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Abstract We consider a number of questions pertaining to the stability of positive
switched linear systems. Recent results on common quadratic, diagonal, and copos-
itive Lyapunov function existence are reviewed and their connection to the stability
properties of switched positive linear systems is highlighted. We also generalise the
concept of D-stability to positive switched linear systemsand present some prelim-
inary results on this topic.

1 Introduction

While the stability properties of positive linear time-invariant (LTI) systems have
been thoroughly investigated and are now completely understood, the theory for
nonlinear, uncertain and time-varying positive systems isconsiderably less well-
developed. In fact, many natural and fundamental questionson the stability of such
systems remain unanswered. It is clear that for many practical applications there is
a need to extend the theory for positive LTI systems to broader and more realistic
system classes incorporating nonlinearities and time-varying parameters. Another
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separate and interesting line of recent research has focussed on extending the stabil-
ity properties of positive LTI systems to positive descriptor systems [1].

Our principal focus in the present paper is on extending the stability theory of
positive LTI systems to switched positive linear systems [2]. We review recent work
on the stability of these systems, highlighting the connection between various no-
tions of stability and the existence of corresponding typesof common Lyapunov
function. We also consider an extension of the concept of D-stability to positive
switched linear systems, present some preliminary resultsfor this question and high-
light some directions for future research.

2 Notation and Background

Throughout,R denotes the field of real numbers,R+ denotes the set of non-negative
real numbers,Rn stands for the vector space of alln-tuples of real numbers andRm�n is the space ofm� n matrices with real entries. Forx in Rn , xi denotes the
ith component ofx, and the notationx � 0 (x � 0) means thatxi > 0 (xi � 0) for
1� i� n. The notationsx� 0 andx� 0 are defined in the obvious manner.

We write AT for the transpose ofA 2 Rn�n and for a symmetricP in Rn�n the
notationP > 0 means that the matrixP is positive definite.

Throughout the paper, in an abuse of notation, for LTI systems we shall use
the term stability to denote asymptotic stability. Also, when referring to switched
linear systems, stability shall be used to denote asymptotic stability under arbitrary
switching [2].

For a positive LTI system

ẋ(t) = Ax(t) (1)

whereA 2 Rn�n is a Metzler matrix (meaning that the off-diagonal entries of A are
non-negative), the equivalences we collect in the following result are well known.

Proposition 1. [3] Let A 2 Rn�n be a Metzler matrix. The following statements are
equivalent:

(a)The LTI system (1) is stable;
(b)A is Hurwitz, meaning that its eigenvalues lie in the open left half plane;
(c)There exists P > 0 such that AT P+PA < 0;
(d)There exists a diagonal matrix D > 0 such that AT D+DA < 0;
(e)There exists a vector v� 0 in Rn with Av� 0;
(f) For any diagonal matrix D > 0, the system ẋ(t) = DAx(t) is stable.

While the equivalence of (a), (b) and (c) in the previous result also holds for any
LTI system, properties (d), (e) and (f) are specific to positive LTI systems. With
regard to point (e), asA is Hurwitz and Metzler if and only ifAT is Hurwitz, an
equivalent condition for stability for positive LTI systems is the existence ofv � 0
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satisfyingAT v � 0. Such av can be used to define a copositive linear Lyapunov
functionV (x) = vT x for the system (1).

The property described in (f) is known asD-stability and establishes that stability
of positive LTI systems is robust with respect to parametricuncertainties given by
diagonal scaling. Later in the paper, we shall be concerned with investigating the
connection between concepts similar to those in (e) and (f) for switched positive
linear systems. Before this, in the following section, we shall review some recent
work on the stability of switched positive linear systems.

