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Résumé. 2014 Nous analysons le seuil de convection d’une instabilité en rouleaux à l’aide d’une équation modèle.
L’accroissement de la longueur d’onde est la conséquence d’un principe variationnel, Pour certaines longueurs
d’onde, la diffusion de phase est instable vis-à-vis d’une compression (ou d’une dilatation) ou d’une torsion du
système de rouleaux. Les fluctuations thermiques créent un mouvement brownien de translation de la structure
qui pourrait être observable dans de bonnes conditions expérimentales, comme celle de l’instabilité de Rayleigh-
Bénard dans l’hélium liquide ou Carr-Helfrich dans un cristal liquide nématique.

Abstract. 2014 Using a model equation we analyze the onset of convection for a roll instability. The wavelength
increase follows from a variational approach. For certain wavelengths, phase diffusion turns out to be unstable
against compression (or dilatation) and torsion of the rolls. Thermal phase fluctuations induce a tiny brownian
motion of the structure which should be observable in carefully designed experiments such as Rayleigh-Bénard
in liquid helium or Carr-Helfrich in nematic liquid crystals.
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There are numerous examples of periodic spatial
structures which occur in a system through a super-
critical bifurcation and the Rayleigh-Benard (R. B.)
thermoconvective instability [1] is perhaps the most
famous one. In this paper we discuss some pro-
perties of the non-linear regime close to the insta-
bility threshold. For convenience we use the ter-

minology of thermoconvective instabilities but our
discussion has a more general character. We use a
description of the bifurcation from the conductive
state to the convective state in terms of a simple but
plausible model equation which allows for a two-
dimensional spatial dependence of the structure

which we think to be more universal than the depen-
dence on the third dimension closely connected
to the details of the hydrodynamic problem. It will
be shown that :

i) our model describes at least qualitatively the
wavelength increase of the periodic structure in the
vicinity of the instability threshold [2].

ii) For a system of parallel rolls, the dynamics
of the phase variable - which describes ~ a local
translation of the rolls - is governed by two diffusion
coefficients Djj II and D 1. which depend on the wave-

vector of the underlying structure and on the distance
to the threshold. Equations D II = 0 and D 1. = 0
give the marginal stability condition for that structure
against the two seemingly possible types of pertur-
bation close to the threshold.

iii) Due to thermal noise [3] the phase fluctuates,
which leads to a translational brownian motion of
the structure. The corresponding diffusion coeffi-
cient will be evaluated and observational possibilities
will be discussed.

1. The model equation and its stationary solution. -
The dynamics of a supercritical stationary bifur-
cation obey the Landau type equation [4] :

where s depends on the constraint applied to the

system (the vertical temperature gradient in the
R.B. case) and measures the distance to the threshold
(negative below and positive above). A is the amplitude
of the convective state, the unstable Fourier compo-
nent of the hydrodynamic velocity in the R.B. case.
Owing to the symmetry (A ) -+ (- A ) no term in
A 2 is present in eq. (1).
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To describe the spatial structure of the unstable
mode, one must turn to an equation more compli-
cated than (1) but still simpler than the full set of
hydrodynamic equations. As indicated above, the

single quantity A now depends on two spatial coordi-
nates. The required equation has to display trans-
lational and rotational invariance and must lead to a
convective solution with a well defined wave-vector qo
at threshold. In dimensionless notations the simplest
candidate reads [5]

where L1 = a~ + ay [6]. *
Eq. (2) defines a functional gradient flow. Indeed

it may be written as 3~ = - bV[A ]/bA where the
potential V reads :

When e is positive, the null solution is linearly unstable
against a certain class of perturbations. Close to
the threshold, these unstable perturbations have a
wave-vector q = qo + b with 16 1  611(s) and

The unidimensional stationary periodic solution is

expanded as

where

and

Minimization of V[A] ] with respect to q leads to :

i.e. to a slight increase of the wavelength. This is
the result of the contribution to V[A] of the har-
monics generated by the non-linearities. In V[A],
the term (åA)2 encourages small wave-vectors while
- (VA )2 favours large ones, but the contribution
of harmonics increases the weight of the first term
(- q4) more rapidly than the second one (- q2)
so that the optimum is found at q  qo.

