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Abstract. The problem of ranking, in which the goal is to learn a real-valued
ranking function that induces a ranking or ordering over an instance space, has
recently gained attention in machine learning. We study generalization properties
of ranking algorithms, in a particular setting of the ranking problem known as the
bipartite ranking problem, using the notion of algorithmic stability. In particular,
we derive generalization bounds for bipartite ranking algorithms that have good
stability properties. We show that kernel-based ranking algorithms that perform
regularization in a reproducing kernel Hilbert space have such stability properties,
and therefore our bounds can be applied to these algorithms; this is in contrast
with previous generalization bounds for ranking, which are based on uniform
convergence and in many cases cannot be applied to these algorithms. A com-
parison of the bounds we obtain with corresponding bounds for classification
algorithms yields some interesting insights into the difference in generalization
behaviour between ranking and classification.

1 Introduction

A central focus in learning theory research has been the study of generalization prop-
erties of learning algorithms. Perhaps the first work in this direction was that of Vapnik
and Chervonenkis [1], who derived generalization bounds for classification algorithms
based on uniform convergence. Since then, a large number of different tools have been
developed for studying generalization, and have been applied successfully to analyze
algorithms for both classification (learning of binary-valued functions) and regression
(learning of real-valued functions), two of the most well-studied problems in machine
learning. Recently, a new learning problem, namely that ofranking, has gained atten-
tion in the machine learning community [2–5]. In ranking, one learns a real-valued
function that assigns scores to instances, but the scores themselves do not matter; in-
stead, what is important is the relative ranking of instances induced by those scores.
This problem is distinct from both classification and regression, and it is natural to ask
what kinds of generalization properties hold for algorithms for this problem, and in
particular, whether tools that have been applied to study generalization properties of
classification and regression algorithms can be adapted to study generalization proper-
ties of ranking algorithms. It has been shown recently that generalization bounds based



on uniform convergence can be obtained for ranking algorithms in a particular setting of
the ranking problem known as thebipartiteranking problem [5, 6]. In this paper, we ask
whether such a result can be obtained using the notion of algorithmic stability, which
has recently been used to derive generalization bounds for classification and regression
algorithms, and which offers a different viewpoint than uniform convergence [7, 8].

1.1 Previous Results

The question of the generalization behaviour of ranking algorithms has only recently
begun to be addressed. Generalization properties of algorithms for a distinct but closely
related problem, namely that of ordinal regression, were considered in [3]. The first
study of generalization in ranking was that of Freund et al. [5], in which generalization
bounds for the bipartite RankBoost algorithm were derived. These bounds were derived
from uniform convergence results for the classification error rate, and were expressed
in terms of the VC-dimension of a class of binary classification functions derived from
the class of ranking functions searched by RankBoost. More recently, Agarwal et al. [6]
have derived a uniform convergence bound for the bipartite ranking error (see Section 2)
which is expressed in terms of a new set of combinatorial parameters that measure
directly the complexity of the class of ranking functions searched by an algorithm.

Uniform convergence requires the empirical errors of all functions in the searched
class to converge to their expected errors. Generalization bounds based on uniform
convergence are therefore necessarily loose, as they depend only on properties of the
function class being searched, and do not take into account the manner in which the
function class is actually searched by the algorithm. In addition, these bounds can be
applied only to algorithms that search function classes of bounded complexity.

The notion of algorithmic stability, first studied for learning algorithms by Devroye
and Wagner [9], has been used recently to directly obtain generalization bounds, with-
out needing to show uniform convergence, for classification and regression algorithms
that satisfy certain stability conditions [7, 8]. In particular, a stable learning algorithm
is one whose output does not change much with small changes in the training sample;
the above works have shown that classification and regression algorithms that satisfy
this condition have good generalization properties. The stability-based bounds depend
on properties of the algorithm rather than the function class that is searched, and can
be applied also to algorithms that search function classes of unbounded complexity.
Algorithms that have been shown to be stable include, for example, kernel-based clas-
sification and regression algorithms such as support vector machines (SVMs), which
often cannot be analyzed using uniform convergence tools. In this paper, we show that
the notion of algorithmic stability can be used also to analyze the generalization be-
haviour of (bipartite) ranking algorithms.

1.2 Our Results

We define notions of stability for bipartite ranking algorithms, and use these notions to
analyze the generalization behaviour of such algorithms. In particular, we derive gener-
alization bounds for bipartite ranking algorithms that exhibit good stability properties.



