

described here. For instance, it would be interesting testigate the possibility of
Theorem 3 extending to dimensions higher than 2, even foegestricted system
class. Also, the question of whether stability and D-sighdre equivalent for any
subclass of positive switched linear systems arises rtutas straightforward to
show that this is true for upper (or lower) triangular pagitsystems, for example,
but are there any more interesting such classes?
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