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Stability and Diversity in Collective Adaptation

Yuzuru Sato,1, ∗ Eizo Akiyama,2 and James P. Crutchfield1

1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
2Institute of Policy and Planning Sciences, University of Tsukuba,

Tennodai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan

We derive a class of macroscopic differential equations that describe collective adaptation, start-
ing from a discrete-time stochastic microscopic model. The behavior of each agent is a dynamic
balance between adaptation that locally achieves the best action and memory loss that leads to
randomized behavior. We show that, although individual agents interact with their environment
and other agents in a purely self-interested way, macroscopic behavior can be interpreted as game
dynamics. Application to several familiar, explicit game interactions shows that the adaptation
dynamics exhibits a diversity of collective behaviors. The simplicity of the assumptions underlying
the macroscopic equations suggests that these behaviors should be expected broadly in collective
adaptation. We also analyze the adaptation dynamics from an information-theoretic viewpoint and
discuss self-organization induced by information flux between agents, giving a novel view of collective
adaptation.

PACS numbers: 05.45.-a, 89.75.Fb 89.70.+c 02.50.Le,

Keywords: collective adaptation, game theory, information theory, nonlinear dynamical systems

I. INTRODUCTION

Collective behavior in groups of adaptive systems is
an important and cross-cutting topic that appears under
various guises in many fields, including biology, neuro-
sciences, computer science, and social science. In all these
adaptive systems, individual agents interact with one an-
other and modify their behaviors according to the infor-
mation they receive through those interactions. Often,
though, collective behaviors emerge that are beyond the
individual agent’s perceptual capabilities and that some-
times frustrate satisfying the local goals. With compet-
itive interactions dynamic adaptation can produce rich
and unexpected behaviors. This kind of mutual adap-
tation has been discussed, for example, in studies of bi-
ological group interaction [1, 2, 3], interactive learning
[4, 5, 6], large-scale adaptive systems [7, 8, 9], and learn-
ing in games [10, 11].

Here we develop a class of coupled differential equa-
tions for mutual adaptation in agent collectives—systems
in which agents learn how to act in their environment
and with other agents through reinforcement of their ac-
tions. We show that the adaptive behavior in agent col-
lectives, in special cases, reduces to a generalized form
of multipopulation replicator equations and, generally,
can be viewed as a kind of information-theoretic self-
organization in a collective adaptive system.

Suppose that many agents interact with an environ-
ment and each independently attempts to adjust its be-
havior to the environment based on its sensory stimuli.
The environment consists of other agents and other ex-
ogenous influences. The agents could be humans, ani-
mals, or machines, but we make no assumptions about

∗Electronic address: ysato@santafe.edu

their detailed internal structures. That is, the central
hypothesis in the following is that collective adaptation
is a dynamical behavior driven by agents’ environment-
mediated interactions. By separating the time scales of
change in the environment, of agents’ adaptation, and of
agent-agent interactions, our models describe, not the
deterministic decision-making itself, but the temporal
change in the probability distribution of choices.

A. Related Work

This approach should be compared and contrasted
with game theoretic view [12]. First, classical game
theory often assumes that players have knowledge of
the entire environmental structure and of other players’
decision-making processes. Our adaptive agents, how-
ever, have no knowledge of a game in which they might
be playing. Thus, unlike classical game theory, in our
setting there is no bird’s eye view for the entire collec-
tive that is available to the agents. Agents have only
a myopic model of the environment, since any informa-
tion external to them is given implicitly via the rein-
forcements for their action choices. Second, although we
employ game-theoretic concepts such as Nash equilibria,
we focus almost exclusively on dynamics—transients, at-
tractors, and so on—of collective adaptation, while, natu-
rally, making contact with the statics familiar from game
theory. Finally, despite the differences, game structures
can be introduced as a set of parameters corresponding
to approximated static environments.
While replicator dynamics were introduced originally

for evolutionary game theory [13, 14, 15], the relation-
ship between learning with reinforcement and replica-
tor equations has been discussed only recently [10, 11].
Briefly stated, in our model the state space represents
an individual agent’s probability distribution to choose

http://arxiv.org/abs/nlin/0408039v2
mailto:ysato@santafe.edu
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actions and the adaptation equations describe the tem-
poral evolution of choice probabilities as the agents in-
teract. Here, we extend these considerations to collective
adaptation, introducing the theory behind a previously
reported model [16, 17]. The overall approach, though,
establishes a general framework for dynamical-systems
modeling and analysis of adaptive behavior in collectives.
It is important to emphasize that our framework goes be-
yond the multipopulation replicator equations and asym-
metric game dynamics since it does not require a static
environment (cf. Ref. [18, 19] for dynamic environments)
and it includes the key element of the temporal loss of
memory.
We model adaptation in terms of the distribution of

agents’ choices, developing a set of differential equa-
tions that are a continuous-time limit of a discrete-time
stochastic process; cf. Ref. [20]. We spend some time
discussing the origin of action probabilities, since this is
necessary to understand the model variables and also to
clarify the limits that we invoke to arrive at our model.
One is tempted to give a game-theoretic interpretation of
the model and its development. For example, the mixed
strategies in game play are often interpreted as weights
over all (complete plans of) actions. However, the game-
theoretic view is inappropriate for analyzing local, my-
opic adaptation and the time evolution of collective be-
havior.
Another interpretation of our use of action probabili-

ties comes from regarding them as frequencies of action
choices. In this view, one needs long-time trials so that
the frequencies take on statistical validity for an agent.
Short of this, they would be dominated by fluctuations,
due to undersampling. In particular, one requires that
stable limit distributions exist. Moreover, the underlying
deterministic dynamics of adaptation should be ergodic
and have strong mixing properties. Finally, considering
agent-agent interactions, one needs to assume that their
adaptation is very slow compared to interaction dynam-
ics. For rapid, say, real-time adaptation, these assump-
tions would be invalid. Nonetheless, they are appropriate
for long-term reinforcement, as found in learning motion
through iterated exercise and learning customs through
social interaction.

B. Synopsis

The approach we take is ultimately phenomenological.
We are reminded of the reaction-diffusion models of bio-
logical morphogenesis introduced originally in Ref. [21].
There, the detailed processes of biological development
and pattern formation were abstracted, since their bio-
chemical basis was (and still is) largely unknown, and a
behavioral phenomenology was developed on this basis.
Similarly, we abstract the detailed and unknown percep-
tual processes that underlie agent adaptation and con-
struct a phenomenology that captures adaptive behavior
at a larger scale, in agent collectives.

The phenomenology that we develop for this is one
based on communications systems. Agents in a collec-
tive are confronted with the same three problems of com-
munication posed by Weaver in the founding work of
information theory—The Mathematical Theory of Com-

munication [22]: (a)“How accurately can the symbols of
communication be transmitted?”, (b)“How precisely do
the transmitted symbols convey the desired meaning?”
and (c)“How effectively does the received meaning affect
conduct in the desired way?”. Shannon solved the first
problem developing his theory of error-free transmission
[22]. In their vocabulary adaptive agents are information

sources. Each (a) receives information transmitted from
the external environment, which includes other agents,
(b) interprets the received information and modifies its
internal model accordingly, and then, (c) making deci-
sions based on the internal model, generates future be-
havior.

We will show that this information-theoretic view pro-
vides useful tools for analyzing collective adaptation and
also an appropriate description for our assumed fre-
quency dynamics. Using these we derive a new state
space based on the self-informations of agent’s actions
and this allows one to investigate the dynamics of un-
certainty in collective adaptation. It will become clear,
though, that the assumption of global information maxi-
mization has limited relevance here, even for simple mu-
tual adaptation in a static environment. Instead, self-
organization that derive from the information flux be-
tween agents gives us a new view of collective adaptation.

To illustrate collective adaptation, we present several
simulations of example environments; in particular, those
having frustrated agent-agent interactions [23]. Inter-
estingly, for two agents with perfect memory interacting
via zero-sum rock-scissors-paper interactions the dynam-
ics exhibits Hamiltonian chaos [16]. With memory loss,
though, the dynamics becomes dissipative and displays
the full range of nonlinear dynamical behaviors, includ-
ing limit cycles, intermittency, and deterministic chaos
[17].

The examples illustrate that Nash equilibria often
plays little or no role in collective adaptation. They are
fixed points determined by the intersections of nullclines
of the adaptation dynamics and sometimes the dynamics
is explicitly excluded from reaching Nash equilibria, even
asymptotically. Rather, it turns out that the network
describing the switching between deterministic actions is
a dominant factor in structuring the state-space flows.
From it, much of the dynamics, including the origins of
chaos becomes intuitively clear.

In the next section (Sec. II), we develop a dynamical
system that models adaptive behavior in collectives. In
Sec. III we introduce an information-theoretic view and
coordinate-transformation for adaptation dynamics and
discuss self-organization induced by information flux. To
illustrate the rich range of behaviors, in the Sec. IV we
give several examples of adaptive dynamics based on non-
transitive interactions. Finally, in Sec. V we interpret
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our results and suggest future directions.

II. DYNAMICS FOR COLLECTIVE

ADAPTATION

Before developing the full equations for a collective of
adaptive agents, it is helpful to first describe the dy-
namics of how an individual agent adapts to the con-
straints imposed by its environment using the memory
of its past behaviors. We then build up a description of
how multiple agents interact, focusing only on the addi-
tional features that come from interaction. The result is
a set of coupled differential equations that determine the
behavior of adaptive agent collectives and are amenable
to various kinds geometric, statistical, and information-
theoretic analyses.