We show that kernel-based ranking algorithms that perform regularization in a repro-
ducing kernel Hilbert space (RKHS) have such stability properties, and therefore our
bounds can be applied to these algorithms; this is in contrast with previous generaliza-
tion bounds for ranking, which are based on uniform convergence and in many cases
cannot be applied to these algorithms. A comparison of the bounds we obtain with cor-
responding bounds for classification algorithms yields some interesting insights into the
difference in generalization behaviour between ranking and classification. In particular,
we find that for a training sample ofM elements containingm positive andn = M−m
negative instances, the sample sizeM in the classification bounds is replaced with the
quantitymn/(m + n) in the ranking bounds. If we define the ‘positive skew’ of the
sample as the proportion of positive examplesρ = m/(m + n), then this means that
the‘effective’ sample size in ranking is reduced fromM to ρ(1− ρ)M , with the reduc-
tion being more drastic asρ departs from1/2, i.e., as the balance between positive and
negative examples becomes more uneven. This further corroborates previous observa-
tions about the importance of the skewρ in ranking [10, 6, 11].

1.3 Organization

We describe the bipartite ranking problem in detail in Section 2, and define notions of
stability for (bipartite) ranking algorithms in Section 3. Using these notions, we derive
generalization bounds for stable ranking algorithms in Section 4. In Section 5 we show
stability of kernel-based ranking algorithms that perform regularization in an RKHS,
and apply the results of Section 4 to obtain generalization bounds for these algorithms.
We conclude with a discussion in Section 6.

2 The Bipartite Ranking Problem

In the bipartite ranking problem [5, 6], instances come from two categories, positive and
negative; the learner is given examples of instances labeled as positive or negative, and
the goal is to learn a ranking in which positive instances are ranked higher than negative
ones. Such problems arise, for example, in information retrieval, where one is interested
in retrieving documents from some database that are ‘relevant’ to a given topic; in this
case, the training examples given to the learner consist of documents labeled as relevant
(positive) or irrelevant (negative), and the goal is to produce a list of documents that
contains relevant documents at the top and irrelevant documents at the bottom – in
other words, one wants a ranking of the documents such that relevant documents are
ranked higher than irrelevant documents.

Formally, the setting of the bipartite ranking problem can be described as fol-
lows. There is an instance spaceX from which instances are drawn, and the learner
is given a training sample(S+, S−) ∈ Xm × Xn consisting of a sequence of positive
training examplesS+ = (x+

1 , . . . , x+
m) and a sequence of negative training examples

S− = (x−1 , . . . , x−n ). The goal is to learn from these examples a real-valued ranking
functionf : X→R that ranks future positive instances higher than negative ones, where
f is considered to rank an instancex higher than an instancex′ if f(x) > f(x′) and is
considered to rankx lower thanx′ if f(x) < f(x′). We assume that positive instances



are drawn randomly and independently according to some (unknown) distributionD+

on the instance spaceX , and that negative instances are drawn randomly and indepen-
dently according to some (unknown) distributionD− onX . The quality of a ranking
functionf : X→R is then measured by itsexpected ranking error, denoted byR(f)
and defined as follows:

R(f) = Ex+∼D+,x−∼D−

{
I{f(x+)<f(x−)} +

1
2
I{f(x+)=f(x−)}

}
, (1)

whereI{·} denotes the indicator variable whose value is one if its argument is true
and zero otherwise. The expected errorR(f) is the probability that a positive instance
drawn randomly according toD+ is ranked lower byf than a negative instance drawn
randomly according toD−, assuming that ties are broken uniformly at random. In prac-
tice, since the distributionsD+ andD− are unknown, the expected error of a ranking
functionf must be estimated from an empirically observable quantity such as itsem-
pirical ranking error with respect to a sample(S+, S−) ∈ Xm × Xn, denoted by
R̂(f ;S+, S−) and defined as follows:

R̂(f ;S+, S−) =
1

mn

m∑
i=1

n∑
j=1

{
I{f(x+

i )<f(x−j )} +
1
2
I{f(x+

i )=f(x−j )}

}
. (2)

This is simply the fraction of positive-negative pairs in(S+, S−) that are ranked incor-
rectly byf , assuming that ties are broken uniformly at random.

Although the bipartite ranking problem shares similarities with the binary classifi-
cation problem, it should be noted that the two problems are in fact distinct. In partic-
ular, it is possible for binary-valued functions obtained by thresholding different real-
valued functions to have the same classification errors, while the ranking errors of the
real-valued functions may differ significantly. For example, consider the following two
rankings on a sample consisting of 4 positive and 4 negative examples:

In both cases, the error of the best classification function that can be obtained by apply-
ing a threshold is2/8. However, the ranking error off1 is 4/16, whereas that off2 is
8/16. For a detailed analysis of this distinction, see [10]3.

A bipartite ranking algorithm takes as input a training sample(S+, S−) ∈
( ⋃∞

m=1 Xm
)
×( ⋃∞

n=1 Xn
)

and returns as output a ranking functionfS+,S− : X→R. For simplicity,
we consider only deterministic algorithms. We are concerned in this paper with gen-
eralization properties of such algorithms; in particular, we are interested in bounding
the expected error of a learned ranking function in terms of an empirically observable
quantity such as its empirical error on the training sample from which it is learned. The
following definitions will be useful in our study.