3 Lyapunov Functions and Stability for Switched Positive Linear
Systems

It is well known that a switched positive linear system of theform

ẋ(t) = A(t)x(t) A(t) 2 fA1;A2g (2)

can be unstable for certain choices of switching sequence even when the individual
system matricesA1;A2 are asymptotically stable [2]. This observation has led to
great interest in the stability of such systems under arbitrary switching regimes. A
key result in this connection is that stability of (2) is equivalent to the existence
of a common Lyapunov function for the individual component LTI systems [2].
In the light of Proposition 1, three classes of Lyapunov function naturally suggest
themselves for positive switched linear systems:� Common Quadratic Lyapunov Functions (CQLFs): V (x) = xT Px where P =

PT > 0 andAT
i P+PAi < 0 for i = 1;2;� Common Diagonal Lyapunov Functions (CDLFs): V (x) = xT Dx where D =

diag(d1; : : : ;dn), D > 0 andAT
i D+DAi < 0 for i = 1;2;� Common Linear Copositive Lyapunov Functions (CLLFs): V (x) = vT x where

v� 0 andAT
i v� 0 for i = 1;2.

In the interests of brevity, we shall abuse notation slightly and say that the matrices
A1;A2 have a CQLF, CDLF or CLLF rather than always referring to the associated
LTI systems.

Recall the following well-known necessary condition for the stability of positive
switched linear systems (in fact this is a necessary condition for stability for general
switched linear systems)[2].

Lemma 1. Let A1;A2 2 Rn�n be Metzler and Hurwitz. Suppose that the associated
switched positive linear system (2) is stable. Then for any real γ � 0, A1+ γA2 is
Hurwitz.

Common Quadratic Lyapunov Functions (CQLFs)
In [4], the relationship between the existence of CQLFs, thestability of all ma-

trices of the formA1 + γA2 with γ � 0, and the stability of the system (2) was
considered. For 2-dimensional systems, the following result was established.
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Theorem 1.Let A1;A2 2 R2�2 be Hurwitz and Metzler. Then the following state-
ments are equivalent:

(a)A1, A2 have a CQLF;
(b)The switched system (2) is stable;
(c)A1+ γA2 is Hurwitz for all real γ � 0.

Further, the equivalence of (b) and (c) can be extended to thecase of an arbitrary
finite number of positive LTI systems. Formally, it was shownin [4] that given
Metzler, Hurwitz matricesA1; : : : ;Ak in R2�2, the switched system ˙x(t) = A(t)x(t),
A(t) 2 fA1; : : : ;Akg is stable if and only ifA1+ γ2A2+ � � �+ γkAk is Hurwitz for all
realγ2 � 0; : : :γk � 0.

The equivalence of (a), (b) and (c) fails immediately for 3-dimensional systems.
Moreover, the equivalence of (b) and (c) is not true for arbitrary dimensions [4]. In
fact, in a very recent paper [5], a 3-dimensional example of an unstable switched sys-
tem for whichA1+ γA2 was Hurwitz for allγ � 0 was explicitly described. In con-
nection with CQLF existence and the stability of positive switched linear systems, it
has been shown in [6] for 2 and 3 dimensional systems that if rank(A2�A1) = 1, and
A2;A1 are both Hurwitz, then the associated LTI systems always possess a CQLF
and the switched linear system (2) is stable.
Common Diagonal Lyapunov Functions (CDLFs)

As stable positive LTI systems have diagonal Lyapunov functions, it is natural to
ask under what conditions families of such systems will possess a common diagonal
Lyapunov function. In the paper [7], the following result was derived for systems
with irreducible system matrices (for the definition of irreducible matrices, see [8]).

Theorem 2.Let A1;A2 2 Rn�n be irreducible, Metzler and Hurwitz. A1, A2 have a
CDLF if and only if A1+DA2D is Hurwitz for all diagonal matrices D > 0.

The above result allows us to establish a connection betweenthe existence of a
CDLF and a form of robust stability for switched positive linear systems. First of
all, note that forA1;A2 irreducible, Metzler and Hurwitz, Theorem 2 shows that
if A1, A2 have a CDLF, then so doD1A1D1, D2A2D2 for any choice of diagonal
matricesD1 > 0, D2 > 0. Hence the existence of a CDLF guarantees the stability of
the positive switched linear system

ẋ(t) = A(t)x(t) A(t) 2 fD1A1D1;D2A2D2g (3)

for any diagonal matricesD1 > 0, D2 > 0.
Conversely, ifA1, A2 do not have a CDLF, then it follows from Theorem 2 that

there is some diagonal matrixD > 0 such thatA1+DA2D is not Hurwitz. This then
immediately implies from Lemma 1 that the switched system (3) is not stable with
D1 = I, andD2 = D. This discussion establishes the following result.