A. Individual Agent Adaptation

Here we develop a continuous-time model for adap-
tation in an environment with a single adaptive agent.
Although the behavior in this case is relatively simple,
the single-agent case allows us to explain several basic
points about dynamic adaptation, without the compli-
cations of a collective and agent-agent interactions. In
particular, we discuss how and why we go from a discrete-
time stochastic process to a continuous-time limit. We
also describe an agent’s effective internal model of the
environment and how we model its adaptation process
via a probability distribution of action choices.
An agent takes one of N possible actions : i =

1, 2, . . . , N at each time step τ . Let the probability
for the agent to chose action i be xi(τ), where τ is
the number of steps from the initial state xi(0). The
agent’s state vector—its choice distribution—at time τ is
x(τ) = (x1(τ), x2(τ), . . . , xN (τ)), where ΣN

n=1xn(τ) = 1.
In the following we call the temporal behavior of x(τ) as
the dynamics of adaptation.
Let ri(τ) denote the reinforcement the agent receives

for its taking action i at step τ . Denote the collection
of these by the vector r(τ) = (r1(τ), . . . , rN (τ)). The
agent’s memories—denoted Q(τ) = (Q1(τ), . . . , QN (τ))
—of past rewards from its actions are updated according
to

Qi(τ + 1)−Qi(τ) =
1

T
[δi(τ)ri(τ) − αQi(τ)] , (1)

where

δi(τ) =

{

1, action i chosen at step τ
0, otherwise

(2)

with i = 1, . . . , N and Qi(0) = 0. T is a constant
that sets the agent-environment interaction time scale.
α ∈ [0, 1) controls the agent’s memory loss rate. For
α = 0, the agent has a perfect memory as the sum of the

past reinforcements; for α > 0 the memory is attenuated
in that older reinforcements have less effect on the cur-
rent Qis and more recent reinforcements are given larger
weight. One imagines that the agent constructs a his-
togram of past reinforcements and this serves as a simple
internal memory of its environment.
An agent chooses its next action according to its choice

distribution which is updated from the reinforcement
memory according to:

xi(τ) =
eβQi(τ)

∑N
n=1 e

βQn(τ)
, (3)

where i = 1, 2, . . . , N . β ∈ [0,∞] controls the adapta-
tion rate: how much the choice distribution is changed
by the memory of past reinforcements. For example, if
β = 0, the choice distribution is unaffected by past re-
inforcements. Specifically, it becomes independent of Q
and one has xi(τ) = 1/N . In this case, the agent chooses
actions with uniform probability and so behaves com-
pletely randomly. In a complementary fashion, in the
limit β → ∞, an agent chooses that action i with the
maximum Qi(τ) and xi(τ) → 1.
Given Eq. (3) the time evolution of agent’s choice dis-

tribution is:

xi(τ + 1) =
xi(τ)e

β(Qi(τ+1)−Qi(τ))

∑N
n=1 xn(τ)eβ(Qn(τ+1)−Qn(τ))

, (4)

where i = 1, 2, . . . , N . This determines how the agent
adapts its choice distribution using reinforcements it has
received from the environment for its past actions.
This simple kind of adaptation was introduced as a

principle of behavioral learning [24, 25] and as a model
of stochastic learning [26], and is sometimes referred to as
reinforcement learning [27, 28]. Arguably, it is the sim-
plest form of adaptation in which an agent develops re-
lationships or behavior patterns through reinforcements
from external stimuli.
Starting with the discrete-time model above, one can

develop a continuous-time model that corresponds to the
agent performing a large number of actions, iterates of
Eq. (1), for each choice distribution update, iterate of Eq.
(3). Thus, we recognize two different time scales: one for
agent-environment interactions and one for adaptation of
the agent’s internal model based on its internal memory.
We assume that the adaptation dynamics is very slow
compared to interactions and so x is essentially constant
during interactions. (See Fig. 1.)
Starting from Eq. (1), one can show that the

continuous-time dynamics of memory updates is given
by the differential equations

Q̇i(t) = Ri(t)− αQi(t) , (5)

with i = 1, 2, . . . , N and Qi(0) = 0. (see App. A.)
Here Ri is the reward the environment gives to the agent
choosing action i: the average of ri(τ) during the time
interval between updates of x at t and t+ dt.
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t
dt

Adaptation

Interaction
τ

FIG. 1: The time scale (t) of a single agent interacting with its
environment and the time scale (τ ) of the agent’s adaptation:
τ ≪ t.

From Eq. (3) one sees that the map from Q(t) to x(t)
at time t is given by

xi(t) =
eβQi(t)

∑N
n=1 e

βQn(t)
, (6)

where i = 1, 2, . . . , N . Differentiating Eq. (6) gives the
continuous-time dynamics

ẋi(t) = βxi(t)(Q̇i(t)−
N
∑

n=1

Q̇n(t)xn(t)) , (7)

with i = 1, 2, . . . , N .
Assembling Eqs. (5), (6), and (7), one finds the basic

dynamic that governs agent behavior on the adaptation
time-scale:

ẋi

xi

= β(Ri −R) + α(Hi −H) , (8)

where i = 1, 2, . . . , N . Here

R =
N
∑

n=1

xnRn (9)

is the net reinforcement averaged over the agent’s possi-
ble actions. And,

Hi = − logxi (10)

where i = 1, 2, . . . , N , is the self-information or degree
of surprise when the agent takes action i [22]. The av-
erage self-information, or Shannon entropy of the choice
distribution, also appears as

H =

N
∑

n=1

xnHn = −
N
∑

n=1

xn log xn . (11)

These are the entropies of the agent’s choice distribution
measured, not in bits (binary digits), but in nats (natural
digits), since the natural logarithm is used. The entropy
measures the choice distribution’s flatness, being maxi-
mized when the choices all have equal probability.

Fortunately, the basic dynamic captured by Eq. (8)
is quite intuitive, being the balance of two terms on the
right-hand side. The first term describes an adaptation
dynamic, whose time scale is controlled by β. The second
describes the loss of memory with a time scale controlled
by α. That is, the adaptation in choice probabilities is
driven by a balance between two forces: the tendency to
concentrate the choice probability based on the reinforce-
ment R = (R1, R2, . . . , RN ) and the tendency to make
choices equally likely. Finally, on the lefthand side, one
has the logarithmic derivative of the choice probabilities:
ẋi/xi = d/dt (log xi).
Note that each of the terms on the righthand side is

a difference between a function of a particular choice
and that function’s average. Specifically, the first term
∆Ri ≡ Ri − R is the relative benefit in choosing action
i compared to the mean reinforcement across all choices.
Other things being held constant, if this term is positive,
then action i is the better choice compared to the mean
and xi will increase. The second term ∆Hi ≡ Hi −H is
the relative informativeness of taking action i compared
to the average H , that is Shannon entropy. Thus, xi

decreases in proportion to the entropy at time t and so
this term works to increase the uncertainty of agent’s ac-
tions, flattening the choice distribution by increasing the
probability of unlikely actions. When xi = N−1, the dis-
tribution is flat (purely random choices), ∆H = 0, and
memory loss effects disappear.
Mathematically, the adaptation equations have quite

a bit of structure and this has important consequences,
as we will see. Summarizing, the adaptation equations
describe a dynamic that balances the tendency to concen-
trate on choices associated with the best action against
the tendency to make the choices equally likely. The net
result is to increase the choice uncertainty, subject to
the constraints imposed by the environment via the re-
inforcements. Thus, the choice distribution is the least
biased distribution consistent with environmental con-
straints and individual memory loss. We will return to
discuss this mechanism in detail using information theory
in the Sec. III.

Adaptation

Action

Memory Loss
Probability
Distribution

FIG. 2: A dynamic balance of adaptation and memory loss:
Adaptation concentrates the probability distribution on the
best action. Memory loss of past history leads to a distribu-
tion that is flatter and has higher entropy.

Since the reinforcement determines the agent’s interac-
tions with the environment, there are, in fact, three dif-
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ferent time scales operating: that for agent-environment
interactions, that for each agent’s adaptation, and that
for changes to the environment. However, if the environ-
ment changes very slow compared to the agent’s internal
adaptation, the environment ri(t) can be regarded as ef-
fectively constant, as shown in Fig. 3.

t
dt

Adaptation

Interaction
τ

Environment
t’

FIG. 3: The time scales of dynamic adaptation: Agent adap-
tation is slow compared to agent-environment interaction and
environmental change is slower still compared to adaptation.

In this case ri(t) can be approximated as a static
relationship between an agent’s actions and the rein-
forcements given by the environment. Let ri(t) = ai,
where a = (a1, . . . , aN) are constants that are normal-
ized: ΣN

n=1an = 0. Given this, the agent’s time-average
reinforcements are ai (Ri = ai) and the continuous-time
dynamic simplifies to:

ẋi

xi

= β(ai−
N
∑

n=1

anxn)+α(− logxi+

N
∑

n=1

xn log xn) , (12)

where i = 1, 2, . . . , N .
The behavior of single-agent adaptation given by Eq.

(12) is very simple. When α is small, so that adapta-
tion is dominant xi → 1, where i is the action with the
highest reward ai, and xj → 0 for j 6= i. The agent re-
ceives this information from the fixed environment and
its behavior is simply to choose the action with the max-
imum reward and the choice distribution moves to the

associated simplex vertex x∗ = (0, . . . , 1
i
∨, . . . , 0). In

the special case when α = 0, it is known that for ar-
bitrary a Eq. (12) moves x to the vertex corresponding
to the maximum ai [2]. In a complementary way, when
α is large enough to overcome the relative differences
in reinforcements—that is, when β/α → 0 memory loss
dominates, the agent states goes to a uniform choice dis-
tribution (xi = N−1) and the system converges to the
simplex center. Note that in machine learning this bal-
ance between local optimization and randomized behav-
ior, which selects non-optimal actions, is referred to as
the exploitation-exploration trade-off [28].
For instance, consider an agent that takes N = 3

actions, {1, 2, 3}, in an environment described by a =
(23ǫ,−1 − 1

3ǫ, 1 − 1
3ǫ), with ǫ ∈ [−1, 1]. In the perfect

memory case (α = 0), the choice distribution converges
to a stable fixed point (0, 0, 1). x∗ = (13 ,

1
3 ,

1
3 ) is an un-

stable hyperbolic fixed point. In the memory loss case
(α > 0), dynamics converges a stable fixed point inside
the simplex. (These cases are illustrated in Fig. 4.)

3 1

2

∆x

3 1

2

∆x

FIG. 4: Dynamics of single-agent adaptation: Here there are
three actions, labeled 1, 2, and 3, and the environment gives
reinforcements according to a = ( 2

3
ǫ,−1 − 1

3
ǫ, 1 − 1

3
ǫ). The

figure shows two trajectories from simulations with ǫ = 0.5
and β = 0.1 and with α = 0.0 (right) and α = 0.3 (left).

Even when the environment is time-dependent, the
agent’s behavior can track the highest-reward action as
long as the time scale of environment change is slow com-
pared to the agent’s adaptation. However, the situation
is more interesting when environment change occurs at
a rate near the time-scale set by adaptation. Mutual
adaptation in agent collectives, the subject of the fol-
lowing sections, corresponds to just this situation. Other
agents provide, thought their own adaptation, a dynamic
environment to any given agent and if their times scales
of adaptation are close the dynamics can be quite rich
and difficult to predict and analyze.

B. Two Agent Adaptation

To develop equations of motion for adaptation in an
agent collective we initially assume, for simplicity, that
there are only two agents. The agents, denoted X and Y ,
at each moment take one of N orM actions, respectively.
The agents states at time t are x = (x1, . . . , xN ) and
y = (y1, . . . , yM ), with ΣN

n=1xn = ΣM
m=1ym = 1. x(0)

and y(0) are the initial conditions. We view the time
evolution of each agent’s state vector in the simplices
x ∈ ∆X and y ∈ ∆Y and the group dynamics in the
collective state space ∆ which is the product of the agent
simplices:

X = (x,y) ∈ ∆ = ∆X ×∆Y . (13)

There are again three different time scales to consider:
one for agent-agent interaction, one for each agent’s in-
ternal adaptation, and one for the environment which
now mediates agent interactions via the reinforcements
given to the agents. Here we distinguish between the
global environment experienced by the agents and the
external environment, which is the global environment
with the agent states removed. The external environ-
ment controls, for example, the degree of coupling be-
tween the agents. In contrast with the single-agent case,
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in the many agent setting each agent’s behavior produces
a dynamic global environment for the other. This en-
vironment dynamics is particularly important when the
adaptation time scales of each agent are close.

