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2Área de Mecánica de Fluidos, Departamento de Ingenierı́a Térmica y de Fluidos, Universidad
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We investigate the stability properties and flow regimes of laminar wakes behind
slender cylindrical bodies, of diameter D and length L, with a blunt trailing edge
at zero angle of attack, combining experiments, direct numerical simulations and
local/global linear stability analyses. It has been found that the flow field is steady and
axisymmetric for Reynolds numbers below a critical value, Recs(L/D), which depends
on the length-to-diameter ratio of the body, L/D. However, in the range of Reynolds
numbers Recs(L/D) < Re <Reco(L/D), although the flow is still steady, it is no longer
axisymmetric but exhibits planar symmetry. Finally, for Re > Reco, the flow becomes
unsteady due to a second oscillatory bifurcation which preserves the reflectional
symmetry. In addition, as the Reynolds number increases, we report a new flow
regime, characterized by the presence of a secondary, low frequency oscillation while
keeping the reflectional symmetry. The results reported indicate that a global linear
stability analysis is adequate to predict the first bifurcation, thereby providing values
of Recs nearly identical to those given by the corresponding numerical simulations.
On the other hand, experiments and direct numerical simulations give similar values
of Reco for the second, oscillatory bifurcation, which are however overestimated by
the linear stability analysis due to the use of an axisymmetric base flow. It is also
shown that both bifurcations can be stabilized by injecting a certain amount of fluid
through the base of the body, quantified here as the bleed-to-free-stream velocity
ratio, Cb = Wb/W∞.
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1. Introduction

Many aspects of the sequence of transitions leading to turbulence in wakes behind
bluff bodies remain imperfectly understood. Their importance in engineering, together
with their presence in many natural phenomena, justifies the intense work devoted
to the dynamics of wakes in the laminar, transitional and turbulent regimes (Oertel
1990; Williamson 1996), as well as the effort to develop different strategies to control
their behaviour (Choi, Jeon & Kim 2008). It is noteworthy that the considerable
progress achieved towards these goals in the last few decades has been possible
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thanks to the combined use of experimental, numerical and hydrodynamic stability
techniques. In particular, these efforts have provided a reasonably complete picture
of many relevant features of wakes behind two-dimensional bluff bodies. However,
except for the wakes behind spheres and disks, both of which have been the subject of
a considerable number of experimental, numerical and stability studies, wakes behind
other axisymmetric bluff bodies have been comparatively less studied despite their
practical importance.

Wakes of axisymmetric objects undergo a rich sequence of transitions for increasing
values of the Reynolds number prior to becoming turbulent. Thus, for instance, it
is known that the wake of the sphere exhibits a first steady axisymmetry-breaking
bifurcation at Re ≃ 210, followed by a second oscillatory one at Re ≃ 277 (Taneda
1956; Margavey & Bishop 1961; Levi 1980; Kim & Durbin 1988; Sakamoto &
Haniu 1990; Ghidersa & Dušek 2000; Brückner 2001; Fabre, Auguste & Magnaudet
2008). Monkewitz (1988) showed that the first azimuthal mode |m| =1 can become
locally absolutely unstable in the near wake of axisymmetric bluff bodies, and
found that the typical frequencies and wavenumbers associated with this absolute
instability were close to those observed experimentally at high Reynolds numbers
as large-scale helical structures (Achenbach 1974; Taneda 1978; Fuchs, Mercker &
Michel 1979; Berger, Scholz & Schumm 1990). Afterwards, Natarajan & Acrivos
(1993) showed through a global linear stability analysis that the two successive
bifurcations were both a consequence of the destabilization of the first azimuthal
instability mode of the basic axisymmetric steady flow. Moreover, Natarajan &
Acrivos (1993) indicated that the wake behind a disk supported the same linear
instability modes, only differing in the corresponding values of the critical Reynolds
numbers. These findings were confirmed and extended by the weakly nonlinear
analyses recently performed by Fabre et al. (2008) and Meliga, Chomaz & Sipp
(2009). On the experimental side, Ormiéres & Provansal (1999) demonstrated that the
second transition to periodic vortex shedding was a supercritical Hopf bifurcation
described by the Stuart–Landau equation. The experiments of Brückner (2001) showed
later that wakes behind bullet-shaped bodies with a blunt trailing edge undergo the
same basic bifurcations as the sphere and the disk, but take place at higher Reynolds
numbers.

Base-bleed control of the turbulent wake of an axisymmetric blunt-based object was
studied experimentally and with a local linear stability analysis by Sevilla & Martı́nez-
Bazán (2004, 2006). In particular, Sevilla & Martı́nez-Bazán (2004) found that local
absolute instability can be suppressed for bleed coefficients larger than a certain
critical value, in agreement with the inhibition of large-scale helical vortex shedding
observed in the corresponding experiments. The applicability of local stability theory
to predict the critical bleed coefficient can be justified by noting that, while the base
flow is strongly non-parallel in the case without base bleed, it becomes slender for
bleed coefficients near the critical one. A similar configuration has recently been
studied by Sanmiguel-Rojas et al. (2009) in the laminar regime by means of a
global stability analysis, finding the existence of critical values of the bleed coefficient
to restabilise both the steady and oscillatory global modes for moderately high
supercritical Reynolds numbers (see also Meliga, Sipp & Chomaz 2010b).

It must be emphasized that the application of local stability concepts is questionable
in the case of strongly non-parallel flows. Indeed, for instance, the results of Pier (2008)
for the wake of a sphere clearly showed that the theory of nonlinear global modes
developed for weakly non-parallel flows (Pier et al. 1998) fails in predicting the onset of
global oscillations. In such cases, either direct numerical simulations or global stability
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analyses must be made in order to obtain quantitatively reliable results. In particular,
a detailed nonlinear description of the sequence of bifurcations which take place
for increasing Reynolds numbers in the flow around axisymmetric bodies has been
possible only recently. Thus, Schwarz & Bestek (1994) performed direct numerical
simulations of the laminar flow around a bullet-shaped body at Reynolds numbers 500
and 1000, showing that the dynamics of the wake is controlled by a global instability
of large-scale helical instability modes, resulting from the simultaneous destabilization
and subsequent nonlinear interaction of a pair of counter-rotating m = ±1 azimuthal
modes. Afterwards, Johnson & Patel (1999) and Tomboulides & Orszag (2000)
carried out direct numerical simulations of the flow past a sphere showing very good
agreement with the global stability analysis of Natarajan & Acrivos (1993) within
the linear regime. Ghidersa & Dušek (2000) provided a nonlinear theory for both
the axisymmetry-breaking and oscillatory bifurcations in the wake of the sphere,
and performed direct numerical simulations of the linearized and fully nonlinear
Navier–Stokes equations, showing good agreement with the previous works (see
also Pier 2008). The direct numerical simulations due to Kim & Choi (2003) for
the flow past a hemisphere revealed that, after the first steady symmetry-breaking
bifurcation, the subsequent Hopf bifurcation does not preserve the symmetry plane.
A third bifurcation takes place at a higher critical Reynolds number, in which a
plane of symmetry reappears, and, finally, a fourth bifurcation leads to an aperiodic
state. This phenomenology was later found to apply also to the wake of a thin
disk by Fabre et al. (2008) and Shenoy & Kleinstreuer (2008). In addition, numerical
simulations of the flow around a thick disk with length-to-diameter ratio 1/3 have been
performed by Auguste et al. (2010), providing a detailed description of the subsequent
nonlinear states leading to the appearance of chaos in the wake. Auguste et al. (2010)
identified a sequence of states considerably more complex than the corresponding
scenario for the infinitely thin disk, including regimes previously unobserved in other
geometries.

A theoretical explanation of the different nonlinear states observed in experiments
and numerical simulations has been given recently for the wakes of a sphere and
an infinitely thin disk by Fabre et al. (2008), and by Auguste et al. (2010) for the
thick disk case. In particular, Fabre et al. (2008) and Auguste et al. (2010) took
advantage of the fact that the Reynolds numbers associated with the first two
bifurcations are close to each other to develop a weakly nonlinear description based
on multiple codimension bifurcation theory (Golubitsky, Stewart & Schaeffer 1988;
Kuznetsov 1995), showing close agreement with direct numerical simulations. In
addition, a first-principles calculation of the coefficients associated with the weakly
nonlinear modal expansion has recently been given by Meliga et al. (2009) for the
thin disk case, by means of the adjoint operator technique. Unfortunately, the theory
of multiple codimension bifurcations applied to the wake of axisymmetric bodies
(see Fabre et al. 2008; Meliga et al. 2009, and references therein) requires that the
corresponding branches bifurcating from the original steady axisymmetric state are
close enough, so that the amplitude of the nonlinear saturated state appearing after
the first bifurcation is small. A possible measure of this distance is provided by the
relative difference between the critical values of the Reynolds numbers associated
with both instability modes, ∆ =(Reco − Recs)/Recs , where Recs and Reco denote the
critical Reynolds numbers corresponding to the steady and oscillatory bifurcations,
respectively. In the case of the thin disk wake, the parameter ∆ ≪ 1, and thus
the normal form theory can be applied. However, it has recently been found by
Sanmiguel-Rojas et al. (2009) that, for the wake of a blunt-based cylindrical body,
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the parameter ∆ ∼ O(1), and the theory of multiple codimension bifurcations is thus
questionable for this kind of body. Moreover, taking into account the substantial
differences found between the thin and thick disk cases discussed above, it is
expected that the wake of the slender blunt-based body will also present specific
features, which are worth considering in detail given the practical importance of this
geometry.

Therefore, the main objective of the present work is to perform a detailed study of
the flow regimes taking place in the laminar wake of a blunt-based cylindrical body
and their control by base-bleed, up to a Reynolds number of about 2000. The study
combines experiments, direct numerical simulations and local/global linear stability
analyses, thus extending our previous work on the problem (Sevilla & Martı́nez-Bazán
2004, 2006; Sanmiguel-Rojas et al. 2009). This paper is structured as follows. Section 2
is devoted to the presentation of the direct numerical simulation and experimental
techniques used in this work. The results obtained for the particular case without
base bleed, as well as the influence of the solid body aspect ratio on the stability
properties of the flow, are presented and discussed in § 3.1, and the stabilizing effect
of base bleed will be addressed in § 3.2. In addition, §§ 3.1 and 3.2 include results
obtained using local and global linear stability techniques, indicating their limitations
in this type of flow. Finally, § 4 is devoted to conclusions and suggestions for future
work.