This optimum cannot be reached through insta-
bilities of a periodic infinite pattern with an imposed
wave-number since as small as 6 be, one cannot
go from sin (kx) to sin ((k + 6) x) by infinitesimal
local (i.e. in x) changes. The wavelength adjustment
is supported by numerical simulation on eq. (2) in

finite geometry and turns out to be in qualitative
agreement with experimental observations [2]. It is
made possible (both in computer experiments and in
reality) by the disappearance of rolls near the boun-
daries (or at the center in cylindrical geometry).
It is possible that for very peculiar choice of initial
conditions the absolute minimum of V compatible
with the boundary conditions is not reached. However
in a large (1-dimensional) box, the optimization of
V[A ] is governed by the bulk contribution, pro-
portional to the size of the system, so that the wave-
length is determined by the optimum of V[A] as
computed for an infinite pattern, neglecting the boun-
dary layer contribution.

2. Phase diffusion process. - Owing to translational
invariance, if Ao(x) is a solution, then another solu-
tion is Ao(x + p) where p is an arbitrary constant
phase. If p is slowly varying in space and time,
Ao [x + p(x, y, t)] is close to being a solution.

Assuming 9 to be small one looks for the solution
of eq. (2) under the form :

where the expansion parameter is V and A1 ~ ~(V~),
A 2 ~ 0 (VV~o), etc... If one looks at a stationary
solution in this form, one solves at each order

equations of the general form:

where Ao = e - (A + q 2)2 - 3 ~ bn is known and
An unknown. Considering vnp as x-independent,
since it varies slowly on the length scale qo , one can
look for An(x) under the form

which leads to

This equation has no solution in general, since 0
is an eigenvalue of Ao with the eigenfunction 0,,Ao,
as it can be checked by derivation with respect to x
of eq. (2) (with a, =- 0).
However (6) has a solution (up to arbitrary addition

of a function proportional ~4o’ that amounts to
the arbitrary phase choice for A o) if b(x) has no compo-
nent in the kernel of Ao. If this is the case, one says
that the solvability condition of (6) is fulfilled. If,
on the contrary this solvability condition is not

fulfilled, one uses the apparent freedom in the choice
of the time derivative 9 to satisfy the solubility
condition. This derivation of an equation of motion
for the slow mode parallels the Chapman-Enskog
theory of transport phenomena in gases [7]. The
underlying conserved quantity here is the number
of rolls. This helps to understand that the existence
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of a slow diffusive motion is a very general feature
of dissipative structure with an arbitrary phase
choice, and is, of course not limited to this model
problem. At order zero in V, the linearized equation
for ~p merely expresses the marginal stability of the
structure against an uniform infinitesimal translation.
It reads ~p~lo ~~4~ = 0. At first order in V, with
,41 1 = a 1 (x) ~px one gets :

The solubility condition for this equation is fulfilled
since the r.h.s. is orthogonal (in the sense of the
scalar product

where ~ is the common period of f and g ) to the
kernel 0~4o of the self-adjoint operator Ao. The
second order problem looks similar eq. (7) but the
solubility condition is no longer trivially fulfilled.
It may be written as diffusion equations for ~p [8] :

with

and

Close to the threshold, using expansion (4) for A 0
the diffusion coefficients read [9] :

A negative diffusion coefficient is associated with
an instability of the roll structure [10]. In the plane
(e, 5) the curve D ~~ = 0 delineates the region where
the convective state is unstable against a longitudinal
compression of the structure. As already found by
Eckhaus [11] this occurs when q lies in one of the two
ranges

The rolls are also unstable against torsion when

D1  0, that is to say when q  qo + 6_L(s), where
bl(E) is given by eq. (5). This may lead to an expla-
nation for the low frequency turbulence observed
by Ahlers and Behringer [12] close to the onset of
convection in wide cells. Of course, the gradient flow
defined by eq. (2) cannot lead to a permanent unsteady
state since in a finite box V[A ] reaches asymptotically
in time its lower bound which corresponds to a

stationary solution, however this steady state is

marginally unstable against torsion [q being given by
(5) implies D 1. = 0]. But eq. (2) describes the actual
situation only imperfectly. In the R.B. case other
non-linear terms such as (VA )2 A are expected on
the r.h.s. of (2), destroying the gradient flow property.
Numerical experiments with this term added show
that the wave-length increase still remains and we

conjecture that this brings the structure into an

unstable state with D 1.  0 which behaves in an
erratic way instead of having a well defined structure
as it would be the case if there were still a Liapounov
functional.