Following the single-agent case, though, we assume
that the adaptation dynamic is very slow compared to
that of agent-agent interactions and that the dynamics
of the external environment changes very slowly com-
pared to that of agents’ mutual adaptation. Under these
assumptions the agent state vectors x and y are effec-
tively constant during the agent-agent interactions that
occur between adaptation updates. The immediate con-
sequence is that can describes the collective state space
in terms of the frequencies of actions (the choice dis-
tributions). Additionally, the environment is essentially
constant relative to changes in the states x and y.

Denote the agents’ memories by QX = (QX
1 , . . . , QX

N )
for X and QY = (QY

1 , . . . , Q
Y
M ) for Y and set QX

i (0) = 0
and QY

j (0) = 0, for for i = 1, . . . , N and j = 1, . . . ,M .
For the dynamic governing memory updates we have

QX
i (τ + 1)−QX

i (τ) =
1

T

[

δij(τ)r
X
ij (τ) − αXQX

i (τ)
]

,

QY
j (τ + 1)−QY

j (τ) =
1

T

[

δij(τ)r
Y
ji(τ) − αY Q

Y
j (τ)

]

,

(14)

where

δij(τ) =

{

1, pair of actions (i, j) chosen at step τ
0, otherwise

(15)
with i = 1, . . . , N , j = 1, . . . ,M and QX

i (0) = 0,
QY

j (0) = 0. T is a time constant. Then the continuous-
time dynamics of memory updates for X and Y are given
by the differential equations

Q̇X
i = RX

i − αXQX
i ,

Q̇Y
j = RY

j − αY Q
Y
j , (16)

for i = 1, 2, . . . , N and j = 1, 2, . . . ,M . RX
i is the reward

for agent X choosing action i, averaged over agent Y ’s
actions between adaptive updates; and RY

j is Y ’s. The
parameters αX , αY ∈ [0, 1) control each agent’s memory
loss rate, respectively.

The map from QX(t) to x(t) and from QY (t) to y(t)
at time t is

xi(t) =
eβXQX

i (t)

∑N
n=1 e

βXQX
n (t)

,

yj(t) =
eβY QY

j (t)

∑M
m=1 e

βY QY
m(t)

, (17)

for i = 1, . . . , N and j = 1, . . . ,M . Here βX , βY ∈ [0,∞]
control the agents’ adaptation rates, respectively. Differ-
entiating Eq. (17) with respect to t, the continuous-time

adaptation for two agents is governed by

ẋi = βXxi(Q̇
X
i −

N
∑

n=1

Q̇X
n xn) ,

ẏj = βY yj(Q̇
Y
j −

M
∑

m=1

Q̇Y
mym) , (18)

for i = 1, . . . , N and j = 1, . . . ,M .
Putting together Eqs. (16), (17), and (18), one finds

the coupled adaptation equations for two agents:

ẋi

xi

= βX(RX
i −RX) + αX(HX

i −HX) ,

ẏj
yj

= βY (R
Y
j −RY ) + αY (H

Y
j −HY ) ,

(19)

for i = 1, . . . , N and j = 1, . . . ,M and where

RX =
N
∑

n=1

xnR
X
n , RY =

M
∑

m=1

ymRY
m ,

HX =

N
∑

n=1

xnH
X
n , HY =

M
∑

m=1

ymHY
m . (20)

The interpretations of the ∆R = Ri − R and ∆H =
Hi − H terms are not essentially different from those
introduced to describe the single-agent case. That is,
the behavior of each agent is a dynamic balance between
(i) adaptation: concentrating the choice probability on
the best action at t and (ii) memory loss: increasing the
choice uncertainty. What is new here is that there are
two (and eventually more) agents attempting to achieve
this balance together using information that comes from
their interactions with the global environment.
As given, the adaptation equations include the possi-

bility of a time-dependent environment, which would be
implemented, say, using a time-dependent reinforcement
scheme. However, as with the single-agent case, it is
helpful to simplify the model by assuming a static exter-
nal environment and, in particular, static relationships
between the agents.
Assume that the external environment changes slowly

compared to the dynamics of mutual adaptation, as illus-
trated in Fig. 3. This implies a nearly static relationship
between pairs of action choices (i, j) and reinforcements
rXij and rYji for both agents. Since the environmental dy-
namics is very slow compared to each agents’ adaptation,
rXij (t) and rYji(t) are essentially constant during adapta-
tion. The rs can be approximated then as constant:

rXij (t) = aij ,

rYji(t) = bji , (21)

for i = 1, . . . , N and j = 1, . . . ,M . aij and bji are nor-
malized over j and i so that when summing over all ac-
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tions the reinforcements vanish:

N
∑

n=1

anj = 0 ,

M
∑

m=1

bmi = 0 . (22)

Given the form of ∆R in the adaptation equations, this
normalization does not affect the dynamics.
Assume further that x and y are independently dis-

tributed. This is equivalent to agents never having a
global view of the collective or their interactions with
the environment (other agents). Each agent’s knowledge
of the environment is uncorrelated, at each moment, with
the state of the other agents. The time-average rewards
for X and Y now become

RX
i =

M
∑

m=1

aimym = (Ay)i ,

RY
j =

N
∑

n=1

bjnxn = (Bx)j , (23)

for i = 1, . . . , N and j = 1, . . . ,M . In this restricted
case, the continuous-time dynamic is given by the cou-
pled adaptation equations

ẋi

xi

= βX [(Ay)i − x · Ay]

+ αX [− logxi +
N
∑

n=1

xn log xn] ,

ẏj
yj

= βY [(Bx)j − y ·Bx]

+ αY [− log yj +

M
∑

m=1

ym log ym] . (24)

for i = 1, . . . , N and j = 1, . . . ,M . A is an N × M
matrix and B is a M × N matrix with (A)ij = aij and
(B)ji = bji, respectively. x · Ay is the inner product
between x and Ay and similarly for y · Bx:

x ·Ay =
N
∑

n=1

M
∑

m=1

anmxnym ,

y · Bx =

M
∑

m=1

N
∑

n=1

bmnymxn . (25)

C. Collective Adaptation

Generalizing to an arbitrary number of agents at this
point should appear straightforward. It simply requires
extending Eqs. (19) to a collection of adaptive agents.
Suppose there are S agents labeled s = 1, 2, . . . , S and
each agent can take one of Ns actions. One describes the

time evolution of the agents’ state vectors in the simplices
x1 ∈ ∆1, x

2 ∈ ∆2, ..., and xS ∈ ∆S . The adaptation
dynamics in the higher-dimensional collective state space
occurs within

X = (x1,x2, . . . ,xS) ∈ ∆ = ∆1 ×∆2 × . . .∆S . (26)

Then we have the dynamics for collective adaptation as

˙xs
is

xs
is

= βs(R
s
is −Rs) + αs(H

s
is −Hs) . (27)

for is = 1, . . . , Ns and s = 1, . . . , S. Rs
is and Hs

is are the
reinforcement and the self-information for s to choose ac-
tion is, respectively. Equations (27) constitute our gen-
eral model for adaptation in agents collective.
With three agents X , Y , and Z, with collective state

space

X = (x,y, z) ∈ ∆ = ∆X ×∆Y ×∆Z . (28)

one obtains:

ẋi

xi

= βX(RX
i −RX) + αX [HX

i −HX ] ,

ẏj
yj

= βY (R
Y
j −RY ) + αY [H

Y
j −HY ] ,

żk
zk

= βZ(R
Z
k −RZ) + αZ [H

Z
k −HZ ] , (29)

for i = 1, . . . , N , j = 1, . . . ,M , and k = 1, . . . , L. The
static environment version reduces to

ẋi

xi

= βX [(Ayz)i − x ·Ayz]

+ αX [− log xi +
N
∑

n=1

xn log xn] ,

ẏj
yj

= βY [(Bzx)j − y ·Bzx]

+ αY [− log yj +

M
∑

m=1

ym log ym] ,

żk
zk

= βZ [(Cxy)k − z · Cxy]

+ αZ [− log zk +

L
∑

l=1

zl log zl] , (30)

for i = 1, . . . , N , j = 1, . . . ,M , and k = 1, . . . , L, and
with tensors (A)ijk = aijk, (B)jki = bjki, (C)kij = ckij .
Here

(Ayz)i =
M
∑

m=1

L
∑

l=1

aimlymzl (31)

and

x · Ayz =

N
∑

n=1

M
∑

m=1

L
∑

l=1

anmlxnymzl (32)

and similarly for Y and Z. Note that the general model
includes heterogeneous network settings with local inter-
actions besides global interactions; see App. B.
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D. Evolutionary Dynamics and Game Theory

We now interrupt the development to discuss the con-
nections between the model developed this far and mod-
els from population dynamics and game theory. There
are interesting connections and also some important dis-
tinctions that need to be kept in mind, before we can
move forward.
The special case that allows us to make contact with

evolutionary dynamics and game theory is the restriction
to agents with perfect memory interacting in a static
environment. (For further details see App. C.) In
the two agent, static external environment case we set
αX = αY = 0 and equal adaptation rates, βX = βY .
Under these assumptions our model, Eqs. (24), reduces
to what is either called multipopulation replicator equa-

tions [14] or asymmetric game dynamics [10, 11, 14]. The
equations are:

ẋi

xi

= (Ay)i − x · Ay ,

ẏj
yj

= (Bx)j − y ·Bx . (33)

From the perspective of game theory, one regards the
interactions determined by A and B, respectively, as X ’s
and Y ’s payoff matrices for a linear game in which X
plays action i against Y ’s action j. Additionally, x and
y, the agent state vectors, are interpreted as the mixed

strategies. In fact, x ·Ay and y ·Bx in Eqs. (33) formally
satisfy von Neumann-Morgenstern utilities [12]. If they
exist in the interior of the collective simplices ∆X and
∆Y , interior Nash equilibria of the game (A,B) are the
fixed points determined by the intersections of the x- and
y-nullclines of Eqs. (33).
One must be careful, though, in drawing parallels be-

tween our general dynamic setting and classical game
theory. In the idealized economic agents, it is often as-
sumed that agents have knowledge of the entire game
structure and of other agents’ decision-making processes.
Its central methodology derives how these rational play-

ers should act. Our adaptive agents, in contrast, have
no knowledge of a game in which they might be play-
ing, only a myopic model of the environment and, even
then, this is given only implicitly via the reinforcements
the agents receive from the environment. In particular,
the agents do not know whether they are playing a game
or not, how many agents there are beyond themselves,
or even whether other agents exist or not. Our model
of dynamic adaptation under such constraints is appro-
priate nonetheless for many real world adaptive systems,
whether animal, human, or economic agent collectives
[29]. The bi-matrix game (A,B) appears above as a de-
scription of the collective’s global dynamic only under
the assumptions that the external environment changes
very slowly.
The connection with evolutionary dynamics is formal

and comes from the fact that Eqs. (33) are the well

known replicator equations of population dynamics [2].
However, the interpretation of the variables is rather dif-
ferent. Population dynamics views x and y as two sep-
arate, but interacting (infinite size) groups. These two
populations are described as distributions of various or-
ganismal phenotypes. The equations of motion deter-
mine the evolution of these populations over generations
and through interaction. In our model, in contrast, x
and y represent the probability to choose actions for each
agents. The equations of motion describe their dynamic
adaptation to each other through interaction.
Despite the similarities that one can draw in this spe-

cial case, it is important to emphasize that our frame-
work goes beyond the multipopulation replicator equa-
tions and asymmetric game dynamics. First, the rein-
forcement scheme R need not lead to linear interactions.
Second, the model does not require a static environment
described by a constant bi-matrix (A,B). Finally, the
occurrence of the memory loss term is entirely new and
not found in game theory or evolutionary dynamics.