2. Numerical and experimental techniques

2.1. Three-dimensional numerical simulations

The numerical simulations were performed with OpenFOAM R© (http://www.
openfoam.com), an open source computational fluid dynamics software package
produced by OpenCFD Ltd. The flow configuration under study in this work consists
of a uniform fluid stream of density ρ and viscosity µ flowing with a velocity W∞

around a cylindrical body of diameter, D, and total length L with an ellipsoidal
rounded nose, of 2:1 major-to-minor axis ratio, aligned with the direction of the
free stream. To perform the three-dimensional, unsteady numerical simulations of the
flow, we solved the dimensionless form of the standard incompressible Navier–Stokes
equations,

∇ · u = 0, (2.1)

∂u

∂t
+ ∇ · (uu) + ∇p −

1

Re
∇2u = 0, (2.2)

where Re = ρ W∞ D/µ is the Reynolds number. The equations were made
dimensionless, using D, W∞, D/W∞ and ρ W 2

∞ as length, velocity, time and pressure
scales respectively, in Cartesian coordinates although, for convenience, the results
will be presented in cylindrical coordinates, (r, θ, z), with a velocity field given by
u = (u, v, w) in the radial, azimuthal and axial directions respectively, and the origin
of coordinates placed at the central point of the body base.

The full Navier–Stokes equations (2.1) and (2.2) were solved within the
computational domain shown in figure 1, enclosed by five boundary surfaces. The
flow inlet, denoted by Ωi , which consists of a semi-sphere of diameter 20 times
the diameter of the slender body, D, is followed by a tubular surface, Ωf , that
extends 50 diameters from the base of the body. The external boundary is closed
by the outer plane, Ωo, defined as the base of the tubular surface. Subsequently,
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Figure 1. (a) Sketch and boundaries of the computational domain employed in the
three-dimensional numerical simulations. Detail of the ellipsoidal bluff-body mesh and sketch
of its boundaries (i.e. base and ellipsoidal surface, denoted by Ωb and Ωs , respectively):
(b) frontal and (c) rear view.

the body was introduced at the centreline of the cylindrical domain, aligned with
the direction of the free stream, as shown in figure 1(a). For notational clarity, the
surface of the slender body was decomposed into two surfaces: the base, Ωb, plus the
remaining part of the solid surface, Ωs . A detailed view of the solid boundaries and
the corresponding surface mesh is also shown in figures 1(b) and 1(c). Furthermore,
in order to validate both the computational domain, which consists of a three-
dimensional mesh of nearly 3 × 106 hexahedras [106(r) × 60(θ) × 460(z)], and the
numerical schemes described below, we performed numerical simulations of the
incompressible laminar flow around a sphere of diameter D. The results obtained
for the critical Reynolds numbers of the first-steady bifurcation, Recs ≃ 209.6, and
the second-oscillatory one, 276 < Reco < 277, are in excellent agreement with previous
results reported by other researchers (Johnson & Patel 1999; Ghidersa & Dušek 2000;
Tomboulides & Orszag 2000; Magnaudet & Mougin 2007).

The present computational domain is similar to those employed in the previous
numerical studies of the flow around a sphere (Johnson & Patel 1999; Ghidersa
& Dušek 2000; Tomboulides & Orszag 2000; Magnaudet & Mougin 2007) and
hemisphere (Kim & Choi 2003), where the non-dimensional spatial domain along
the upstream and the radial directions from the body varied from 9 to 25 and
from 8 to 25, respectively, whilst the length downstream from the sphere usually
takes values between 25 and 30. Furthermore, Sanmiguel-Rojas et al. (2009) showed
in their global stability analyses that the eigenvalue spectrum obtained for a
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cylindrical body similar to that considered here was nearly independent of the
length and the width of the computational domain for the domains employed in our
computations.

Equations (2.1) and (2.2) were solved with the following boundary conditions (see
figure 1):

u(x, t) = 0, x ∈ Ωs, t > 0, (2.3)

u(x, t) = (0, 0, 1)T, x ∈ Ωi, t > 0, (2.4)

u(x, t) = (0, 0, Cb)
T, x ∈ Ωb, t > 0, (2.5)

n · u(x, t) = 0, x ∈ Ωf , t > 0, (2.6)

p(x, t) = n · ∇u(x, t) = 0, x ∈ Ωo, t > 0, (2.7)

where we assumed a free stream of uniform velocity profile at the inlet of the
computational domain, Ωi (2.4), and allowed a uniform injection of fluid throughout
the base of the slender body, Ωb, of velocity Cb = Wb/W∞, which denotes the bleed-to-
free-stream velocity ratio, referred to as bleed coefficient (2.5). On the other hand, we
imposed slip boundary condition at Ωf , given by (2.6), where n is the normal surface
vector pointing outwards from the computational domain. The pressure values in
the boundary conditions (2.3)–(2.6) are implicitly obtained through the continuity
equation (2.1) (as described by Ferziger & Perić 2002), and it is set constant at
the outlet, Ωo (2.7), see Tomboulides & Orszag (2000). Nevertheless, this boundary
condition at Ωo was also supplemented with a Neumann boundary condition for
the velocity vector. Details of the numerical schemes implemented can be found in
Appendix A.

2.2. Experimental details

The velocity measurements of the wake behind an axisymmetric slender body with
an elliptical nose of 2:1 major-to-minor axis ratio and a sharp trailing edge were
performed in a vertical wind tunnel of 20 × 20 cm2 cross-section. Different bodies of
diameter D =1 cm, and length-to-diameter ratios L/D =1, 2, 3, 4 and 6, respectively,
were used to determine the effect of the boundary layer thickness at the separation
point on the stability properties of the flow (see figures 2a and 2c). The body,
which was aligned with the free stream, was held with a 1 mm external diameter
hollow needle welded internally to the body at z = −L/2D (the middle point of the
body). After connecting the supporting needle, the junction was polished to obtain a
smooth surface over the body. To verify that the holding device did not introduce any
perturbation in the flow, we measured the velocity fluctuations at r = 0.5 and several
downstream positions, and no oscillations were observed for Re < Reco. Furthermore,
considering the range of Reynolds numbers explored in this work, the Reynolds
number based on the diameter of the supporting needle was smaller than 50 in most
of the cases and, consequently, vortex shedding did not take place. Nevertheless, if
vortex shedding took place, the shedding frequencies would be of the order of 200 Hz
and no energy was observed in this range of frequencies in the energy spectra obtained
experimentally. A hot-wire anemometer was used to measure the streamwise velocity,
w(t), at several downstream positions. The temperature was monitored to precisely
calculate the density and viscosity of the air stream.

Base bleed was used as wake control mechanism to inhibit the emission of vortices
from the base of the body. Thus, the supporting needle, also used to inject the control
fluid, was connected to the air-feeding line and a hollow slender body as shown in
figure 2(b). A piece of foam was inserted inside the body to generate a pressure



Stability and dynamics of the laminar wake 7

direction
Flow

direction
Flow

D

D

z z

D
 ≤

 L
 ≤

 6
D

L = D

L = 2D

L = 3D

L = 4D

L = 6D

(a) (b) (c)

Figure 2. (Colour online) Shape of the axisymmetric body with a rounded ellipsoidal nose
used in this work. (a) Solid body, (b) hollow body used in the experiments with base bleed
and (c) image of the different solid bodies with length-to-diameter ratios L/D = 1, 2, 3, 4 and
6, respectively. The shaded area in (b) represents the piece of foam inserted to guarantee a
uniform bleed velocity.

drop large enough to guarantee a uniform bleed velocity profile. The holding needle
was connected through a Luer connector to the air-feeding line, which consisted of
the pneumatic tube provided by an Aalborg c© digital mass flowmeter, a precision
valve used to precisely control the air flow rate injected and a pressure regulator.
The feeding line was connected to the 6 bar compressed air line of our laboratory.
To check the uniformity of the air flow injected through the base of the body, we
measured the bleed velocity placing the hot-wire probe near the base of the body
at different radial positions, getting almost identical values of anemometer output
voltage. Additionally, we also performed shadowgraphs to visualize the bleed flow
using helium to make sure that the flow was uniformly injected through the base of
the body.

3. Results and discussion

We shall first describe in § 3.1 the sequence of transitions occurring in the wake of
a body with length-to-diameter ratio L/D =2 for increasing values of the Reynolds
number, in the absence of base bleed. In addition, an analysis of the influence of
L/D will be presented to close § 3.1. The details of the procedures used to determine
the critical Reynolds numbers corresponding to the stationary and the oscillatory
bifurcations are given in Appendix B. Subsequently, in § 3.2 we focus on a fixed
body with L/D = 2, presenting a detailed analysis of the stabilising effect of base
bleed. We show, in particular, that the axisymmetric base state can be recovered for
Re � 2000 by injecting a sufficient amount of fluid through the body base. In both
sections, we will discuss the results obtained from the numerical simulations, the
global linear stability analysis and the experiments. Moreover, in § 3.2 we complete
our work by discussing the validity of the local stability analysis to predict the critical
bleed coefficient needed to inhibit the second oscillatory bifurcation.
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(a)

(b)

Figure 3. Contours of constant streamwise vorticity, ωz = ±0.05, for Re = 350: (a) plan and
(b) side views. The figure shows that the flow is steady and exhibits planar symmetry.

3.1. Description of the flow field and results without base bleed, Cb= 0

According to our three-dimensional numerical simulations, the flow past a cylindrical
body with an elliptical nose and length-to-diameter ratio 2 is axisymmetric for
Reynolds numbers up to Re3d

cs ≃ 319, where the flow experiences a first transition
to a steady, non-axisymmetric state. Although for Re > Re3d

cs the wake no longer
exhibits axial symmetry, it still remains steady for Reynolds numbers lower than
Re3d

co ≃ 413. Figure 3, which shows the isosurfaces corresponding to the positive (light)
and negative (dark) values of the axial vorticity of ωz = ±0.05, illustrates the loss of
axial symmetry at Re = 350. This regime is similar to that observed for the sphere
and the disk for Reynolds numbers above 210 and 115, respectively, as a consequence
of the destabilization of a global mode referred to as the steady-state (SS) mode
according to Fabre et al. (2008). Note that the pair of steady streamwise vortices
extends upstream of the solid-body base, indicating the global nature of the steady-
state mode. The flow is characterized by a loss of axisymmetry, although it attains
a state where planar symmetry is observed, as shown in figure 3(a). However, the
view obtained by a 90o azimuthal rotation of the mesh, see figure 3(b), illustrates the
fact that the streamwise vortices are not aligned with the streamwise direction but
exhibit an increasingly larger eccentricity as we move further downstream from the
solid base, similar to the sphere and disk wakes (e.g. Ormiéres & Provansal 1999;
Tomboulides & Orszag 2000; Thompson, Leweke & Provansal 2001; Schouveiler &
Provansal 2002). The dependence of the eccentricity on the Reynolds number has
been quantified in Appendix B to provide a precise description of the method used to
determine the onset of the SS mode for our bullet-shaped geometry (see also Mullin
et al. 2009). In addition to performing the three-dimensional numerical simulations,
we also carried out global stability analyses of the same geometrical configuration,
obtaining a critical Reynolds number of ReGLS

cs ≃ 327 for the first bifurcation, which
differs from that given by the numerical simulations, Re3d

cs ≃ 319, only by about
2.5 %. The results obtained by the global linear stability analysis for Re =350 and
|m| =1 have been represented in figure 4. Specifically, figure 4(a) indicates that, in
agreement with the numerical simulations, at Re =350 the spectrum exhibits only one
unstable eigenvalue (σr > 0) which corresponds to a three-dimensional (|m| = 1) and
steady (σi = 0) perturbation. The associated normalized eigenfunctions are plotted in
figure 4(b), showing the presence of two counter-rotating streamwise vortices aligned
within the streamwise direction. Details of the numerical schemes used to perform
the global stability analyses can be found in Appendix A.