Definition 1 (Ranking loss function).A ranking loss functionis a function` : RX ×
X × X → R+ ∪ {0} that assigns, for eachf : X→R andx, x′ ∈ X , a non-negative
real number̀ (f, x, x′) interpreted as the loss off in its relative ranking ofx andx′.

3 In [10], the performance of a ranking function is measured in terms of the area under the ROC
curve (AUC); this quantity is simply equal to one minus the empirical ranking error.



Definition 2 (Expected `-error). Let f : X→R be a ranking function onX . Let
` : RX × X × X → R+ ∪ {0} be a ranking loss function. Define theexpected̀ -
errorof f , denoted byR`(f), as follows:

R`(f) = Ex+∼D+,x−∼D−

{
`(f, x+, x−)

}
.

Definition 3 (Empirical `-error). Let f : X→R be a ranking function onX , and let
(S+, S−) ∈ Xm×Xn be a finite sample. Let` : RX ×X ×X →R+∪{0} be a ranking
loss function. Define theempirical`-errorof f with respect toS+ andS−, denoted by
R̂`(f ;S+, S−), as follows:

R̂`(f ;S+, S−) =
1

mn

m∑
i=1

n∑
j=1

`(f, x+
i , x−j ) .

Comparing with Eqs. (1-2), we see that the ranking error can be expressed as the
`b-error,i.e., R ≡ R`b

andR̂ ≡ R̂`b
, where`b is thebipartite ranking lossgiven by

`b(f, x, x′) = I{f(x)<f(x′)} +
1
2
I{f(x)=f(x′)} . (3)

3 Stability of (Bipartite) Ranking Algorithms

A stable algorithm is one whose output does not change significantly with small changes
in the input. The input to a ranking algorithm is a training sample of the form(S+, S−) ∈
Xm × Xn for somem,n ∈ N; we consider changes to such a sample that consist of
replacing a single element of the sample with a new instance. For anyi ∈ {1, . . . ,m}
andz ∈ X , we useSi,z

+ to denote the sequence obtained fromS+ by replacingx+
i with

z; similarly, for anyj ∈ {1, . . . , n} andz ∈ X , we useSj,z
− to denote the sequence

obtained fromS− by replacingx−j with z.
Several different notions of stability have been used in the study of classification and

regression algorithms [9, 12, 7, 8, 13]. The notions of stability that we define for ranking
algorithms below are most closely related to those used by Bousquet and Elisseeff [7].

Definition 4 (Uniform loss stability). Let L be a bipartite ranking algorithm whose
output on a training sample(S+, S−) we denote byfS+,S− , and let` : RX × X ×
X → R+ ∪ {0} be a ranking loss function. Letα : N × N→R, β : N × N→R.
We say thatL hasuniform loss stability(α, β) with respect tò if for all m,n ∈ N,
(S+, S−) ∈ Xm × Xn, z ∈ X , i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, we have for all
x+, x− ∈ X , ∣∣`(fS+,S− , x+, x−)− `(fSi,z

+ ,S−
, x+, x−)

∣∣ ≤ α(m,n) ,∣∣`(fS+,S− , x+, x−)− `(fS+,Sj,z
−

, x+, x−)
∣∣ ≤ β(m,n) .

Definition 5 (Uniform score stability). LetL be a bipartite ranking algorithm whose
output on a training sample(S+, S−) we denote byfS+,S− . Letµ : N×N→R, ν : N×
N→R. We say thatL hasuniform score stability(µ, ν) if for all m,n ∈ N, (S+, S−) ∈
Xm ×Xn, z ∈ X , i ∈ {1, . . . ,m} andj ∈ {1, . . . , n}, we have for allx ∈ X ,∣∣fS+,S−(x)− fSi,z

+ ,S−
(x)

∣∣ ≤ µ(m,n) ,∣∣fS+,S−(x)− fS+,Sj,z
−

(x)
∣∣ ≤ ν(m,n) .



4 Generalization Bounds for Stable Ranking Algorithms

In this section we derive generalization bounds for ranking algorithms that exhibit good
stability properties. Our methods are based on those of Bousquet and Elisseeff [7],
who derived such bounds for classification and regression algorithms. We start with the
following technical lemma.

Lemma 1. LetL be a symmetric bipartite ranking algorithm4 whose output on a train-
ing sample(S+, S−) ∈ Xm×Xn we denote byfS+,S− , and let̀ : RX×X×X →R+∪
{0} be a ranking loss function. Then for alli ∈ {1, . . . ,m}, j ∈ {1, . . . , n}, we have

ES+,S−

{
R`(fS+,S−)− R̂`(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
`(fS+,S− , x+, x−)− `(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
.

Proof. We have,

ES+,S−

{
R̂`(fS+,S− ;S+, S−)

}
=

1
mn

m∑
i=1

n∑
j=1

ES+,S−

{
`(fS+,S− , x+

i , x−j )
}

.