Proposition 2. Let A1;A22Rn�n be irreducible, Metzler and Hurwitz. The switched
system (3) is stable for any diagonal matrices D1 > 0, D2 > 0 if and only if A1, A2
have a CDLF.
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Common Linear Copositive Lyapunov Functions (CLLFs)
It is also possible to establish the stability of positive switched linear systems

using copositive linear Lyapunov functions. As noted in [9], traditional Lyapunov
functions may give conservative stability conditions for positive switched systems as
they fail to take into account that trajectories are naturally constrained to the positive
orthant. The existence of a CLLF for a pair of Metzler, Hurwitz matricesA1;A2
is equivalent to the feasibility of the linear inequalitiesv � 0, AT

1 v � 0, AT
2 v � 0.

For the most part, we shall be concerned with the feasibilityof the related system
of inequalitiesv � 0, A1v � 0, A2v � 0 as this is more relevant to the extension
of the concept of D-stability for switched positive linear systems that interests us.
Conditions for the feasibility of this system of inequalities (for compact sets of
matrices) have been given in terms of P-matrix sets in the paper [10].

It is important for what follows to make clear the distinction between the exis-
tence of a commonv� 0 satisfyingAT

i v� 0 for i = 1;2 (CLLF existence), and the
existence of a commonv � 0 such thatAiv � 0 for i = 1;2. For switched systems
(in contrast with the LTI case), these two conditions are notequivalent. This can be
seen from the following simple 2�2 example.

Example 1.

A1 =��1 2
1 �3

� ;A2 =��6 6
2 �6

�
It can be verified algebraically thatAiv� 0 for i = 1;2 wherev = (5 2)T . However,
it is easy to show that there can be nov� 0 satisfyingAT

i v� 0 for i = 1;2.

An algebraic condition for CLLF existence was derived in [11]. In the interests
of brevity, we shall not explicitly state this result here but rather state the following
technical result which follows from Theorem 3.1 in that paper. This fact shall prove
useful in our later discussion.

Lemma 2. Let A1;A2 2 Rn�n be Metzler and Hurwitz. Suppose that there is no non-
zero v� 0 in Rn with A1v� 0, A2� 0. Then there is some diagonal D > 0 such that
A1+DA2 is singular.

4 Switched Positive Linear Systems and D-Stability: The 2-d
Case

In this and the following section, we shall investigate the following generalisation
of the notion of D-stability to positive switched linear systems.

Definition 1. Let A1;A2 2 Rn�n be Metzler and Hurwitz. The associated switched
positive linear system (2) is said to be D-stable if for any diagonal matricesD1;D2 2Rn�n with D1 > 0, D2 > 0, the system

ẋ(t) = A(t)x(t) A(t) 2 fD1A1;D2A2g (4)
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is stable.

For positive LTI systems, Proposition 1 shows that stability and D-stability are
equivalent. Our first observation, in Example 2, is to note that this equivalence is
not true in the switched case. First of all, we note the following simple necessary
condition for D-stability, which follows immediately fromLemma 1.

Lemma 3. Let A1;A2 2 Rn�n be Metzler and Hurwitz. Suppose that the associated
switched positive linear system (2) is D-stable. Then for any diagonal matrix D> 0,
A1+DA2 is Hurwitz.

Example 2. Consider the Metzler, Hurwitz matrices inR2�2

A1 =��2 0
1 �4

� ;A2 =��1 5
0 �1

�
It is straightforward to verify thatA1 + γA2 is Hurwitz for all γ � 0. Hence by
Theorem 1, the associated switched system is stable. On the other hand, choosing

D =�20 0
0 0:5�

it is easily verified thatA1+DA2 is not Hurwitz. Hence by Lemma 3 the associated
switched system is not D-stable.