III. INFORMATION, UNCERTAINTY, AND

DYNAMIC ADAPTATION

We now shift away from a dynamical systems view and,
as promised earlier, begin to think of the agent collective
as a communication network. Although, this initially will
appear unrelated, we will show that there is a close con-
nection between the dynamical and information theoretic
perspectives—connections that have both mathematical
and pragmatic consequences.
We consider the adaptive agents in the collective to

be information sources. Each agent receives information
from its environment, which includes other agents. Each
agent interprets the received information and modifies
its behavior accordingly, changing from x(t) to x(t+ dt).
Each agent generates a series of messages (actions) based
on its updated internal model and introduces this new
behavior back into the environment. This is a different
interpretation of the interaction process in the collective
which we motivated up to now only as a dynamical pro-
cess. Now we discuss the adaptive dynamics from infor-
mation theoretic viewpoint.

A. Dynamics in Information Space

In this section we introduce a new state space that di-
rectly represents the uncertainties of agent actions. First,
as before, for clarity we focus on the two-agent static-
environment case, Eqs. (24). Since the components of
the agents’ states are probabilities, the quantities

ξi = − logxi ,

ηj = − log yj , (34)

are the self-informations of agents X and Y choosing
actions i and j, respectively. When xi is small, for ex-
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ample, the self-information ξi is large since action i is
rarely chosen by agent X . Consider the resulting change
in coordinates in RN

+ ×RM
+ :

Ξ = (ξ,η) = (ξ1, . . . , ξN )× (η1, . . . , ηM ) . (35)

The normalization conditions—ΣN
n=1xn = ΣM

m=1ym =
1—that restrict the agent states to lie in simplices be-
come ΣN

n=1e
−ξn = ΣM

m=1e
−ηm = 1 in Ξ.

In this space the equations of motion become:

ξ̇i = −βX [(Ae−η)i − e−ξ ·Ae−η ]− αX [ξi − e−ξ · ξ] ,
η̇j = −βY [(Be−ξ)j − e−η · Be−ξ]− αY [ηj − e−η · η] ,

(36)

for i = 1, . . . , N and j = 1, . . . ,M and where e−ξ =
(e−ξ1 , . . . , e−ξN ) and e−η = (e−η1 , . . . , e−ηN ).
Recall that both the ∆R interaction term and the ∆H

memory loss term are differences from means. This sug-
gests yet another transformation to remove these com-
parisons to the mean:

ui = ξi −N−1
N
∑

n=1

ξn ,

vj = ηj −M−1
M
∑

m=1

ηm , (37)

with i = 1, . . . , N and j = 1, . . . ,M . This leads to the
normalized space in RN ×RM :

U = (u,v) = (u1, . . . , uN)× (v1, . . . , vM ) , (38)

with the constraints
∑N

n=1 un =
∑M

m=1 vm = 0. u and
v are the normalized self-informations relative to their
means. We refer to this space as information space.
The combined coordinate transformation, Eq. (37)

composed with Eq. (34), gives the well known centered

log-ratio coordinates [30]. The inverse transformation is:

xi =
e−ui

∑N
n=1 e

−un

,

yi =
e−vi

∑M
m=1 e

−vm
. (39)

The resulting transformed adaptation equations di-
rectly model the dynamics of uncertainties of agents’ be-
havior:

u̇ = −βX

[

Ay −
N
∑

n=1

(Ay)n

]

− αXu ,

v̇ = −βY

[

Bx−
N
∑

n=1

(Bx)n

]

− αY v . (40)

When the interaction matrices are normalized to zero
mean,

∑M
m=1 aim =

∑N
n=1 bjn = 0, the equations sim-

plify even further to

u̇ = −βXAy − αXu ,

v̇ = −βY Bx− αY v . (41)

The origin O = (0, 0, . . . , 0) of the normalized informa-
tion space U corresponds to random behavior: (x,y) =
(1/N, . . . , 1/N, 1/M, . . . , 1/M). The Shannon entropy of
the choice distribution is maximized at this point. In
contrast, when agents choose an action with probability
1 the entropy vanishes and the agent state is located in
∆ at the simplex vertices and in U at infinity.
In Eqs. (41) the first term is related to information in-

flux to an agent from outside; i.e., from other agents and
the environment. The second term is related to the in-
formation dissipation due to internal memory loss. Eqs.
(41) are useful for theory, for analysis in certain limits, as
we will shortly demonstrate, and for numerical stability
during simulation, which we will illustrate when consider-
ing example collectives below. Note that Eqs. (24), Eqs.
(36), and Eqs. (40) are topologically orbit equivalent.

B. Self-organization Induced by Dynamics of

Uncertainty

Equations (40) describe a dynamics of uncertainty be-
tween deterministic and random behavior. Information
influx occurs when the agents adapt to environmental
constraints and accordingly change their choice distribu-
tion. Information dissipation occurs when memory loss
dominates and the agents increase their uncertainty to
behave more randomly with less regard to the environ-
mental constraints. The dissipation rate γ of the dynam-
ics in U is controlled entirely by the memory loss rate α:

γ =

N
∑

n=1

∂u̇n

∂un

+

M
∑

m=1

∂v̇m
∂vm

= −NαX −MαY . (42)

Therefore, Eqs. (41) are volume preserving in U when
αX = αY = 0.
In the case that agents behave without memory loss

(αX = αY = 0), if the interaction specified by (A,B) is
zero-sum, B = −AT , and if, in addition, it determines
an interior Nash equilibrium (x∗,y∗) (see App. C), then
the collective has a constant of motion:

E = β−1
X D(x∗ ‖ x) + β−1

Y D(y∗ ‖ y) , (43)

where D(p ‖ q) = Σkpk log(pk/qk) is the relative entropy

or the information gain which measures the similarity
between probability distributions p and q [31]. (App.
D gives the derivation of Eq. (43).) Since the constant
of motion E is a linear sum of relative entropies, the
collective maintains the information-theoretic distance
between the interior Nash equilibrium and each agent’s
state. Thus, in the perfect memory case (α = 0), by
the inequality D(p ‖ q) ≥ 0, the interior Nash equilib-
rium cannot be reached unless the initial condition itself
starts on it (Fig. 5). This is an information-theoretic in-
terpretation of the constant of motion noted in Ref. [32].
Moreover, when N = M the dynamics has a symplectic
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∆y∆x

D(y*||y)D(x*||x)

(x*, y*) (x*, y*)

FIG. 5: Dynamics of zero-sum interaction without memory
loss: Constant of motion E = β−1

X
D(x∗ ‖ x)+β−1

Y
D(y∗ ‖ y)

keeps the linear sum of distance between the interior Nash
equilibrium and each agent’s state.

structure in U with the Hamiltonian E given in Eq. (43)
[32]. In this case, Eqs. (40) are described quite simply,

U̇ = J∇UE , (44)

with a Poisson structure J

J =

(

O P
−PT O

)

with P = −βXβY A . (45)

Again, see App. D.
When the bi-matrix interaction (A,B) satisfies B =

AT , E is a Lyapunov function of dynamics and decreases
to 0 over time [2]. In this case, each agents can adapt
to environment independently and collective adaptation
dynamics reach one of stable states. The Nash equilib-
ria (x∗,y∗) may not be in the interior of the collective
simplices ∆. Note that symmetric neural networks have
similar properties [33].
In some cases when neither B = −AT nor B = AT , E

increases non-monotonically, the dynamics inU diverges,
and the Shannon entropies of agents’ choice distribution
asymptotically decreases. (See Figs. 17 and 20 below.)
Note that in single-agent adaptation with state x and
normalizing the environment’s reinforcements to a prob-
ability distribution pe, D(pe ‖ x) is always a Lyapunov
function of the dynamics and decreases monotonically.
In mutual adaptation, however, agents adapt to a dy-
namic environment that includes the other agents. As a
result, in some cases, E, a linear sum of agent relative
entropies, will itself exhibit nontrivial dynamics and, in
addition, the uncertainties of agents’ choices will asymp-
totically decrease.
When agents adapt with memory loss (α > 0), the

dynamics is dissipative. Since the memory loss terms
induce information dissipation, the dynamics varies be-
tween random and deterministic behavior in the informa-
tion space. Notably, when the agents attempt to achieve
this balance together by interacting and, in particular,
when the interaction has nontransitive structure, the dy-
namics can persistently wander in a bounded area in in-
formation space. Since, in some cases, mutual adapta-
tion and memory loss produce successive stretching and
folding, deterministic chaos can occur with a significant
range of α, even with only two agents. A schematic view
of the flow in mutual adaptation is given in Fig. 6.

In the case that the agents are completely decoupled
(or, in the case that B = AT and αX = αY = 0 for two
agents), information space locally splits into subspaces
governed by effects of mutual adaptation (information
influx) and memory loss (information dissipation). They
correspond to unstable and stable flow directions as in
single agent adaptation. However, in the case that agents
are coupled via nontransitive interaction, mutual adapta-
tion and memory loss affects with each other and horse-
shoe can be produced. Flow of information is multidi-
mensional since each agent obtains information from its
environment, organizes its behavior based on that infor-
mation, and that local adaptation is then fed back into
the environment affecting other agents.
In this case, “weak” uncertainty of behavior plays an

important role in organizing the collective’s behavior.
Small fluctuations in decision making can be amplified
through repeated mutual adaptation with competitive
interactions and dynamic memory stored in collectives
could exist shown by a positive metric entropy.

Adaptation and Memory loss Non-transitive interaction

FIG. 6: Schematic view of mutual adaptation: Effect of mu-
tual adaptation and memory loss produce unstable and stable
directions. The nontransitive structure of interactions leads
to state-space folding.

Now consider many agents interacting. In the perfect
memory case, when the game is zero-sum and has an in-
terior Nash equilibrium (x1∗,x2∗, . . . ,xS∗), following Eq.
(43), the following constant of motion exists:

E =

S
∑

s=1

1

β s

D(xs∗ ‖ xs) =

S
∑

s=1

1

β s

(

Ns

∑

ns=1

xs∗
ns log

xs∗
ns

xns

)

.