By symmetry, the term in the summation is the same for alli, j. Therefore, for each
i ∈ {1, . . . ,m} andj ∈ {1, . . . , n}, we get

ES+,S−

{
R̂`(fS+,S− ;S+, S−)

}
= ES+,S−

{
`(fS+,S− , x+

i , x−j )
}

= ES+,S−,x+,x−

{
`(fS+,S− , x+

i , x−j )
}

.

Interchanging the roles ofx+
i with x+ andx−j with x−, we get

ES+,S−

{
R̂`(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
`(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
.

Since by definition

ES+,S−

{
R`(fS+,S−)

}
= ES+,S−,x+,x−

{
`(fS+,S− , x+, x−)

}
,

the result follows. ut

Our main tool will be the following powerful concentration inequality of McDi-
armid [14], which bounds the deviation of any function of a sample for which a single
change in the sample has limited effect.

Theorem 1 (McDiarmid [14]). Let X1, . . . , XN be independent random variables,
each taking values in a setA. Let φ : AN→R be such that for eachk ∈ {1, . . . , N},
there existsck > 0 such that

sup
x1,...,xN∈A,x′k∈A

∣∣φ(x1, . . . , xN )− φ(x1, . . . , xk−1, x
′
k, xk+1, . . . , xN )

∣∣ ≤ ck .

Then for anyε > 0,

P
{
φ(X1, . . . , XN )−E

{
φ(X1, . . . , XN )

}
≥ ε

}
≤ e−2ε2/

∑N
k=1 c2

k .

We are now ready to give our main result, which bounds the expected`-error of a
ranking function learned by an algorithm with good uniform loss stability in terms of
its empirical`-error on the training sample.

4 A symmetric bipartite ranking algorithm is one whose output is independent of the order of
elements in the training sequencesS+ andS−.



Theorem 2. LetL be a symmetric bipartite ranking algorithm whose output on a train-
ing sample(S+, S−) ∈ Xm×Xn we denote byfS+,S− , and let̀ : RX×X×X →R+∪
{0} be a ranking loss function such that0 ≤ `(f, x, x′) ≤ B for all f : X→R and
x, x′ ∈ X . Letα : N× N→R, β : N× N→R be such thatL has uniform loss stability
(α, β) with respect tò . Then for any0 < δ < 1, with probability at least1 − δ over
the draw of(S+, S−),

R`(fS+,S−) < R̂`(fS+,S− ;S+, S−) + α(m,n) + β(m,n)

+

√{
n(2m α(m,n) + B)2 + m(2n β(m,n) + B)2

}
ln(1/δ)

2mn
.

Proof. Let φ : Xm ×Xn→R be defined as follows:

φ(S+, S−) = R`(fS+,S−)− R̂`(fS+,S− ;S+, S−) .

We shall show thatφ satisfies the conditions of McDiarmid’s inequality (Theorem 1).
Let (S+, S−) ∈ Xm ×Xn, and letz ∈ X . For eachi ∈ {1, . . . ,m}, we have∣∣R`(fS+,S−)−R`(fSi,z

+ ,S−
)
∣∣ =

∣∣Ex+,x−
{
`(fS+,S− , x+, x−)− `(fSi,z

+ ,S−
, x+, x−)

}∣∣
≤ Ex+,x−

{∣∣`(fS+,S− , x+, x−)− `(fSi,z
+ ,S−

, x+, x−)
∣∣}

≤ α(m,n) ,

and ∣∣R̂`(fS+,S− ;S+, S−)− R̂`(fSi,z
+ ,S−

;Si,z
+ , S−)

∣∣
≤ 1

mn

∑
i′ 6=i

n∑
j=1

∣∣`(fS+,S− , x+
i′ , x

−
j )− `(fSi,z

+ ,S−
, x+

i′ , x
−
j )

∣∣
+

1
mn

n∑
j=1

∣∣`(fS+,S− , x+
i , x−j )− `(fSi,z

+ ,S−
, z, x−j )

∣∣
≤ α(m,n) +

B

m
.

This gives ∣∣φ(S+, S−)− φ(Si,z
+ , S−)

∣∣ ≤ 2α(m,n) +
B

m
.

Similarly, it can be shown that for eachj ∈ {1, . . . , n},∣∣φ(S+, S−)− φ(S+, Sj,z
− )

∣∣ ≤ 2β(m,n) +
B

n
.

Thus, applying McDiarmid’s inequality toφ, we get for anyε > 0,

PS+,S−

{{
R`(fS+,S−)− R̂`(fS+,S− ;S+, S−)

}
− ES+,S−

{
R`(fS+,S−)− R̂`(fS+,S− ;S+, S−)

}
≥ ε

}
≤ e−2ε2/(m(2α(m,n)+B/m)2+n(2β(m,n)+B/n)2)

= e−2mnε2/(n(2mα(m,n)+B)2+m(2nβ(m,n)+B)2) .