By increasing the Reynolds number in the three-dimensional numerical simulations
above Re3d

co = 413, we observe the development of a second transition to an oscillatory
mode which retains the planar (or reflectional) symmetry due to the destabilization
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Figure 5. (a) Time history of the fluctuations of the streamwise velocity component,
w(t) − 〈w(t)〉, obtained numerically at (0,0,7) for Re = 415. The inset in (a) shows a
monochromatic signal, as corroborated by the power spectral density shown in (b) at z = 7
and z =3 for t > 500.

of a reflectional symmetry preserving (RSP) mode according to Fabre et al. (2008).
It is worth pointing out that in the present work we shall make use of the notation
employed by Fabre et al. (2008), although Meliga et al. (2009) and Auguste et al.
(2010) referred to the RSP mode as MM0 and zig-zig, respectively. Figure 5 shows
the streamwise velocity signal recorded at the symmetry axis for Re = 415 and z = 7,
as well as the corresponding power spectral density (PSD) function for t > 500,
which is obtained after removing the time-averaged streamwise velocity, defined

here as 〈w(t)〉 = T −1
∫ t+T

t
w(t) dt . As in the case of the sphere (Schouveiler &

Provansal 2002), monochromatic vortices are shed for Reynolds numbers slightly
larger than Re3d

co . Subsequently, the vortex-shedding Strouhal number (St) is about
0.1246 and lies very close to the experimental value of 0.1231 obtained for the
same geometry near the critical Reynolds number (see also figure 10). Similar to
the case of the steady planar-symmetric regime, the vorticity contours provide a
clear picture for the structure of the wake. Figures 6 and 7 show an analogous
view to figures 3(a) and 3(b), respectively, at four phases φ of the vortex shedding



10 P. Bohorquez and others

(a)

(b)

(c)

(d)

Figure 6. Plan view of streamwise vorticity contours, ωz = ±0.05, close to criticality for
Re = 415 at every quarter period: (a) φ = 0, (b) φ = π/4, (c) φ = π and (d ) φ = 3π/4. See
supplementary movie 1.

(a)

(b)

(c)

(d)

Figure 7. Side view of the streamwise vorticity contour, ωz = ±0.05, as for figure 6:
(a) φ = 0, (b) φ = π/4, (c) φ = π and (d ) φ = 3π/4.

cycle (see supplementary movie 1 available at journals.cambridge.org/flm). However,
the global stability analysis predicts the oscillatory bifurcation for ReGLS

co ≃ 518, thus
showing a significant difference with respect to both the numerical simulations and
the experiments, where Re3d

co ≃ 413 and Reexp
co ≃ 412.4, respectively (see below). It is

important to emphasise that this overprediction in the critical Reynolds number of
the second bifurcation is due to the use of an axisymmetric basic flow for Reynolds
numbers higher than that corresponding to the first, steady bifurcation. Note that,
at supercritical Reynolds numbers, Re > Recs , the original basic flow is already
perturbed and, in particular, is no longer axisymmetric due to the three-dimensional
nature of the first bifurcation mode, |m| =1. Figure 8(a) shows the spectrum for
ReGLS

co ≃ 518, where the eigenvalue corresponding to the unstable oscillatory mode has
been marked with a circle. This second transition corresponds to a three-dimensional,
|m| =1, and oscillating perturbation with a Strouhal number St = σi/2π ≈ 0.102,
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Figure 9. (a) Time history of the fluctuations of the streamwise velocity component,
w(t) − 〈w(t)〉, obtained numerically at (0,0,7) for Re = 450. The presence of harmonics is
illustrated in the inset of (a) as well as in (b), which shows the PSD at z = 3 and z = 7.

whose associated normalized eigenfunctions have been plotted in figure 8(b), showing
a spatially periodic structure similar to that obtained in the numerical simulations. The
discrepancy between the vortex-shedding Strouhal numbers obtained from the global
stability analysis and the numerical simulations indicates that the exact structure of
the global modes and their temporal frequency must be determined by means of
a three-dimensional global stability analysis as described by Bagheri et al. (2009),
though such task is outside the scope of the present paper.

The single-frequency vortex shedding process observed in our numerical simulations
occurs up to Re ≃ 450 and the structure of the flow is similar to that reported for the
sphere in the range of Reynolds number 285 <Re < 300 by Tomboulides & Orszag
(2000). For increasing values of Re > 450, we find the development of harmonics
as shown in figure 9. Note that in the case of the flow past a sphere at Re = 300,
the appearance of harmonics is clearer in the numerical simulations (Tomboulides
& Orszag 2000) than in experiments (Schouveiler & Provansal 2002). Therefore, the
present numerical results qualitatively agree with previous known numerical results
for the wake of a sphere. However, it is worth noting that the energy associated with
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Figure 10. Comparison between the evolutions of the vortex-shedding Strouhal number, Stsat,
with the Reynolds number, Re, obtained from the numerical simulations and experimental
measurements for a body of aspect ratio L/D =2.

the harmonics diminishes as we decrease the distance to the bluff-body base. For
instance, figure 9(b) shows that their effect is negligible at z = 3, whilst their energy
grows as we move downstream, for example at z = 7. Thus, in order to determine
the Strouhal number corresponding to the primary frequency of the vortex shedding,
Stsat, we have performed the spectral analysis of the streamwise velocity w(t) at
(0, 0, 3), a position where the dominant frequency is more energetic, up to a Reynolds
numbers of 500. The results shown in figure 10 indicate that the Strouhal number
slightly increases with Re, a result which is consistent with the case of a sphere (e.g.
Ormiéres & Provansal 1999; Schouveiler & Provansal 2002). This figure also shows the
Strouhal numbers obtained experimentally, indicating the good agreement between
the numerical and the experimental results.

Finally, we have also observed the development of marked oscillations upstream
of the body base in the presence of vortex shedding, an effect that increases as
the Reynolds number increases. In fact, the oscillations of velocity and pressure
upstream of the solid-body base are clearly observed at moderate Reynolds numbers,
e.g. Re =500, and can be noted by plotting the vorticity contours. Thus, figure 11
illustrates the low-frequency shedding of vortices during four cycles; in the two first
cycles, i.e. from φ = 0 to 4π, it can be observed that the distribution of streamwise
vorticity fluctuates smoothly on the solid surface, similar to what happens at Reynolds
numbers close to criticality. Note that, at φ = π, 3π, it is evident that the vorticity
contours over the solid body oscillate in the streamwise direction and recover their
initial state at φ =2π, 4π (these oscillations can be clearly seen in supplementary
movie 2). Indeed, the vortices that are shed at this stage are similar to those described
in figures 6 and 7 for Re = 415. The oscillations are more intense in the two consecutive
periods and the ensuing vorticity contours differ from the previous ones which are
convected downstream. This sequence is periodic, the phenomenon appearing in the
numerical simulation every four cycles. The emission of low-frequency vortices is
apparent in supplementary movie 2. Indeed, the PSD functions shown in figures 12(a)
and 12(b) for the streamwise and tangential components of the velocity fluctuations
respectively indicate that the predominant Strouhal numbers are those corresponding
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Figure 11. Plan view of streamwise vorticity contours, ωz = ±0.05, at Re = 500 at every half
period: (a) φ = 0, (b) φ = π, (c) φ = 2π, (d ) φ = 3π, (e) φ = 4π, (f ) φ = 5π, (g) φ =6π and
(h) φ = 7π. See supplementary movie 2.
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Figure 12. Power spectral density at z = 7 for Re = 500 corresponding to the (a) streamwise
and (b) tangential velocity components given by the numerical simulations. The ratio between
Stsat and Stl is approximately 4.02.

to the natural shedding frequency (denoted hereafter by Stsat) and, approximately, a
quarter of Stsat, Stl ≈ Stsat/4. Note that, here Stl resembles the low (or secondary)
frequency observed for the flow past a sphere at Re > 360 which has been associated
with the loss of the planar symmetry due to irregular variations in the azimuthal
orientation of the vortex shedding, see Tomboulides & Orszag (2000, p. 65 and
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figure 20b) and Schouveiler & Provansal (2002, p. 3851 and figure 9). However, unlike
in the case of the sphere, the reflectional symmetry is maintained in the current
scenario, as shown in figure 11. This flow regime is not yet fully described in the
literature, but a brief mention of its existence in the wake of a sphere can be found
in Bouchet, Mebarek & Dušek (2006) at Re ∼ 325. A similar phenomenon has also
been reported by Stewart et al. (2010) for a sphere rolling down an inclined wall,
which exhibits dual spectral peaks at Re = 225 whilst the flow retains the symmetry
plane. However, in such a case, the low frequency corresponds to Stl = 0.045, whilst
the dominant frequency is Stsat =0.12 for a lower Reynolds number of Re =212.5,
i.e. the secondary frequency is approximately one-third of the leading frequency. In
addition, the wake of a thick circular disk is also characterised by the persistence of
planar symmetry and the appearance of a secondary frequency close to one-third of the
leading frequency for Reynolds numbers above 217 (Auguste et al. 2010). However,
unlike in the present case, in the case of a thick disk this flow regime results after a
sequence of bifurcations occurring at lower Reynolds numbers. Thus, techniques more
complex than those used in the present work, like the global dynamic modes described
in Schmid (2010), would be needed in order to better understand this complex flow
behaviour. It is worth mentioning that the excitation of new frequencies in the wake
(i.e. the low-frequency modulation and the harmonics of the main frequency) leads to
a decrease of the energy associated with the leading velocity fluctuations due to the
nonlinear energy transfer from the natural frequency Stsat to the newly excited ones.

In addition to performing three-dimensional numerical simulations, we also
measured experimentally the critical Reynolds number for the second, oscillatory
bifurcation, Reexp

co , for different bodies whose length-to-diameter ratio varied from
L/D = 1 to L/D = 6. To determine the critical value of the Reynolds number, Reexp

co ,
we examined the evolution with the Reynolds number of the squared amplitude of
the streamwise velocity fluctuations, w′2

fc
, defined here as (see Sanmiguel-Rojas et al.

2009)

w′2
fc

=

∫ fc+	fu

fc−	fd

PSD(f ) df, (3.1)

where PSD(f ) is the power spectral density obtained from the velocity measurements,
fc is the characteristic shedding frequency, and 	fd and 	fu correspond to the interval
of frequency around fc for which the power spectral density drops down to 5 % of the
peak value. The linear increase of w′2

fc
with the Reynolds number near the critical value

indicates that the transition to the oscillatory regime corresponds to a supercritical
Hopf bifurcation. The critical value of the Reynolds number was then determined by
linear regression of the experimental measurements of w′2

fc
near criticality. To quantify

the experimental error and the independence of the critical Reynolds number of the
downstream position at which the measurements were taken, we determined Reexp

co at
different axial positions. Thus, we obtained critical values of the Reynolds number
at z = 2, 3, 5 and 7, finding discrepancies always smaller than 1 %. Special care
was taken in our experiments to align the bodies under study with the free stream;
however, a small misalignment could result in errors of the order of 5 %.