(46)
Although, strictly speaking, Hamiltonian dynamics and
the associated symplectic structure of information space
occurs only for two agents, one can describe multiple
agent dynamics as a generalized Hamiltonian system [34].
In the general case with α > 0, dissipative dynamics and
high-dimensional chaotic flows can give rise to several un-
stable directions, since information influx has a network
structure relative to the other agents. At least S stable
directions are expected since memory loss comes from
each individual’s internal dynamics.
Summarizing, in single-agent adaptation, information

flows unidirectionally from the environment to the agent
and the agent adapts its behavior to the environmental
constraints. Adaptation leads to D(pe ‖ x) → 0. For
mutual adaptation in an agent collective, however, infor-
mation flow is multidimensional since each agent obtains
information from its environment that includes the other
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agents. In this situation, E need not be a Lyapunov
function for the dynamics. As we will see, when the dy-
namics is chaotic, global information maximization is of
doubtful utility and a dynamic view of adaptation shown
in Fig. 6 is more appropriate. When dynamic memory
in collectives emerges, collective adaptation becomes a
non-trivial problem. A detailed dynamical and informa-
tion theoretic analysis along these lines will be reported
elsewhere.
In the next section, we will give several phenomeno-

logical examples that captures collective adaptation.

IV. EXAMPLES

To illustrate collective adaptation, we now give several
examples of the dynamics in a static environment with
two and three agents interacting via versions of Match-
ing Pennies and Rock-Scissors-Paper, games with non-
transitive structures. App. E gives the details of the
reinforcement schemes for these cases. The agents will
have equal adaptation rates (βX = βY = · · · ) and the
same number of actions (N = M = L = · · · ). In these
simplified cases, the equations of motion for two agents
are given by

ẋi

xi

= [(Ay)i − x · Ay] + αX [− logxi +

N
∑

n=1

xn log xn] ,

ẏj
yj

= [(Bx)j − y ·Bx] + αY [− log yj +

M
∑

m=1

ym log ym] ,

(47)

for i, j = 1, . . . , N . A detailed analysis of this case with
zero memory loss (α = 0) is given in Ref. [2] in terms of
asymmetric game dynamics. We will present results for
zero and positive memory loss rates.
We then consider three agents, for which the adapta-

tion equations are

ẋi

xi

= [(Ayz)i − x · Ayz] + αX [− logxi +

N
∑

n=1

xn log xn] ,

ẏj
yj

= [(Bzx)j − y ·Bzx] + αY [− log yj +

M
∑

m=1

ym log ym] ,

żk
zk

= [(Cxy)k − z · Cxy] + αZ [− log zk +

L
∑

l=1

zl log zl] ,

(48)

for i, j, k = 1, . . . , N . We again will describe cases with
and without memory loss.
Computer simulations are executed in the information

space U and the results are shown in the state space X .
We ignore the dynamics on the boundary of the simplex
and concentrate the case that all variables are greater
than 0 and less than 1.

A. Two Agents Adapting under Matching Pennies

Interaction

In the matching pennies game, agents play one of two
actions: heads (H) or tail (T ). Agent X wins when the
plays do not agree; agent Y wins when they do. Agent
X ’s state space is ∆X = (x1, x2) with xi ∈ (0, 1) and x1+
x2 = 1. That is, x1 is the probability that agent X plays
heads; x2, tails. Agent Y is described similarly. Thus,
each agent’s state space is effectively one dimensional and
the collective state space ∆ = ∆X×∆Y , two dimensional.
The environment for two agents interacting via the

matching pennies game leads to the following matrices
for Eqs. (47):

A =

[

−ǫX ǫX
ǫX −ǫX

]

and B =

[

−ǫY ǫY
ǫY −ǫY

]

, (49)

where ǫX ∈ (0.0, 1.0] and −ǫY ∈ (0.0, 1.0].
Figure 7 shows a heteroclinic cycle of adaptation dy-

namics on the boundary of ∆ when the αs vanish. Flows
on the border occur only when agents completely ignore
an action at the initial state; that is, when xi(0) = 0
or yj(0) = 0 for at least one i or j. Each vertex of the
simplex is a saddle since the interaction is non-transitive.

(H, H) (T, H)

(T, T)(H, T)

X

Y

FIG. 7: Flows on the boundary in Matching Pennies inter-
action: Actions H and T correspond to “heads” and “tails”,
respectively. Arrows indicate the direction of adaptation dy-
namics on the boundary of the state space ∆.

The Nash equilibrium (x∗,y∗) of the Matching Pennies
game is in the center of ∆: (x∗,y∗) = (12 ,

1
2 ,

1
2 ,

1
2 ) and this

is also a fixed point of the adaptation dynamics. The
Jacobian at (x∗,y∗) is

J =

(

−αX

2 (1 + log 2) − ǫX
2

− ǫY
2 −αY

2 (1 + log 2)

)

(50)

and its eigenvalues are

4λi

1 + log 2
= −(αX + αY )

±
√

(αX − αY )2 + 4ǫXǫY /(1 + log 2)2 .(51)

In the perfect memory case (αX = αY = 0), trajectories
near (x∗,y∗) are neutrally stable periodic orbits, since
λi = ± 1

2

√
ǫXǫY are pure imaginary. In the memory loss

case (αX > 0 and αY > 0), (x∗,y∗) is globally asymp-
totically stable, since Re(λ1) and Re(λ2) are strictly neg-
ative. Examples of the trajectories in these two cases are
given in Figure 8.
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X1

Y1

1

0
0 1 X1

Y1

1

0
0 1

FIG. 8: Adaptation dynamics in Matching Pennies interac-
tion: Here ǫX = 0.5 and ǫY = −0.3 with (left) αX = αY = 0
and (right) αX = 0.02 and αY = 0.01.

B. Three Agents Adapting under Even-Odd

Interaction

Now consider extending Matching Pennies for two
agents so that it determines the interactions between
three. Here we introduce the Even-Odd interaction in
which there are again two actions, H and T , but agents
win according to whether or not the number of heads in
the group of three plays by the agents is even or odd.
The environment now is given by, for agent X,

aijk =

{

ǫX , number of Hs is even
−ǫX , otherwise

(52)

with actions for agents X , Y , and Z given by i, j, k =
{H,T } and ǫX ∈ (0.0, 1.0]. The interaction matrices bjki
and ckij for agents Y and Z, respectively, are given sim-
ilarly, but with ǫY ∈ (0.0, 1.0] and ǫZ ∈ [−1.0, 0.0). App.
E gives the details of the reinforcement scheme.
Following the reasoning used in Matching Pennies, the

collective state space ∆ = ∆X ×∆Y ×∆Z is now a solid
three-dimensional cube. Figure 9 shows a heteroclinic
network of adaptation dynamics on the boundary of ∆
when αs vanish. Flows on ∆’s boundary is shown in Fig.
9.
∆ is partitioned into four prism-shaped subspaces.

Each prism subspace has a heteroclinic cycle on the face
that is also a face of ∆.

(H, H, H)

(T, H, H)

(T, T, H)

(T, T, T)

(H, T, T)

(H, H, T)

(H, T, H) (T, H, T)

X

Y

Z

FIG. 9: Flows on the state space boundary under the Even-
Odd interactions: H and T correspond to “heads” and “tails”,
respectively. Arrows indicate the direction of adaptation dy-
namics on ∆’s boundary when the αs vanish.

The Nash equilibrium of the Even-Odd interaction is
(x∗,y∗, z∗) = (12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ) at the center of ∆ and this

is also a fixed point of the adaptation dynamics. The
Jacobian there is

J =





−αX 0 0
0 −αY 0
0 0 −αZ



 . (53)

Its eigenvalues are λ = −αX ,−αY ,−αZ . Thus, in com-
plete memory case (αX = αY = αZ = 0), trajecto-
ries near (x∗,y∗, z∗) are neutrally stable periodic orbits.
With memory decay (αX , αY , αZ > 0), the (x∗,y∗, z∗)
is globally asymptotically stable. The hyperbolic fixed
points in the top and bottom faces are unstable in all
cases. Examples of the trajectories are given in Figure
10.
Notably, when a single agent (say, Z) has memory loss

and others have perfect memory, the crossed lines given
by {z = x = 0.5, z = y = 0.5} become an invariant
subspace and trajectories are attracted to points in this
subspace. Thus, there are infinitely many neutrally sta-
ble points.
With αX = αY = 0 and αZ = 0.01, for example, the

adaptive dynamics alternates between a Matching Pen-
nies interaction between agents X and Z by one between
agents Y and Z during the transient relaxation to a point
on the invariant subspace.

FIG. 10: Dynamics of adaptation in the Even-odd interaction:
ǫX = 0.5, ǫY = 0.2, and ǫZ = −0.3 with αX = αY = αZ = 0
in (left) and with αX = αY = 0 and αZ = 0.01 in (right).
The trajectories with several initial conditions are shown in
(left). The neutral subspace is shown as the horizontal cross
and the trajectory chosen illustrates the attraction to a point
in this subspace in (right).

C. Two Agents Adapting under

Rock-Scissors-Paper Interaction

In this subsection, we give an example of an environ-
ment in which agents have three actions. One of the most
commonly studied games with three actions is the Rock-
Scissors-Paper (RSP) game, in which an agent playing
Rock beats one playing Scissors, which in turn beats an
agent playing Paper, which finally beats Rock.
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First we examine two agents, which is a straightfor-
ward implementation of the RSP game and then extend
the RSP interaction to three agents and analyze the
higher-dimensional behavior. The interaction matrices
for these cases are given in App. E.
Under the RSP interaction each agent has the option

of playing one of three actions: “rock” (R), ‘scissors” (S),
and “paper” (P). Agent X ’s probability of playing these
are denoted x1, x2, and x3 and x1 + x2 + x3 = 1. Agent
Y probabilities are given similarly. Thus, the agent state
spaces, ∆X and ∆Y , are each two dimensional simplices,
and the collective state space ∆ = ∆X × ∆Y is four
dimensional.
For two agents the environment is given by the inter-

action matrices

A =





ǫX 1 −1
−1 ǫX 1
1 −1 ǫX



 and B =





ǫY 1 −1
−1 ǫY 1
1 −1 ǫY



 , (54)

where ǫX , ǫY ∈ [−1.0, 1.0] are the rewards for ties and
normalized to

A′ =





2
3ǫX 1− 1

3ǫX −1− 1
3ǫX

−1− 1
3ǫX

2
3ǫX 1− 1

3ǫX
1− 1

3ǫX −1− 1
3ǫX

2
3ǫX



 (55)

and

B′ =





2
3ǫY 1− 1

3ǫY −1− 1
3ǫY

−1− 1
3ǫY

2
3ǫY 1− 1

3ǫY
1− 1

3 ǫY −1− 1
3ǫY

2
3ǫY



 . (56)

Note that the reinforcements are normalized to zero mean
and that this does not affect the dynamics.
The flow on ∆’s boundary is shown in Fig. 11. This

represents the heteroclinic network of adaptation dynam-
ics on ∆’s edges when the αs vanish. Each vertex is a
saddle since the interaction has non-transitive structure.

X1

X2

Y1

Y2

(R, R)

(S, R)

(S, S)

(P, R)

(P, S)
(S, P)

(P, P) (R, P)

(R, S)

FIG. 11: Flows on the boundary of the simplex in the Rock-
Scissors-Paper interaction for two agents: R, S, and P denote
“rock”, “scissors”, and “paper”, respectively. The arrows in-
dicate the direction of the adaptation dynamics on the bound-
ary of the collective state space ∆ when the αs vanish.