The above example illustrates that for switched positive linear systems, the concepts
of stability and D-stability are not equivalent, in contrast to the LTI system case. In
the following result, we show that the necessary condition given in Lemma 3 is also
sufficient for D-stability for 2-dimensional systems.

Theorem 3.Let A1;A22R2�2 be Metzler and Hurwitz. The positive switched linear
system (2) is D-stable if and only if A1+DA2 is Hurwitz for all diagonal matrices
D > 0.

Proof: Lemma 3 has already established the necessity of this condition. For suffi-
ciency letD1> 0,D2>0 be diagonal matrices and letγ � 0 be any non-negative real
number. By hypothesis,A1+ γD�1

1 D2A2 is Hurwitz for γ > 0 and it is trivially true
for γ = 0. However, this matrix is also Metzler and hence by point (f)of Proposition
1, D1A1+ γD2A2 = D1(A1+ γD�1

1 D2A2) is also Hurwitz. It now follows immedi-
ately from Theorem 1 that the switched system (4) associatedwith D1A1;D2A2 is
stable. As this is true for any diagonalD1 > 0, D2 > 0, the system (2) is D-stable.

The next result establishes a connection between the existence of a common
solution to the inequalitiesv� 0, Aiv� 0 for i = 1;2 and D-stability for (2).

Corollary 1. Let A1;A2 2 R2�2 be Metzler and Hurwitz. Then:

(i) If there is some v� 0 with A1v� 0, A2v� 0 then the system (2) is D-stable;
(ii)If (2) is D-stable then there exists some non-zero v� 0 with A1v� 0, A2v� 0.
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Proof: (i) Suppose there is somev � 0 with Aiv � 0 for i = 1;2. Then for any
diagonalD > 0, DA2v � 0 and(A1+DA2)v � 0. Moreover,A1+DA2 is Metzler.
Hence, from point (e) of Proposition 1, it follows thatA1+DA2 is Hurwitz. Theorem
3 now implies that the switched system (2) is D-stable.

(ii) If (2) is D-stable, then Theorem 3 implies thatA1+DA2 is Hurwitz for all
diagonalD > 0. It now follows from Lemma 2 that there must exist some non-zero
v� 0 with A1v� 0, A2v� 0.

Note that the sufficient condition for D-stability presented in point (i) of Corol-
lary 1 is not necessary as demonstrated by the following example.

Example 3. Consider the Metzler, Hurwitz matricesA1;A2 given by:

A1 =��2 1
2 �2

� ;A2 =��3 1
2 �1

�
Using Theorem 4.1 of [11] it is straightforward to show that there is no vectorv� 0
with A1v� 0,A2v� 0. On the other hand, it can be verified algebraically that forany
diagonalD > 0, A1+DA2 is Hurwitz and hence the switched system (2) is D-stable
by Theorem 3.

5 D-Stability in Higher Dimensions

In this section, we present a result extending Corollary 1 tohigher dimensional
positive switched linear systems. While the following result is stated for switched
systems with two constituent systems, the argument can easily be amended to derive
a corresponding result for an arbitrary number of constituent systems.

Theorem 4.Let A1;A2 2 Rn�n be Metzler and Hurwitz. Then:

(i) If there is some v� 0 with A1v� 0, A2v� 0 then the system (2) is D-stable;
(ii)If (2) is D-stable then there exists some non-zero v� 0 with A1v� 0, A2v� 0.

Proof:
(i)
The first step in proving (i) is to show that the existence of such av is sufficient

for the stability of the switched system (2). With this in mind, suppose that there ex-
ists somev� 0 satisfyingA1v� 0,A2v� 0, and let a (piecewise-constant) switching
signalσ : R+ ! f1;2g be given such thatA(t) = Aσ(t) for all t � 0. Furthermore,
let 0= t0; t1; t2; : : : ; tk; : : : ; be the switching times or points of discontinuity ofσ . As
is standard for switching systems [2], we assume that there is some non-vanishing
dwell-timeτ > 0 such thattk+1�tk � τ for all k� 0. Letxσ (:;x0) denote the unique,
piecewiseC1 solution of (2) corresponding to the initial conditionx0 and the switch-
ing signalσ . Also, for i = 1;2, letx(i)(:;x0) denote the unique solution of the stable
positive LTI system ˙x = Aix corresponding to the initial statex0.