Now, by Lemma 1, we have

ES+,S−

{
R`(fS+,S−)− R̂`(fS+,S− ;S+, S−)

}
= ES+,S−,x+,x−

{
`(fS+,S− , x+, x−)− `(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
= ES+,S−,x+,x−

{
`(fS+,S− , x+, x−)− `(f

Si,x+
+ ,S−

, x+, x−)

+ `(f
Si,x+

+ ,S−
, x+, x−)− `(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

}
≤ ES+,S−,x+,x−

{∣∣∣`(fS+,S− , x+, x−)− `(f
Si,x+

+ ,S−
, x+, x−)

∣∣∣}
+ ES+,S−,x+,x−

{∣∣∣`(f
Si,x+

+ ,S−
, x+, x−)− `(f

Si,x+
+ ,Sj,x−

−
, x+, x−)

∣∣∣}
≤ α(m,n) + β(m,n) .

Thus we get for anyε > 0,

PS+,S−

{
R`(fS+,S−)− R̂`(fS+,S− ;S+, S−)−

(
α(m,n) + β(m,n)

)
≥ ε

}
≤ e−2mnε2/(n(2mα(m,n)+B)2+m(2nβ(m,n)+B)2) .

The result follows by setting the right hand side equal toδ and solving forε. ut
Theorem 2 gives meaningful bounds whenα(m,n) = o(1/

√
m) andβ(m,n) =

o(1/
√

n). This means the theorem cannot be applied directly to obtain bounds on the
expected ranking error, since it is not possible to have non-trivial uniform loss stability
with respect to the bipartite ranking loss`b (except by an algorithm that picks the same
ranking function for all training samples of a given sizem,n). However, for any ranking
loss` that satisfies̀b ≤ `, Theorem 2 can be applied to ranking algorithms that have
good uniform loss stability with respect tòto obtain bounds on the expected`-error;
since in this caseR ≤ R`, these bounds apply also to the expected ranking error. We
consider below a specific ranking loss that satisfies this condition.

Forγ > 0, let theγ ranking loss, denoted bỳ γ , be defined as follows:

`γ(f, x, x′) =


1 if (f(x)− f(x′)) ≤ 0
1− (f(x)−f(x′))

γ if 0 < (f(x)− f(x′)) < γ

0 if (f(x)− f(x′)) ≥ γ

. (4)

Clearly, for all γ > 0, we have`b ≤ `γ . Therefore, for any ranking algorithm that
has good uniform loss stability with respect to`γ for someγ > 0, Theorem 2 can be
applied to bound the expected ranking error of a learned ranking function in terms of its
empirical`γ-error on the training sample. The following lemma shows that, for every
γ > 0, a ranking algorithm that has good uniform score stability also has good uniform
loss stability with respect tòγ .

Lemma 2. Let L be a bipartite ranking algorithm whose output on a training sample
(S+, S−) we denote byfS+,S− . Let µ : N × N→R, ν : N × N→R be such thatL
has uniform score stability(µ, ν). Then for everyγ > 0, L has uniform loss stability
(αγ , βγ) with respect to theγ ranking loss̀ γ , where for allm,n ∈ N,

αγ(m,n) =
2µ(m,n)

γ
, βγ(m,n) =

2ν(m,n)
γ

.



Proof. By the definition of̀ γ in Eq. (4), we have that

`γ(f, x, x′) ≤ 1− (f(x)−f(x′)
γ if (f(x)− f(x′)) ≤ 0 , (5)

`γ(f, x, x′) ≥ 1− (f(x)−f(x′)
γ if (f(x)− f(x′)) ≥ γ . (6)

Now, letm,n ∈ N, (S+, S−) ∈ Xm×Xn, z ∈ X , i ∈ {1, . . . ,m} andj ∈ {1, . . . , n},
and letx+, x− ∈ X . The casè γ(fS+,S− , x+, x−) = `γ(fSi,z

+ ,S−
, x+, x−) is trivial.

Assumè γ(fS+,S− , x+, x−) 6= `γ(fSi,z
+ ,S−

, x+, x−). Then, using the observations in

Eqs. (5-6), it can be verified that∣∣∣`γ(fS+,S− , x+, x−)− `γ(fSi,z
+ ,S−

, x+, x−)
∣∣∣

≤
∣∣∣∣(1−

(fS+,S−(x+)− fS+,S−(x−))
γ

)
−

(
1−

(fSi,z
+ ,S−

(x+)− fSi,z
+ ,S−

(x−))

γ

)∣∣∣∣
≤ 1

γ

(∣∣∣fS+,S−(x+)− fSi,z
+ ,S−

(x+)
∣∣∣ +

∣∣∣fS+,S−(x−)− fSi,z
+ ,S−

(x−)
∣∣∣)

≤ 2µ(m,n)
γ

.

Similarly, it can be shown that∣∣∣`γ(fS+,S− , x+, x−)− `γ(fS+,Sj,z
−

, x+, x−)
∣∣∣ ≤ 2ν(m,n)

γ
.

The result follows. ut

Putting everything together, we thus get the following result which bounds the ex-
pected ranking error of a learned ranking function in terms of its empirical`γ-error for
any ranking algorithm that has good uniform score stability.