Figure 13(a) shows the dependence of the energy on the velocity fluctuations,
w′2

fc
, at (r =0, z = 3), with the Reynolds number near the critical point for bodies

of aspect ratio L/D = 1, 2, 3, 4 and 6 respectively, indicating that Reexp
co increases

as L/D increases. Similarly, figure 13(b) displays the evolution with the Reynolds
number of the energy of the tangential velocity perturbations at (r =0, z = 7) given
by the numerical simulations for L/D = 2. Note that the prediction of the oscillatory
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Figure 13. (a) Energy of the streamwise velocity fluctuations w′2
fc

obtained experimentally at
(r = 0, z =3), as a function of the Reynolds number for the different bodies of L/D = 1, 2, 3,
4 and 6 used in this work. (b) Energy of the tangential velocity perturbations, v′2

fc
, at (r = 0,

z = 7) versus the Reynolds number given by the numerical simulations for a body of L/D = 2.

bifurcation given by the numerical simulations for a bullet-like body of aspect
ratio equal to 2, Re3d

co ≃ 413, is nearly identical to the experimental simulations,
Reexp

co ≃ 412.4, though the numerical result shows a deviation from the linear behaviour
predicted by the Landau model at Re > 450 because of the developments of new
frequencies discussed above. Similarly, the modes observed for the body aspect ratio
L/D =1 are the same as those found for L/D = 2, as described in Appendix B, and
the critical Reynolds number obtained from the numerical simulations for a body
of L/D =1, Re3d

co ≃ 254, agrees fairly well with the experimental value, Reexp
co ≃ 267.6.

Since this second transition is also due to a reflectional symmetry-preserving mode,
there are marked differences in the phenomenology of the hemielliptic geometry
considered in this work with respect to the hemisphere, which exhibits a second
reflectional symmetry-breaking mode (Kim & Choi 2003). The relative difference
between the critical values of the Reynolds number associated with the SS and RSP
modes obtained from the numerical simulations, ∆3d , is larger than 0.18 for L/D � 1.
Consequently, the assumption of simultaneously nearly neutral modes, e.g. Fabre
et al. (2008), is questionable for afterbodies, as we further discuss below.

The same qualitative behaviour has been observed as the body aspect ratio, L/D, is
modified. Figure 14 shows the effect of L/D on the critical Reynolds numbers, without
base bleed, obtained from our experimental measurements, numerical simulations and
global linear stability for |m| =1. It can be observed that, in the particular case of
L/D =1 and 2, the critical Reynolds number for the first, steady bifurcation given
by the global linear stability analysis agrees very well with that obtained from
the numerical simulations, ReGLS

cs ≃ Re3d
cs (numerical simulations for larger bodies,

L/D > 2, were not performed). Furthermore, as mentioned above, the predictions
of the critical Reynolds number for the second, oscillatory bifurcation obtained
numerically also agree with the experimental results, Re3d

co ≃ Reexp
co ; however, the global

stability analysis considerably overestimates the critical Reynolds number associated
with the oscillatory bifurcation. Thus, the value of ∆GLS = (ReGLS

co − ReGLS
cs )/ReGLS

cs ,
based on the global linear stability analysis, varies from 0.29 for L/D = 1 to 1.04
for L/D = 10, indicating that the effect of considering an unperturbed base flow
on the stability analysis induces larger errors in the prediction of Reco and St as
L/D increases. Indeed, the relative gap between the critical Reynolds numbers for
the sphere is nearly equal to that of our hemi-ellipse, but the global linear stability
analysis works much better for the sphere (Pier 2008). Consequently, it is expected



16 P. Bohorquez and others

1 2 3 4 5 6 7 8 9 10 110

500

1000

1500

Re

L/D

 

 
Global stability, ReGLS

Global stability, ReGLS

Experiments, Reexp

Numerical simulations, Re3d

Numerical simulations,  Re3d

cs

co

co

cs

co

Figure 14. Dependence of the critical Reynolds numbers on the aspect ratio of the body,
L/D, for the case without base bleed, Cb = 0. Comparison among the results given by the linear
global stability analysis (superscript GLS), numerical simulations for L/D = 1, 2 (superscript
3d) and experiments for L/D = 1, 2, 3, 4 and 6 (superscript exp). Note that the subscripts cs
and co denote the critical Reynolds number for the onset of the steady and oscillatory modes,
respectively.

that the saturated amplitude of the mode yielding the transition to the SS state
is much larger for the geometries analysed herein than for the sphere. It is worth
mentioning that ∆ also increases with the Mach number for an afterbody (see Meliga,
Sipp & Chomaz 2010a; Meliga et al. 2010b), and thus the theoretical quantification
of the reflectional symmetry-preserving mode in the compressible regime may also
deserve the use of either three-dimensional global stability analysis (Bagheri et al.
2009) or three-dimensional numerical simulations. Figure 14 also shows that, as L/D

increases, the critical Reynolds number increases for both modes, indicating that the
wake is more stable for longer bodies.

3.2. Description of the flow field and results with base bleed, Cb > 0

Several works have demonstrated that the presence of base bleed has a strong
stabilizing effect on two-dimensional bluff-body wakes (see for instance Wood 1964,
1967; Bearman 1967; Schumm, Berger & Monkewitz 1994; Hammond & Redekopp
1997; Arkas & Redekopp 2004). In the particular case of blunt-based axisymmetric
bodies, of interest in this work, Sevilla & Martı́nez-Bazán (2004) showed that the
large-scale helical structures present in the high-Reynolds-number turbulent wake
can be inhibited by means of a sufficiently large value of the base bleed coefficient,
in agreement with corresponding local stability calculations. Similarly, in the case of
the laminar wake which prevails at moderately large values of the Reynolds number,
the global stability analysis performed by Sanmiguel-Rojas et al. (2009) showed the
existence of critical values of the bleed coefficient to stabilize both the steady and
subsequent oscillatory global modes appearing in the steady axisymmetric wake.
Note that both the local and global linear stability analyses respectively performed
in Sevilla & Martı́nez-Bazán (2004) and Sanmiguel-Rojas et al. (2009) consider the
steady axisymmetric wake as basic flow, an approximation also used in the present
work. Moreover, base bleed control of unsteadiness in a compressible afterbody wake
has recently been investigated by Meliga et al. (2010b) through a global linear stability
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Figure 15. Time series of the streamwise velocity, w(t), obtained numerically at (a) (r = 0,
z = 1) for the values of the bleed coefficient Cb = 0, 0.01 and 0.05, and (b) at xA ≡ (0.5, 0, 1)
and xB ≡ (0.5, π/2, 1) for Cb = 0.05 and 0.08125. Here, Re = 500.

analysis of the basic axisymmetric state. However, as already discussed in § 3.1, the
wake is not axisymmetric at the onset of unsteadiness due to the symmetry-breaking
mode which bifurcates at smaller values of the Reynolds number, leading to linear
stability predictions for the critical Reynolds number which are quantitatively wrong.
Since this is also expected to affect to the corresponding values of the critical bleed
coefficients, in this section we will present results obtained not only through local and
global stability analyses but also from direct numerical simulations of the wake with
base bleed, as well as experimental measurements.

Let us show first the results obtained from the numerical simulations performed
for a body of aspect ratio L/D = 2 at a Reynolds number of 500, for which the wake
is unsteady as discussed in § 3.1. The fluctuations of streamwise velocity, w(t), at the
particular location (r = 0, z = 1), are displayed in figure 15(a) for several values of
the bleed coefficient, namely Cb =0, 0.01 and 0.05, clearly illustrating the stabilizing
effect of base bleed on the oscillatory mode. Note from figure 15(a) that, in the case
without base bleed, Cb = 0 (solid line), the velocity signal is multimodal and indicates
the presence of a low-frequency mode as discussed in § 3.1 (see figure 11). However,
the introduction of a very small amount of base bleed, Cb = 0.01 (dash-dotted line),
makes the velocity signal perfectly monochromatic after a short relaxation time
of the order of one shedding period, accompanied by a slight reduction in the
oscillation amplitude. It is interesting to note that this unimodal behaviour is similar
to that observed without base bleed at values of the Reynolds numbers closer to the
critical one. It is also observed in figure 15(a) that for a base bleed coefficient of
Cb = 0.05 (dashed line), the centreline velocity signal reaches a constant value after
relaxation, indicating a complete suppression of the oscillatory mode. Clearly, there
exists a critical value of the bleed coefficient 0.01 <C∗

b2 < 0.05 such that the oscillatory
global mode is inhibited for values of Cb >C∗

b2. Unfortunately, the three-dimensional
unsteady numerical simulations are especially time-consuming close to criticality, thus
making the accurate determination of the curve C∗

b2(Re) a difficult task to deal with.
Consequently, only upper and lower bounds have been obtained for the values of C∗

b2

at different Reynolds numbers, as discussed below.
A more detailed study reveals that for Cb = 0.05, while the unsteady mode is

completely suppressed at Re = 500, the steady symmetric mode still persists. This fact
is illustrated in figure 15(b), where the streamwise velocity is plotted versus time,
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(a) (b)

Figure 16. Isosurfaces of the streamwise vorticity, ωz = ±0.05, for Re =1000 and Cb = 0.105:
(a) plan and (b) perspective views. The flow is steady and exhibits planar symmetry.

during the transients following the imposition of a constant base bleed coefficient
Cb =0.05, at the points xA and xB , with (r, θ, z) coordinates respectively given by
(0.5, 0, 1) (dashed line) and (0.5, π/2, 1) (dash-dotted line). Taking into account that
the points xA and xB are located at positions differing only by a 90◦ azimuthal
rotation, the fact that their corresponding asymptotic, axial steady velocities are
different, w(xA) ≃ 0.35, w(xB) ≃ 0.4, indicates the absence of axisymmetry in the wake
for Re = 500 and Cb = 0.05. Nevertheless, the axisymmetric state can be recovered at
Re = 500 by increasing the base bleed coefficient past a certain critical value given by
C∗

b1 ≃ 0.0723, as explained in more detail in Appendix B. For instance, in figure 15(b)
it can be seen that the steady streamwise velocities are identical at the points xA and
xB for a bleed coefficient of Cb = 0.08125.

The critical bleed coefficient C∗
b1(Re) needed to restabilise the steady-state mode

increases with the Reynolds number giving, for instance, a value C∗
b1 ≃ 0.11

for Re = 1000. Consequently, the steady non-axisymmetric wake can exhibit a
considerable downstream displacement for Cb < C∗

b1, specially at large Reynolds
numbers. This feature is illustrated in figure 16, where the isocontours of streamwise
vorticity ωz = ±0.05 are shown for Re = 1000 and Cb =0.105, slightly below C∗

b1. It
can be clearly seen that the axisymmetry-breaking mode is present, as revealed by the
existence of a symmetry plane, while, at the same time, the vortical structures present
in the double-threaded wake are located at a considerable distance downstream
of the body base due to the effect of the base bleed momentum. The procedure
followed to determine C∗

b1 and its dependence on the Reynolds number is similar to
that employed in the computation of Re3d

cs (L/D) in the case without base bleed, as
described in Appendix B.