The Nash equilibrium (x∗,y∗) is given by the centers
of the simplex:

(x∗,y∗) = (
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
) . (57)

This is also a fixed point of the adaptation dynamics.
The Jacobian there is

J =









−αX 0 1+ǫX
3

2
3

0 −αX − 2
3

−1+ǫX
3

1+ǫY
3

2
3 −αY 0

− 2
3

−1+ǫY
3 0 −αY









. (58)

Its eigenvalues are

2λi = −(αX + αY )

±

√

√

√

√

(αX − αY )2 +
4
(

ǫXǫY − 3±
√

−3(ǫX + ǫY )2
)

9
.

(59)
Thus, when (A,B) is zero-sum (ǫX + ǫY = 0) and agents
have complete memory (αX = αY = 0), trajectories
near (x∗,y∗) are neutrally stable periodic orbits since
all λ’s are pure imaginary. The dynamics is Hamiltonian
in this case. With memory decay (αX , αY > 0), and
|αX − αY | < 2

3 (ǫ
2
X + 3), (x∗,y∗) is globally asymptoti-

cally stable.
For the nonzero-sum case, we will give examples of dy-

namics with ǫX = 0.5, ǫY = −0.3, αY = 0.01. In this
case, when αX > αc, (x

∗,y∗) is globally asymptotically
stable. At the point αc ∼ 0.055008938, period-doubling
bifurcation occurs. The example of two agents adapt-
ing in the Rock-Scissors-Paper interaction adaptation dy-
namics illustrates various types of low-dimensional chaos.
We now explore several cases.

1. Hamiltonian Limit

When the agent memories are perfect (αX = αY = 0)
and the game is zero-sum (ǫX = −ǫY ), the dynamics in
the information space U is Hamiltonian with a function
consists of relative entropy E = D(x∗ ‖ x) +D(y∗ ‖ y).
The left columns of Figs. 12 and 13 give trajectories in
the collective state space ∆, while the plots given in the
middle and right columns are these trajectories projected
onto the individual agent simplices, ∆X and ∆Y . The
trajectories were generated using a 4th-order symplectic
integrator [35] in U.
When ǫX = −ǫY = 0.0 it appears that the dynamics is

integrable since only quasiperiodic tori exist for almost
all initial conditions in our computer simulation. With
some initial conditions, the tori is knotted to form trefoil.
Otherwise, when ǫX = −ǫY > 0.0, Hamiltonian chaos oc-
curs with positive-negative pairs of Lyapunov exponents.
(See Table I.) The game-theoretic behavior of this exam-
ple was investigated briefly in Ref. [16]. The dynamics is
very rich. For example, there are infinitely many distinct
behaviors near the fixed point at the center—the interior
Nash equilibrium—and a periodic orbit arbitrarily close
to any chaotic one.
A more detailed view of the complex dynamics is given

in Figure 14 which shows Poincaré sections of Eqs. (47)’s
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FIG. 12: Quasiperiodic tori: Collective dynamics in ∆ (left
column) and individual dynamics projected onto ∆X and
∆Y respectively (right two columns). Here ǫX = −ǫY =
0.0 and αX = αY = 0. The initial condition is (A):
(x,y) = (0.26, 0.113333, 0.626667, 0.165, 0.772549, 0.062451)
for the top and (B): (x,y) = (0.05, 0.35, 0.6, 0.1, 0.2, 0.7)
for the bottom. The constant of motion (Hamiltonian) is
E = 0.74446808 ≡ E0. The Poincaré section used for Fig. 14
is given by x1 = x2 and y1 < y2 and is indicated here as the
straight diagonal line in agent X’s simplex ∆X .

trajectories. The Poincaré section is given by u̇3 > 0 and
v̇3 = 0. In (x,y) space the section is determined by the
constraints:

(1− ǫX)y1 − (1 + ǫX)y2 +
2

3
ǫX < 0 ,

(1− ǫY )x1 − (1 + ǫY )x2 +
2

3
ǫY = 0 . (60)

These sections are indicated as the straight lines drawn
in the ∆X simplices of Figs. 12 and 13. In Figure 14,
when ǫX = −ǫY = 0.0, closed loops depending on the
initial conditions exhibits tori in the Poincaré section.
When ǫX = −ǫY = 0.5, some tori collapse and become
chaotic. The scatter of dots among the remaining closed
loop shows characteristic Hamiltonian chaos.
Table I shows Lyapunov spectra in U for dynamics

with ǫX = −ǫY = 0.0 and ǫX = −ǫY = 0.5 with initial
condition (x(0),y(0)) = (x1, 0.35, 0.65− x1, 0.1, y2, 0.9−
y2) with E = E0 = 0.74446808 fixed. (x1, y2) satisfies

e−3(E0+2 log 3)

0.035
= x1(0.65− x1)y2(0.9− y2). (61)

When x1(0) = 0.05, the initial condition is (B): (x,y) =
(0.05, 0.35, 0.6, 0.1, 0.2, 0.7), which we gave in the preced-
ing examples. When ǫX = 0.5, the Lyapunov exponents
indicate positive-negative pairs for x1(0) = 0.05, 0.06 and

FIG. 13: Quasiperiodic tori and chaos: Collective dynamics
in ∆ (left column) and individual dynamics projected onto
∆X and ∆Y , respectively (right two columns). Here ǫX =
−ǫY = 0.5 and αX = αY = 0. The initial conditions are
the same as in Fig. 12, (A) for top row and (B) for bottom
rows, respectively. Also, the constant of motion is the same:
E = E0. The Poincaré section is given by 3x1 − x2 − 2/3 = 0
and y1 − 3y2 +2/3 < 0 and this is indicated as a straight line
in ∆X .

0.08, which clearly show Hamiltonian chaos. Note that
λ2 ≃ 0.0, λ3 ≃ 0.0, and λ4 ≃ −λ1, as expected.

FIG. 14: Poincaré sections of the behavior in the preceding
two figures. That is, ǫX = −ǫY = 0.0 (left) and ǫX = −ǫY =
0.5 (right). The Poincaré section is given by x1 = x2 and
y1 < y2 (left) and 3x1 − x2 − 2/3 = 0 and y1 − 3y2 + 2/3 < 0
(right). There are 25 randomly selected initial conditions,
including the two, (A) and (B), used in Figs. 12 and 13. The
constant of motion (E = E0) forms the outer border of the
Poincaré sections.
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ǫX λ x1(0)=0.05 0.06 0.07 0.08 0.09 0.10

λ1 +0.881 +0.551 +0.563 +0.573 +0.575 +0.589

0.0 λ2 +0.436 +0.447 +0.464 +0.467 +0.460 +0.461

λ3 −0.436 −0.447 −0.464 −0.467 −0.460 −0.461

λ4 −0.881 −0.551 −0.563 −0.573 −0.575 −0.589

λ1 +36.4 +41.5 +0.487 +26.3 +0.575 +0.487

0.5 λ2 +0.543 +0.666 +0.204 +0.350 +0.460 +0.460

λ3 −0.637 −0.666 −0.197 −0.338 −0.460 −0.467

λ4 −36.3 −41.5 −0.494 −26.3 −0.575 −0.480

TABLE I: Lyapunov spectra for different initial conditions
(columns) and different values of the tie breaking parame-
ter ǫX . The initial conditions are (x1, x2, x3, y1, y2, y3) =
(x1, 0.35, 0.65 − x1, 0.1, y2, 0.9 − y2) with E = E0 =
0.74446808 fixed. We choose the initial conditions (x1, y2) =
(0.05, 0.2), (0.06, 0.160421), (0.07, 0.135275), (0.08, 0.117743),
(0.09, 0.104795), (0.10, 0.0948432). The Lyapunov exponents
are multiplied by 103. Note that λ2 ≃ 0.0, λ3 ≃ 0.0 and
λ4 ≃ −λ1 as expected. The Lyapunov exponents indicating
chaos are shown in boldface.

2. Conservative Dynamics

With perfect memory (αX = αY = 0) and a game that
is not zero-sum (ǫX 6= −ǫY ) the dynamics is conservative
in U and one observes transients that are attracted to
heteroclinic networks in the state space X . (See Fig.
15.)

FIG. 15: Heteroclinic cycle with ǫX = −0.1 and ǫY = 0.05
(top row). Chaotic transient to a heteroclinic network (bot-
tom row) with ǫX = 0.1 and ǫY = −0.05). For both
αX = αY = 0.

When ǫX + ǫY < 0, the behavior is intermittent and
orbits are guided by the flow on ∆’s edges, which de-

FIG. 16: Time series of action probabilities during the hete-
roclinic cycles of Fig. 15. ǫX = −0.1 and ǫY = 0.05 for the
left column. The right column shows the chaotic transient to
a possible heteroclinic cycles when ǫX = 0.1 and ǫY = −0.05.
For both αX = αY = 0.

FIG. 17: Dynamics of HX , HY and E in conservative adap-
tive dynamics: ǫX = −0.1 and ǫY = 0.05 for the left plot
and ǫX = 0.1 and ǫY = −0.05 for the right. For both
αX = αY = 0. Note that E increases asymptotically and
HX and HY tend to decrease.

scribes a network of possible heteroclinic cycles. Since
action ties are not rewarded there is only one such cy-
cle. It is shown in the top row of Fig. (15): (R,P ) →
(S, P ) → (S,R) → (P,R) → (P, S) → (R,S) → (R,P ).
Note that during the cycle each agent switches between
almost deterministic actions in the order R → S → P .
The agents are out of phase with respect to each other
and they alternate winning each turn.

With ǫX + ǫY > 0, however, the orbit is an infinitely
persistent chaotic transient [36]. Since, in this case, agent
X can choose a tie, the cycles are not closed. For exam-
ple, with ǫX > 0, at (R,P ), X has the option of moving
to (P, P ) instead of (S, P ) with a positive probability.
This embeds an instability along the heteroclinic cycle
and so orbits are chaotic. (See Fig. 15, bottom row.)

Figure 16 shows the time series for these behaviors.
Usually, in transient relaxation to heteroclinic cycle, the
duration over which orbits stay near saddle vertices in-
creases exponentially. However, for our case, it appears
to increase subexponentially. This is because of the very
small exponent; (1+ δ)n ∼ 1+nδ+ . . . (δ << 1). In the
second chaotic transient case, it still increases subexpo-
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nentially, but the visited vertices change irregularly.
Figure 17 shows the behavior of HX , HY , and E. For

both cases E eventually increases monotonically and HX

and HY asymptotically decrease. The agents show a ten-
dency to decrease choice uncertainty and to switch be-
tween almost deterministic actions. HX andHY oscillate
over the range [0, log 2] for ǫX = −0.1 and ǫY = 0.05 and
over [0, log 3] for ǫX = 0.1 and ǫY = −0.05.

3. Dissipative Dynamics

If the memory loss rates (αX and αY ) are positive,
the dynamics becomes dissipative in information space
U and exhibits limit cycles and chaotic attractors. (See
Fig. 18.)