Theorem 3. Let L be a symmetric bipartite ranking algorithm whose output on a
training sample(S+, S−) ∈ Xm × Xn we denote byfS+,S− . Let µ : N × N→R,
ν : N × N→R be such thatL has uniform score stability(µ, ν), and letγ > 0. Then
for any0 < δ < 1, with probability at least1− δ over the draw of(S+, S−),

R(fS+,S−) < R̂`γ
(fS+,S− ;S+, S−) +

2µ(m,n)
γ

+
2ν(m,n)

γ

+

√√√√{
n
( 4m µ(m,n)

γ + 1
)2 + m

( 4n ν(m,n)
γ + 1

)2
}

ln(1/δ)

2mn
.

Proof. The result follows by applying Theorem 2 toL with the ranking loss̀γ (using
Lemma 2), which satisfies0 ≤ `γ ≤ 1, and from the fact thatR ≤ R`γ . ut

We note that although our bounds above are derived for the case when a fixed num-
berm of positive examples are drawn i.i.d. fromD+ and a fixed numbern of negative
examples are drawn i.i.d. fromD−, the bounds can be extended easily to the case when



M examples are drawn i.i.d. from a joint distributionD overX × {−1, 1}. In partic-
ular, using exactly the same techniques as above, the same confidence intervals can be
derived for a draw conditioned on any fixed label sequence that containsm positive and
n = M−m negative labels. The conditioning can then be removed using an expectation
trick (see [6, Theorems 8 and 19]); in the resulting confidence intervals, the numbersm
andn are replaced by functions of the (random) label sequence that correspond to the
numbers of positive and negative labels drawn.

5 Stable Ranking Algorithms

In this section we show stability of certain ranking algorithms that select a ranking
function by minimizing a regularized objective function. We start by deriving a general
result for regularization-based ranking algorithms in Section 5.1. In Section 5.2 we use
this result to show stability of kernel-based ranking algorithms that perform regulariza-
tion in a reproducing kernel Hilbert space (RKHS). We show, in particular, stability of
an SVM-like ranking algorithm, and apply the results of Section 4 to obtain a general-
ization bound for this algorithm. A comparison with the uniform convergence bound of
[6] demonstrates the benefit of the stability analysis. Again, our methods are based on
those of Bousquet and Elisseeff [7], who showed similar results for classification and
regression algorithms.

5.1 General Regularizers

Given a ranking loss functioǹ : RX × X × X → R+ ∪ {0}, a classF of real-valued
functions onX , and a regularization functionalN : F→R+∪{0}, consider the follow-
ing regularized empirical̀-error of a ranking functionf ∈ F (with respect to a sample
(S+, S−) ∈ Xm ×Xn), with regularization parameterλ > 0:

R̂λ
` (f ;S+, S−) =

1
mn

m∑
i=1

n∑
j=1

`(f, x+
i , x−j ) + λN(f) . (7)

We consider bipartite ranking algorithms that minimize such a regularized objective
function,i.e., ranking algorithms that, given a training sample(S+, S−), output a rank-
ing functionfS+,S− ∈ F that satisfies

fS+,S− = arg min
f∈F

R̂λ
` (f ;S+, S−)

= arg min
f∈F

{
R̂`(f ;S+, S−) + λN(f)

}
, (8)

for some fixed choice of ranking loss`, function classF , regularizerN , and regular-
ization parameterλ. We derive below a general result that will be useful for showing
stability of such regularization-based algorithms.

Definition 6 (σ-admissibility). Let ` : RX × X × X → R+ ∪ {0} be a ranking loss
andF a class of real-valued functions onX . Letσ > 0. We say that̀ is σ-admissible
with respect toF if for all f1, f2 ∈ F and allx, x′ ∈ X , we have∣∣`(f1, x, x′)− `(f2, x, x′)

∣∣ ≤ σ
(∣∣f1(x)− f2(x)

∣∣ +
∣∣f1(x′)− f2(x′)

∣∣) .



Lemma 3. Let ` : RX × X × X → R+ ∪ {0} be a ranking loss such that`(f, x, x′)
is convex inf . LetF be a convex class of real-valued functions onX , and letσ > 0
be such that̀ is σ-admissible with respect toF . Letλ > 0, and letN : F→R+ ∪ {0}
be a functional defined onF such that for all samples(S+, S−) ∈ Xm × Xn, the
regularized empirical̀ -error R̂λ

` (f ;S+, S−) has a minimum (not necessarily unique)
in F . LetL be a ranking algorithm defined by Eq. (8), and let(S+, S−) ∈ Xm × Xn,
z ∈ X , i ∈ {1, . . . ,m}, andj ∈ {1, . . . , n}. For brevity, denote

f ≡ fS+,S− , f i,z
+ ≡ fSi,z

+ ,S−
, f j,z

− ≡ fS+,Sj,z
−

,

and let
∆f+ =

(
f i,z
+ − f

)
, ∆f− =

(
f j,z
− − f

)
.