In addition to looking for critical values of the base bleed coefficient, we have also
performed a more detailed numerical study of its effect on the unsteady wake in the
nonlinear regime at several values of Cb <C∗

b2(Re), for which the oscillatory mode
is self-excited with a finite amplitude. As an example, figure 17 shows the power
spectral density of the streamwise velocity component at z = 7, as a function of the
Strouhal number, St , for a body with L/D = 2, at a Reynolds number of Re = 430.
This figure reveals the presence of a single peak in the spectrum, corresponding to
the periodic and monochromatic shedding of vortices in the wake at Re =430. Note
from figure 17 that the injection of a very small base-bleed flow rate with Cb = 0.005
(solid line) decreases the amplitude of the peak from ≃ 0.1 in the case without base
bleed (dashed line) to �0.01 for Cb =0.005. Note also that the value of the Strouhal
number, St ≃ 0.128, is hardly affected by Cb at this particular Reynolds number,
Re = 430. More generally, both experiments and numerical simulations showed that
the Strouhal number has a very weak dependence on Cb, but increases with Re at
a given value of Cb, as can be observed in figure 20. At higher Reynolds numbers
where, in the case without base bleed, the velocity signal is multimodal, the addition
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Figure 17. Power spectral density of the streamwise velocity component at (r =0, z = 7) for
a body of aspect ratio L/D = 2, at a Reynolds number of Re = 430 and Cb =(0, 0.005).

of base bleed first makes the velocity fluctuations monochromatic and, for larger
values of Cb, completely stabilises the wake.

The effect of base bleed on the eigenvalue spectra of linear global modes has
been discussed in detail in Sanmiguel-Rojas et al. (2009). For the particular case of
a body with L/D = 2, the corresponding results are summarised in figure 18, where
the eigenvalues (σr , σi) are plotted for Re = 500, |m| =1, and four different values
of Cb = (0, 0.04, 0.06, 0.08). Note from figure 18 that as Cb increases, the leading
eigenvalues σ s and σ o, corresponding respectively to the steady and oscillatory modes,
move towards the stable σr < 0 half-plane. Specifically, figure 18(a) shows that for
Cb = 0, the oscillatory mode is slightly damped, in agreement with the fact that
ReGLS

co = 518 in this case (see figure 8), and has an associated frequency σ o
i ≃ 0.65.

However, it is also observed in figure 18(a) that, since ReGLS
cs =327 (see figure 14), the

steady-state mode is unstable, σ s
r > 0 without base bleed. Figure 18(b–d ) reveals that

both growth rates σ s
r and σ o

r decrease as Cb increases and, in particular, figures 18(c)
and 18(d ) show that 0.06 <C∗

b1 < 0.08. More generally, for given values of L/D, Re

and Cb, the conditions σ s
r = 0 and σ o

r = 0 were used to determine the critical bleed
coefficients C∗

b1 and C∗
b2, respectively.

Figure 19 summarises the values of the critical base-bleed coefficients obtained
using local (crossed line) and global (solid and dashed lines) stability analyses, as
well as those computed by means of direct numerical simulations performed for
Re =(430, 450, 500, 600, 800) (circles and triangles) and, in the case of the steady
bifurcation, also Re = 1000 (circle). Similar to the case of Re3d

cs discussed above,
a perfect agreement is obtained between the direct numerical simulations and
global stability predictions for the curve C∗

b1(Re) (circles and solid line, respectively),
demonstrating the capability and accuracy of the global stability approach in this case.
The accurate determination of C∗

b1(Re) by the global stability analysis is of practical
interest because it allows us to quantify the upper bound for the bleed coefficient
required to inhibit not only the steady mode but also the periodic state, at least for the
parameter settings investigated here. Therefore, since the direct numerical simulations
are much more time-consuming than the global stability analysis, they were only used
to compute the C∗

b1(Re) neutral curve for values of the Reynolds number Re � 1000,
the remaining range 1000 � Re � 2000 being covered only by the results obtained
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Figure 18. Eigenvalue spectra for a body with aspect ratio L/D = 2, Re =500, |m| = 1 and
base bleed coefficients (a) Cb = 0, (b) Cb = 0.040, (c) Cb = 0.060 and (d ) Cb = 0.080, respectively.
The unstable eigenvalue corresponding to the steady bifurcation has been marked with a square.

through the global stability analysis. Note that the condition Cb >C∗
b1(Re) defines a

region of the (Re, Cb) parameter plane, referred to as region I in figure 19, within which
the wake subjected to base bleed is steady and axisymmetric. Figure 19 also shows
that the trend of the curve C∗

b1(Re) is consistent with the existence of an asymptote
at large Reynolds numbers, such that C∗

b1 → 0.125 for Re → ∞. However, this result
must be interpreted with care, since the instability of the shear layer separating from
the body base may induce the transition to turbulence in the wake for large enough
values of the Reynolds number (see for instance Prasad & Williamson 1997).

For values of Cb such that C∗
b2(Re) < Cb <C∗

b1(Re), defined as region II in figure 19,
the wake is steady and exhibits planar symmetry, having in this case a near field
similar to that shown in figure 16. However, when the bleed coefficient is decreased
below the critical value C∗

b2, i.e. for Cb <C∗
b2(Re), the oscillatory mode is destabilised,

corresponding to region III in figure 19. In this case, periodic vortex shedding of
vortex structures takes place, resembling the cases displayed in figures 6 and 7 for the
case without base bleed.

Furthermore, as revealed by figure 19, the critical values C∗
b2(Re) computed with the

local and global stability analyses, respectively shown as crossed and dashed lines, are
in good agreement for large enough values of the Reynolds number, Re � 1200. This
result can be explained by noting that the slenderness of the basic flow at criticality
increases with Cb, as already pointed out in Sevilla & Martı́nez-Bazán (2004), thereby
justifying the use of the quasi-parallel approximation. However, for Reynolds number
Re � 800, the global stability analysis predicts values of C∗

b2 considerably smaller
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Figure 19. Evolution of the critical base bleed coefficients with the Reynolds number for an
ellipsoidal rounded nose body of aspect ratio L/D = 2. The results of the local and global
linear stability analyses correspond to the most unstable azimuthal mode, |m| = 1. Solid and
dashed lines represent the critical bleed coefficients needed to stabilize the stationary, C∗

b1,
and oscillatory, C∗

b2, global modes, respectively, computed from the linear global analysis,
while the line with crosses displays the value of C∗

b2 resulting from the local analysis. Circles
(�) indicate the evolution of C∗

b1 with the Reynolds number obtained from the numerical
simulations following the methodology discussed in Appendix B, and � and � display the
upper and lower bounds on C∗

b2 determined by the simulations. The experimental values of
C∗

b2 are depicted by ∗.

than those obtained through experiments and direct numerical simulations, which
clearly cannot be used to obtain the critical bleed coefficient in that region. As the
Reynolds number decreases, the value of C∗

b2 given by the global analysis decreases for
Re � 800, until it becomes zero at Re = ReGLS

co ≃ 518. The quantitative disagreement
obtained between Re3d

co and ReGLS
co , respectively computed through direct numerical

simulations and global linear stability analysis, corresponds in figure 19 to the different
intersection points observed in both cases at Cb = 0. Accordingly, in the case with
base bleed, both approaches lead to different values of C∗

b2(Re), such that the lower
limit of the critical bleed coefficient predicted by the direct numerical simulation (up
triangles) are larger than those given by the global analysis (dashed line) for values
of the Reynolds number Re � 800, indicating that, at these Reynolds numbers, the
planar-symmetric wake is more unstable than the axisymmetric wake used as base
flow in the linear stability analysis. Nevertheless, note that the difference between the
values of C∗

b2(Re) obtained from the numerical simulations and the linear analysis
decreases as Re increases, with a fairly good agreement at Re = 800. Figure 19 also
indicates that, similar to the case of the critical bleed coefficient C∗

b1, the values of
C∗

b2 obtained from the local and global analyses tend to a common asymptotic value
such that C∗

b2 → 0.115, approximately, for Re → ∞ and in the particular case of a
body with L/D = 2. Unfortunately, due to computational limitations, we were not
able to perform accurate unsteady numerical simulations for Re > 800 with the aim
of obtaining the corresponding values of C∗

b2.
The experimental results for C∗

b2, plotted with asterisks in figure 19, are in
good agreement with the corresponding values given by the numerical simulations
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Figure 20. Power spectral density of the streamwise velocity component as a function of
St , measured experimentally for Cb = 0 at (a) Re = 446, (b) Re = 500, (c) Re = 590 and
(d ) Re = 802, illustrating the downstream dependence of the oscillatory mode amplitude.

(triangles). These experimental results were obtained taking into account the fact
that the maximum amplitude of the streamwise velocity fluctuations occurs at a
downstream position which depends on the value of Re. As an example, figure 20
shows the power spectral densities of the streamwise velocity as a function of St for
Cb =0 and Re =(446, 500, 590, 802), measured at r = 0 and three different downstream
positions z = (2, 3, 7) (dash-dotted, solid and dashed lines, respectively). As shown by
figure 20(a), for a value of Re = 446, close to criticality, the intensity of the oscillating
mode is very small at z = 2 (dash-dotted line), but increases downstream to reach
values which are similar at z = 3 and z = 7 (solid and dashed lines, respectively).
However, at a slightly larger value of Re = 500 figure 20(b) indicates that the
amplitude is maximum at z = 3 and that at z = 7 the energy around the peak
has decayed considerably. As the Reynolds number increases, the most intense
oscillations take place at decreasing values of z; thus, figures 20(c) and 20(d ) show
that the largest oscillation amplitudes are obtained at z = 2 both for Re = 590 and
Re = 802. It is worth mentioning that these experimental observations were consistent
with the numerical simulations, although the corresponding results are not shown
for conciseness. Moreover, the results of figure 20 clearly show how the dominant
Strouhal number increases with Re.