3. Thermal phase fluctuations. - In the steady
state, thermal fluctuations are described by the pro-
bability density functional

where the thermodynamic potential [3a] ctY[A] ] is the

product of our dimensionless potential ~[~1 given
by (4) times a typical energy 8 (per unit surface)
stored in the structure. kB T is the thermal energy at
temperature T. In all realistic cases kB T is so small
that fluctuation effects seem difficult to observe.
However the case of phase fluctuations seems more
favourable than that of amplitude fluctuations. To
estimate this effect we need the potential variation
b2 V[~p] for a phase fluctuation of the system of

parallel rolls :

[From this, one gets back eq. (8) using the gradient
flow property.] The probability distribution for a
Fourier component of a longitudinal phase fluctua-

tion reads ~’(~pq) oc exp f - ~pq 12 /2  I ~pq I2 ~ } where,
from the Equipartition theorem :

E = ~Lx Ly is the total convective energy far from
the threshold (typically G = 1), Lx, Ly being the
horizontal dimensions of the convective layer. From

expansion 4 for Ao one gets: a , a A - 2 2 8,.expansion (4) fbr~4o one gets : (3~4o? x o) = R’o .
so that ~ I ~pq 12 ~ diverges as E-1. The dynamics
of the fluctuation ~pq obey the Langevin equation

where ~) is a gaussian white noise such that

~ fq(t) ) = 0 and ( fq(t) f_q(t’) ) = F~ b(t’ - t). From
the Fluctuation-Dissipation theorem Fq is equal to

2 q DII jj ( ~p~ 12 ) = 3 ka T/Eqo E = F, independent
of q. The (q = 0) - Fourier component just defines
the position X of the roll system taken as a whole.
Due to phase fluctuations, X exhibits a brownian
motion ; from a straightforward integration of (10)
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with q = 0 one gets :  (X(t) - X(o))2 ~ = 2 Dt with
D = F/2. As this effect is connected with transla-

tional invariance, one has to consider a geometry
where the position of the rolls is not controlled by
the lateral boundaries parallel to the roll axis (y-
direction). This is the case of the Stork and Muller

experiment [13] : a horizontal annular cell of height d,
mean perimeter Lx and width Ly where the roll pattern
assumes a radial disposition [In order that the com-
pression-type movement be the only possible the

ratio of the length of the roll to their diameter ( ~ Ly/d)
should be small enough]. Let

be the mean displacement (in units of the roll diameter)
one gets :

where to is a characteristic time relevant to the

problem. For R.B. instability in liquid helium in
the conditions of ref. [12] at T ~ 5 K with d ~ 0.2 mm,
Z.y ~ 5 ~ L~ 1 cm, for X = 0.1 and 8 = 10-2
one gets tB = 6 x 104 s. For the Carr-Helfrich insta-
bility in nematics [14], orientational elasticity plays
the dominant role ; 8 ~ Kjd is the Frank elastic

energy per unit surface and to = yd 2/K is the orienta-
tional relaxation time. Assuming d ~ 10 gm,
Ly ~ 1 mm, Lx ~ 1 cm and T ~ 300 K leads to

tB = 8 x 104 s for X = 0.1 and 8 = 10- 2.
Repeating the argument at a more qualitative level

for a small portion of the structure (of lengthy a few
roll diameters) one gets a much smaller brownian
diffusion time tB ~ ~ now the whole structure

rearranges itself in a time tR ~ L x 2 and a brownian
local disturbance can be observed if the cell is long
enough so that tR &#x3E;&#x3E; tB(11,,,). Experiments could be
performed in helium using local probes [15] or in
nematics by direct microscopic observation.

References

[1] NORMAND, C., POMEAU, Y., VELARDE, M., Rev. Mod. Phys.
49 (1977) 581.

[2] KOSCHMIEDER, E. L., PALLAS, S. G., Int. J. Heat Mass Transfer
17 (1974) 991 ;

BERGÉ, P., DUBOIS, M., Phys. Rev. Lett. 32 (1974).
[3a] GRAHAM, R., in Fluctuations Instabilities and Phase Transi-

tions (T. Riste ed.). NATO Adv. Study Inst. Vol. Bll
(Plenum Press, New York) 1975.