Then we have that for anyt ∈ [0, 1],

N(f)−N(f + t∆f+) + N(f i,z
+ )−N(f i,z

+ − t∆f+)

≤ tσ

λmn

n∑
j=1

(
|∆f+(x+

i )|+ 2|∆f+(x−j )|+ |∆f+(z)|
)

,

N(f)−N(f + t∆f−) + N(f j,z
− )−N(f j,z

− − t∆f−)

≤ tσ

λmn

m∑
i=1

(
|∆f−(x−j )|+ 2|∆f−(x+

i )|+ |∆f−(z)|
)

.

The proof of this result makes use of techniques similar to those used in [7], and is
omitted for lack of space (see [15] for details). As we show below, this result can be
used to establish stability of certain regularization-based ranking algorithms.

5.2 Regularization in Hilbert Spaces

Let F be an RKHS with kernelK. Then from the properties of an RKHS (see, for
example, [16]), we have for allf ∈ F and allx ∈ X ,

|f(x)| ≤ ‖f‖K

√
K(x, x) . (9)

Let N : F→R+ ∪ {0} be the regularizer defined by

N(f) = ‖f‖2K . (10)

We show below that, if the kernelK is such thatK(x, x) is bounded for allx ∈ X ,
then a ranking algorithm that minimizes an appropriate regularized error overF , with
regularizerN as defined above, has good uniform score stability.

Theorem 4. Let F be an RKHS with kernelK such that for allx ∈ X , K(x, x) ≤
κ2 < ∞. Let` be a ranking loss such that`(f, x, x′) is convex inf and` isσ-admissible
with respect toF . Let λ > 0, and letN be given by Eq. (10). LetL be a ranking al-
gorithm defined by Eq. (8). ThenL has uniform score stability(µ, ν), where for all
m,n ∈ N,

µ(m,n) =
4σκ2

λm
, ν(m,n) =

4σκ2

λn
.



Proof. Let m,n ∈ N, (S+, S−) ∈ Xm × Xn, z ∈ X , andi ∈ {1, . . . ,m}. SinceF
is a vector space, we have (using the notation of Lemma 3) that∆f+ ∈ F . Applying
Lemma 3 witht = 1/2, we get that

1
2
‖∆f+‖2K ≤ σ

2λmn

n∑
j=1

(
|∆f+(x+

i )|+ 2|∆f+(x−j )|+ |∆f+(z)|
)

.

By Eq. (9), we thus get that

‖∆f+‖2K ≤ 4σκ

λm
‖∆f+‖K ,

which gives
‖∆f+‖K ≤ 4σκ

λm
. (11)

Thus, by Eqs. (9) and (11), we have for allx ∈ X ,∣∣fS+,S−(x)− fSi,z
+ ,S−

(x)
∣∣ = |∆f+(x)| ≤ 4σκ2

λm
.

Similarly, for eachj ∈ {1, . . . , n}, we can show that∣∣fS+,S−(x)− fS+,Sj,z
−

(x)
∣∣ ≤ 4σκ2

λn
.

The result follows. ut

Consider now the following ranking loss function, which we refer to as thehinge
ranking lossdue to its similarity to the hinge loss in classification:

`h(f, x, x′) =
{

1− (f(x)− f(x′)) if (f(x)− f(x′)) < 1
0 if (f(x)− f(x′)) ≥ 1 . (12)

We consider a ranking algorithmL that minimizes the regularized̀h-error in an RKHS
F . Specifically, letL be a ranking algorithm which, given a training sample(S+, S−),
outputs a ranking functionfS+,S− ∈ F that satisfies (for some fixedλ > 0)

fS+,S− = arg min
f∈F

{
R̂`h

(f ;S+, S−) + λ‖f‖2K
}

. (13)

We note that this algorithm has an equivalent quadratic programming formulation simi-
lar to SVMs in the case of classification (see [17, 15]). It can be verified that`h(f, x, x′)
is convex inf , and that̀ h is 1-admissible with respect toF . Thus, ifK(x, x) ≤ κ2 for
all x ∈ X , then from Theorem 4 we get thatL has uniform score stability(µ, ν), where
for all m,n ∈ N,

µ(m,n) =
4κ2

λm
, ν(m,n) =

4κ2

λn
.

Applying Theorem 3 withγ = 1, we then get that for any0 < δ < 1, with probability
at least1− δ over the draw of(S+, S−) ∈ Xm×Xn, the expected ranking error of the
ranking functionfS+,S− learned by the above algorithmL is bounded by

R(fS+,S−) < R̂`1(fS+,S− ;S+, S−) +
8κ2

λ

(m + n

mn

)
+

(
1 +

16κ2

λ

)√
(m + n) ln(1/δ)

2mn
.