The procedure followed to obtain the experimental values of C∗
b2 shown in figure 19

can be summarised as follows. For a fixed value of Re, the hot-wire probe was
located at the downstream position of maximum oscillation amplitude in the absence
of base bleed, discussed in the previous paragraph, and the streamwise velocity signal
was then recorded for several values of Cb. As an example, figure 21(a) shows the
power spectral densities obtained at Re = 500 and Cb = (0, 0.018, 0.023, 0.026). In
this case, the measurements were performed at z = 3, following the maximum-energy
criterion introduced above. The spectra represented in figure 21(a) reveal the strong
stabilising effect of base bleed: a relatively small value of Cb = 0.018 provides a nearly
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Figure 21. (a) Evolution of the PSD of the streamwise velocity component with the bleed
coefficient obtained experimentally at z = 3 and Re =500. (b) Energy of the streamwise velocity
fluctuations w′2

fc
/w′2

fc(Cb =0) versus the bleed coefficient for different Reynolds numbers obtained
experimentally at the most energetic position.

fourfold decrease in the amplitude of the spectral peak with respect to the case
without base bleed, Cb = 0, without introducing significant changes in its width. This
stabilising effect persists for increasing values of Cb, as illustrated in figure 21(a) for
the particular cases of Cb =0.023 and 0.026. To quantify the stabilization process
associated with increasing Cb at a fixed value of Re, as well as to obtain the
corresponding critical values of C∗

b2(Re), we decided to follow a procedure similar to
that used by Schumm et al. (1994); the saturated oscillation amplitude, normalised
with the value without base bleed, w′2

fc
/w′2

fc(Cb =0), is plotted in figure 21(b) as a function
of Cb for several values of Re indicated in the legend. The results of figure 21(b),
which are qualitatively similar to those shown in figure 18(a) of Schumm et al. (1994)
for the wake of a two-dimensional blunt-based body, demonstrate the stabilising
effect of base bleed on a wide range of values of Re. Moreover, it can be observed in
figure 21(b) that the values of Cb needed to achieve a given value of the normalised
oscillation energy increase with Re. Unfortunately, the function w′2

fc
/w′2

fc(Cb =0)(Cb)
obtained from these experiments was not linear near criticality, as expected in the
case of a Hopf bifurcation in terms of Cb, but showed exponential-like behaviour.
Therefore, it seems that the result by Hannemann & Oertel (1989, figures 20 and 23)
does not apply at all Re (see below). This fact, which can also be inferred from the
results shown in figure 18(a) of Schumm et al. (1994), precluded us from performing
a linear regression in the neighbourhood of the bifurcation point to determine the
function C∗

b2(Re). Instead, the critical values C∗
b2 plotted in figure 19 were obtained

by applying an exponential fit to the tail of the w′2
fc

/w′2
fc(Cb = 0) (Cb) experimental curve,

as shown by dashed lines in figure 21(b). The value of C∗
b2 was then obtained by the

condition w′2
fc

/w′2
fc(Cb =0)(C

∗
b2) = ǫ ≪ 1. Although the value of the marginal amplitude

ǫ = 0.03 (3 %) was chosen arbitrarily, it can be seen in figure 21(b) that the value of
C∗

b2 is not very sensitive to its specific value, as illustrated by the solid horizontal lines
plotted in figure 21(b) for the particular cases ǫ = 0.02 (2 %) and ǫ = 0.03 (3 %).

It is noteworthy that the marginal curve C∗
b2(Re) has a structure similar to that

found by Schumm et al. (1994) in the case of a two-dimensional blunt-based geometry
(see their figure 18b), which allows us to question the assumption of a dual Hopf
bifurcation in terms of both Cb (with Re = constant) and Re (with Cb = constant). A
possible explanation can be given as follows. If, at constant Re, there was a Hopf
bifurcation in terms of Cb, one could state that w′2

fc
∝ (C∗

b2(Re) − Cb). Thus, a linear

dependence of w′2
fc

with Re should only be observed in a region where the neutral
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curve behaved as C∗
b2(Re) ∝ Re. However, figure 19 illustrates that C∗

b2(Re) is not
a linear function of Re, indicating that the second, oscillatory bifurcation might not
correspond to a supercritical Hopf bifurcation in terms of Cb when the Reynolds
number is kept constant.

4. Conclusions

Experiments, numerical simulations and linear stability analysis have been used to
perform a detailed study of the laminar wake behind a slender axisymmetric body
with a 2:1 ellipsoidal nose and a blunt trailing edge at zero angle of attack. Our
work focuses on the instabilities taking place in the flow for increasing values of the
Reynolds number up to Re = 2000, considering also the effect of the body length-to-
diameter ratio in the range 1 � L/D � 10. The injection of ambient fluid through the
body base, commonly referred to as base bleed, was also studied as a simple method
to inhibit the instabilities of the wake.

For increasing Reynolds numbers, both the three-dimensional numerical
simulations and the global stability analysis predict the existence of a first steady
axisymmetry-breaking bifurcation, as is known to happen in the case of other
axisymmetric bodies like spheres or disks. We show that this steady bifurcation
takes place at a critical value of the Reynolds number, Recs(L/D), which slightly
increases with the aspect ratio of the body. The values computed from the numerical
simulations and the stability analysis, Re3d

cs and ReGLS
cs , respectively, are in very

good quantitative agreement for the two particular cases considered in the numerical
simulations, namely L/D = 1 and 2. In the particular case of a body with L/D = 2, the
corresponding values are given by Re3d

cs ≃ 319 and ReGLS
cs ≃ 327. Similar to the cases of

the sphere and the disk, the structure of the steady wake prevailing for Re >Recs(L/D)
is planar-symmetric and features a double-threaded structure consisting of a pair of
counter-rotating streamwise vortices oriented at an angle with respect to the symmetry
axis of the body. A second oscillatory bifurcation has been shown to exist at a higher
value of the Reynolds number, Reco, whose values are given by Reexp

co , Re3d
co and

ReGLS
co according to experiments, numerical simulations and global stability analysis,

respectively, all of which increase with L/D. The numerical simulations revealed
that, as happens in the case of a sphere, the symmetry plane which appears in the
wake at Re = Recs , is preserved for Re >Reco, and is thus a symmetry-preserving
mode according to Fabre et al. (2008). Experiments and numerical simulations are
in good quantitative agreement in all the cases considered, Reexp

co ≃ Re3d
co , providing

further validation for the numerical code. In the case with L/D = 2, the critical
Reynolds numbers were found to be Reexp

co ≃ 412.4 and Re3d
co ≃ 413, while, for L/D =1,

Reexp
co ≃ 267.6 and Re3d

co ≃ 254. However, the global linear stability analysis predicts
an oscillatory bifurcation for a Reynolds number which is significantly higher than
that predicted by the experiments and the numerical simulations, giving for instance
ReGLS

co ≃ 518 for L/D = 2. The errors in the predictions made by the global stability
analysis for the critical Reynolds number associated with the oscillatory bifurcation
are due to the use of an axisymmetric basic flow for Reynolds numbers higher than
that corresponding to the first bifurcation. This error is substantially larger for the
bullet-like geometry considered in the present work than in the cases of a sphere
and a thin disk studied by Pier (2008) and Fabre et al. (2008). In the particular
case of the wake of a thin disk, a natural explanation for the relatively small error
in the value of Reco predicted by the global linear stability analysis applied to the
axisymmetric base flow is the fact that the relative gap in the critical Reynolds
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numbers, ∆GLS = (ReGLS
co − ReGLS

cs )/ReGLS
cs ≪ 1 (Fabre et al. 2008). However, since the

values of ∆GLS are similar in the cases of the sphere (Pier 2008) and the hemiellipse
considered in this work, this argument alone cannot explain the smaller relative error
obtained for the sphere. Therefore, we are led to the conclusion that, as suggested by
an anonymous referee, the saturated amplitude of the steady-state mode evaluated
at the critical Reynolds number corresponding to the onset of the oscillating mode,
Reco, must be smaller for the sphere than for the bullet-like geometry. However,
this hypothesis clearly deserves further study and is left for a future work. The
difference (ReGLS

co − Reexp
co ) has been found to increase with the aspect ratio of the

body, L/D. These results imply, in particular, that care must be taken when studying
the oscillatory regimes of afterbody wakes, specially for large aspect ratio geometries.
Even though the relative quantitative errors involved in using axisymmetric base states
in global stability analyses have been shown to be high in these cases, this approach
has been routinely used in recent works (see for instance Meliga et al. 2010a ,b). In
addition, the results reported in the present work may also serve as a benchmark for
more involved three-dimensional linear stability analyses (see for example Pier 2008;
Bagheri et al. 2009).

The three-dimensional numerical simulations performed in this work have revealed
the existence of remarkable differences between the wakes of slender blunt-based
bodies and other previously studied geometries such as the sphere, hemisphere or
disk. First, it is noteworthy that the symmetry plane which appears in the wake after
the first steady bifurcation is preserved for Reynolds numbers up to Re = 500, even
in the presence of strong nonlinear interactions of the shed vortical structures, and
subsequent harmonic generation. In contrast, although wakes of other objects like
spheres and disks also present an RSP regime, the corresponding range of Reynolds
numbers is much narrower. In addition, for Re � 500, we have found the existence
of a new regime in which the wake interacts with the boundary layer on the solid
body, inducing a periodic oscillation with a frequency of about one-quarter of the
leading one. Bouchet et al. (2006) also reported the existence of a Hopf bifurcation
accompanied by the onset of a second oscillation frequency on the wake of a sphere
at Re ∼ 325 and a similar regime, denoted ‘Honky-Tonky’ mode, has recently been
reported in the wake of a thick disk by Auguste et al. (2010) for Re � 217, where the
lowest frequency is given by approximately one-third of the leading one. However, in
the case of a thick disk, this flow regime, characterized by the presence of a secondary
low frequency while preserving the reflectional symmetry, appears after a sequence of
flow bifurcations not found in the configuration under study in this work.

Base bleed has been found to stabilize the wake in the range of Reynolds numbers
considered in this work. More specifically, the parameter plane (Re, Cb), spanned by
the Reynolds number and the bleed coefficient, defined here as the bleed to ambient
velocity ratio, can be divided into three different regions, as shown in figure 19 for
the particular case of a body with L/D = 2. In region I, where Cb >C∗

b1(Re), the wake
is steady and axisymmetric, and thus completely restabilised due to the effect of the
base bleed. In region II, defined by C∗

b2(Re) < Cb < C∗
b1(Re), the wake is steady and

planar-symmetric, with a structure similar to that found for Recs <Re < Reco in the
case without base bleed, Cb =0. Finally, in region III, in which Cb <C∗

b2(Re), periodic
shedding of vortices takes place due to the excitation of the oscillatory mode. The
global stability analysis predicts that the critical bleed coefficients tend to asymptotic
values C∗

b1 → 0.125 and C∗
b2 → 0.115 for Re � 2000, the latter also being in good

agreement with results obtained with a local stability analysis of the axisymmetric base
flow. The experiments performed in the case with base bleed showed good agreement
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Figure 22. Example of a generic computational cell.

with the results obtained from the numerical simulations, giving similar values of
C∗

b2(Re) in the range of Reynolds numbers considered, Re � 800. It should be noted
that the critical curve C∗

b1(Re), which can be precisely predicted by means of a global
stability analysis with an axisymmetric base flow, is enough to ensure a completely
re-stabilised wake for Cb >C∗

b1(Re) in the range of Reynolds numbers reported here.
Moreover, its computational cost is much smaller than the fully three-dimensional
numerical simulations that would be alternatively needed.

Let us finally emphasize that the shear layer separating from the body will induce
the transition to turbulence in the wake for sufficiently large values of the Reynolds
number, a regime which should be addressed in detail in a future work.
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Appendix A. Numerical methods

A.1. Numerical schemes implemented by OpenFOAMR©

OpenFOAMR© discretizes (2.1) and (2.2) using the finite volume method (see Ferziger
& Perić 2002). The starting point of the finite volume method is the mass and
momentum conservation equations in their integral form, which are readily obtained
after integrating (2.1) and (2.2) in a control volume (see figure 22, where the cell
volume is denoted by VP ). All these equations are said to be in strong conservation
form because all the terms are expressed in the form of the divergence of a vector or
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tensor. The use of the strong conservation form of the equations, together with the
finite volume method, automatically ensures global conservation. In fact, to preserve
this property in the numerical solution, a fixed direction coordinate system (i.e.
Cartesian components) was adopted in this work, although, for notational clarity and
for the sake of coherence with §§ A.2 and A.3, the results are presented in cylindrical
coordinates.