FIG. 18: Dissipative adaptive dynamics: Stable limit cycle for
αX = 0.025 (top), αX = 0.021 (middle) and chaotic attractors
with αX = 0.0198 (bottom). All cases have ǫX = 0.5, ǫY =
−0.3 and αY = 0.01. Period-doubling bifurcation to chaos
occurs with decreasing αX .

Figure 19 (top) shows a diverse range of bifurcations as
a function of αX . It shows the dynamics on the surface
specified by u̇3 < 0 and v̇3 = 0 projected onto v3. The
fixed point (x∗,y∗) becomes unstable when αX is larger

FIG. 19: Bifurcation diagram (top) of dissipative dynamics
(adapting with memory loss) projected onto coordinate v3
from the Poincaré section (u̇3 > 0, v̇3 = 0) and the largest
two Lyapunov exponents λ1 and λ2 (bottom) as a function
of αY ∈ [0.01, 0.03]. Here with ǫX = 0.5, ǫY = −0.3 and
αY = 0.01. Simulations show that λ3 and λ4 are always
negative.

FIG. 20: Dynamics of HX , HY , and E in dissipative adaptive
dynamics: ǫX = 0.5, ǫY = −0.3, and αY = 0.01 for both.
αX = 0.025 for the left plot and αX = 0.01 for the right.
t∗ ≈ 108 in the right figure is the (rather long) transient time.
In both cases E does not diverge due to memory loss.

than αc ≈ 0.055008938. Typically, period-doubling bi-
furcation to chaos occurs with decreasing αX . Chaos
can occur only when ǫX + ǫY > 0 [17].
Figure 20 shows dynamics of HX , HY , and E in dissi-

pative adaptive dynamics. For both cases shown E does
not diverge due to memory loss. When αX = 0.025,
HX and HY converge to oscillations over the range
[log 2, log 3]. When αX = 0.01, HX and HY exhibit
chaotic behavior over the range [0, log 3].
Figure 19 (bottom) shows that the largest Lyapunov

exponent in U is positive across a significant fraction of
the parameter space; indicating that chaos is common.
The dual aspects of chaos, coherence and irregularity,
imply that agents may behave cooperatively or competi-
tively (or switch between both). This ultimately derives
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from agents’ successive mutual adaptation and memory
loss in non-transitive interactions, such as in the RSP
game; as was explained in Sec. III. Note that such
global behavior organization is induced by each agents’
self-interested and myopic adaptation and “weak” uncer-
tainty of their environment.

D. Three Agents Adapting under

Rock-Scissors-Paper Interaction

Consider three agents adapting via (an extension of)
the RSP interaction. Here the environment is given by
the following interaction

aijk =



























2 Win over the others.

−2 Lose to the other two.

1 Win over one other.

−1 Lose to one other.

ǫX Tie.

(62)

and similarly for bjki and ckij , with i, j, k = {R,S, P}.
Here ǫX , ǫY , ǫZ ∈ (−1.0, 1.0). (See App. E for the de-
tailed listing of the reinforcement scheme.) As before we
use normalized a′ijk, b

′

jki, and c′kij :

a′ijk =



























2− ǫX
5 Win over the others.

−2− ǫX
5 Lose to the other two.

1− ǫX
5 Win over one other.

−1− ǫX
5 Lose to one other.

4
5ǫX Tie.

(63)

The normalization does not affect the dynamics.
The Nash equilibrium (x∗,y∗, z∗) is at the simplex cen-

ter:

(x∗,y∗, z∗) = (
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3
) . (64)

It is also a fixed point of the adaptation dynamics. The
Jacobian there is

J =



















−αX 0 1
3

2
3

1
3

2
3

0 −αX − 2
3 − 1

3 − 2
3 − 1

3
1
3

2
3 −αY 0 1

3
2
3

− 2
3 − 1

3 0 −αY − 2
3 − 1

3
1
3

2
3

1
3

2
3 −αZ 0

− 2
3 − 1

3 − 2
3 − 1

3 0 −αZ



















. (65)

When αX = αY = αZ = α, its eigenvalues are

λi + α =
i√
3
(−1,−1,−2, 1, 1, 2) . (66)

In the perfect memory case (αX = αY = αZ = 0),
trajectories near (x∗,y∗, z∗) are neutrally stable periodic
orbits, since the λs are pure imaginary. In the memory

X1

X2

Y1

Y2

(R, R, R)

(S, R, R)

(S, S, R)

(P, R, R)

(P, S, R)
(S, P, R)

(P, P, R) (R, P, R)

(R, S, R)(R, R, P)

(S, R, P)

(S, S, P)

(P, R, P)

(P, S, P)
(S, P, P)

(P, P, P) (R, P, P)

(R, S, P)

(R, R, S)

(S, R, S)

(S, S, S)

(P, R, S)

(P, S, S)
(S, P, S)

(P, P, S) (R, P, S)

(R, S, S)

Z1

Z2

FIG. 21: Flows on the simplex edges in three-agent RSP:
Arrows indicate the direction of adaptation dynamics on ∆’s
boundary when the αs vanish.

FIG. 22: Periodic orbit (top: ǫX = 0.5, ǫY = −0.365,
ǫZ = 0.8) and chaotic orbit (bottom: ǫX = 0.5, ǫY = −0.3,
ǫZ = 0.6) with the other parameters are αX = αY =
αZ = 0.01. The Lyapunov spectrum for chaotic dynamics is
(λ1, . . . , λ6) = (+45.2,+6.48,−0.336,−19.2,−38.5,−53.6) ×
10−3.

loss case (αX , αY , αZ > 0), (x∗,y∗, z∗) is asymptotically
stable, since all Re(λi) are strictly negative. One expects
multiple attractors in this case.

The collective state space ∆ is now 6 dimensional, be-
ing the product of three two-dimensional agent simplices
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∆ = ∆X×∆Y ×∆Z . The flow on ∆’s boundary is shown
in Fig. 21, giving the adaptation dynamics on the edges
of ∆ when the αs vanish.
We give two examples with αX = αY = αZ = 0.01,

ǫX = 0.5, ǫY = −0.365, ǫZ = 0.8 (top: limit cy-
cle) and ǫX = 0.5, ǫY = −0.3, ǫZ = 0.6 (bottom:
chaos) in Fig. 22. Chaos is typically observed when
ǫX + ǫY + ǫZ > 0. Limit cycles are highly com-
plex manifolds depending on the 6-dimensional hetero-
clinic network on the simplex boundary. The Lyapunov
spectrum for the chaotic dynamics is (λ1, . . . , λ6) =
(+45.2,+6.48,−0.336, −19.2,−38.5,−53.6)× 10−3. The
dynamics has two positive Lyapunov exponents. Note
that this dynamics could have many neutrally stable sub-
spaces in three or more dimensions. These subspaces act
as quasistable attractors and may even have symplectic
structure. These properties of high-dimensional dynam-
ics will be reported elsewhere.

V. CONCLUDING REMARKS

We developed a class of dynamical systems for collec-
tive adaptation. We started with very simple agents,
whose adaptation was a dynamic balance between adap-
tation to environmental constraints and memory loss. A
macroscopic description of a network of adaptive agents
was produced. In one special case we showed that the
dynamical system reduces to replicator equations, famil-
iar in evolutionary game theory and population biology.
In a more general setting, we investigated several of the
resulting periodic, intermittent, and chaotic behaviors in
which agent-agent interactions were explicitly given as
game interactions.
Self-organization induced by information flux was dis-

cussed using an information-theoretic viewpoint. We
pointed out that unlike single-agent adaptation, infor-
mation flow is multidimensional in collective adaptation
and that global information maximization is of doubtful
utility and a dynamic view of adaptation is more ap-
propriate. We also noted that only with two agents via
nontransitive interactions, horseshoe in the information
space can be produced due to the agents’ local adapta-
tion which amplifies fluctuations in behavior and to mem-
ory loss stabilizing behavior. Since deterministic chaos
occurs even in this simple setting, one expects that in
higher-dimensional and heterogeneous adaptive systems
intrinsic unpredictability would become a dominant col-
lective behavior. When dynamic memory stored in collec-
tives emerges, collective adaptation becomes a non-trivial
problem. A detailed information theoretic and dynamical
systems theoretic analysis will be reported elsewhere.
We close by indicating some future directions in which

to extent the model.
First, as we alluded to during the development, there

are difficulties of scaling the model to large numbers of
agents. We focused on collectives with global coupling
between all agents. However, in this case, the complexity

of interaction terms grows exponentially with number of
agents, which is both impractical from the viewpoints
of analysis and simulation, and unrealistic for natural
systems that are large collectives. The solution to this,
given in App. B, is to develop either spatially distributed
agents collectives or to extend the equations to include
explicit communication networks between agents. Both
of these extensions will be helpful in modeling the many
adaptive collectives noted in the introduction.

Second, important for applications, is to develop the
stochastic generalization of the deterministic equations of
motion which accounts for the effects of finite and fluc-
tuating numbers of agents and also finite histories for
adaptation. Each of these introduces its own kind of
sampling stochasticity and will require a statistical dy-
namics analysis reminiscent of that found in population
genetics [37]. It is also important to consider the effects
of asynchrony of adaptive behavior in this case.

Third, one necessary and possibly difficult extension
will be to agents that adapt continuous-valued actions—
say, learning the spatial location of objects—to their en-
vironments. Mathematically, this requires a continuous-
space extension of the adaptation equations (Eq. (19))
and this results in models that are described by PDEs
[38].

Finally, another direction, especially useful if one at-
tempts to quantify global function in large collectives,
will be structural and information-theoretic analyses of
local and global adaptive behaviors [39, 40]. Analyz-
ing the stored information and the causal architecture
[41, 42] in each agent versus that in the collective, com-
munication in networks, and emerging hierarchical struc-
tures in collective adaptation are projects now made pos-
sible using this framework.

APPENDIX A: CONTINUOUS TIME

Here we give the derivation of the continuous-time lim-
its that lead to the differential equations from the original
stochastic discrete-time adaptation model.

Denote the agent-agent interaction time scale, number
of interactions per adaptation interval, and adaptation
time scale as dτ , T , and t, respectively. We assume that
adaptation is very slow compared to agent-agent interac-
tions and take the limits dτ → 0 and T → ∞, keeping
dt = Tdτ finite. Then we take the limit dt → 0 to get
the derivative of the vector QX(t).

With Eq. (14) and QX
i (0) = 0, we have

QX
i (T ) =

1

T

T
∑

k=1

[

M
∑

m=1

δim(k)rXim(k)− αXQX
i (k)

]

.

(A1)
Thus, for continuous-time, when action i is chosen by X
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at step t,

QX
i (t+ dt)−QX

i (t)

dt

=
1

Tdt

T (t+dt)
∑

k=Tt

[

M
∑

m=1

δim(
k

T
)rXim(

k

T
)− αXQX

i (
k

T
)

]

.