Note the following readily verifiable facts concerning the solutions of the positive
LTI systems with system matricesA1;A2.
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(a)Fori = 1;2, if x0 � 0;x1 � 0 satisfyx0 � x1, thenx(i)(t;x0) � x(i)(t;x1) for all
t � 0. This simply records the well-known fact that positive LTIsystems are
monotone;

(b)Fori = 1;2, as d
dt x(i)(0;v) = Aiv� 0, it follows that there is someδ > 0 such that

x(i)(t;v)� v for 0� t � δ .

Combining (a) and (b) we see immediately that for 0� t � δ , andi = 1;2,

x(i)(t +δ ;v) = x(i)(t;x(i)(δ ;v))� x(i)(t;v)� v:
Simply iterating this process, it is easy to see that fori = 1;2, x(i)(t;v) � v for all
t � 0.

Now consider the solutionxσ (:;v) of (2) corresponding to the initial condition
v and the switching signalσ . The argument in the previous paragraph guarantees
that for 0� t � t1, xσ (t;v)� v (as the dynamics in this interval are given by one of
the constituent positive LTI systems). But in the second interval [t1; t2), the system
dynamics are again given by a positive LTI system withxσ (t1;v)� v as initial con-
dition. Hence from the previous argument combined with point (a) above, we can
conclude that fort1 � t � t2, xσ (t;v)� v. Continuing in this way, we can easily see
that for allt � 0, we havexσ (t;v) � v. As the switching signalσ was arbitrary, we
can conclude thatxσ (t;v)� v holds for all switching signals.

It is now straightforward to show that the solutions of (2) are uniformly bounded.
In fact, for anyx0 � 0 such thatkx0k∞ � K1, if vmin = minfv1; : : : ;vng, thenx0 �(K1=vmin)v. It now follows that for allt � 0, xσ (t;x0) � (K1=vmin)v and hence thatkxσ (t;x0)k∞ � K1(vmax=vmin) for all t � 0 wherevmax = maxfv1; : : : ;vng.

Now if there is somev � 0 with Aiv � 0 for i = 1;2, then(Ai + εI)v � 0 for
sufficiently small positiveε > 0. Therefore, the trajectories of the switched system
corresponding toA1 + εI, A2 + εI are also uniformly bounded for small enough
positive ε > 0. This immediately implies that the original system (2) is globally
asymptotically stable.

To complete the proof of (i), note that for any positive definite diagonal matrices
D1;D2, the matricesD1A1 andD2A2 are Metzler and Hurwitz. Moreover, ifAiv �
0 for i = 1;2, thenDiAiv � 0 for i = 1;2. The above argument now immediately
implies that the system (4) is stable and hence the original system (2) is D-stable as
claimed.

The result given by (ii) follows immediately from Lemma 3 andLemma 2.
Note that the result given by (i) provides a condition for stability of (2) that is

distinct although related to the condition given by CLLF existence.

6 Concluding remarks

In this paper, we have discussed a number of problems relating to the stability prop-
erties of switched positive linear systems. In particular,we have reviewed recent
work on common quadratic, copositive and diagonal Lyapunovfunctions for these
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systems and on the relationship between the existence of such functions and various
notions of stability for switched positive systems. We havealso discussed the notion
of D-stability for positive switched systems and presentedseparate necessary and
sufficient conditions for D-stability forn-dimensional systems. More detailed and
complete results have also been given for 2-dimensional systems.

A number of interesting directions for future research emerge from the work
described here. For instance, it would be interesting to investigate the possibility of
Theorem 3 extending to dimensions higher than 2, even for some restricted system
class. Also, the question of whether stability and D-stability are equivalent for any
subclass of positive switched linear systems arises naturally. It is straightforward to
show that this is true for upper (or lower) triangular positive systems, for example,
but are there any more interesting such classes?
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