Furthermore, unknown dependent variables to be computed were stored at the cell
centroid xP , using thus the so-called collocated arrangement,

∫

VP
(x − xP ) dV = 0. The

main advantage of this approach is the reliability of handling complicated solution
domains, as the one considered here. However, to overcome the main disadvantage
of the collocated arrangement, that is, the occurrence of oscillations in the pressure
field, an oscillation-free pressure–velocity coupling method in line with Rhie & Chow
(1983) is adopted.

Figure 22 shows an example of the convex polyhedral cells supported by the solver,
whose boundaries are composed of a set of convex polygons, although in the present
work we use hexahedral cells. Each cell has a neighbouring cell across each of its
faces, of centroid denoted by N , and positional vector relative to xP for the face f

defined as df = xN − xP . Similarly, using the centroid rule, the face centre, xf , is given
by

∫

Sf
(x − xf ) dS =0. Next, the face area vector sf is a surface normal vector whose

magnitude is equal to the area of the face. The surface is numerically never flat, so
the face area is calculated from the integrals sf =

∫

Sf
n dS. In order to avoid non-

orthogonal corrections during each time step of the numerical simulation, which are
handled explicitly by OpenFOAM and increase proportionally the computational cost
(Jasak 1996), we employed hexahedral cells with a mesh non-orthogonality average
of, approximately, 4◦. Thus, the positional vector df is nearly parallel to the face area
vector sf , and non-orthogonal corrections do not improve the quality of the results.

The numerical discretization of differential operators was implemented up to
second-order accuracy in space and time. Second-order accuracy in space arises by
postulating a linear spatial variation of unknown quantities. We prevented spurious
numerical oscillations intrinsic to second-order methods by limiting the face flux
Ff ≃ uf · sf arising from the convective term in the momentum equation (2.2) with
a van Leer total variation diminishing scheme (see Jasak, Weller & Gosman 1999).
Besides, in the case of steady numerical simulations used in §§ A.2 and A.3 as
basic flow, for which the temporal variation in (2.2) vanishes, the set of discretized
equations (2.1)–(2.2) constitutes a saddle-point problem that was solved with SIMPLE
with under-relaxation (see Patankar & Spalding 1972; Benzi, Golub & Liesen 2005).
On the other hand, for unsteady numerical simulations, the second-order, two time-
level Crank–Nicholson scheme is blended with an Euler scheme in order to solve
the discretized momentum equation implicitly (separately and with nonlinear terms
lagged). Since we are interested in temporal accuracy, i.e. small time steps, the pressure-
implicit with splitting of operators (PISO) solver was adopted in this work (see Issa
1986; Ferziger & Perić 2002), and the lagged new time-level values were updated,
solving all the equations once per time step. This leads to a Courant–Friedrichs–Lewy
(CFL) stability condition and, therefore, the time step was calculated and adjusted
during the numerical simulation. The Courant number at the nth-time step, denoted
by tn, is defined as CFL = (|un

f · sf |)/(df · sf )	tn � 0.5. As an example, considering the

current mesh and setting a time step of 	t = 10−2 for a Reynolds number of 415, we
obtained a mean Courant number of approximately 0.1 and a maximum value of 0.5,
although for Reynolds numbers greater than 500 we limited the maximum Courant
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number to 0.2 in our simulations. Note that the time steps used are similar to those
employed in related works, where they were varied from 2.5 × 10−3 for a Reynolds
number of Re = 1000 (Tomboulides & Orszag 2000) to 5 × 10−2 for Re = 300 (Johnson
& Patel 1999). In doing so, the pressure–velocity coupling is much stronger than the
nonlinear coupling that arises from the nonlinear convection term. The latter result
was corroborated by increasing the number of outer loops in the PISO solver from 1
to 3 at several Reynolds numbers, showing nearly identical results.

A.2. Global stability analysis

In addition to three-dimensional numerical simulations of the wake, we also carried
out linear global and local stability analyses to describe the stability properties of
the flow. The basic axisymmetric steady flow, used for both local and global stability
analyses, was calculated using the finite-volume numerical code described in §§ 2.1
and A.1.

Starting with the incompressible unsteady equations (2.1) and (2.2), to perform the
global stability analysis, the flow was decomposed into a basic steady-state field, and
a perturbed field as

(u, p) = (U + u′, P + p′), (A 1)

where U = [U (r, z) er , 0 eθ , W (r, z) ez] and P (r, z) are the velocity and pressure fields
of the basic axisymmetric-steady flow, and u′ = (u′, v′, w′) and p′ represent the small
amplitude, unsteady velocity and pressure perturbation fields, respectively.

After substituting (A 1) into the incompressible Navier–Stokes equations and
withholding only the first-order terms, we obtain

∇ · u′ = 0, (A 2)

U · ∇u′ + u′
· ∇U + ∇p′ −

1

Re
∇2u′ = −

∂u′

∂t
. (A 3)

Equations (A 2) and (A 3) can be formally expressed as

Aq = ∂/∂t B q, (A 4)

where q =[u′, p′]T represents the total disturbance field, with A and B being
linear matrix operators. Assuming both time and azimuthal exponential dependences,
solutions for q of the form

q = [û(r, z), p̂(r, z)]Teσ t+imθ = q̂(r, z) eσ t+imθ (A 5)

can be sought, where the variables with a hat, û, p̂ and q̂, represent the eigenfunctions,
m is the azimuthal mode, and σ = σr + iσi with σr the growth rate of the global
mode and σi its angular frequency. Substituting (A 5) into (A 4) with the boundary
conditions:

0 < r < 0.5, z = 0 : û = v̂ = ŵ = 0, (A 6)

r = 0.5, −L/D + 1 � z � 0 : û = v̂ = ŵ = 0, (A 7)

0.5 < r � 10, z = −L/D + 1 : û = v̂ = ŵ = 0, (A 8)

r = 10, −L/D + 1 < z < 50 : û = v̂ = ∂ŵ/∂r = 0, (A 9)

0 < r � 10, z = 50 : p̂ = n · ∇û = 0, (A 10)

r = 0, 0 � z � 50 :

⎧

⎪

⎨

⎪

⎩

|m| = 1, û ± iv̂ = 2 ∂û/∂r ± i ∂v̂/∂r = ŵ = 0,

|m| = 0, û = v̂ = ∂ŵ/∂r = 0,

|m| > 1, û = v̂ = ŵ = 0,

(A 11)
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Figure 23. (a) Domain decomposition into 222 subdomains, where the thin solid lines
correspond to the subdomain boundaries. (b) Grid detail close to the body for 12 × 12
nodes distributed according to the Gauss–Lobatto–Chebyshev points in each subdomain for a
body of L/D =2.

yields a generalized eigenvalue problem, which after discretizing can be written as

Amq̂ = σBmq̂, (A 12)

where Am and Bm are matrices of order 4ng × 4ng , ng being the number of grid
points. Note that z = 0 corresponds to the body base, and z = − L/D + 1 in (A 7)–
(A 9) indicates the position upstream from the base where the nose of the body
ends (see figure 23). As discretization technique we used the Chebyshev collocation–
decomposition method that, basically, consists of dividing the computational domain
into a block-structured grid with fictitious overlapping interfaces. More details about
the numerical scheme can be found in Sanmiguel-Rojas et al. (2009), where it has
recently been shown that a mesh of 222 subdomains (see figure 23) and 12 × 12 nodes
distributed according to the Gauss–Lobatto–Chebyshev points in each subdomain,
which represents a total number of spectral nodes of ng =27 259, is enough to obtain
a good convergence of the eigenvalues for a length of 50 behind the base of the body.

A.3. Local linear stability analysis

The local stability analysis of the wake presented in this section follows the same
lines as that performed in Sevilla & Martı́nez-Bazán (2004). It is based on the
assumption that the stability of the actual non-parallel basic flow is governed, at
leading order, by the stability problem associated with the fictitious parallel flow
obtained by extending the local basic-flow axial velocity profile to plus and minus
streamwise infinity. However, in contrast with the inviscid analysis performed in
Sevilla & Martı́nez-Bazán (2004), here viscous terms have been retained in the stability
equations due to the smaller values of the Reynolds number analysed in this work. The
local eigenvalue problem is obtained by linearizing the incompressible Navier–Stokes



30 P. Bohorquez and others

equations around the basic parallel flow W (r)ez, and searching for modal solutions of
the form [iû(r), v̂(r), ŵ(r), p̂(r)] exp [σlt + i(kz + mθ)] for the linearized velocity and
pressure fields, where k = kr + i ki stands for the axial wavenumber, m denotes the
azimuthal number and σl = σlr + i σli is the local angular frequency, respectively, and
(û, v̂, ŵ, p̂) are the radial eigenfunctions representing the complex amplitudes of the
corresponding linearized fields. The linear system for the normal modes is

d(rû)

dr
+ mv̂ + krŵ = 0, (A 13)

(iσl − kW ) û +
dp̂

dr
−

i

Re

[

d2û

dr2
+

1

r

dû

dr
−

(

k2 +
m2 + 1

r2

)

û −
2m

r2
v̂

]

= 0, (A 14)

(iσl − kW ) v̂ −
m

r
p̂ −

i

Re

[

d2v̂

dr2
+

1

r

dv̂

dr
−

(

k2 +
m2 + 1

r2

)

v̂ −
2m

r2
û

]

= 0, (A 15)

(iσl − kW ) ŵ −
∂W

∂r
û − kp̂ −

i

Re

[

d2ŵ

dr2
+

1

r

dŵ

dr
−

(

k2 +
m2

r2

)

ŵ

]

= 0. (A 16)

Equations (A 13)–(A 16) are supplemented with the boundary conditions

r → ∞ : û = v̂ = ŵ = p̂ = 0, (A 17)

r = 0 :

⎧

⎪

⎨

⎪

⎩

|m| = 0, û = v̂ = ∂ŵ/∂r = 0,

|m| = 1, û ± v̂ = 2 ∂û/∂r ± ∂v̂/∂r = ŵ = 0,

|m| > 1, û = v̂ = ŵ = 0.