(A2)

Taking T → ∞ and dτ → 0, we have

QX
i (t+ dt)−QX

i (t)

dt

=
1

dt

∫ t+dt

t

[

M
∑

m=1

δim(s)rXim(s)

]

ds

− αX

1

dt

∫ t+dt

t

QX
i (s)ds . (A3)

Assuming rXij (t) changes as slowly as the adaptive dy-

namics, rXij (t) is constant during the adaptation interval
t ∼ t + dt. If we assume in addition that the behaviors
of two agents X and Y are statistically independent at
time t, then the law of the large numbers gives

1

dt

∫ t+dt

t

[

M
∑

m=1

δim(s)rXim(s)

]

ds

→
M
∑

m=1

rim(t)ym(t) ≡ RX
i (t) . (A4)

Now take dt → 0. Eqs. (A3) and (A4) together give

Q̇X
i (t) = RX

i (t)− αXQX
i (t) , (A5)

for the continuous-time updating of the reinforcement
memory. When environment is static given as rXij (t) =
aij , then

RX
i (t) =

N
∑

n=1

ainyi(t) . (A6)

The single-agent case is given by letting y =
(1, 0, 0, . . . , 0) fixed and ai1 = ai, i = 1, . . . , N .

APPENDIX B: NETWORK INTERACTIONS

We can describe heterogeneous network interactions
within our model. We give an example of a model for lat-
tice interactions here. Agents s = 1, 2, . . . , S are on a spa-
tial lattice: agent s interacts with agent s−1 through bi-
matrices (As, Bs−1) and agent s+1 through (Bs, As+1).
Each bi-matrix is 2× 2. See Fig. 23.
Agents choose actions among the 2 × 2 action pairs

for both the right and left neighboring agents. The ac-
tion pairs are (1, 1), (1, 2), (2, 1), (2, 2) and are weighted

S S+1S-1 ...... A ABB
S-1 S S S+1

FIG. 23: Agent s interacts with agent s − 1 through bi-
matrices (As, Bs−1) and agent s+ 1 through (Bs, As+1).

with probabilities x1, . . . , x4. Inserting the interaction bi-
matrices into the S-agent adaptive dynamics of Eq. (27)
gives

ẋs
i

xs
i

= βs

[

(Asxs−1)i − ps · Asxs−1

+ (Bsxs+1)i − qs ·Bsxs+1
]

+ αs(− logxs
i −

4
∑

n=1

xs
n log x

s
n) , (B1)

where Σxs
i = 1 and ps = (xs

1 + xs
2, x

s
3 + xs

4), qs =
(xs

1 + xs
3, x

s
2 + xs

4). In a similar way, arbitrary network
interactions can be described by our adaptive dynamics
given in Eqs. (27).

APPENDIX C: NASH EQUILIBRIA

The Nash equilibria (x∗,y∗) of the bi-matrix game
(A,B) are those states in which all players can do no
better by changing state; that is,

x∗Ay∗ ≥ xAy∗ and y∗Bx∗ ≥ yBx∗ , (C1)

for all (x,y) ∈ ∆X × ∆Y . If they exist in the interior,
the solutions of the following simultaneous equations are
Nash equilibria:

(Ay)i = (Ay)1 and (Bx)j = (Bx)1

⇐⇒ (Ay)i − xAy = (Bx)j − yBx = 0 , (C2)

where ΣN
n=1xn = ΣM

m=1ym = 1.
It is known that N = M is a necessary condition for

the existence of a unique Nash equilibrium in the interior
of ∆. With N = M in the perfect memory case (αX =
αY = 0), the unique Nash equilibrium, if it exists, is
the fixed point given by the intersection of the x- and
y-nullclines of Eqs. (24).
This Nash equilibrium is not asymptotically stable, but

the time average of trajectories converges to it. To see
this, suppose that xi(t) > δ for all t sufficiently large, we
have

d

dt
(log xi) =

ẋi

xi

= (Ay)i − xAy ,

d

dt
(log yj) =

ẏj
yj

= (Bx)j − yBx . (C3)
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Integrating the both sides from 0 to T and dividing by
T , we get

log xi(T )− log xi(0)

T
=

M
∑

m=1

aimym − SA ,

log yj(T )− log yj(0)

T
=

N
∑

n=1

bjnxn − SB , (C4)

where

xi = T−1

∫ T

0

xidt and yj = T−1

∫ T

0

yjdt , (C5)

and

SA = T−1

∫ T

0

xAydt and SB = T−1

∫ T

0

yBxdt . (C6)

Letting T → ∞, the left-hand sides converge to 0. Thus,
x and y are a solution of Eqs. (C2). (This proof follows
Ref. [43].)

APPENDIX D: HAMILTONIAN DYNAMICS

Consider a game (A,B) that admits an interior Nash
equilibrium (x∗,y∗) ∈ ∆X ×∆Y , and is zero-sum (B =
−AT ), then

E = β−1
X D(x∗ ‖ x) + β−1

Y D(y∗ ‖ y) (D1)

is a constant of the motion. This follows by direct calcu-
lation:

dE

dt
= − 1

βX

N
∑

n=1

x∗

n

ẋn

xn

− 1

βY

M
∑

m=1

y∗m
ẏm
ym

= −(x∗Ay − xAy) − (y∗Bx− yBx)

= (x∗ − x)A(y∗ − y) + (y∗ − y)B(x∗ − x)

= 0 . (D2)

This holds for any number of agents. Give the agents
equal numbers of actions (N = M) and set α to zero
(perfect memory) and make all βs finite and positive.
Then the adaptive dynamics is Hamiltonian in the in-
formation space U = (u,v) with the above constant of
motion E,

U̇ = J∇UE , (D3)

with Poisson structure J ,

J =

(

O P

−PT O

)

with P = −βXβY A . (D4)

Proof :

∂E

∂ui

=
∂

∂ui

[

β−1
X

N
∑

n=1

x∗

n log x
∗

n + β−1
Y

N
∑

n=1

y∗n log y
∗

n

−β−1
X

(

N
∑

n=1

x∗

nun − log(

N
∑

n=1

e−un) )

−β−1
Y

(

N
∑

n=1

y∗nvn − log(
N
∑

n=1

e−vn)

)]

= β−1
X (x∗

i −
e−ui

∑N
n=1 e

−un

) = β−1
X (x∗

i − xi) ,(D5)

∂E

∂vj
= β−1

Y (y∗j − yj) . (D6)

Since (x∗,y∗) is an interior Nash equilibrium, with Eq.
(21), (Ay∗)i = (Bx∗)j = 0. Thus,

A
∂E

∂v
= − 1

β Y

Ay ,

B
∂E

∂u
= − 1

βX

Bx . (D7)

and

J∇UE =

[

−βXβY A
∂E
∂v

−(−βXβY A)
T ∂E

∂u

]

=

[

−βXAy

−βY Bx

]

=

[

u̇

v̇

]

= U̇ . (D8)

We can transform U = (u,v) to canonical coordinates
U′ = (p,q):

U̇′ = S∇U′E , (D9)

with

S =

(

O −I

I O

)

(D10)

where I is an N × N identity matrix and with a linear
transformation U′ = MU to the Hamiltonian form. ✷

APPENDIX E: REINFORCEMENT SCHEMES

AND INTERACTION MATRICES

Here we give the reinforcement scheme interaction ma-
trices for the constant-environment collectives investi-
gated in Sec. IV.

1. Matching Pennies

This game describes a non-transitive competition.
Each agent chooses a coin, which turns up either heads
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(H) or tails (T). Agent X wins when the coins differ,
otherwise agent Y wins. Table II gives the reinforce-
ment scheme for the various possible plays. Note that
the ǫs determine the size of the winner’s rewards. When
ǫX+ǫY = 0, the game is zero-sum. The Nash equilibrium
is x∗ = y∗ = (1/2, 1/2).
Various extensions of Matching Pennies to more than

two players are known. We give the Even-Odd game as
an example for three agents X , Y , and Z in a collective.
All flip a coin. Agents X and Y win when the number
of heads is even, otherwise Z wins. Table III gives the
reinforcement scheme. When the ǫs add to zero, the game
is zero-sum. The unique mixed Nash equilibrium is x∗ =
y∗ = z∗ = (12 ,

1
2 ,

1
2 )—the simplex center.

X Y rX rY

H H −ǫX −ǫY

H T ǫX ǫY

T H ǫX ǫY

T T −ǫX −ǫY

TABLE II: The two-person Matching Pennies game: ǫX ∈
(0.0, 1.0] and ǫY ∈ [−1.0, 0.0).

X Y Z rX rY rZ

H H H −ǫX −ǫY −ǫZ

H H T ǫX ǫY ǫZ

H T H ǫX ǫY ǫZ

H T T −ǫX −ǫY −ǫZ

T H H ǫX ǫY ǫZ

T H T −ǫX −ǫY −ǫZ

T T H −ǫX −ǫY −ǫZ

T T T ǫX ǫY ǫZ

TABLE III: The three-player Even-Odd game: ǫX ∈ (0.0, 1.0]
and ǫY , ǫZ ∈ [−1.0, 0.0).

2. Rock-Scissors-Paper

This game describes a non-transitive three-sided com-
petition between two agents: rock (R) beats scissors (S),

scissors beats paper (P), but paper beats rock. Table
IV gives the reinforcement scheme. The ǫs here con-
trol the rewards for ties. When they add to zero, the
game is zero-sum. The unique mixed Nash equilibrium
is x∗ = y∗ = (13 ,

1
3 ,

1
3 )—again, the center of the simplex.

The extension of RSP interaction to three agents is
straightforward. The reinforcement scheme is given in
Table V. When ǫX + ǫY + ǫZ = 0, the game is zero-sum.
The Nash equilibrium is x∗ = y∗ = z∗ = (1/3, 1/3, 1/3).

X Y rX rY

R R ǫX ǫY

R S 1 -1

R P -1 1

S R -1 1

S S ǫX ǫY

S P 1 -1

P R 1 -1

P S -1 1

P P ǫX ǫY

TABLE IV: The two-person Rock-Scissors-Paper game:
ǫX , ǫY ∈ (−1.0, 1.0).

X Y Z rX rY rZ X Y Z rX rY rZ X Y Z rX rY rZ

R R R ǫX ǫY ǫZ S R R -2 1 1 P R R 2 -1 -1

R R S 1 1 -2 S R S -1 2 -1 P R S ǫX ǫY ǫZ

R R P -1 -1 2 S R P ǫX ǫY ǫZ P R P 1 -2 1

R S R 1 -2 1 S S R -1 -1 2 P S R ǫX ǫY ǫZ

R S S 2 -1 -1 S S S ǫX ǫY ǫZ P S S -2 1 1

R S P ǫX ǫY ǫZ S S P 1 1 -2 P S P -1 2 -1

R P R -1 2 -1 S P R ǫX ǫY ǫZ P P R 1 1 -2

R P S ǫX ǫY ǫZ S P S 1 -2 1 P P S -1 -1 2

R P P -2 1 1 S P P 2 -1 -1 P P P ǫX ǫY ǫZ

TABLE V: The 3-person Rock-Scissors-Paper game:
ǫX , ǫY , ǫZ ∈ (−1.0, 1.0).
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