(14)



In particular, for the RKHS corresponding to the linear kernel defined on the unit ball
in Rd, so thatK(x,x) ≤ 1 for all x, we have that with probability at least1 − δ over
the draw of(S+, S−) ∈ Xm × Xn, the ranking functionfS+,S− learned by the above
algorithm (defined by Eq. (13)) satisfies

R(fS+,S−) < R̂`1(fS+,S− ;S+, S−) +
8
λ

(m + n

mn

)
+

(
1 +

16
λ

)√
(m + n) ln(1/δ)

2mn
.

On the other hand, the confidence interval obtained for this algorithm using the uniform
convergence bound of [6] gives that, with probability at least1− δ,

R(fS+,S−) < R̂(fS+,S− ;S+, S−) +

√
8(m + n)

(
d(ln(8mn/d) + 1) + ln(4/δ)

)
mn

.

The above bounds are plotted in Figure 1 forδ = 0.01, λ = 1, and various values ofd
andm/(m+n). As can be seen, directly analyzing stability properties of the algorithm
gives considerable benefit over the general uniform convergence based analysis. In par-
ticular, since the uniform convergence bound depends on the complexity of the function
class that is searched, the bound quickly becomes uninformative in high dimensions; on
the other hand, the stability bound is independent of the dimensionality of the space. In
the case of kernel spaces whose complexity cannot be bounded,e.g., the RKHS corre-
sponding to the Gaussian kernel, the uniform convergence bound cannot be applied at
all, while the stability analysis continues to hold.

Comparing the bound derived in Eq. (14) to the corresponding bound for classifica-
tion derived by Bousquet and Elisseeff [7], we find that if the total number of training
examples is denoted byM = m +n, then the sample sizeM in their bound is replaced
by the quantitymn/(m+n) in our bound.5 If we define the ‘positive skew’ of the sam-
ple as the proportion of positive examplesρ = m/(m + n), then this is equivalent to
replacingM in the classification bound withρ(1 − ρ)M in our bound. The ‘effective’
sample size in ranking is thus reduced fromM to ρ(1−ρ)M , the reduction being more
drastic as the skewρ departs from1/2. Interestingly, a similar observation holds for
the uniform convergence and large deviation bounds for the ranking error derived in [6]
when compared to corresponding bounds for the classification error.

As in the case of classification [7], the above results show that a larger regularization
parameterλ leads to better stability and, therefore, a tighter confidence interval in the
resulting generalization bound. In particular, one must haveλ �

√
(m + n)/mn in

order for the above bound to be meaningful.

6 Discussion

The main difference in the mathematical formulation of the (bipartite) ranking problem
as compared to the classification problem is that the loss function in ranking is ‘pair-
wise’ rather than ‘point-wise’. The general analysis of ranking is otherwise similar to

5 The difference in constants in the two bounds is due in part to the difference in loss functions
in ranking and classification, and in part to a slight difference in definitions of stability; in
particular, our definitions are in terms of changes to a training sample that consist of replacing
one element in the sample with a new one, while the definitions of Bousquet and Elisseeff are
in terms of changes that consist of removing one element from the sample.



Fig. 1. A comparison of our stability bound with the uniform convergence bound of [6] for the
kernel-based algorithm described in Section 5.2, with a linear kernel over the unit ball inRd. The
plots are forδ = 0.01, λ = 1, and show how the confidence interval sizeε given by the two
bounds varies with the sample sizeM = m + n, for various values ofd andm/(m + n).

that for classification, and indeed, ranking algorithms often resemble ‘classification on
pairs’. However, generalization bounds from classificationcannotbe applied directly
to ranking, due to dependences among the instance pairs. Indeed, the bounds we have
obtained for ranking suggest that the effective sample size in ranking is not only smaller
than the number of positive-negative pairsmn, but is even smaller than the number of
instancesM = m+n; the dependences reduce the effective sample size toρ(1−ρ)M ,
whereρ = m/(m + n) is the ‘positive skew’ of the sample.

The notions of uniform stability studied in this paper correspond most closely to
those studied by Bousquet and Elisseeff [7]. These notions are strict in that they re-
quire changes in a sample to have bounded effect uniformly over all samples and re-
placements. Kutin and Niyogi [8] have derived generalization bounds (for classifica-
tion and regression algorithms) using a less strict notion of stability termed ‘almost-
everywhere’ stability; this requires changes in a sample to have bounded effect only
with high probability (over the draw of the sample and the replacement element). The
notion of almost-everywhere stability leads to a distribution-dependent treatment as op-
posed to the distribution-free treatment obtained with uniform stability, and it would
be particularly interesting to see if making distributional assumptions in ranking can
mitigate the reduced sample size effect discussed above.



An open question concerns the analysis of other ranking algorithms using the algo-
rithmic stability framework. It has been shown [18] that AdaBoost is stability-preserving,
in the sense that stability of base classifiers implies stability of the final learned classi-
fier. It would be interesting if a similar result could be shown for the bipartite RankBoost
algorithm [5], which is based on the same principles of boosting as AdaBoost.

Finally, it is also an open question to analyze generalization properties of ranking
algorithms in other settings of the ranking problem (i.e., other than bipartite).
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