(A 18)

A Chebyshev collocation technique was used to solve the eigenvalue problem
(A 13)–(A 18), together with the coordinate transformation used by Lesshafft & Huerre
(2007), r = rc (1 − ξ )/(1 − ξ 2 + 2rc/rmax), where rc is a scale factor, which maps the
canonical interval ξ ∈ (−1, 1) onto the radial interval r ∈ (0, rmax). Thus, derivatives
were computed in physical space by means of the chain rule d/dr =dξ/dr d/dξ , where
d/dξ represents the standard Chebyshev differentiation matrix. Note that, although
the far-field boundary conditions (A 17) were imposed at a finite value of the radial
coordinate, rmax , it was carefully checked that rmax was large enough so that the
resulting eigenvalues corresponded to their asymptotic limits as rmax → ∞. Typically,
we used nl = 200 collocation points and a value of rmax = 200. In this work, as in
Sevilla & Martı́nez-Bazán (2004), we were mainly interested in studying the convective
or absolute character of the local instability as a function of the streamwise position
z. To that end, we employed the iterative technique introduced by Monkewitz & Sohn
(1988) for finding saddle points of the dispersion relation, i.e. eigenvalues (σ (0)

l , k(0))
satisfying (A 13)–(A 18) together with the zero group velocity condition dσl/dk =0.
Although the details are in Monkewitz & Sohn (1988), we point out here that the
iterative procedure reconstructs the local form of the dispersion relation around a
saddle point, k± − k(0) = ±a (σl − σ

(0)
l )1/2 + b (σl − σ

(0)
l ), through the computation of

the four complex constants (k(0), σ
(0)
l , a, b). In this equation, the plus and minus signs

correspond to the pair of spatial branches which interact at the saddle point (σ (0)
l , k(0)).

The four equations needed to determine the constants are obtained by computing k±

for two different values of σl close to the branch point σ
(0)
l . Thus, at each iteration level,

the spatial eigenvalue problem k = k(σl) is solved four times. This was accomplished
here thanks to the use of the companion matrix method, which allowed us to find k

by means of the 7nl × 7nl matrix eigenvalue problem Alq l = k Bl q l , where the vector
q l = (û, v̂, ŵ, p̂, kû, kv̂, kŵ)T, and the matrices Al and Bl were obtained through the
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Figure 24. (a) Isolines of the vorticity magnitude at z = 2 for a body of L/D = 1 at Re = 220
showing the centroid eccentricity, and (b) squared centroid eccentricity versus the Reynolds
number at z = 2 (circles), together with a linear fit (solid line), illustrating the method used to
determine Re3d

cs . The dashed line in (a) represents the body base.

spectral collocation method described above. The local instability at a given station
z is convective if the absolute growth rate, given by the real part of σ

(0)
l , is negative,

σ
(0)
lr < 0, while it is absolute if σ

(0)
lr > 0, and the flow is expected to be globally stable

if it is convectively unstable everywhere, σ
(0)
lr (z) < 0 ∀ z.

Appendix B. Methods used to determine Re3d
cs , Re3d

co and C∗
b1

This appendix provides additional information about the different methods used to
determine the critical Reynolds numbers for the steady and the oscillatory bifurcations
from the direct numerical simulations, denoted Re3d

cs and Re3d
co respectively.

In order to calculate the critical Reynolds number corresponding to the first steady
bifurcation from the direct numerical simulations, Re3d

cs , we followed Mullin et al.
(2009) and made use of the linear dependence of the squared eccentricity of the
vorticity contours, denoted by r2

cent , on Re − Re3d
cs . Thus, we plotted the evolution of

r2
cent with the Reynolds number obtained at a fixed position to determine Re3d

cs by
linear regression. An example of the procedure is shown in figure 24, where figure
24(a) clearly shows that the vorticity magnitude exhibits an eccentricity for a flow
with Re = 220 past a body with length-to-diameter ratio L/D =1 in this particular
case. Furthermore, figure 24(b) confirms that the squared eccentricity varies linearly
with Re − Re3d

cs and provides a critical value of Re3d
cs ≃ 215. Similarly, for a body of

the length-to-diameter ratio L/D = 2, we obtained Re3d
cs ≃ 319.

To determine the critical value Re3d
co for the onset of vortex shedding from the

numerical simulations reported in § 2.1, we used two different techniques. As stated
in the previous section, at Re = 415 we observed the periodic shedding of vortices
for a body with length-to-diameter ratio L/D =2. Thus, we used this perturbed flow
as initial condition for a numerical simulation with a Reynolds number decreased
down to Re =410, which is stable because the streamwise perturbation velocity is
attenuated until it ultimately vanishes (see figure 25a). Finally, the ensuing decay rate
is determined by fitting the disturbance amplitude to an exponential function of time
(see figure 25b), which provides a decay rate of −0.004835. Similarly, we ran a new
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Figure 25. Determination of the growth/decay rate (close to criticality) from the direct
numerical simulation of the temporal evolution of small disturbances in the streamwise velocity
for a body of L/D = 2. Plots (a) and (c) show the transient behaviour of the streamwise velocity
fluctuations, w(t) − 〈w(t)〉, at z = 7 at Reynolds numbers Re = 410 and Re = 414, respectively,
and (b) and (d ) display the corresponding exponential fit of the disturbance amplitude as a
function of time t .

simulation at Re = 414 using the solution for Re = 410 at t =1300 as initial condition,
which still contains an infinitesimal disturbance, and observed the growth of the
oscillatory mode, as shown in figure 25(c). In this case, the ensuing amplification factor
is 0.002541 (see figure 25d ). Subsequently, we determined that the instability threshold
was Re3d

co =412.62 by linear interpolation of the amplification factors (Ghidersa &
Dušek 2000) given at Re = 410 and 414. Following the same procedure, we obtained
Re3d

co = 254.37 for a body of the length-to-diameter ratio L/D =1, which is slightly
lower than the critical value corresponding to the sphere (Reexp

co ≈ 270 given by
Goldburg & Florsheim 1966) and greater than the values obtained for other blunt-
based bodies of revolution like a hemisphere (Re3d

co ≈ 210–220 given by Kim & Choi
2003) and cones where Reexp

co varies from 155 to 170, depending on the cone angle
(Goldburg & Florsheim 1966; Yaginuma & Itō 2008). Note that the relative difference
between the critical values of the Reynolds number associated with the steady state,
Re3d

cs , and reflectional symmetry-preserving, Re3d
co , modes, ∆3d = (R3d

co − Re3d
cs )/Re3d

cs ,
does not decrease substantially for the shortest body, since the physical values of ∆3d

vary from 0.29 for L/D = 2 to 0.18 for L/D = 1.
With the aim of determining the uncertainty associated with the different methods

used to calculate the value of Re3d
co in the numerical simulations and in the experiments,

we have also followed the Stuart–Landau procedure in the case of a body with length-
to-diameter ratio of L/D =2. Figure 13(b) readily shows that the squared amplitude of
the tangential velocity decreases linearly as the Reynolds number decreases, providing
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Figure 26. Determination of the critical base bleed coefficient C∗
b1 by interpolation of the

centroid eccentricity rcent as a function of Cb for Re = 450 and a body of L/D = 2 at different
downstream positions.

a critical Reynolds number of Re3d
co ≃ 413.17, which is nearly identical to the value of

Re3d
co = 412.62 given by the procedure described above. Thus, we adopted Re3d

co ≃ 413
as the critical value.

Finally, to obtain the critical value of the base bleed coefficient C∗
b1, which re-

stabilizes the steady bifurcation, we followed an approach similar to that employed
to determine Re3d

cs . In this case, we took advantage of the fact that the centroid

eccentricity rcent depends linearly on (C∗
b1 − Cb)

2/3, as depicted in figure 26, where r
3/2
cent

is plotted as a function of Cb for several values of the downstream position z in the
particular case of L/D = 2 and Re = 450. In this case, a linear fit provides the value
C∗

b1 = 0.0613. The application of a similar procedure to other values of Re provided
the values of C∗

b1, as shown by circles in figure 19.
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Ormiéres, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev.
Lett. 83 (1), 80–83.

Patankar, S. V. & Spalding, D. B. 1972 A calculation procedure for heat, mass and momentum
transfer in three-dimensional parabolic flows. Intl J. Heat Mass Transfer 15 (10), 1787–1806.

Pier, B. 2008 Local and global instabilities in the wake of a sphere. J. Fluid Mech. 603, 39–61.

Pier, B., Huerre, P., Chomaz, J.-M. & Couairon, A. 1998 Steep nonlinear global modes in spatially
developing media. Phys. Fluids 10 (10), 2433–2435.



Stability and dynamics of the laminar wake 35

Prasad, A. & Williamson, C. 1997 The instability of the shear layer separating from a bluff body.
J. Fluid Mech. 333, 375–402.

Rhie, C. M. & Chow, W. L. 1983 Numerical study of the turbulent flow past an airfoil with trailing
edge separation. AIAA J. 21 (11), 1525–1532.

Sakamoto, H. & Haniu, H. 1990 A study of vortex shedding from spheres in a uniform flow.
J. Fluid Struct. 112, 386–392.

Sanmiguel-Rojas, E., Sevilla, A., Martı́nez-Bazán, C. & Chomaz, J.-M. 2009 Global mode
analysis of axisymmetric bluff-body wakes: stabilization by base bleed. Phys. Fluids 21,
114102.

Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid
Mech. 656, 5–28.

Schouveiler, L. & Provansal, M. 2002 Self-sustained oscillations in the wake of a sphere. Phys.
Fluids 14 (11), 3846–3854.

Schumm, M., Berger, E. & Monkewitz, P. A. 1994 Self-excited oscillations in the wake of
two-dimensional bluff bodies and their control. J. Fluid Mech. 271, 17–53.

Schwarz, V. & Bestek, H. 1994 Numerical simulation of nonlinear waves in the wake of an
axisymmetric bluff body. In 25th AIAA Fluid Dynamics Conference. AIAA Paper 94-2285.

Sevilla, A. & Martı́nez-Bazán, C. 2004 Vortex shedding in high Reynolds number axisymmetric
bluff-body wakes: Local linear instability and global bleed control. Phys. Fluids 16, 3460–3469.

Sevilla, A. & Martı́nez-Bazán, C. 2006 A note on the stabilization of bluff-body wakes by low
density base bleed. Phys. Fluids 18, 098102.

Shenoy, A. R. & Kleinstreuer, C. 2008 Flow over a thin circular disk at low to moderate Reynolds
numbers. J. Fluid Mech. 605, 253–262.

Stewart, B. E., Thompson, M. C., Leweke, T. & Hourigan, K. 2010 Numerical and experimental
studies of the rolling sphere wake. J. Fluid Mech. 643, 137–162.

Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers.
J. Phys. Soc. Japan 11, 1104–1108.

Taneda, S. 1978 Visual observations of the flow past a sphere at Reynolds numbers between 104

and 106. J. Fluid Mech. 85 (1), 187–192.
Thompson, M. C., Leweke, T. & Provansal, M. 2001 Kinematics and dynamics of sphere wake

transition. J. Fluids Struct. 15, 575–585.
Tomboulides, A. G. & Orszag, S. A. 2000 Numerical investigation of transitional and weak

turbulent flow past a sphere. J. Fluid Mech. 416, 45–73.
Williamson, C. H. K. 1996 Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28,

477–539.
Wood, C. J. 1964 The effect of base bleed on a periodic wake. J. R. Aeronaut. Soc. 68, 477–482.
Wood, C. J. 1967 Visualization of an incompressible wake with base bleed. J. Fluid Mech. 29,

259–272.
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