[3b] ZAITSEV, V. M., SHLIOMIS, M. I., Sov. Phys. J.E.T.P. 32
(1971) 866.

[4] LANDAU, L. D., Dokl. Akad. Nauk. SSSR 44 (1944) 339.
[5] SWIFT, J., HOHENBERG, P. C., Phys. Rev. A 15 (1977) 319.

Strictly speaking, the linear part of the r.h.s. of (2) has been
derived for perturbations with wavenumber q ~ q0 only.
However we assume that it describes also the linear

damping of fluctuations with any wavenumber. This
could be relaxed by replacing this linear operator by a
more general symmetric integral kernel of the form

~dx’ dy’ K(| r - r’|) A(r’), r = (x, y). This does not

change at all one of our main results : the preferred wave-
number is on the curve D~(03B5, q) = 0. This last result
remains valid too if the non linear term on the r.h.s. of (2)

is, instead of A 3, of the general form dU(A)/dA, where U is
an even function such that U(A) ~ A4/4 + 0(A6) and

d2U(A)/dA2 &#x3E; 0. Moreover the wavelength increases with 03B5

whatever the linear term in (2) is, provided that the linear
damping rate increases with the wavenumber for q &#x3E; q0,
which is realized by most realistic systems.

[6] With boundary conditions A = VA = 0 one recovers from (2)
a boundary layer of thickness of order 03B5-1/2 perpendicular
to the roll axis and 03B5-1/4 parallel to this axis, near 03B5 = 0+
(BROWN, S. N. and STERWARDSON, K., Studies in Appl.
Math. 57 (1977) 187; SEGEL, L. A., J. Fluid Mech. 38

(1969) 203).
[7] A good account of the Chapman-Enskog theory is in Chap. 13

of Equilibrium Statistical Mechanics by BALESCU, R.

(Wiley Pub., New York) 1975.
[8] This slow diffusion of roll systems has been analyzed near

the threshold in NEWELL, A. C. and WHITEHEAD, J. A.,
J. Fluid Mech. 38 (1969) 279.

[9] Using results of WESFREID et al. (J. Physique (Paris) 39 (1978)
725) one can derive the physical expressions of the so
far dimensionless results for the R.B. case with the rea-
listic rigid-rigid boundaries. One gets

D~ = Q~(03B5-1203B42/q20)/(03B5-403B42/q20),
D~ = Q~ {03B4 q0 + [03B5 - 4(03B42/q20)]2 1 024}

where ~ is the thermometric diffusivity,

Q = 5.69 P/(1 + 1.95 P) ,

P the Prandtl number ; the critical wave vector q0 is the
3.117 d-1, d being the thickness of the layer and

03B5 = 2.782 03B5 = 2.782(R - Rc)/Rc .

[10] Other kinds of instabilities exist within our formulation. For
example the oblique-roll instability (of which the cross-roll
instability is particular case) is found when considering
perturbations with a wave vector q0 + 03B4 making a finite
angle with the wave vector q0 + 03B40 of the underlying
convective structure. In our case the corresponding
stability region is defined by 03B5 ~ 8 q20 03B420 so that this

oblique-roll instability is less dangerous than the Eckhaus
instability (E.I.). However contrary to the case of the E.I.
the boundary of the cross-roll instability is not universal
since it is a function of the Prandtl number, of the type of

boundary conditions and depends also on the details
of the angular dependence of the interaction between

different wave-vectors, all things which are clearly not
contained in our simplified description.

[11] ECKHAUS, W., Studies in Non-Linear Stability Theory (Springer-
Verlag, New York) 1965. 

[12] AHLERS, G., BEHRINGER, R. P., Phys. Rev. Lett. 40 (1978)
712.

[13] STORK, K., MULLER, V., J. Fluid Mech. 71 (1975) 231.
[14] GOOSSENS, W. J. A., in Adv. Liq. Cryst. Vol. 3, Brown ed.

(Academic Press, New York) 1978.
[15] LIBCHABER, A., MAURER, J., J. Physique Lett. 39 (1978) L-369.


